

1 **The biogeochemical balance that controls oceanic nickel cycling**

2

3 Seth G. John^{1*}, Rachel L. Kelly¹, Xiaopeng Bian¹, Shun-Chung Yang¹, Feixue Fu², M. Isabel
4 Smith¹, Nathan T. Lanning³, Hengdi Liang¹, Benoît Pasquier¹, Emily A. Seelen¹, Mark Holzer⁴,
5 Laura Wasylenski⁵, Tim M. Conway⁶, Jessica N. Fitzsimmons³, and David A. Hutchins².

6 ¹ Department of Earth Sciences, University of Southern California; Los Angeles, CA 90089, USA.

7 ² Department of Biological Sciences, University of Southern California; Los Angeles, CA 90089, USA.

8 ³ Department of Oceanography, Texas A&M University; College Station, TX 77843, USA.

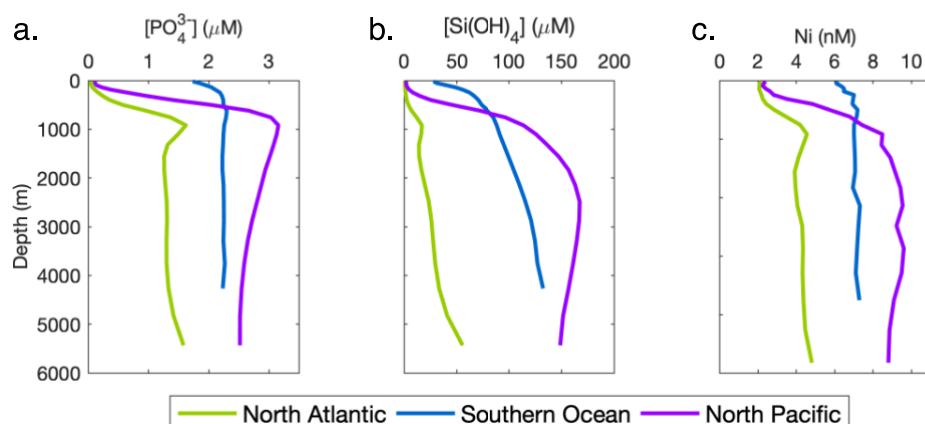
9 ⁴ School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia.

10 ⁵ Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA.

11 ⁶ College of Marine Science, University of South Florida; St Petersburg, FL 33701, USA.

12 * Corresponding author

13 **Abstract**


14 Nickel is a biologically essential element for marine life, with the potential to influence diverse
15 processes including methanogenesis, nitrogen uptake, and coral health, in both the modern and
16 past ocean. However, to date, an incomplete understanding of the processes which cycle Ni in the
17 oceans has stymied understanding of how Ni may impact marine life in the modern and ancient
18 oceans. The two dominant features of the global marine Ni distribution are a deep concentration
19 maximum similar to silicic acid, and a residual pool of ~2 nM Ni in subtropical gyres. These
20 features have often been ascribed to the presence of Ni within diatom frustules, and the presence
21 of a biologically inert Ni pool, respectively. Here, we use a combination of data-constrained global
22 biogeochemical circulation modeling and experimental work to challenge and overturn prior
23 assumptions, showing that oligotrophic gyre Ni is in fact both chemically and biologically labile,
24 and that only minimal Ni is incorporated into diatom frustules. We develop a new framework for
25 understanding global Ni distributions. Specifically, we demonstrate that slow depletion of Ni
26 relative to macronutrients in upwelling regions can explain the leftover ~2 nM Ni in subtropical
27 gyres, while the distinct Ni vertical distribution can be attributed to either reversible scavenging
28 or slower regeneration of Ni compared to macronutrients. The strength of these controls may have
29 varied in the past ocean, impacting Ni bioavailability and setting a fine balance between Ni feast
30 and famine for phytoplankton, with implications for both ocean chemistry and climate state.

31 **Main**

32 Nickel (Ni) is a biologically important metal, utilized in enzymes across all domains of
 33 life, and important for diverse biogeochemical processes including nitrogen fixation, nitrogen
 34 uptake, carbon fixation, and methanogenesis^{1,2}. Ni concentrations in the modern ocean may be
 35 sufficiently limiting to influence important oceanic biological processes. In culture, for example,
 36 nitrogen fixation by cyanobacteria can be limited under certain conditions due to the Ni
 37 requirement of superoxide dismutase and NiFe-hydrogenase^{3,4}, phytoplankton nitrogen acquisition
 38 from urea can be limited by insufficient Ni for urease⁵, and the growth of corals can be Ni limited
 39 due to inhibited urease activity of their symbionts⁶. However, Ni limitation of these processes in
 40 the oceans remains sparsely tested.

41 The availability of dissolved Ni to marine organisms is also thought to have played a crucial
 42 role in the evolution of life, primarily due to a Ni requirement for enzymes involved in
 43 methanogenesis. A Ni ‘famine’ in the oceans may have inhibited methanogenesis during the
 44 Archaean, allowing for the eventual rise of atmospheric oxygen⁷, while Ni stable isotopes ($\delta^{60}\text{Ni}$)
 45 suggest a small continued leak of Ni into the oceans from sulfide weathering which supported
 46 enough methanogenesis to prevent a prolonged ice age during this time⁸. Similarly, $\delta^{60}\text{Ni}$ records
 47 from the Neoproterozoic Marinoan glaciation (~630 Ma) suggest that methanogenesis was crucial
 48 for termination of this glacial interval⁹. Fully understanding the controls on global marine Ni
 49 distribution in the modern ocean therefore provides insight into Ni’s biological role in the past
 50 oceans, and may provide predictive power for future ocean chemistry and climate state, where
 51 changes in global marine nutrient utilization patterns or ocean circulation could lead to Ni-
 52 limitation of biota.

53

54

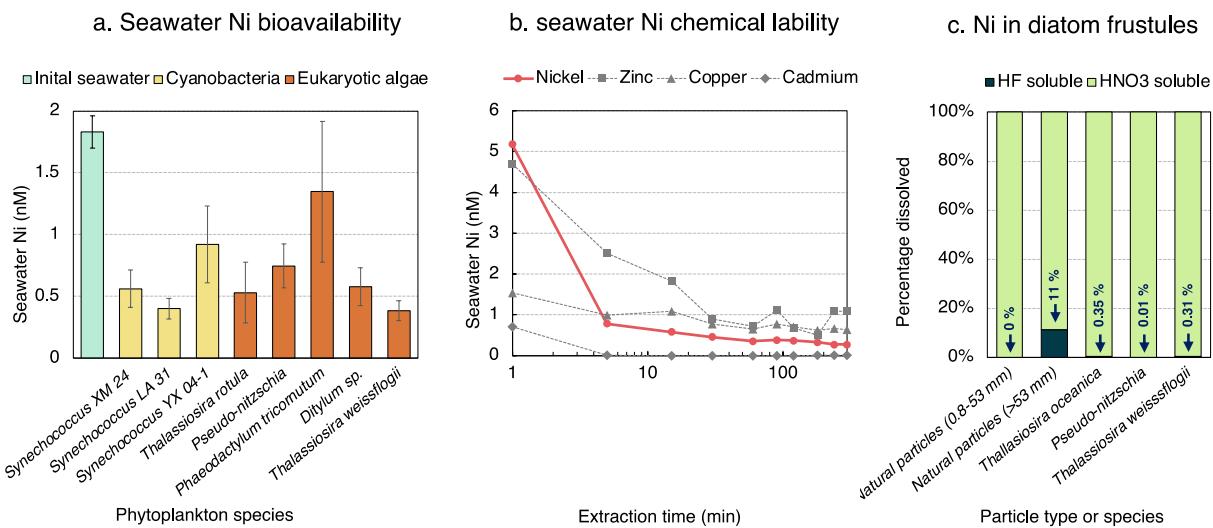
55

56 **Figure 1. The global marine distribution of Ni, P, and Si.** Dissolved water column depth profiles of a)
 57 phosphate (PO_4^{3-}), b) silicate (Si(OH)_4), and c) Ni all show nutrient-type distributions, though with different depth
 58 distribution and incomplete Ni depletion from the surface ocean. Macronutrient data are from the 2009 World Ocean
 59 Atlas and Ni data are compiled here (Methods). Data are averaged for North Atlantic (20°N-30°N, 60°W-70°W),
 60 Southern Ocean (90°S-50°S, 120°W-160°E), and North Pacific (20°N-30°N, 140°W-150°W).

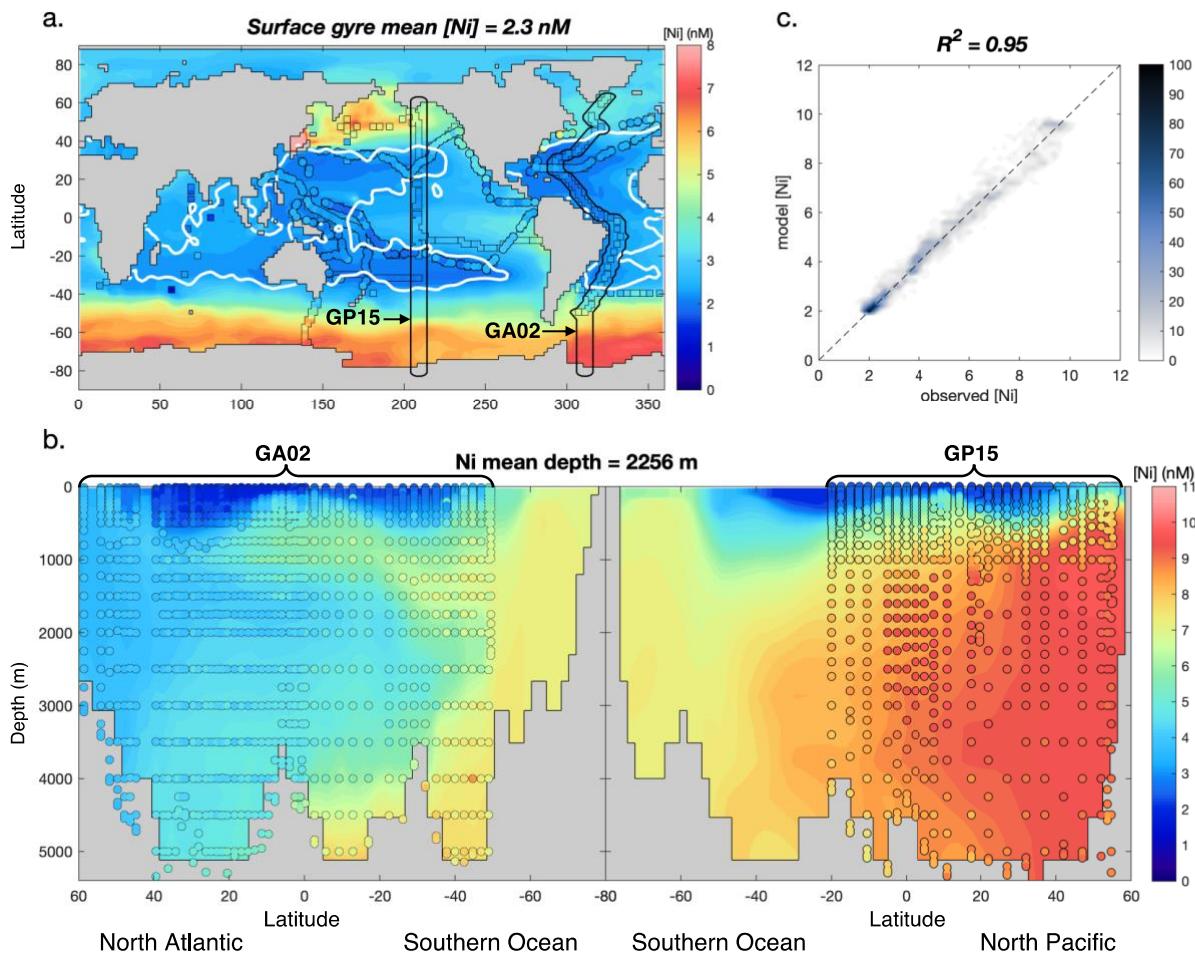
61

Ni has a ‘nutrient-type’ distribution in the modern ocean, having higher concentrations in deep waters compared to the surface, and increasing in concentration from the deep North Atlantic to the deep North Pacific. This pattern reflects the activity of the biological pump, which depletes nutrients from the surface ocean and accumulates them again within the deep ocean, increasing concentrations along the deep ocean ‘conveyor belt’ from the younger Atlantic to the older Pacific. This process is complicated by overprinting from circulation and mixing with surface waters having unique nutrient content, particularly the surface Southern Ocean, and vertical processes which transfer elements into the deeper ocean such as remineralization and scavenging¹⁰⁻¹².

However, despite a general nutrient-like distribution for Ni, and in stark contrast to most macronutrients and other micronutrient trace-metals, a notable feature of the global ocean Ni distribution is a lack of complete Ni depletion in the surface ocean. Ni is never depleted below ~1.7 nM, even in oligotrophic gyres where elements such as P, N, Si, Cd and Zn are drawn down to almost nothing (Fig. 1)¹⁰. Accordingly, a focus of study on the modern ocean Ni cycle has been to explain this disparity, with the current paradigm postulating that there is a ~2 nM pool of non-bioavailable Ni, attributed either to the slow kinetics of Ni reactivity in seawater¹³ or the presence of ~2 nM strong Ni ligands in the surface ocean^{14,15} that prevents biological uptake. Evidence for this point of view is mixed. For example, stable isotope ($\delta^{60}\text{Ni}$) signatures, which can be described by end-member mixing, have been used to infer an inert Ni pool that does not exchange with a bioavailable pool on the decadal timescales of upper ocean mixing^{16,17}. However, voltammetric measurements of Ni speciation in seawater show only 10-50% of Ni is bound to strong organic ligands^{2,18}, complicating this interpretation.


Ni also displays a deep regeneration maximum, with a vertical distribution intermediate between that of the nutrients P and Si (Fig. 1). This feature has previously been attributed to a combination of faster uptake of Ni compared to N and P at high latitudes, similar to Si^{19,20}, and deeper regeneration of Ni compared to N and P, due to the incorporation of Ni into diatom frustules^{19,21}. The presumed incorporation of Ni into frustules is based on the co-location of Ni and Si at the outer edge of natural centric diatoms in SXRF images^{19,21} and increased Ni uptake in natural diatom-rich communities under high silicate¹⁹, which together suggest that ~50% of diatom cellular Ni could be present in frustules.

Here, we combine phytoplankton culturing, analysis of natural phytoplankton cells, and global circulation biogeochemical modeling, in order to challenge the existing paradigms. We show that the surface Ni pool is bioavailable, and that the disparity between Ni and other nutrients is instead driven by slower depletion of Ni by biological uptake. Moreover, we show that the global distribution of dissolved Ni, including the deeper regeneration maximum, can be explained by a combination of uptake, regeneration, circulation and reversible scavenging.


Bioavailability of Ni in the surface ocean

We designed biological and chemical experiments to specifically test the lability of Ni in natural seawater. The bioavailability of Ni was tested by culturing phytoplankton in natural surface

101 seawater from the oligotrophic North Pacific gyre amended with additional N, P, and Si. Of the
 102 species studied, we found that all three isolates of the cyanobacterium *Synechococcus* and four of
 103 the five diatom species tested drew down Ni significantly below the initial 1.8 nM concentration
 104 (Fig. 2a). This demonstrates that the 1.8 nM Ni in natural surface seawater is indeed biologically
 105 available when additional macronutrients are provided to allow for continued phytoplankton
 106 growth. Additionally, the chemical lability of the dissolved Ni in surface seawater was assessed
 107 by extracting metals out of waters taken from 350 m in the North Pacific onto resin beads
 108 functionalized with EDTri-acetate chelating groups at natural pH. We found that Ni was drawn
 109 down to ~0.5 nM within the first few minutes of the experiment (Fig. 2b), consistent with findings
 110 that surface-ocean Ni on a South Pacific transect crossing upwelling regions and the oligotrophic
 111 gyre was present primarily in labile forms²². These results show that most of the ~2nM Ni in
 112 surface oligotrophic gyres is both chemically labile and bioavailable to biota, in contrast to earlier
 113 suggestions of a ~2 nM chemically-inert Ni pool^{14–17}. It is interesting to note, however, that both
 114 the chemical leaches and phytoplankton cultures reduced Ni below 2 nM but not below 0.3-0.5
 115 nM, supportive of the possibility of ~0.3 nM of strong Ni binding ligands that could be chemically
 116 or biologically inert. Nevertheless, the majority of the 1.8 nM surface ocean Ni (at least 80%) was
 117 chemically labile in our experiments and available for uptake.
 118

119
 120
 121 **Figure 2. Laboratory and field experiments test key features of Ni marine biogeochemistry.** a) The bioavailability
 122 of Ni in natural waters was tested by using surface (20 m) seawater from the North Pacific subtropical gyre, with
 123 replete macronutrients and iron, to culture a variety of phytoplankton, and final seawater Ni concentrations were
 124 measured after cells entered stationary phase. b) The chemical lability of Ni in natural seawater was tested by
 125 extracting Ni and other metals from subsurface (350 m) seawaters collected in the North Pacific subtropical gyre by
 126 resin beads with an EDTri-A functional group, at natural pH. c) The presence of Ni within the silicate crystal lattice
 127 of diatom frustules was evaluated by dissolving diatom-rich particles in HNO₃ to extract soft-tissue Ni, then HF to
 128 access Ni contained within the silicate matrix; particles tested include natural marine particles in a smaller (0.8 to 53
 129 μm) and larger (>53 μm) size fraction, and three species of laboratory cultured diatoms including *T. oceanica*, *Pseudo-*
 130 *nitzschia*, and *T. weissflogii*.

131
132
133
134
135
136
137
138
139
140
141
142
143

Figure 3. Model predicted Ni distribution in the global oceans compared to observations for a model in which Ni is depleted more slowly than P from upwelling waters and remineralized more deeply than P. a) Comparison between observations (colored circles) and optimized model output (background color) shown for the surface ocean, with white lines delineating the boundaries of global oligotrophic gyres at 0.2 μM PO₄²⁻, and black lines showing the location of depth transects. b) A comparison between observations and optimized model output for depth transects, including GEOTRACES transects GA02 in the Atlantic and GP15 in the Pacific. The Ni mean depth reported above this panel refers to the average depth of model-predicted Ni in the global ocean, which can be compared to mean depths of 2174 m and 2533 m for P and Si, respectively, based on World Ocean Atlas 2009 data. c) The global fit between optimized model-predicted Ni and observations expressed as a percentage of maximum data density. Similar Ni distributions are produced by several models where Ni remineralizes with the same length scale as P and subject to reversible scavenging, making it difficult to distinguish between these processes (Figs. ED4-7).

144 If the surface dissolved Ni pool is bioavailable, an alternative mechanism is required to
145 explain the disparity between Ni and other nutrients in the oligotrophic gyres. Instead of inert Ni,
146 we hypothesize that Ni may be depleted more slowly than macronutrients from upwelling waters,
147 such that ~2 nM is simply the amount of residual Ni 'left over' after phytoplankton production
148 depletes the available macronutrients. This slower depletion of Ni from upwelling regions could
149 thus account for the 2 nM Ni present in oligotrophic gyres, even if that Ni is bioavailable. We used

150 a global biogeochemical circulation model to test this hypothesis. A range of Ni model simulations
151 were constructed using the AWESOME OCIM framework²³, which allows for biogeochemical
152 processes to be embedded in the OCIM²⁴, a realistic global 3-dimensional ocean circulation (see
153 Methods). The OCIM representation as a steady-state matrix affords computational efficiency that
154 allows for many biogeochemical process parameters to be optimized for the best fit to tracer
155 observations²³. For all model simulations, we parameterize Ni biological uptake as:

156

157
$$J_{UP} = \beta J_{UP-P} [Ni] \quad (1)$$

158

159 where J_{UP-P} is the P uptake rate diagnosed from a global OCIM model¹², and β is a globally uniform
160 scaling factor that reflects the community average affinity of phytoplankton for Ni relative to P.
161 Thus, Ni uptake is scaled to P uptake, where P uptake provides a proxy for net productivity in the
162 surface oceans, and Ni uptake is linearly related to Ni concentrations based on observations from
163 culture studies^{13,25}. This biologically assimilated Ni is assumed to be present in phytoplankton soft-
164 tissue, and thus to remineralize at the same rate as P (following a power-law Martin curve profile
165 with exponent $b = 0.92$). All models using this parameterization of biological uptake are able to
166 reproduce the observation that Ni is not depleted in oligotrophic gyres (Fig. 3, Figs. ED1-ED7,
167 Table ED1; residual oligotrophic gyre Ni from 1.3 nM to 2.4 nM), consistent with our hypothesis
168 that slower depletion of Ni compared to macronutrients can explain the ~2 nM Ni present in
169 oligotrophic gyres.

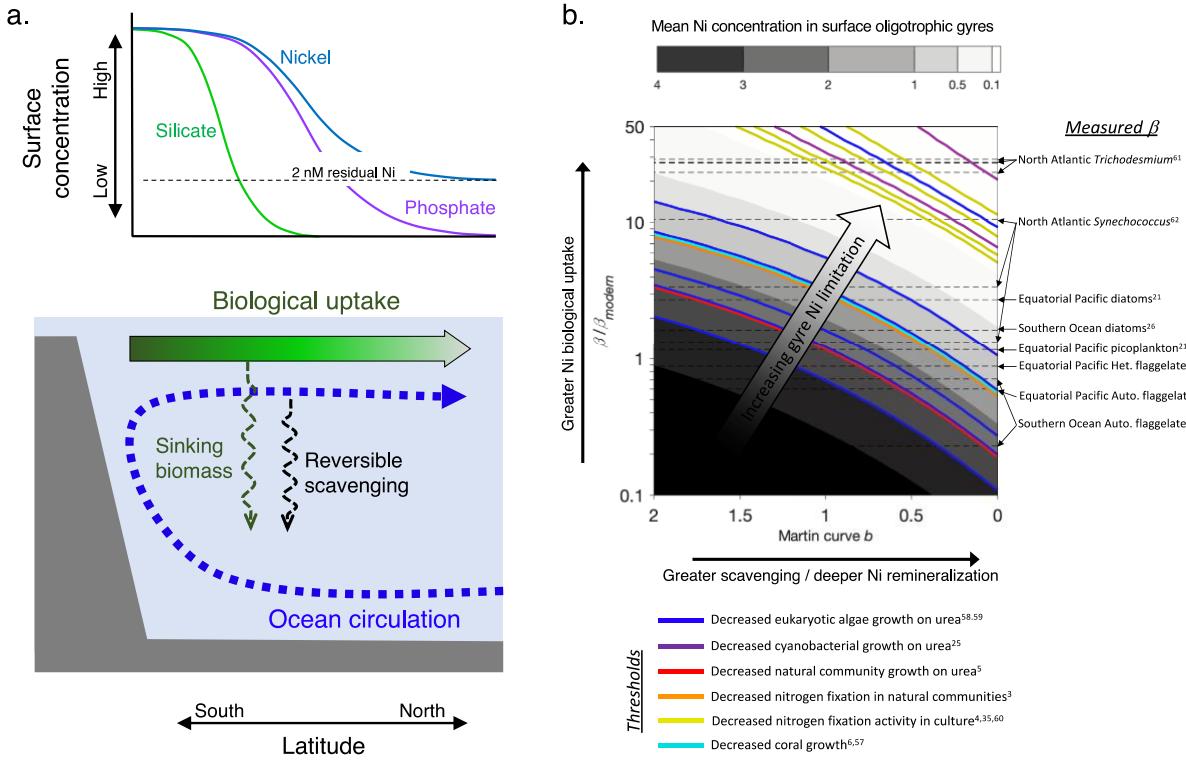
170 The globally averaged value of phytoplankton Ni affinity (β) which we determine from
171 model optimization may not apply in all real ocean regimes. Indeed, the β values measured for
172 natural ocean phytoplankton vary by nearly 300-fold (Fig. 4b). However, the model-optimized β
173 (0.14) is similar to that measured for natural Southern Ocean diatoms (0.23), which is expected
174 because diatoms dominate productivity in upwelling regions such as the Southern Ocean, and
175 nutrient uptake rates in the Southern Ocean are crucial for setting the residual Ni concentrations
176 which remain in oligotrophic gyres (Fig. 4a). In short, once macronutrients are depleted from
177 upwelling waters, little further Ni depletion can occur because net productivity is low. Ni uptake
178 is therefore macronutrient-limited, and productivity that does occur due to local mixing or
179 upwelling will bring new Ni to the surface along with macronutrients. Differences in
180 phytoplankton Ni uptake affinity (β) in the modern oligotrophic gyres thus have little impact on
181 Ni concentrations.

182

183 **Fluxes of nickel into the deeper ocean**

184 We similarly used modeling and experimentation to evaluate possible causes for the deeper
185 Ni maximum compared to macronutrients N and P. As discussed above, our modeling and
186 experimentation do not support rapid uptake of Ni in upwelling waters, and suggest instead that
187 Ni is depleted more slowly than P. Further, a model that includes only biological uptake and
188 regeneration of Ni in soft-tissue fails to replicate key features of the global Ni distribution, instead

189 yielding an overdepletion of Ni in the surface ocean and a distribution in the North Pacific with
190 concentration maxima much shallower than observed (Fig. ED1). However, we do find that a
191 model which allows for deeper regeneration of Ni due to incorporation of roughly 50% of diatom
192 Ni into frustules, is able to match observations, even in combination with slower depletion of Ni
193 compared to macronutrients ($R^2 = 0.92$; Fig. ED2).


194 Critically, however, our analysis of both natural and cultured diatoms shows that very little
195 Ni is incorporated into silicate diatom frustules (Fig. 2c). Within natural particles from the diatom-
196 dominated Eastern Tropical North Pacific, more than 99.99% of the Ni in small particles (0.8–53
197 μm) was present in organic matter phases dissolved in nitric acid (HNO_3), with just trace amounts
198 of Ni present in the hydrofluoric acid (HF) soluble fraction that includes diatom silicate frustules.
199 In a larger size class ($>53 \mu\text{m}$), 11% of the Ni was present in HF-soluble silicates, but even this
200 portion seems more likely attributable to the presence of lithogenic silicate Ni rather than diatom
201 frustules, considering the large size and the fact that these samples were collected near the
202 continental margin, less than 50 km from the coastline. Analysis of diatoms cultured in the
203 laboratory supports this conclusion, with <1% of Ni occurring in the frustules for *T. oceanica*,
204 *Pseudo-nitzschia*, and *T. weissflogii*. Studies of single-cell remineralization in the upper ocean also
205 shows Ni being quickly released from sinking diatom cells in the upper ocean, along with other
206 soft-tissue elements²⁶.

207 Thus our modeling study, and the shape of Ni concentration profiles, both suggest that Ni
208 is transferred to the deep ocean to a greater degree than the soft-tissue elements N and P. However,
209 our analysis of diatoms shows the process responsible for transfer of Ni into the deeper ocean is
210 not incorporation into silicate frustules. Thus, we tested the ability of two different processes in
211 the model to account for deep regeneration of Ni.

212 First, as with recent modeling studies of Zn¹², and in line with recent suggestions based on
213 North Pacific data²⁷, we tested whether a model including reversible scavenging of Ni onto sinking
214 particles could match observations. Various scavenging parameterizations were tested (Methods;
215 Figs. ED3-ED7; Table ED1), including scavenging onto POC, scavenging following the patterns
216 of Th and Pa scavenging, scavenging onto particulate Mn oxides, and scavenging onto POC while
217 allowing a power-law length scaling for the abundance of scavenging sites on POC, which is in
218 line with observations that other elements such as Th exhibit an increased partitioning onto
219 particles at greater depth²⁸. Each of these models produced reasonable fits to observations (R^2 0.88
220 to 0.94), with the best fit achieved for the model including scavenging to POC with variable POC
221 partitioning with depth (Fig. 3). The optimized partitioning between dissolved and particulate Ni
222 (Eqn. 7) shows that with this model, just 1.4% of global ocean Ni is present in the scavenged
223 (particulate) form at any moment. Still, the low scavenging rate acting over time can transfer large
224 quantities of Ni into the abyssal ocean.

225 Second, we tested whether slower remineralization of Ni compared to P, reflecting regional
226 or species-specific variability in soft-tissue remineralization rates, could also match observations.
227 While our initial model assumes a globally uniform Martin *b* exponent of 0.92, the attenuation of
228 particulate-organic-matter (POM) flux with depth is known to vary regionally^{29,30} and possibly by

229 species, e.g., due to mineral ballasting³¹. We therefore tested a model where Ni remineralizes with
230 a Martin b exponent that is different from that for P. This model is optimized with $b = 0.6$, which
231 corresponds to approximately a doubling in the transfer efficiency of POM from 100 m to 1000
232 m³⁰. While this optimal b value for Ni is smaller than the optimal b for the model with a globally
233 uniform b for P (0.92), and smaller than many estimates of b based on sediment-trap POC
234 observations³², it is similar to b from sediment-trap POC observed in the high-latitude North
235 Pacific²⁹ and to model estimates of transfer efficiency at high latitudes³⁰. A smaller b for Ni
236 compared to P could therefore reflect that Ni is preferentially taken up by phytoplankton which
237 grow in high-latitude upwelling regions, where higher Ni concentrations lead to higher
238 phytoplankton Ni:P (Eqn. 1). This effect may be magnified if Ni is preferentially taken up by
239 certain species that remineralize deeper in the water column. For example, diatoms in both the
240 Southern Ocean and equatorial Pacific have higher Ni:P than other co-occurring species (higher β ;
241 Fig. 4b) and diatom organic material could be exported to greater depth due to ballasting by silicate
242 frustules or protection of organic cells from bacterial degradation, though Ni appears to be
243 remineralized more quickly than P from individual diatoms²⁶, and global patterns of organic-matter
244 remineralization indicate that diatoms do not transfer organic material to depth with greater
245 efficiency than other organisms³¹. Because both the mechanisms of reversible scavenging and a
246 deeper remineralization of Ni compared to P lead to models that match observations well,
247 additional work is needed to determine which process or combination of processes dominates in
248 the modern oceans. Future chemical, physical, and biological analysis of Ni in sinking particles
249 and experimental studies of Ni scavenging and remineralization in different locations and from
250 different particle types will be helpful for definitively establishing the mechanism.
251

252
253

254 **Figure 4. Key processes controlling global nickel cycling and their implications for past and future ocean Ni**
 255 **limitation.** a) Ni cycling in key upwelling regions, such as the Southern Ocean, is impacted by upwelling of nutrient-
 256 rich waters by ocean circulation, and sinking of Ni and other nutrients back into the abyssal ocean within biomass and
 257 perhaps by reversible scavenging. As biological productivity depletes nutrients from upwelling waters, silicate is
 258 depleted most quickly due to its utilization in diatom frustules, followed by phosphate, with Ni being depleted even
 259 more slowly than phosphate, such that approximately 2 nM residual Ni is left over after macronutrients have been
 260 depleted. b) The impact of both biological Ni uptake affinity (β) and Ni sinking into the deep ocean (shown here as
 261 changes in the Martin curve exponent b) on surface ocean oligotrophic gyre Ni concentrations is evaluated using the
 262 model. Changes in phytoplankton Ni uptake affinity compared to model-optimized values for the modern ocean
 263 (β/β_{modern}) and changes in Ni flux into the deep ocean by reversible scavenging and deep remineralization (reflected
 264 in b) both lead to changes in the amount of residual Ni present in oligotrophic gyres after macronutrient depletion
 265 (background colors). Changes to gyre Ni concentrations could impact past and future ocean life, as the model-
 266 predicted concentrations span numerous thresholds at which various types of biological processes become limited
 267 (colored lines). Phytoplankton Ni uptake affinities (β) measured in the field vary widely, as indicated by black dashed
 268 lines, indicating that large changes in β/β_{modern} could realistically arise from past and future ocean changes in ocean
 269 biogeography.

270

271 Implications for past and future ocean Ni limitation

272 Our new model of Ni cycling in the modern ocean shows that the key biogeochemical
 273 controls on Ni distributions are (1) biological uptake and regeneration, and (2) release of Ni deeper
 274 in the ocean than macronutrients, either due to reversible scavenging or deeper remineralization of
 275 biological Ni; both processes have likely changed in magnitude significantly in the geological past
 276 and may continue to shift in the future. Thus, we have examined how surface ocean Ni

277 concentration in oligotrophic gyres respond to changes in the Ni uptake affinity of phytoplankton
278 (β) and regeneration depth (b), and compared the resulting gyre Ni concentrations to the
279 concentration thresholds at which various marine biological processes become limited by Ni (Fig.
280 4b). The model-optimized value of β for the modern ocean is close to the measured uptake affinity
281 for Southern Ocean diatoms ($\beta/\beta_{modern} = 1.6$), consistent with our view that Ni uptake in the
282 Southern Ocean plays a key role in controlling Ni availability in modern ocean oligotrophic gyres.
283 However, it is likely that Ni uptake affinity in important upwelling regions has varied through
284 geological history, as new life forms arose and grew to dominate ocean productivity. For example,
285 prior to the origin of silicified diatoms 100-200 Mya, marine productivity was likely dominated
286 by taxa including flagellated eukaryotes^{33,34}. It is therefore notable that measured uptake affinities
287 for autotrophic flagellates (Fig. 4b; $\beta/\beta_{modern} = 0.23 - 0.71$) are lower than for diatoms ($\beta/\beta_{modern} =$
288 1.6 - 2.7), suggesting a possible decrease in oligotrophic gyre Ni bioavailability with the origin of
289 diatoms. Nitrogen fixing diazotrophs have an especially high requirement for Ni, for use in
290 hydrogenase and superoxide dismutase enzymes^{3,4,35}, leading to higher Ni uptake affinities (Fig.
291 4b; e.g. *Trichodesmium* $\beta/\beta_{modern} = 23 - 29$) which will deplete Ni from the surface ocean. This
292 high Ni requirement also makes diazotrophs more susceptible to Ni limitation (Fig. 4b; e.g.
293 threshold isopleths for Ni limitation of N₂ fixation at 2 nM for natural communities and 0.04 - 67
294 pM in culture). Intervals of expanded ocean anoxia during Earth history have driven increased
295 denitrification³⁶, which in turn requires higher N₂ fixation in the surface ocean, and even small
296 increases in surface ocean N₂ fixation could lead to rapid changes in Ni limitation, as diazotrophs
297 deplete Ni more quickly than other phytoplankton and are more easily limited by low Ni
298 concentrations.

299 Changes in Ni release from sinking particles has the potential to change both the depth
300 distribution of Ni and the total amount of Ni in the oceans. Over long timescales, burial of Ni by
301 reaction with sedimentary Fe/Mn oxyhydroxides and Fe sulfides controls global ocean mean Ni
302 concentrations³⁷. Mn oxyhydroxides, which are today the largest long-term sink for marine Ni³⁸,
303 were essentially absent prior to the rise of oxygen at ~2.4 Gya, but increased in the Proterozoic
304 Eon, then increased again with further oxygenation of the oceans at ~600 Mya³⁹. Sulfides were
305 uncommon prior to ~2.4 Gya, then most abundant during parts of the Proterozoic Eon, and then
306 less common since 600 Mya, except during several Paleozoic and Mesozoic ocean anoxic events.
307 To the extent that scavenging may control Ni distribution in the modern ocean, it has the potential
308 for scavenging to deliver Ni to the sediments, where it can be sequestered on geological timescales.
309 Similarly, changes in global scale patterns in Ni uptake into different phytoplankton, which in turn
310 may remineralize over different depth scales, will impact Ni sequestration in the deep ocean and
311 eventually in the sediments. Such changes in Ni burial must have affected both surface ocean
312 processes including nitrogen fixation and urea uptake, as well as processes which take place in the
313 deeper ocean, including methanogenesis^{7,8}. We therefore suggest that Ni bioavailability is uniquely
314 susceptible to changes in ocean biogeochemistry, poised on a fine balance between feast and
315 famine.

316 **Acknowledgments**

317 Thanks to the many scientists who contributed data to the International GEOTRACES 2017
318 International Data Product, including the captains and crew of research vessels, the technicians
319 who collected samples at sea, and the analysts. Thanks to two anonymous reviewers and Ben
320 Twining for comments which greatly improved the manuscript. Funding was provided by the
321 Simons Foundation (Award # 426570SP to SGJ) and the National Science Foundation (Award #s
322 1736896, 1737136, 1737167, 1851222, and 1746932 to S.G.J., T.M.C., J.N.F., D.A.H., and
323 N.T.L., respectively).

324

325 **Author contributions**

326 Phytoplankton culturing and analysis of culture samples was done by R.L.K., X.B., S.Y., E.A.S.,
327 F.F., M.I.S., and D.A.H. Analysis of natural materials and seawater samples were completed by
328 S.Y., X.B., N.T.L., J.N.F., and T.M.C. Chemical experiments and analysis was performed by
329 S.G.J.. Modeling was undertaken by S.G.J. with the assistance of H.L., B.P., and M.H. The
330 manuscript was written by S.G.J. with advice and input from all co-authors.

331

332 The authors declare no competing interests.

333 **References**

- 334 1. Alfano, M. & Cavazza, C. Structure, function, and biosynthesis of nickel-dependent
335 enzymes. *Protein Sci.* **29**, 1071–1089 (2020).
- 336 2. Glass, J. B. & Dupont, C. L. CHAPTER 2 Oceanic Nickel Biogeochemistry and the
337 Evolution of Nickel Use. in *The Biological Chemistry of Nickel* 12–26 (The Royal Society
338 of Chemistry, 2017). doi:10.1039/9781788010580-00012
- 339 3. Ho, T.-Y. Nickel limitation of nitrogen fixation in *Trichodesmium*. *Limnol. Oceanogr.* **58**,
340 112–120 (2013).
- 341 4. Tuo, S., Rodriguez, I. B. & Ho, T.-Y. H₂ accumulation and N₂ fixation variation by Ni
342 limitation in *Cyanothecae*. *Limnol. Oceanogr.* **65**, 377–386 (2020).
- 343 5. Dupont, C. L., Buck, K. N., Palenik, B. & Barbeau, K. Nickel utilization in phytoplankton
344 assemblages from contrasting oceanic regimes. *Deep Sea Res. Part I Oceanogr. Res. Pap.*
345 **57**, 553–566 (2010).
- 346 6. Biscéré, T. *et al.* Enhancement of coral calcification via the interplay of nickel and urease.
347 *Aquat. Toxicol.* **200**, 247–256 (2018).
- 348 7. Konhauser, K. O. *et al.* Oceanic nickel depletion and a methanogen famine before the
349 Great Oxidation Event. *Nature* **458**, 750–753 (2009).
- 350 8. Wang, S.-J., Rudnick, R. L., Gaschnig, R. M., Wang, H. & Wasylenski, L. E.
351 Methanogenesis sustained by sulfide weathering during the Great Oxidation Event. *Nat.*
352 *Geosci.* **12**, 296–300 (2019).
- 353 9. Zhao, Z. *et al.* Active methanogenesis during the melting of Marinoan snowball Earth.
354 *Nat. Commun.* **12**, 955 (2021).
- 355 10. Sunda, W. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the
356 Ocean. *Front. Microbiol.* **3**, 204 (2012).
- 357 11. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of
358 thermocline nutrients and low latitude biological productivity. *Nature* **427**, 56–60 (2004).
- 359 12. Weber, T., John, S., Tagliabue, A. & DeVries, T. Biological uptake and reversible
360 scavenging of zinc in the global ocean. *Science (80-.).* **361**, 72–76 (2018).
- 361 13. Price, N. M. & Morel, F. M. M. Colimitation of phytoplankton growth by nickel and
362 nitrogen. *Limnol. Oceanogr.* **36**, 1071–1077 (1991).
- 363 14. Mackey, D. J., O’Sullivan, J. E., Watson, R. J. & Dal Pont, G. Trace metals in the Western
364 Pacific: temporal and spatial variability in the concentrations of Cd, Cu, Mn and Ni. *Deep*
365 *Sea Res. Part I Oceanogr. Res. Pap.* **49**, 2241–2259 (2002).
- 366 15. Wen, L.-S., Jiann, K.-T. & Santschi, P. H. Physicochemical speciation of bioactive trace
367 metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. *Mar. Chem.* **101**, 104–129
368 (2006).
- 369 16. Archer, C., Vance, D., Milne, A. & Lohan, M. C. The oceanic biogeochemistry of nickel
370 and its isotopes: New data from the South Atlantic and the Southern Ocean
371 biogeochemical divide. *Earth Planet. Sci. Lett.* **535**, 116118 (2020).
- 372 17. Lemaitre, N., Du, J., de Souza, G. F., Archer, C. & Vance, D. The essential bioactive role
373 of nickel in the oceans: Evidence from nickel isotopes. *Earth Planet. Sci. Lett.* **584**,
374 117513 (2022).

375 18. Achterberg, E. P. & Van Den Berg, C. M. G. Chemical speciation of chromium and nickel
376 in the western Mediterranean. *Deep Sea Res. Part II Top. Stud. Oceanogr.* **44**, 693–720
377 (1997).

378 19. Twining, B. S., Baines, S. B., Vogt, S. & Nelson, D. M. Role of diatoms in nickel
379 biogeochemistry in the ocean. *Global Biogeochem. Cycles* **26**, (2012).

380 20. Middag, R., de Baar, H. J. W., Bruland, K. W. & van Heuven, S. M. A. C. The
381 Distribution of Nickel in the West-Atlantic Ocean, Its Relationship With Phosphate and a
382 Comparison to Cadmium and Zinc . *Frontiers in Marine Science* **7**, 105 (2020).

383 21. Twining, B. S. *et al.* Metal quotas of plankton in the equatorial Pacific Ocean. *Deep Sea*
384 *Res. Part II Top. Stud. Oceanogr.* **58**, 325–341 (2011).

385 22. Saito, M. A., Moffett, J. W. & DiTullio, G. R. Cobalt and nickel in the Peru upwelling
386 region: A major flux of labile cobalt utilized as a micronutrient. *Global Biogeochem.*
387 *Cycles* **18**, (2004).

388 23. John, S. G. *et al.* AWESOME OCIM: A simple, flexible, and powerful tool for modeling
389 elemental cycling in the oceans. *Chem. Geol.* **533**, 119403 (2020).

390 24. DeVries, T., Holzer, M. & Primeau, F. Recent increase in oceanic carbon uptake driven by
391 weaker upper-ocean overturning. *Nature* **542**, 215 (2017).

392 25. Dupont, C. L., Barbeau, K. & Palenik, B. Ni Uptake and Limitation in Marine
393 Synechococcus Strains. *Appl. Environ. Microbiol.* **74**, 23–31 (2008).

394 26. Twining, B. S. *et al.* Differential remineralization of major and trace elements in sinking
395 diatoms. *Limnol. Oceanogr.* **59**, 689–704 (2014).

396 27. Zheng, L., Minami, T., Takano, S., Ho, T.-Y. & Sohrin, Y. Sectional Distribution Patterns
397 of Cd, Ni, Zn, and Cu in the North Pacific Ocean: Relationships to Nutrients and
398 Importance of Scavenging. *Global Biogeochem. Cycles* **35**, e2020GB006558 (2021).

399 28. Le Gland, G., Aumont, O. & Mémery, L. An Estimate of Thorium 234 Partition
400 Coefficients Through Global Inverse Modeling. *J. Geophys. Res. Ocean.* **124**, 3575–3606
401 (2019).

402 29. Buesseler, K. O. *et al.* Revisiting Carbon Flux Through the Ocean’s Twilight Zone.
403 *Science (80-.).* **316**, 567–570 (2007).

404 30. Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients
405 imply large latitudinal variation in particle transfer efficiency. *Proc. Natl. Acad. Sci.* **113**,
406 8606 LP – 8611 (2016).

407 31. Klaas, C. & Archer, D. E. Association of sinking organic matter with various types of
408 mineral ballast in the deep sea: Implications for the rain ratio. *Global Biogeochem. Cycles*
409 **16**, 14–63 (2002).

410 32. Berelson, W. M. The flux of particulate organic carbon into the ocean interior: A
411 comparison of four U.S. JGOFS regional studies. *Oceanography* **14**, 59–67 (2001).

412 33. Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. & Mann, D. G. CHAPTER 11 - The
413 Origin and Evolution of the Diatoms: Their Adaptation to a Planktonic Existence. in (eds.
414 Falkowski, P. G. & Knoll, A. H. B. T.-E. of P. P. in the S.) 207–249 (Academic Press,
415 2007). doi:<https://doi.org/10.1016/B978-012370518-1/50012-6>

416 34. Medlin, L. K., Kooistra, W. C. H. F. & Schmid, A.-M. M. A review of the evolution of the
417 diatoms - a total approach using molecules, morphology and geology. in *The origin and*

418 *early evolution of the diatoms: fossil, molecular and biogeographical approaches.* (ed.
419 Sieminska, A. W. & J.) 13–35 (Polish Academy of Sciences, Krakow, Poland, 2000).

420 35. Rodriguez, I. B. & Ho, T.-Y. Diel nitrogen fixation pattern of *Trichodesmium*: the
421 interactive control of light and Ni. *Sci. Rep.* **4**, 4445 (2014).

422 36. Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H. & Jiang, G. Q. Icehouse–
423 greenhouse variations in marine denitrification. *Biogeosciences* **11**, 1273–1295 (2014).

424 37. Little, S. H. *et al.* Towards balancing the oceanic Ni budget. *Earth Planet. Sci. Lett.* **547**,
425 116461 (2020).

426 38. Ciscato, E. R., Bontognali, T. R. R. & Vance, D. Nickel and its isotopes in organic-rich
427 sediments: implications for oceanic budgets and a potential record of ancient seawater.
428 *Earth Planet. Sci. Lett.* **494**, 239–250 (2018).

429 39. Roy, S. Sedimentary manganese metallogenesis in response to the evolution of the Earth
430 system. *Earth-Science Rev.* **77**, 273–305 (2006).

431 40. Donat, J. R., Lao, K. A. & Bruland, K. W. Speciation of dissolved copper and nickel in
432 South San Francisco Bay: a multi-method approach. *Anal. Chim. Acta* **284**, 547–571
433 (1994).

434 41. Hawco, N. J. *et al.* Metal isotope signatures from lava-seawater interaction during the
435 2018 eruption of Kīlauea. *Geochim. Cosmochim. Acta* **282**, 340–356 (2020).

436 42. Saad, E. M. *et al.* Effect of cleaning methods on the dissolution of diatom frustules. *Mar.*
437 *Chem.* **224**, 103826 (2020).

438 43. Andersen, M. B. *et al.* The Zn abundance and isotopic composition of diatom frustules, a
439 proxy for Zn availability in ocean surface seawater. *Earth Planet. Sci. Lett.* **301**, 137–145
440 (2011).

441 44. Ellwood, M. J. & Hunter, K. A. The incorporation of zinc and iron into the frustule of the
442 marine diatom *Thalassiosira pseudonana*. *Limnol. Oceanogr.* **45**, 1517–1524 (2000).

443 45. Sunda, W. G., Price, N. M. & Morel, F. M. M. Trace metal ion buffers and their use in
444 culture studies. *Algal Cult. Tech.* **4**, 35–63 (2005).

445 46. Tovar-Sánchez, A. *et al.* A trace metal clean reagent to remove surface-bound iron from
446 marine phytoplankton. *Mar. Chem.* **82**, 91–99 (2003).

447 47. Capone, D. G. & Hutchins, D. A. Microbial biogeochemistry of coastal upwelling regimes
448 in a changing ocean. *Nat. Geosci.* **6**, 711–717 (2013).

449 48. Cutter, G. *et al.* *Sampling and Sample-handling Protocols for GEOTRACES Cruises.*
450 (GEOTRACES International Project Office, 2017). doi:<http://dx.doi.org/10.25607/OPB-2>

451 49. Schlitzer, R. *et al.* The GEOTRACES Intermediate Data Product 2017. *Chem. Geol.* **493**,
452 (2018).

453 50. Gorsky, G. *et al.* Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling
454 of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018). *Front.*
455 *Mar. Sci.* **6**, 750 (2019).

456 51. Jensen, L. T., Wyatt, N. J., Landing, W. M. & Fitzsimmons, J. N. Assessment of the
457 stability, sorption, and exchangeability of marine dissolved and colloidal metals. *Mar.*
458 *Chem.* **220**, 103754 (2020).

459 52. DeVries, T. The oceanic anthropogenic CO₂ sink: Storage, air-sea fluxes, and transports

460 over the industrial era. *Global Biogeochem. Cycles* **28**, 631–647 (2014).

461 53. Holzer, M., Primeau, F. W., DeVries, T. & Matear, R. The Southern Ocean silicon trap:
462 Data-constrained estimates of regenerated silicic acid, trapping efficiencies, and global
463 transport paths. *J. Geophys. Res. Ocean.* **119**, 313–331 (2014).

464 54. van Hulten, M., Dutay, J.-C. & Roy-Barman, M. A global scavenging and circulation
465 ocean model of thorium-230 and protactinium-231 with improved particle dynamics
466 (NEMO--ProThorP~0.1). *Geosci. Model Dev.* **11**, 3537–3556 (2018).

467 55. van Hulten, M. *et al.* Manganese in the west Atlantic Ocean in the context of the first
468 global ocean circulation model of manganese. *Biogeosciences* **14**, 1123–1152 (2017).

469 56. Westall, J. C. *et al.* *MINEQL : a computer program for the calculation of chemical*
470 *equilibrium composition of aqueous systems.* (Water Quality Laboratory, Ralph M.
471 Parsons Laboratory for Water Resources and Environmental Engineering [sic], Dept. of
472 Civil Engineering, Massachusetts Institute of Technology, 1976).

473 57. Biscéré, T. *et al.* Nickel and ocean warming affect scleractinian coral growth. *Mar. Pollut.*
474 *Bull.* **120**, 250–258 (2017).

475 58. Oliveira, L. & Antia, N. J. Evidence of nickel ion requirement for autotrophic growth of a
476 marine diatom with urea serving as nitrogen source. *Br. Phycol. J.* **19**, 125–134 (1984).

477 59. Oliveira, L. & Antia, N. J. Nickel Ion Requirements for Autotrophic Growth of Several
478 Marine Microalgae with Urea Serving as Nitrogen Source. *Can. J. Fish. Aquat. Sci.* **43**,
479 2427–2433 (1986).

480 60. Ho, T.-Y., Chu, T.-H. & Hu, C.-L. Interrelated influence of light and Ni on
481 Trichodesmium growth. *Front. Microbiol.* **4**, 139 (2013).

482 61. Nuester, J., Vogt, S., Newville, M., Kustka, A. & Twining, B. The Unique
483 Biogeochemical Signature of the Marine Diazotroph Trichodesmium . *Frontiers in*
484 *Microbiology* **3**, 150 (2012).

485 62. Twining, B. S., Nuñez-Milland, D., Vogt, S., Johnson, R. S. & Sedwick, P. N. Variations
486 in Synechococcus cell quotas of phosphorus, sulfur, manganese, iron, nickel, and zinc
487 within mesoscale eddies in the Sargasso Sea. *Limnol. Oceanogr.* **55**, 492–506 (2010).

488

489 **Methods**490
491 **Chemical lability of Ni** The chemical lability of Ni and other metals in natural subsurface seawater
492 (350 m) was tested on seawater collected in the oligotrophic North Pacific Subtropical Gyre.
493 Seawater was cleanly collected aboard the R/V *Kilo Moana* on the MESO-SCOPE cruise in early
494 July 2017 using a trace metal clean rosette and Niskin bottles at Station ALOHA (22.75°N,
495 158°W), filtered using a 0.2 μ m AcroPak™ capsule filter with a Supor® membrane, and
496 immediately frozen after collection to preserve organic speciation.
497498 The concentration of inert Ni was determined by extracting labile metals onto a Nobias PA-1 resin
499 with ethylenediaminetriacetate (EDTri-A) functional groups (Hitachi). The method was based on
500 similar earlier work which evaluated Ni and Cu lability by extraction of labile metals onto Chelex
501 resin with iminodiacetate resins; this method was found to provide similar results to traditional
502 methods using a dimethylglyoxime competitive ligand⁴⁰. In the laboratory, the seawater sample
503 was thawed, and 1 mL of Nobias resin was added to 250 mL of seawater without pH adjustment.
504 Aliquots of 15 mL were removed over the course of the next 3 hours, and filtered using a
505 polyethylene syringe with a 0.2 μ M Supor® polyethersulfone filter in order to ensure that resin
506 was completely removed. Sample aliquots were then acidified for 5 days with 0.1% PFA-distilled
507 HCl before analysis. Seawater metal concentrations were analyzed at the University of Southern
508 California. Briefly, samples were amended with a multi-element isotope spike, concentrated into
509 5% HNO₃ using a SeaFast, and analyzed on an Element 2 ICPMS (Thermo) using isotope dilution.
510 A complete description of seawater processing and analytical protocols is provided by Hawco et
511 al.⁴¹.
512513 All bottles and tubes used for this experiment and other experiments described below were rinsed
514 with ultrapure water (18.2 MΩ), soaked overnight in a 5% citranox solution, rinsed again with
515 ultrapure water, soaked in 10% hydrochloric acid for one week, and rinsed again with ultrapure
516 water.
517518 **Biological availability of Ni.** The bioavailability of Ni in surface ocean oligotrophic gyre seawater
519 was tested using the seawater collected at 20 m from the same cruise described above. As for the
520 chemical lability experiments, seawater was preserved by freezing after collection in order to best
521 maintain the natural ligand binding capacity for Ni. Two major taxonomic groups of
522 phytoplankton, diatoms and cyanobacteria, were used in the experiments. For diatom growth the
523 seawater was amended with 80 μ M NO₃⁻, 5 μ M PO₄³⁻, 100 μ M SiO₄²⁻, and 20 nM Fe, and for
524 *Synechococcus* the same nutrients were added except that silica was omitted. No vitamins and
525 other trace metals were added to the seawater media.
526527 Three isolates of *Synechococcus* (coastal strains XM 24, LA 31, and YX 04-1 from the open
528 oligotrophic South China Sea) and five species of coastal diatoms (*Thalassiosira weissflogii* and
529 *Pseudo-nitzschia* sp. isolated from the Southern California Bight, USA, *Ditylum* sp. and
530 *Thalassiosira rotula* isolated from Narragansett Bay, Rhode Island, USA and *Phaeodactylum*
531 *tricornutum* CCMP 632 isolated from Blackpool, England, UK) were grown for this study. All
532 were cultured at a light intensity of 150 μ Em⁻²s⁻¹ under a 12/12 light/dark cycle in triplicate 25-mL
533 polycarbonate bottles. Diatoms were grown at 19° C, *Synechococcus* YX 04-1 was grown at 30° C,
534 *Synechococcus* LA 31 was grown at 27° C, and *Synechococcus* XM 24 was grown in three
535 experiments at 27° C, 32° C, and 36° C, in order to assess whether growth rate had an impact on Ni

536 accumulation. Because the results for *Synechococcus* XM 24 at all three temperatures were similar,
537 the experimental results are plotted together. *In vivo* fluorescence was measured daily on a
538 fluorometer to monitor phytoplankton growth. Once late exponential growth phase was reached,
539 additional macronutrients and iron were added to promote further growth. Culture samples were
540 syringe-filtered through 25mm, 0.2 μ m Supor® filters to collect filtrate for nutrient and trace metal
541 analyses. The filtered water samples were frozen in 15-ml trace metal clean centrifuge tubes at -
542 20°C, then acidified for several weeks with 0.1% HCl and analyzed as described above. Because
543 many of these isolates are coastal strains with potentially less efficient Ni uptake systems than
544 open ocean strains, the extent of uptake should likely be taken as minimum estimates of Ni
545 bioavailability in the gyre water tested, and it is possible that open ocean strains are capable of
546 depleting Ni below the ~ 0.5 nM level observed in our experiments.

547

548 **Nickel concentrations in biogenic silicate** Ni concentrations in diatom soft tissue and diatom
549 biogenic silicate were determined for three species of diatoms grown in laboratory culture, and
550 two natural particle assemblages collected from diatom-rich waters of the Eastern Tropical North
551 Pacific. For both sample types, samples were then first treated with nitric acid (HNO₃) in order to
552 digest organic soft-tissue Ni, then with hydrofluoric acid (HF) in order to dissolve silicate frustules,
553 using procedures based closely on prior work that has demonstrated that a hot HNO₃ treatment
554 does not dissolve diatom frustule silicate⁴²⁻⁴⁴. The presence of diatom frustules following HNO₃
555 digestion was visually confirmed by the presence of a white material which settled quickly during
556 rinsing (presumably diatom frustules). The fidelity of the method was additionally confirmed for
557 the natural samples by microscopy, which showed abundant and well-preserved centric and
558 pennate diatom frustules free of organic material (as well as siliceous shells of a few
559 silicoflagellates and radiolarians) following the HNO₃ treatments (Fig. ED8).

560

561 Cultured diatoms included two centric species (*T. oceanica* and *T. weissflogii*) and a pennate
562 species (*Pseudo-nitzschia*). Diatoms were cultured in 500 mL modified Aquil medium⁴⁵,
563 containing 25 μ M EDTA, 250 nM total Fe, and 5 μ M total Ni. Diatoms were collected at the end
564 of the exponential growth by centrifugation in 50 mL clean low-density polyethylene (LDPE)
565 tubes. After centrifuging, most of the supernatants were decanted, and diatoms from all 10 tubes
566 were pipetted into a new 50 mL tube. This tube was centrifuged again, and the supernatant was
567 pipetted out. The diatoms were then cleansed by an oxalate-EDTA reagent (10 mL) to remove
568 surface-bound metals⁴⁶, and 20 mL surface oligotrophic seawater from North Pacific to remove
569 any residual oxalate-EDTA solution and culture medium.

570

571 The washed diatom samples were then transferred into 7-mL PFA vials for sample digestion.
572 Organic matter (diatom soft tissue) was digested first by adding 5 mL 8M HNO₃ and reacting for
573 two days on a hotplate at 120°C. Samples were then uncapped and heated overnight to dryness at
574 120°C. These dried samples were redissolved by adding 5 mL of 0.1M HNO₃, containing 10 ppb
575 In, and transferred into acid-washed 15 mL LDPE centrifuge tubes. The tubes were then
576 centrifuged at 4000 rpm for 5 mins to separate the undissolved frustules. Supernatant containing
577 dissolved soft tissue elements was pipetted into clean 15 mL tubes for Ni concentration
578 measurement. The frustule portion was rinsed three times with 10 mL Milli-Q, followed by
579 centrifugation and removal of the rinse by pipette. Frustules were then resuspended into 1 mL 28
580 M HF and transferred into a clean 7 mL PFA vial. The capped vials were heated at 120°C for one
581 hour to completely dissolve the frustules and heated to dryness after that. The residue was then

582 redissolved by 5 mL of 0.1 M HNO₃, containing 10 ppb In, transferred to clean 15 mL tubes, and
583 analyzed along with the soft tissue digest by In standard-addition on an Element 2 ICPMS.

584
585 A similar procedure was used to test for the incorporation of Ni into the biogenic silica of natural
586 diatoms. Natural marine particles were collected in the Eastern Tropical North Pacific upwelling
587 region off Mexico (20.4° N, 106.2° W) in April 2018 aboard the R/V *Roger Revelle*. Phytoplankton
588 communities in this area are typically dominated by diatoms⁴⁷, which was corroborated by
589 microscopic examination of these samples (Fig. ED8). Particles were concentrated from seawater
590 using a McLane pump (McLane Research Laboratories) equipped with a 4 mm mesh screen, a 53
591 µm Sefar polyester mesh prefilter, and a 0.8 µm Pall Supor polyethersulfone filter, using
592 recommended methods in the GEOTRACES sample and sample-handling protocols⁴⁸.

593
594 The samples were collected at subsurface depths of 190 m (large size fraction particles; > 53 µm)
595 and 280 m (small size fraction particles; 0.8–53 µm), and thus some of the organic material which
596 was originally present in the diatoms at the surface may have been remineralized, leaving behind
597 a higher proportion of diatom frustules. Also, the location of samples close to the continental
598 margin raises the possibility that some of the Ni present in the HF-soluble fraction may be due to
599 the presence of lithogenic material. The samples we analyzed were specifically chosen because
600 they visibly contained the greatest amount of insoluble white matter, assumed to be composed
601 primarily of diatom frustules, yet we cannot rule out the presence of lithogenics. For both of these
602 reasons, the reported HF-soluble Ni in these samples should be considered a maximum amount
603 which would be present in natural diatom frustules, with a possible additional contribution from
604 non-diatom lithogenic Ni.

605
606 The organic fraction of each sample was digested by placing sample filters in a 25 mL acid-washed
607 PFA vial containing 5 mL of 8 M HNO₃. Samples were digested in capped vials on a hot plate at
608 120°C for 12 h. After digestion, the filters were removed, placed into acid-washed 15 mL
609 centrifuge tubes and rinsed with 5 mL Milli-Q water. The Milli-Q water was transferred back into
610 the digestion vials. The digest solution was then heated on a hot plate at 80°C to dryness, then
611 resuspended by adding 10 mL of 4 M HNO₃. This solution was transferred into acid-washed 15
612 mL centrifuge tubes, and centrifuged at 2000 rpm for 5 mins to segregate insoluble particles and
613 filter debris. The supernatant of each sample was pipetted into an acid-washed 15 mL centrifuge
614 tube. Any residual dissolved organic matter was removed by 5 sequential rinses, in which 10 mL
615 Milli-Q water was added, particles were resuspended by hand-shaking, particles were re-separated
616 by centrifugation at 2000 rpm for 5 mins, and the supernatant was discarded. After rinsing, 1 mL
617 28 M HF and 2 mL 14 M HNO₃ was added to each tube, and particles were resuspended by hand-
618 shaking, then poured with the acids into a 7 mL acid-washed PFA vial. The samples were fully
619 dissolved in capped vials on a hot plate at 120°C for 1 h. Finally, the solution was heated at 80°C
620 to dryness, and then re-dissolved by adding 5 mL of 4 M HNO₃. A small portion of HNO₃ or HF+
621 HNO₃ digested samples was taken into acid-washed 15 mL centrifuge tubes, diluted by 10 times
622 and amended with In standard solution with matrix of 0.1 M nitric acid to reach a final
623 concentration of 1 ppb In. The diluted samples were analyzed for Ni concentrations as described
624 above for cultured biogenic silicate.

625
626 **Global Ni datasets** A new global Ni observation dataset was compiled in order to test Ni
627 biogeochemical models. The majority of global data was comprised of all Ni concentration
628 measurements reported in the GEOTRACES 2017 International Data Product⁴⁹. Surface-ocean Ni
629 concentration data from the TARA Pacific expedition was also included, with sampling and

analytical methods described by Gorsky et al.⁵⁰. New data was also added for samples collected during the US GEOTRACES GP15 transect, which was completed in September to October 2018 and followed a transect near 152°W from 56° N to 20° S, sailing from near Alaska to near Tahiti. For this cruise, dissolved Ni concentrations were measured in aliquots of the same Go-Flo bottle sample both at the University of Southern California (USC; according to the methods described above for the chemical and biological lability experiments), and at Texas A&M University (TAMU). Ni concentration analyses at TAMU followed similar SeaFAST pico analytical methods as at USC following previously published methods⁵¹. Agreement between the datasets was excellent, with a slope of 0.997 and an R^2 of 0.999. Therefore, the combined dataset was produced by averaging together the Ni concentration measurements from both labs, except in cases where only one lab measured samples or one only lab reported a clearly anomalous result (< 5% of samples). Data is available at <https://github.com/MTEL-USC/nickel-model>.

Global Ni biogeochemical model Nickel global biogeochemical modeling was performed using the AWESOME OCIM modeling environment²³. Seven models were tested for this work (Figs. ED1-ED7), and model parameters were optimized by minimizing the volume-weighted squared misfit between model tracer concentration and the compiled Ni observations (using MATLAB's `fminsearch`). The global ocean mean Ni concentration, Ni_{mean} , was optimized for each model. All models used the same parameterization of biological uptake, where Ni uptake is proportional to net productivity (Eq. (1)), as inferred from net P uptake, and local Ni concentrations, based on culture data showing that cellular Ni:P is nearly linearly related to ambient dissolved Ni concentration^{13,25}. Model performance with additional processes was tested as follows: 1) no additional processes, 2) uptake of Ni into diatom frustules, 3) reversible scavenging onto POC, 4) reversible scavenging in the pattern of Th, 5) reversible scavenging in the pattern of Pa, 6) reversible scavenging onto particulate Mn oxides, and 7) reversible scavenging onto POC where the depth-distribution of POC scavenging sites is slightly different from the distribution of POC. Model optimized parameters and performance assessment metrics are presented in Table ED1. Model code is available at <https://github.com/MTEL-USC/nickel-model>.

Our models do not include external sources or sinks, such that they behave as ‘closed-systems’, where particulate Ni that reaches the seafloor is immediately redissolved. We constrained the total inventory of Ni by restoring Ni concentrations to Ni_{mean} everywhere with a 1 Myr timescale (implemented via AWESOME OCIM’s `conc` function).

The general continuity equation describing the steady-state distribution of Ni in the oceans for all models is:

$$\frac{dNi}{dt} = \mathbf{T} Ni - J_{UP} + J_{REM} + J_{SCAV} \quad (3)$$

where \mathbf{T} is the OCIM transport matrix from DeVries et al.⁵², J_{UP} is the surface ocean biological uptake of Ni as described in the main text (Eqn. 1), J_{REM} is the remineralization of Ni from sinking soft-tissue organic matter, and J_{SCAV} reflects the downward transport of Ni due to reversible scavenging, where applicable.

Biological uptake of Ni into soft-tissue is described in Eqn. 1. The particle flux for remineralization of this soft-tissue Ni is:

677
$$F_z = F_0 \left(\frac{z}{z_0} \right)^{-b} \quad (4)$$

678 where F_z is the flux at depth z , F_0 is the flux at the base of the model euphotic zone, z is depth, z_0
 679 is the depth of the base of the euphotic zone, and b is the ‘Martin curve’ scaling parameter from
 680 the P model of Weber et al.¹² which has a value of 0.92. The remineralization of soft-tissue Ni can
 681 therefore be described by the flux divergence:
 682

683
$$J_{REM} = - \frac{\partial F_z}{\partial z}. \quad (5)$$

684 For the model in which Ni is incorporated into diatom frustules, Ni incorporation ($J_{UP\ frustules}$) is
 685 parameterized in the same general fashion as for the uptake of Ni into soft tissue described in Eqn.
 686 1, by:
 687

688
$$J_{UP\ frustules} = \beta_{Si} J_{UP-Si} [Ni] \quad (6)$$

689 where J_{UP-Si} is the Si uptake rate diagnosed from a global OCIM model of Si cycling by Holzer et
 690 al.⁵³ updated to use the more recent OCIM circulation of Devries et al.⁵², and β_{Si} is a scaling factor
 691 which reflects the affinity of phytoplankton for Ni compared to Si. Ni is assumed to be released
 692 from dissolving frustules at the same rate as silicate redissolution in the Holzer et al. model.
 693

694 The downward transport of Ni due to reversible scavenging is represented by calculating the
 695 amount of scavenged Ni as function of a partition constant (K) and the concentration of particle
 696 sites available for scavenging (S):
 697

698
$$[Ni_{scav}] = K S [Ni] \quad (7)$$

699 and assigning a sinking rate for particles, for which we typically use 100 m d⁻¹. Once model runs
 700 have been optimized, this same equation allows us to calculate the relative fraction of Ni present
 701 in the particulate phase (Ni_{scav}) compared to the dissolved phase (Ni). The downwards transport of
 702 Ni due to reversible scavenging can then be calculated using an ‘effective sinking rate’ for Ni
 703 given by:
 704

705
$$ESR = \frac{Ni_{scav}}{Ni} w \quad (8)$$

706 and calculating the scavenging flux at each depth by:
 707

708
$$J_{SCAV} = \frac{\partial}{\partial z} (-ESR [Ni]) \quad (9)$$

709 Reversible scavenging of Ni onto POC was implemented using the AWESOME OCIM
 710 *revscavPOC* function, where the global distribution of POC in the surface ocean was based on
 711 satellite observations, and the vertical attenuation of POC flux was based on a Martin curve power-
 712 law distribution with a ‘ b ’ value of 0.92. The downwards flux of Ni due to reversible scavenging
 713 onto POC can thus be summarized by combining Eqns. 7, 8, and 9 to yield:
 714

$$J_{scav} = K w \frac{\partial}{\partial z} ([POC] [Ni]) \quad (10)$$

Reversible scavenging in the patterns of Th and Pa was based on the scavenging dynamics in a biogeochemical circulation model of ^{230}Th and ^{231}Pa by van Hulten et al.⁵⁴. The model of Van Hulten et al. allows for ^{230}Th and ^{231}Pa scavenging onto POC, calcium carbonate, and biogenic silica, each of which occur in two different size classes. With two size-classes of particles, the faster sinking particles will be much more effective at transferring elements to the deep ocean, and we therefore combine the total effect of scavenging onto all particle types and size classes into an ‘effective sinking rate’ for Th (ESR_{Th}) as:

$$ESR_{Th} = w_s \frac{Th_s}{Th_t} + w_f \frac{Th_f}{Th_t} \quad (11)$$

where Th_s is particulate Th in the slow-sinking small size class, Th_f is particulate Th in the fast-sinking large size class, Th_t is total dissolved and particulate Th, and w_s and w_f are the sinking rates of slow and fast particles from van Hulten et al., with values of 2 m d^{-1} and 50 m d^{-1} , respectively. Ni is assumed to have the same relative affinity for each particle type and size-class as Th, however the absolute scavenging affinity may be different, and the sinking of Ni by reversible scavenging is given as:

$$ESR_{Ni} = R \cdot ESR_{Th} \quad (12)$$

where R is the relative affinity of Ni for particles compared to ^{230}Th and is tuned during model optimization. Reversible scavenging in the pattern of ^{231}Pa is done in the same fashion, except using van Hulten et al.'s global distribution of Pa sinking.

Reversible scavenging onto particulate Mn oxides is parameterized in the same fashion as scavenging onto POC, except that the concentration of available scavenging sites (S) is based on the distribution of particulate Mn from the global biogeochemical Mn model of van Hulten et al.⁵⁵. Particles are assumed to sink at a rate of 100 m/d, and the sinking of Ni is determined by a distribution coefficient (K) of adsorbed Ni compared to dissolved Ni.

Finally, a model was tested in which scavenging was assumed to follow the horizontal patterns of surface POC production, but the depth-dependance of scavenging was allowed to vary by a power-law distribution ('Martin curve') which was different from overall POC remineralization, consistent with work on Th scavenging which shows that POC is less reactive towards Th in the upper water column²⁸. We implement this by assuming a global distribution of scavenging sites (S) given by:

$$S = POC_{surf} \left(\frac{z}{z_e} \right)^{-b_S} \quad (13)$$

where POC_{surf} is the surface POC concentration from the P model described above, z is depth below the compensation depth z_0 (75 m), and b_S is the depth scaling of scavenging sites on POC.

765 **Evaluation of Ni limitation thresholds** Nickel concentrations have been observed to impact a
766 wide variety of biological processes both in culture and in natural communities, many of which
767 have been reviewed by Glass and Dupont². Some key concentration thresholds at which Ni
768 limitation has a biological impact are depicted in Figure 4. The exact concentration at which Ni
769 begins to impact physiological processes is not typically ascertained, and thus we note the
770 ‘thresholds’ at which differences in activity are observed, where the threshold represents a Ni
771 concentration at which a biological process is limited when compared to similar experimental
772 treatments with higher Ni concentrations.

773 For experiments utilizing natural seawater without added strong chelator, the threshold is
774 expressed as the total Ni concentration in seawater. For culture experiments, the equilibrium
775 constant for binding of inorganic Ni (Ni²⁺) by EDTA is taken as $7.5 \cdot 10^{10}$ ⁵⁶, and we assume that half
776 of the Ni in seawater is organically complexed¹⁸, so that the concentration of Ni in seawater (nM)
777 which would yield an equivalent Ni activity (Ni_{sw}) is calculated as:

$$780 \quad Ni_{sw}(nM) = 2 \frac{Ni_{tot}}{7.5 \cdot 10^{10} EDTA} = 0.0267 \frac{Ni_{tot}(nM)}{EDTA(\mu M)} \quad (14)$$

781 where Ni_{tot} (nM) is the total concentration of Ni in the media and $EDTA$ (μM) is the EDTA
782 concentration (μM).

783 Below we discuss thresholds which are apparently related to the role of Ni in urease, those
784 apparently related to Ni superoxide dismutase, and those associated with [Ni Fe] hydrogenase.
785 Because the focus of this work is on Ni concentrations in the surface ocean, we do not report data
786 on freshwater organisms. Similarly, we do not report thresholds for methanogenic organisms here,
787 as that process does not occur in the modern open ocean. Both topics are discussed in more detail
788 in Glass and Dupont².

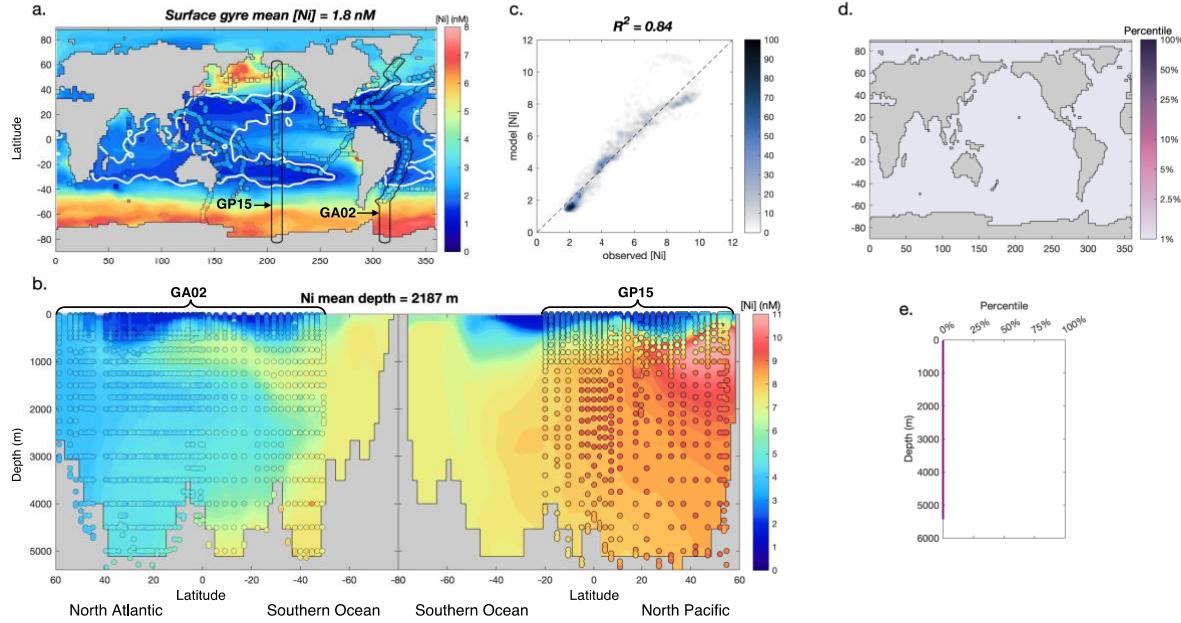
789 **Ni urease** Among marine organisms, corals appear to be especially susceptible to Ni limitation,
790 likely because Ni is a cofactor for the enzyme urease. Coral growth rates (as determined from
791 calcification rate) increased when Ni was added above the ambient concentration of 2 nM for the
792 corals *Acropora muricata* and *Pocillopora damicornis*⁵⁷. A subsequent study indicated that this
793 effect was caused by direct limitation of coral urea uptake, because both calcification rates and
794 urea uptake rates increased in these species, as well as in the asymbiotic coral *Dendrophyllia*
795 *arbuscula*, with Ni added above the 2 nM ambient background concentrations⁶.

796 Because of the role of Ni in the urease enzyme, the response of phytoplankton to Ni additions has
797 been tested where N is supplied in the form of urea ($CO(NH_2)_2$). Dupont et al. tested the co-
798 limitation of natural communities by urea and Ni in a variety of locations, and found evidence for
799 higher community growth with 0.75 nM added Ni compared to background concentrations of 4.2
800 nM Ni in the Costa Rica Upwelling Dome region, though this effect was not observed in several
801 study locations off the coast of California⁵. In laboratory cultures, Oliveira and Antia⁵⁸ tested the
802 growth of the diatom *Cyclotella cryptica* in media containing only urea as a nitrogen source and
803 found reduced growth rates at thresholds of 1, 2, 4, 5, and 10 nM Ni, when compared to higher Ni
804 concentrations. A follow-up study on numerous additional microalgae was performed with natural
805 seawater containing 3.4 nM Ni and various amounts of added Ni⁵⁹; species which were growth
806 limited at 3.4 nM Ni, compared to 8.4 nM Ni, included *Achnanthes brevipes*, *Thalassiosira*
807 *weissflogii*, *Hymenomonas elongata*, and *Prymnesium parvum*. Growth limitation at 8.4 nM,
808

812 compared to 13.4 nM was observed for *Rhodomonas* sp., *Achnanthes brevipes*, *Amphidinium*
813 *carterae*, *Thalassiosira weissflogii*, *Hymenomonas elongate*, *Thalassiosira nordenskioldii*, and
814 *Porphyridium cruentum*. Higher concentrations of Ni typically resulted in decreased growth due
815 to toxicity. Similar experiments in EDTA-buffered media showed growth limitation of
816 *Thallassiosira weissflogii* on urea at Ni concentrations of 2 pM and 20 pM, compared to higher Ni
817 concentrations¹³. A study evaluating both Ni growth requirements and Zn uptake in diatoms
818 showed growth-limitation thresholds for the diatom *Thallassiosira pseudonana* (0.004 and 0.02
819 pM Ni_{sw}) and the diatom *Thallassiosira weissflogii* (0.004, 0.02, 0.2, 0.6, 1.6, and 2 pM Ni).
820

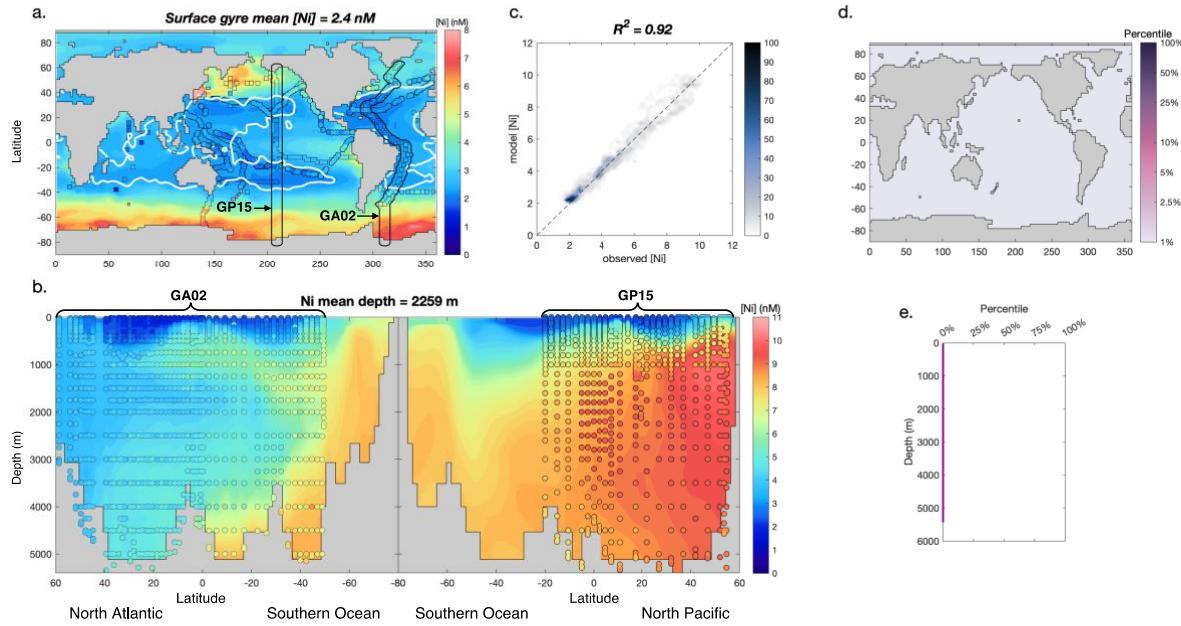
821 Ni-urea co-limitation has been less often tested in cyanobacteria compared to eukaryotic algae, but
822 limitation of growth at low Ni in urea-based media has also been demonstrated for two strains of
823 the marine cyanobacterium *Synechococcus*, with strain WH8102 growing more slowly at a 10 pM
824 Ni_{sw} threshold, and CC9311 having thresholds at 4, 10, and 30 pM²⁵.
825

826 ***Ni superoxide dismutase (SOD)*** While culture experiments often show a Ni-limitation response
827 when grown with urea, Ni limitation is less common with other nitrogen sources. Yet, growth
828 limitation thresholds were observed for *Synechococcus* WH8102 at 10 pM Ni_{sw} when grown on
829 ammonia, and at 4 pM and 15 pM Ni_{sw} when grown on nitrate, attributable to the fact that this
830 strain only carries the Ni form of superoxide dismutase²⁵.
831

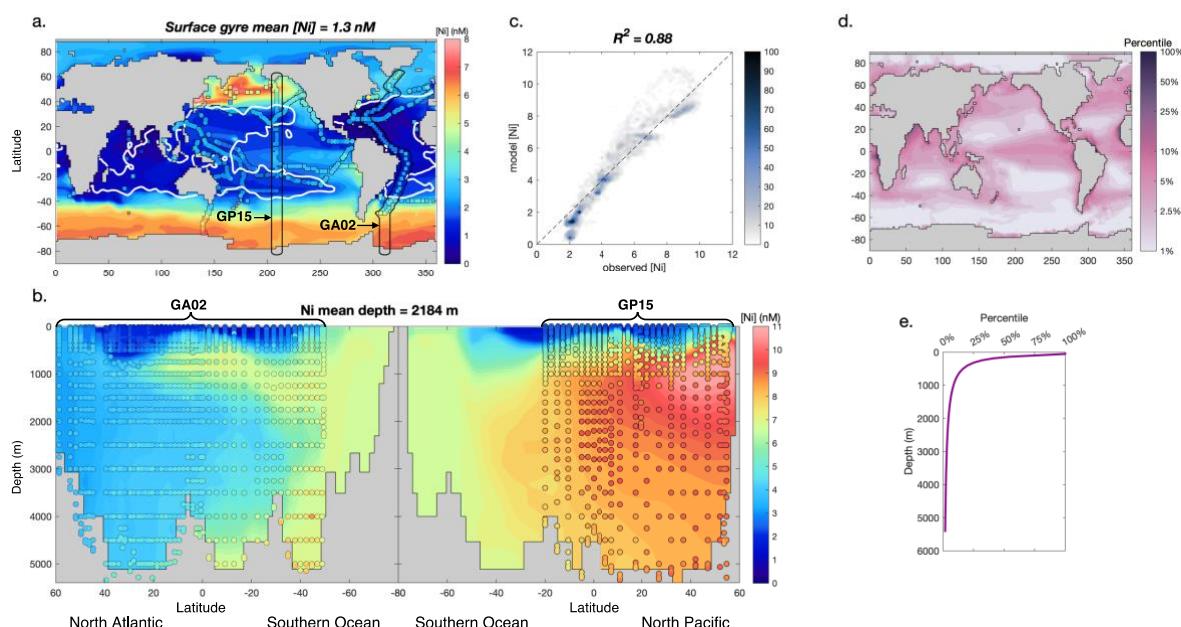

832 Nitrogen-fixing marine cyanobacteria are also reported to be especially susceptible to Ni
833 limitation, an effect which is generally attributed to the importance of Ni superoxide dismutase to
834 protect against oxidative damage in the presence of abundant sunlight necessary for N fixation. In
835 the presence of abundant Fe and P, *Trichodesmium* growth is limited in natural seawater with 2
836 nM Ni³. In defined culture media, Ni was found to limit *Trichodesmium* biomass at a threshold of
837 53 pM, Ni limited SOD activity at thresholds of 13, 27, and 67 pM, and a Ni limitation effect on
838 nitrogen fixation rates was observed at thresholds of 13 and 26 pN Ni_{sw} . Subsequent experiments
839 showed that light intensity modulates the thresholds for Ni limitation, with just a single threshold
840 of 13 pM Ni at the lowest light intensity of 100 μ E m⁻¹ s⁻¹, yet limitations were observed at multiple
841 thresholds of 13, 27, and 67 nM Ni_{sw} at higher light intensities of 670 μ E m⁻¹ s⁻¹⁶⁰. This light-
842 dependent Ni requirement can lead to diel changes in N fixation, and the effects of Ni on nitrogen
843 fixation can be dramatic, with 30-fold increases in fixation rates observed above thresholds of 27
844 pM Ni_{sw} ³⁵.
845

846 ***[NiFe] hydrogenase*** The nitrogen fixing cyanobacterium *Cyanothece* is also impacted at low Ni
847 concentrations, with thresholds for H₂ accumulation at 0.04 and 27 pM, and a threshold for N₂
848 fixation at 27 pM Ni_{sw} . However, *Cyanothece* does not apparently possess genes for either NiSOD
849 or urease, suggesting that this effect may be due to the role of Ni in NiFe uptake hydrogenase⁴.
850

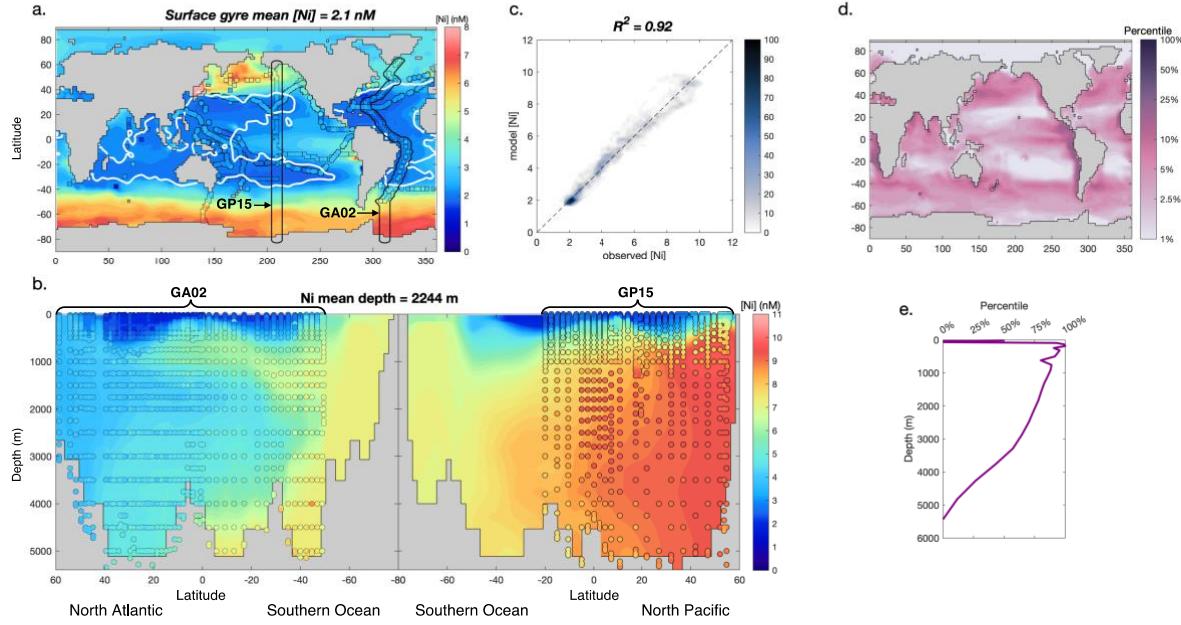
851 **Calculation of β values** Values of β , as shown in Fig. 4, were calculated based on individual-cell
852 elemental quotas measured by synchrotron X-ray fluorescence microscopy (SXRF) at a variety of
853 locations including the Southern Ocean²⁶, Equatorial Pacific¹⁹, and oligotrophic North Atlantic
854 Sargasso Sea^{61,62}. In each case, the reported Ni:P cellular quotas are converted to a β according to
855 Eq. 1, based local seawater Ni concentrations.
856

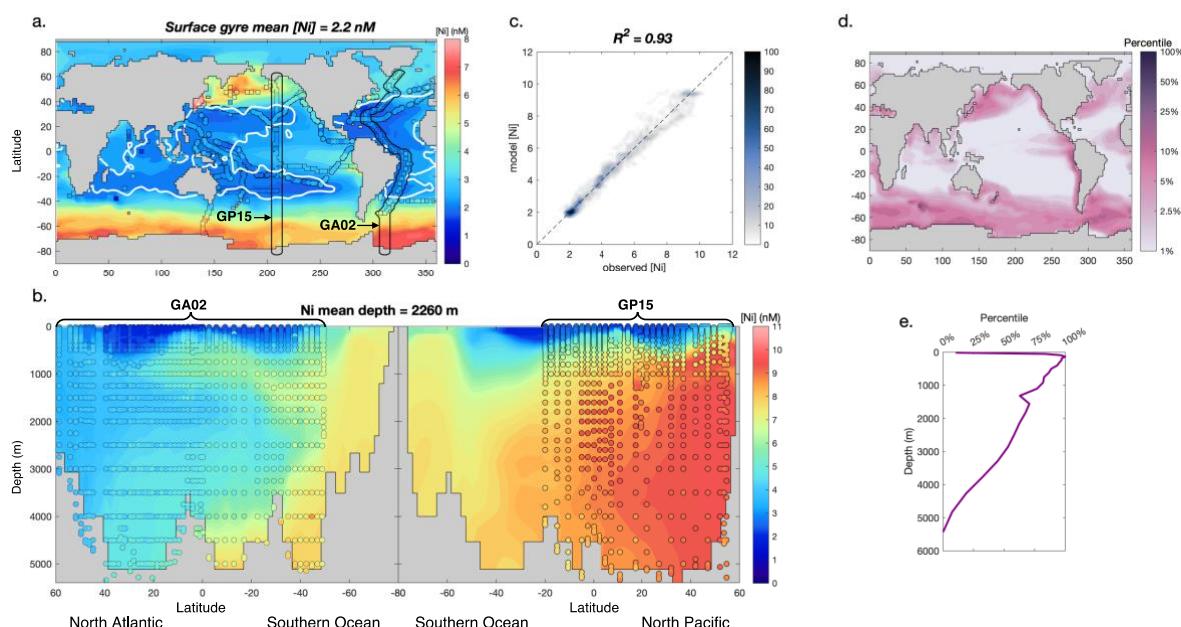

857 **Data Availability** Data from the GEOTRACES 2017 IDP are available at
<https://www.bodc.ac.uk/geotraces/data/idp2017/>. Data from the TARA Pacific expedition is

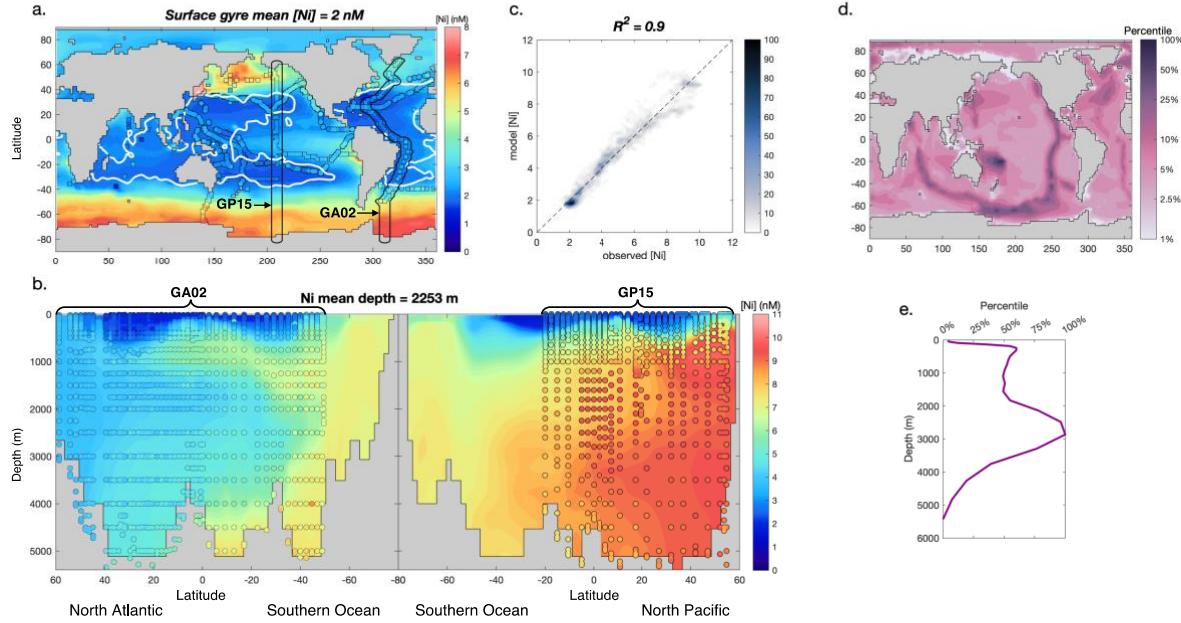
858 available at: <https://doi.pangaea.de/10.1594/PANGAEA.875582>. Data from the US
859 GEOTRACES GP15 transect and model code for this work is available at
860 <https://github.com/MTEL-USC/nickel-model> and can be run within the AWESOME OCIM
861 modeling environment <https://github.com/profseth/awesomeOCIM>.
862

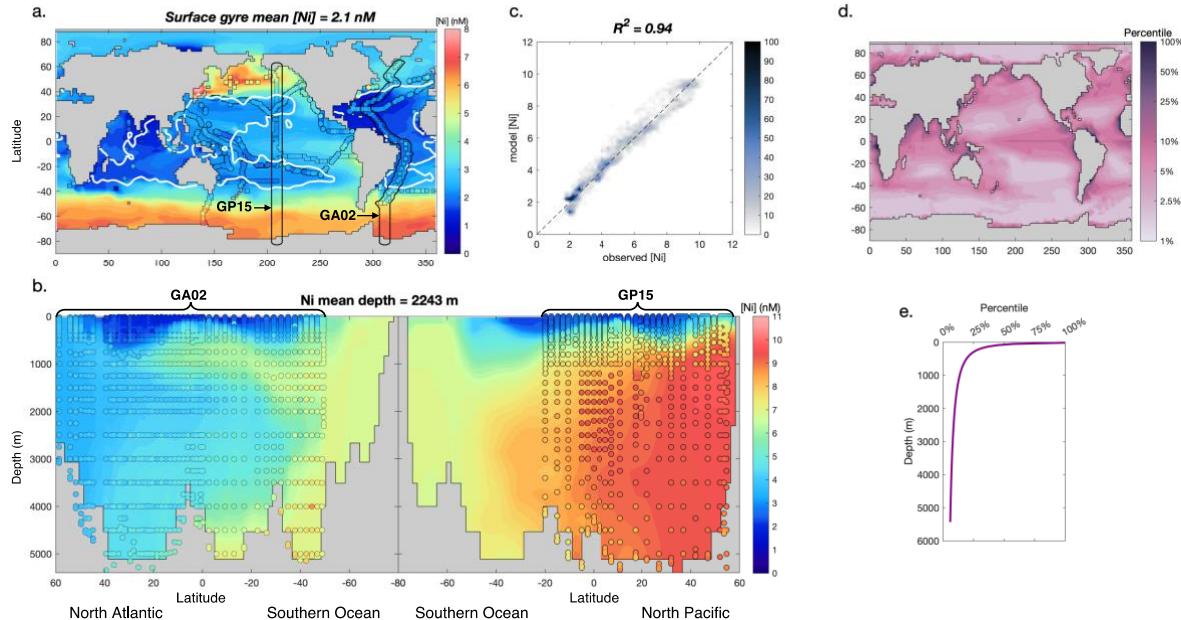


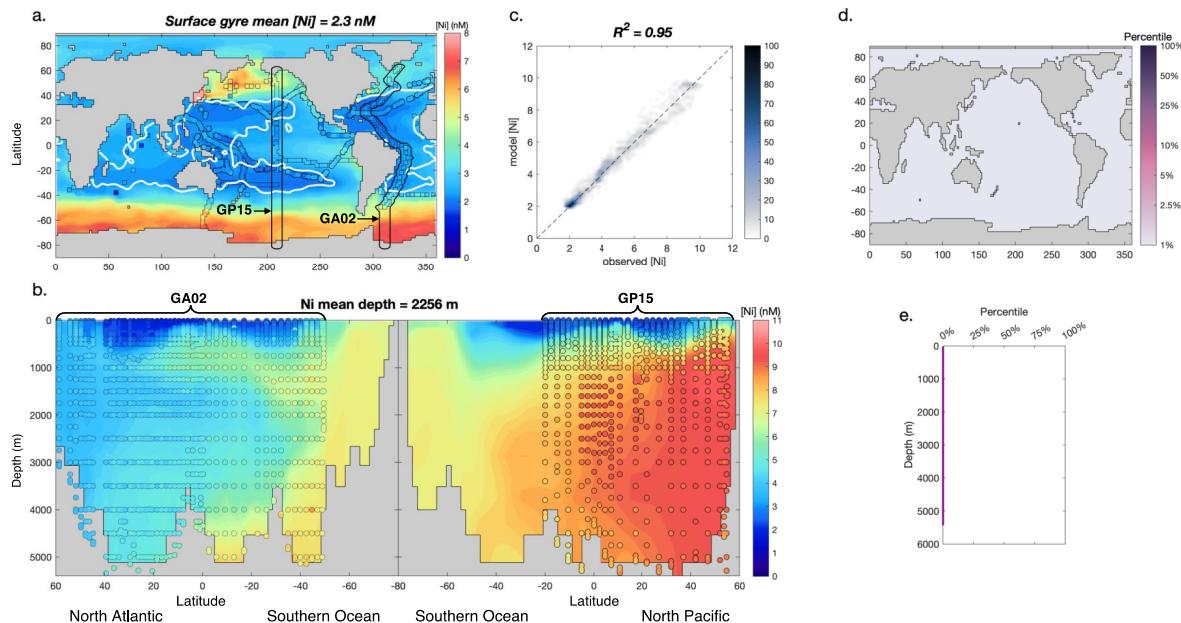
863
864


865 **Figure ED1. Patterns in vertical and horizontal distribution of simulated Ni for a model**
 866 **including only biological uptake and remineralization of Ni in soft-tissue.** a) Comparison
 867 between observations (colored circles) and optimized model output (background color) are shown
 868 for the surface ocean, with white lines delineating the boundaries of the oligotrophic gyre at 0.2
 869 μ M PO₄²⁻, and black lines showing the location of depth transect data. b) Comparison between
 870 observations and optimized model output are shown for depth transects in the Atlantic and Pacific
 871 Ocean, which include GEOTRACES transects GA02 and GP15, respectively. The Ni mean depth
 872 reported above this panel refers to the average depth of model-predicted Ni in the global ocean,
 873 which can be compared to mean depths of 2174 m and 2533 m for P and Si, respectively, based
 874 on World Ocean Atlas 2009 data. c) The global fit between model and observed Ni, with the
 875 colorscale reflecting the relative data density as a percentage compared to maximum data density.
 876 d) Horizontal patterns in global depth integrated scavenging flux of Ni (which has no value for
 877 this model because no scavenging process was included), presented as a percentage of the
 878 maximum scavenging intensity. e) vertical patterns in horizontally integrated Ni scavenging flux
 879 (which has no value for this model because no scavenging process was included), presented as a
 880 percentage of the maximum scavenging intensity. Additional information about optimized model
 881 parameters and model performance metrics are presented in Table ED1.


Figure ED2. Patterns in vertical and horizontal distribution of simulated Ni for a model including biological uptake and remineralization of Ni in soft-tissue, and the biological uptake and remineralization of Ni due to incorporation in diatom silicate frustules. Panels are the same as for Fig. ED1.


Figure ED3. Patterns in vertical and horizontal distribution of simulated Ni can be evaluated for models with various parameterizations of reversible scavenging, here showing a model with reversible scavenging onto POC as determined in Weber et al.¹². Panels are the same as for Fig. ED1.


Figure ED4. Patterns in vertical and horizontal distribution of simulated Ni can be evaluated for models with various parameterizations of reversible scavenging, here showing a model with reversible scavenging taking the same patterns as Th scavenging from Hulten et al.⁵⁴. Panels are the same as for Fig. ED1.


Figure ED5. Patterns in vertical and horizontal distribution of simulated Ni can be evaluated for models with various parameterizations of reversible scavenging, here showing a model with reversible scavenging taking the same patterns as Pa scavenging from Hulten et al.⁵⁴. Panels are the same as for Fig. ED1.

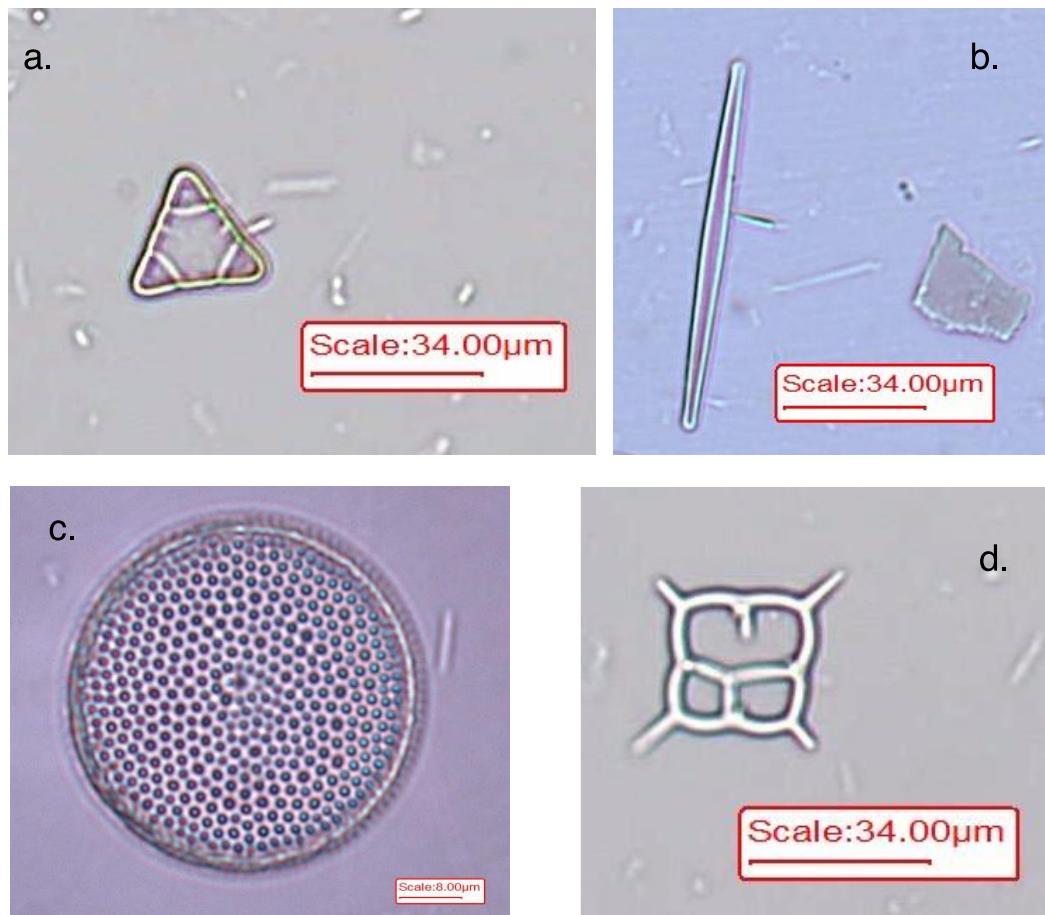

Figure ED6. Patterns in vertical and horizontal distribution of simulated Ni can be evaluated for models with various parameterizations of reversible scavenging, here showing a model with reversible scavenging onto particulate Mn oxides, based on a Mn model from van Hulten et al.⁵⁵. Panels are the same as for Fig. ED1.

Figure ED7. Patterns in vertical and horizontal distribution of simulated Ni can be evaluated for models with various parameterizations of reversible scavenging, here showing a model with reversible scavenging onto POC based on Weber et al.¹², with the vertical distributions of scavenging sites on POC determined from an optimized power-law equation. Panels are the same as for Fig. ED1.

924 **Figure ED8. Patterns in vertical and horizontal distribution of simulated Ni, here showing a**
 925 **model where Ni is allowed to remineralize according to a ‘Martin curve’ power law, except**
 926 **that the b exponent is optimizable for Ni instead of being tied to the remineralization of P.**
 927 Panels are the same as for Fig. ED1.

930
931

932 **Figure ED8. Light microscopy micrographs showing persistence of intact and undamaged**
 933 **biogenic silica shells after removal of cellular organic material using HNO₃.** Shown are
 934 HNO₃ cleaned silica frustules of a) the centric diatom *Triceratium* (100X magnification), b)
 935 the pennate diatom *Pseudo-nitzschia* (100X magnification), and c) the centric diatom *Coscinodiscus*
 936 (400X magnification). Even delicate shells of d) the silicoflagellate *Dictyocha* (100X
 937 magnification) came through the HNO₃ digestion procedure intact, as did similarly fragile silica
 938 shells of radiolarians (not shown). All cells shown were collected on a 53 μm filter.

<u>Brief description</u>	<u>Figure</u>	<u>c</u>	<u>β</u>	<u>b</u>	<u>Other</u>	<u>Gyre [Ni] (nM)</u>	<u>Mean depth (m)</u>	<u>Global slope</u>	<u>Global R^2</u>
Soft-tissue uptake only	S1	6.82	0.48	0.92		1.8	2187	1.02	0.84
Uptake into soft tissue and diatom frustules	S2	6.88	0.24	0.92	$\beta_{Si} = 0.13$	2.4	2259	0.94	0.92
Scavenging onto POC	S3	6.85	0.13	0.92	$K = 0.097$	1.3	2184	1.13	0.88
Scavenging similar to Th	S4	6.86	0.32	0.92	$R = 1.5$	2.1	2244	0.97	0.92
Scavenging similar to Pa	S5	6.88	0.29	0.92	$R = 15$	2.2	2260	0.97	0.93
Scavenging onto particulate Mn	S6	6.84	0.36	0.92	$K = 8.3$	2	2253	0.97	0.9
Scavenging onto POC with power-law dependence	S7	6.88	0.14	0.92	$K = 0.50$	2.1	2243	0.97	0.94
Soft-tissue uptake, optimizable b for Ni remineralization	S8	6.86	0.21	0.6		2.3	2256	0.96	0.95

939

940

941 **Table ED1. Key values for model runs.** Model-optimized parameters include c , β , b , and in some
 942 cases an ‘other’ parameter as described. Model performance metrics include the mean Ni
 943 concentration in oligotrophic gyres, the mean depth of Ni in the oceans, the slope of the global
 944 relationship between model [Ni] and observations, and the R^2 for this global relationship.

945

946

Cell type	Location	Ni:P (mmol/mol)	[Ni] (nM)	β	β/β_{modern}	Reference
Diatoms	Eq. Pacific	1.15	3	0.38	2.7	21
Autotrophic flagellates	Eq. Pacific	0.25	3	0.08	0.6	21
Heterotrophic flagellates	Eq. Pacific	0.37	3	0.12	21	0.9
Picoplankton	Eq. Pacific	0.49	3	0.16	1.2	21
Diatoms	S. Ocean	1.15	5	0.23	1.6	26
Autotrophic flagellates	S. Ocean	0.5	5	0.10	0.7	26
Autotrophic flagellates	S. Ocean	0.16	5	0.03	0.2	26
<i>Trichodesmium</i>	Sargasso Sea	6.5	2	3.25	23.2	61
<i>Trichodesmium</i>	Sargasso Sea	6.5	2	3.25	23.2	61
<i>Trichodesmium</i>	Sargasso Sea	7.6	2	3.80	27.1	61
<i>Trichodesmium</i>	Sargasso Sea	7.7	2	3.85	27.5	61
<i>Trichodesmium</i>	Sargasso Sea	8.1	2	4.05	28.9	61
<i>Synechococcus</i>	Sargasso Sea	1.09	2.3	0.47	3.4	62
<i>Synechococcus</i>	Sargasso Sea	3.4	2.3	1.48	10.6	62
<i>Synechococcus</i>	Sargasso Sea	0.43	2.3	0.19	1.3	62

947

948 **Table ED2. Modern ocean β values for natural phytoplankton.** Information used to calculate
 949 the β of various phytoplankton cells in modern ocean samples. Nickel concentrations were
 950 estimated based on station location when not reported in the original manuscript.

951