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to the emission source location; the same is not true for major coemitted short-lived pollutants such as aerosols.
Here, we combine novel global climate model simulations with established response functions to show that a
given aerosol emission from different regions produces divergent air quality and climate changes and associated
human system impacts, both locally and globally. The marginal global damages to infant mortality, crop produc-
tivity, and economic growth from aerosol emissions and their climate effects differ by more than an order of
magnitude depending on source region, with certain regions creating global external climate changes and impacts
much larger than those felt locally. The complex distributions of aerosol-driven societal impacts emerge from
geographically distinct and region-specific aerosol-climate interactions, estimation of which is enabled by the full

Earth System Modeling Framework used here.

INTRODUCTION

Credible climate accounting—or the valuation of impacts from
anthropogenic emissions—requires linking emissions from known
sources to their downstream benefits and damages. A robust litera-
ture has emerged to estimate the social cost of carbon (SCC) or the
marginal damages associated with an additional emission of carbon
dioxide (CO3) (I-5). Development of the SCC methodology has
benefited from the physical reality that CO, is long lived and well
mixed in the atmosphere, and its impacts on the Earth system are thus
independent of emission location. Along with CO,, however, human
activities also produce coemissions of shorter-lived compounds—
including black carbon (BC) and organic carbon (OC) aerosols,
carbon monoxide, nitrogen oxides, volatile organic compounds, sulfur
dioxide (SO,), and other trace chemicals—that are not well mixed
and thus likely exert geographically heterogeneous influence on at-
mospheric composition, climate, and human systems (6-8). A full
cost-benefit analysis of any mitigation action or policy would ideally
take into account the emission location and balance the cost of miti-
gation against the full suite of benefits that would accrue from all
mitigated coemissions, in addition to CO,.

Although the idea of accounting for these cobenefits is not new
(9-14), geographically resolved climate accounting that includes
the effects of short-lived pollutants has yet to be implemented,
because it requires tracing both the air quality and climate impacts
of identical emissions from different locations. Previous studies have
either focused only on air quality-related health impacts (15-17),
assessed emissions from a single region (18-20), used simplified
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models without coupled chemistry and climate (17, 21-26), or have
modeled emissions reduction scenarios where emissions are simul-
taneously reduced across broad areas, which cannot isolate the full
impact of an emission from a particular location (27-30). Building
on recent literature on the spatial dependence of aerosol-climate
interactions (7, 8, 31-34), here, we link novel aerosol perturbation
experiments in a fully dynamical, global Earth system model with
empirically estimated damage functions to map the per-emission
size and spatial distribution of physical changes and societal damages
that accrue from aerosols emitted by eight representative regions
(Brazil, China, East Africa, Western Europe, India, Indonesia, the
United States, and South Africa; fig. S1). This allows us to geograph-
ically resolve the marginal societal impacts of aerosol emissions from
different regions, not only through their localized effects on air qual-
ity [i.e., surface concentrations of particulate matter with diameter
<2.5 micrometers (PMz5) and column-integrated aerosol optical
depth (AOD)] but also through their heterogeneous impacts on cli-
mate (i.e., temperature and precipitation) in an integrated framework.
Many important outcomes are known to be multivariate functions
of environmental exposures, and our results demonstrate that inclu-
sion of geographically resolved climate pathways substantially mod-
ifies the estimation of societal impacts compared to prior approaches.
By using a fully coupled Earth system model, our methodology allows
us to assess, in a self-consistent manner, impacts due to changes across
arange of environmental parameters that are all affected in spatially
and temporally varying ways by the aerosols and their precursors that
are coemitted with COa.

The analysis framework is shown in fig. S1. Briefly, we run the
National Center for Atmospheric Research Community Atmosphere
Model 5 (NCAR CAMS5) model coupled to a slab ocean for 100 years
with a repeating annual cycle of boundary conditions. In the control
environment, global CO, concentrations are held at year 2000 lev-
els, and aerosols are fixed at 1850 levels. In the perturbation environ-
ment, we separately impose an additional aerosol emissions burden
generated in one of the eight regions (i.e., eight separate experi-
mental conditions). This additional emissions burden is equal in
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magnitude and composition across experiments and includes a mod-
ern representative mix (roughly equivalent to year 2000 emissions
in China) of BC, OC, and sulfate precursor (here SO,), which is inter-
actively transported, aged, and removed by the circulation and chem-
istry of the model. While other coemitted pollutants—including
heavy metals, high Global Warming Potential (GWP) gases, and
ozone precursors such as NOx, methane, and other volatile organic
compounds—are known to contribute to secondary aerosol forma-
tion and to affect human health, plant health, and climates, BC, OC,
and SO, drive the vast majority of non-greenhouse gas (GHG) cli-
mate effects (35) and are the main anthropogenic contributors to
present-day PM; 5 levels in most regions (36, 37).

We then link the steady-state environmental changes in each
experiment to established exposure-response functions from the
literature to estimate impacts on infant mortality (due to surface
PM, 5 concentrations) (38), yields of main staple crops (due to changes
in temperature, precipitation, and AOD; AOD is a measure of aerosol
abundance in the full thickness of the atmosphere and influences the
quantity and quality of light available for photosynthesis) (39), and
macroeconomic growth (which shows a strong, nonlinear response to
temperature) (40). While aerosols likely affect other important
outcomes, both directly (e.g., adult morbidity and mortality) and
indirectly (e.g., changes in soil moisture that lead to increased fire
risk), we examine these three outcomes because they are key deter-
minants of welfare and occur on annual or shorter time scales and
are thus separable from longer-run aerosol (or GHG)-mediated
processes. By holding the total quantity and composition of the
emissions portfolio constant but varying its source location against
an otherwise fixed-aerosol background, we test the extent to which a set
of annual physical and societal impacts of this mix of BC + OC + SO,
vary based on source location. To then scale these physically equiva-
lent emissions scenarios to regionally representative conditions, we
normalize to per-unit aerosol impacts and then normalize to regional
CO; emissions to produce realistic coemissions impacts (see Methods
for details). The first normalization allows us to assess the marginal
damage per unit of aerosol emissions, and the second allows us to
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assess the marginal damage from coemitted aerosols per unit of
CO, emissions. These marginal damages are the metrics used in the
inventories and accounting systems that typically drive policy and
provide a metric of damages from future incremental growth or
mitigation of aerosol emissions in a given source region. Critically,
we consider cobenefits and codamages that occur not only from
air quality impacts but also from geographically resolved aerosol-
induced climate changes.

RESULTS
Physical impacts including changes in surface PM; 5, AOD,
temperature, and precipitation differ substantially by
emission region
We find a large divergence in impacts resulting from identical
amounts of aerosols emitted from each source region that begins
with strongly differing physical system responses under both air
quality and climate conditions. After emission, primary BC and OC
aerosols, as well as secondary sulfate aerosols formed from SO,, are
wafted into the atmosphere, transported, and deposited through a
suite of mechanisms. Although the physical distribution of the
particulates at the surface remains mostly local to the region of origin
(Fig. 1A), higher up in the atmosphere aerosols are transported
farther, resulting in increased aerosol optical depth locally and in
downwind regions (Fig. 1B). These aerosols then exert radiative
effects on climate by absorbing and scattering incoming radiation
both directly and indirectly through cloud nucleation [see (8) for
additional discussion]. This changes both the surface temperature
and the temperature structure of the atmospheric column, which, in
turn, affects larger-scale circulation patterns (Fig. 1C). Last, aerosols
affect precipitation via changes to atmospheric stability and large-
scale circulation and, potentially, through interactions with clouds
as condensation nuclei (Fig. 1D).

Global-mean increases in surface PM; s and column AOD from
each region’s emissions both vary by a factor of 2.5 (Fig. 1, A and B;
fig. S2A; and table S1), symptomatic of differences in the removal
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Fig. 1. Steady-state distributions of aerosols and their physical impacts relative to control condition. Each column shows the global impacts due to identical aerosol
emissions from the listed region. (A) Changes in surface PM; 5 show that the surface particulate burden remains concentrated locally, with different characteristic dispersion
distances across regions; (B) changes in total column AOD span larger spatial scales; and (C) changes in average annual surface temperature show strong variation, with
northern latitude emissions locations exerting the strongest global cooling impacts. (D) Average annual precipitation impacts are heterogeneous, with stronger reductions
in the tropics. Stippling indicates a difference between perturbation from control conditions at the 95% confidence level.
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processes and atmospheric transport patterns present in the ambient
environment into which the aerosols are emitted (41, 42). Global-
mean surface temperature effects vary by more than an order of
magnitude (Fig. 1C). Broadly, the distribution of the aerosols, the
strength of regional radiative forcings produced, and the efficacy
of the forcing at producing climate feedbacks all contribute to the
magnified temperature differential relative to the surface PM; 5 and
column AOD differential (8). Global-mean total precipitation re-
ductions vary by a factor of more than 6 (Fig. 1D) but are strongly
correlated (r = 0.95) with the global-mean temperature response
(fig. S2B) and can be viewed as a global hydrologic cycle response
to the aerosol-induced cooling (43). The diversity of responses to
identical emissions demonstrates that the geographic distribution
of sources is a critical determinant of aerosols’ influence on the
physical environment.

Societal impacts differ by emission region and are driven by
a combination of physical system changes and the spatial
distribution of human systems

We evaluate three major welfare impacts—infant mortality, staple
crop production, and gross domestic product (GDP)—that have
been shown in studies of the recent past to respond to atmospheric
changes on annual (or shorter) time scales. PM, 5 in the surface air
layer exposes infants both in utero and during infancy, which
can increase the risk of respiratory infections (44), low birth weight
(45), and neonatal mortality (46) (table S2). The net impact of AOD
on photosynthetically available light (increasing diffuse but decreas-
ing direct sunlight at the surface) reduces yields of maize, soy, rice,
and wheat (39), while cooling and reduced precipitation during the
growing season due to aerosols can either increase or decrease
productivity depending on crop type and on baseline growing con-
ditions relative to the optimum (table S3) (47). At a macroeconomic
level, annual GDP growth has been shown to have a nonlinear
response to temperature (table S4) (40). We quantify “global” (i.e.,
aggregated over the entire globe), “external” (i.e., aggregated only
outside the aerosol source region), and “local” (i.e., aggregated only
within the aerosol source region) impacts, such that global impacts
are the sum of local and external impacts.

We find that the divergence in aerosol physical impacts based on
emissions location leads to a divergence in societal impacts that is
further magnified by the colocation of affected social systems and
their underlying vulnerabilities. That is, the more spatial overlap
between physical system changes and human systems and the more
vulnerable the human system, the larger the social impact. The geo-
graphic distributions of cropped areas and human populations are
shown in fig. S3A; their vulnerability is characterized by baseline
conditions (infant mortality rate, baseline crop yields, and baseline
per capita GDP), shown in fig. $3B. The influence of the colocation
of physical changes and human systems is summarized in fig. S4,
which shows how simple land area average, population-weighted
average, and crop area—weighted average changes in PM, 5, AOD,
temperature, and precipitation can differ by up to a factor of 2 (e.g.,
local area average versus crop-weighted average precipitation for
Indonesia, global average versus population-weighted infant mor-
tality for Europe). We detail the impacts on infant mortality, crop
productivity, and macroeconomics effects below.

The confluence of physical impact heterogeneity and the geography
of human systems and vulnerabilities mean that global infant mor-
tality impacts span almost two orders of magnitude across scenarios
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(Fig. 2, A and B, and fig. S5A)—a range 10-fold larger than the varia-
tion in surface PM, 5 changes across the same scenarios. Aggregate
crop productivity effects range from strongly negative to weakly
positive (Fig. 2C and fig. S5B), as does GDP change (Fig. 2D and fig.
S5C), although all source regions produce the same global-mean
sign of change in the associated physical system drivers. (That is,
global average temperature and precipitation are reduced, and global
average AOD is increased, but localized crop productivity and
economic growth impacts are mixed). Results are summarized in
tables S5 and Sé.

The degree of colocation of increased surface pollution with
large vulnerable infant populations is the leading driver of dispari-
ties in excess infant deaths from the different source regions, as well
as the degree to which impacts are felt locally versus globally (Fig. 2B
and figs. S4 and S5A). Indian emissions produce the largest total
atmospheric aerosol loadings (8) and, therefore, the largest increase
in PM3 5; this is strongly confined to the source region, likely due to
the partial geographic barrier to ventilation created by the Himalayas.
The spatial pattern of PM, 5 increase is highly colocated with large,
vulnerable infant populations as well, compounding with the large
PM, 5 increase to generate large infant mortality effects (fig. S3).
The East African emissions experiment similarly produces a large
number of excess infant deaths due to the colocation of the resulting
surface pollution with large and highly vulnerable infant popula-
tions. European emissions do not produce as large of a total increase
in PM; 5, but the increase is spatially dispersed and colocated
with external regions that have large, vulnerable infant populations.
Combined with low infant vulnerability within Europe, this produces
strongly externalized impacts—European emissions induce four times
as many excess infant deaths outside regional boundaries than
inside. The lower number of excess deaths from the U.S. emissions
experiment emerges partially because the distribution of surface
pollution produced is biased away from populated areas and infant
numbers and because vulnerability is relatively low in the populated
areas affected.

The spatial distribution of impacts on crop productivity stems
from the distributions of the four crop types assessed (fig. S3), as
well as their relative sensitivity to each of the three driving physical
system changes (AOD, temperature, and precipitation) (table $3).
In cases where crop productivity effects are of a different sign out-
side versus inside the source region (e.g., Europe and South Africa),
the local AOD-driven reduction of photosynthetically available
light dominates the crop response and generates large local crop
productivity declines (Fig. 2C and figs. S4, S5B, and $6). In areas
external to the source region, temperature and precipitation effects
dominate the influence on crop productivity and may have either
positive or negative impacts depending on the optimality of the
baseline climate in that region for a given crop type. Wheat is the
largest driver of overall productivity declines (fig. S6), amplified by
the colocation of patterns of strong physical system change with
wheat-growing regions in most of the experiment configurations.

Indian emissions again produce the largest negative global total
crop impacts, but the global totals are largely driven by strong within-
India (i.e., local) impacts. The same mechanisms that produce the
large local surface PM, 5 concentrations in response to Indian emissions
contribute to enhance local AOD loading, which drives large absolute
declines in the local production rate of all crop types, particularly
wheat and rice (fig. $6). India has extensive area devoted to these
crops, including some very high-yielding regions. Emissions from
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Fig. 2. The social impacts of aerosols from each source region. Each experimental condition compared equivalent aerosol emissions from one region (A) to control
conditions; here, impacts are aggregated both locally (total within the emission region) and globally. Because the global total includes local impacts, location on the
1:1 line indicates purely localized impacts (local = global), while departures above or below the line indicate exported effects. (B) Excess infant deaths are large proximal
to the source, although aerosol transport over populated and/or vulnerable regions creates distal impacts. (C) The geographic distribution of crop production changes
varies widely, with heterogeneous radiation, temperature, and precipitation effects creating substantial distal impacts. (D) Economic impacts include both positive and
negative effects, with positive impacts arising from cooling of countries above the economically optimal temperature under the control condition. Gray error bars show
the uncertainty [95% confidence interval (Cl)] due to natural climate variability present in simulations, and black bars show uncertainty (95% Cl) from damage function
parameter estimation. $B PPP, billions of dollars based on purchasing power parity (PPP). Point colors for (B) to (D) correspond to the emission regions colors in (A). Values

are shown in table S5, and values normalized to per teragram (per-Tg) aerosol are shown in table 56.

Europe and South Africa damage local crop productivity while
benefiting aggregate external crop productivity (Fig. 2C and fig. S5B).
In these cases, aggregate external crop productivity is enhanced
by the large-scale cooling generated by aerosols from these regions
(fig. S6), which is more geographically dispersed than the increased
AOD (Fig. 1). However, note that emission source locations with
aggregate local crop benefits still cause discernible declines through-
out northern Africa, the Middle East, and South Asia (fig. S5B).
The geographic distribution of macroeconomic effects (Fig. 2D
and fig. S5C) bears the fingerprint of the nonlinear (inverted-U)
influence of temperature on GDP (40). Because the aerosols cool
globally regardless of source location, regions whose climatological
temperature is above the economic optimum (e.g., India) experience
cooling-driven economic benefits from their own emissions, while
those with climatological temperature below or at the economic
optimum (e.g., China and the United States) experience cooling-
driven economic damages. An exception to this is Europe, driven
by the fact that the large temperature changes induced by European
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emissions occur primarily outside of the source region. No source
region generates net global aggregate damages, although all emis-
sion regions have important distal impacts (fig. S5C). We note that
these calculations consider the influence of aerosol-driven changes
in only temperature on GDP; effects of aerosol emissions on GDP
through changes in particulate matter (48) or other climate variables
such as rainfall (49) could potentially mitigate or enlarge aerosol-
driven cooling benefits to GDP, although quantitative understanding
of these aerosol-mediated effects is limited.

We explore the relative contributions of the physical changes,
the geography of human systems, and their underlying vulnerability
by comparing our simulations to highly idealized counterfactual
scenarios in which either (i) the physical system changes are spatially
homogeneous (held at the global mean change for each scenario),
(ii) the spatial distributions of the affected system (infants, crops,
and people) are homogeneous, or (iii) the spatial distribution of
vulnerability is homogeneous (i.e., constant mortality rates, crop
yields, and baseline GDP). The global results are shown in fig. §7
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(and fig. S8 for individual crop details). For both infant mortality
and crop production, the spatial pattern of aerosol physical impacts
is the main driver of the total impact, at both the global and country
level (insets). For GDP, the impacts are driven both by different
physical impacts (magnified by the quadratic damage function) and
the distribution of people (and therefore economic activity). For all
three outcomes, underlying vulnerability plays a relatively small role.

Social costs of aerosol emissions are substantial relative
to those of coemitted CO, and modify mitigation incentives
The diversity and spatial heterogeneity of these computed economic,
human health, and agricultural damages that result when identical
aerosols are emitted from different regions suggest that including
these effects in an aggregate social cost of anthropogenic activity
would introduce new geographic structure to mitigation cost-benefit
analyses. To contextualize this, we normalize the constant aerosol
emissions used in our perturbation experiments to coemitted CO;
emissions to scale our experimental conditions onto more realistic
scenarios. We conduct this normalization using both global-average
(table S7) and region-specific (table S8) BC:CO,, OC:CO,, and
8$04:CO; ratios drawn from spatially explicit inventories (50) to
show how the local emissions portfolio changes this calculation (fig.
S15 shows the spatial and sectoral heterogeneity of these regional
average ratios).

These normalized impacts provide a direct estimate of how aero-
sols modify the damages associated with marginal carbon dioxide
emissions or the SCC (Fig. 3). We monetize impacts using average

crop prices (51) and standard methods for estimating the value
associated with premature mortality [value of statistical life (VSL);
see Methods] (52-54). We show impacts per metric ton of CO, both
in physical and monetary units to facilitate both multiattribute and
single-dimensional benefit-cost analysis. When aggregating impacts
across sectors, we sum up mortality and GDP impacts, but not
agricultural production, because agricultural production is recorded
within GDP (see Methods).

We find that, on a per metric ton of CO; basis, the coemissions
of aerosols add $4 to $139 to the value of the CO,-only global SCC
(GSCC) ($418/tCO,). These numbers grow under other assump-
tions about the VSL (Fig. 3), in some cases, exceeding the GSCC. The
aerosol-based modification to the GSCC is highest for Indian
emissions, reflecting mortality impacts that are not offset by global
total increased economic output. The modification is lowest in
percentage terms for Brazil ($4.44) and Indonesia ($5.65), although
the values for Europe and the United States are lower if a global
average VSL is used. These smaller regional impacts are due to
either smaller effects in both domains (e.g., the United States) or
offsetting effects (Brazil). Figure 3 shows the total impacts across
GDP and mortality pathways; the corresponding table S8 shows that,
across all emitting regions, these totals are dominated by the excess
mortality costs.

When compared to the damages from CO, that accrue at the
national level [i.e., the country-level SCC (CSCC) (4)], taking into
account the effects of the localized aerosol impacts markedly alters
the cost-benefit calculus for many emitting regions (Fig. 3, red
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Fig. 3. The per-CO; normalized aerosol social costs estimated in this study. Impacts are the sum of GDP effects and infant mortality (GDP is assumed to include agri-
cultural impacts, but a comparison of these is shown in fig. $16). Social costs are calculated here using a regionally specific aerosol-to-CO; emission ratio to scale the
per-emission impacts derived from our experiments and three different VSL values. VSL values from Viscusi and Masterman (52) (circles) are derived by scaling United
States Environmental Protection Agency values to other countries based on their relative gross national income and local stated preferences about willingness to pay for
reduced risk of death. VSLs from the Harvard School of Public Health [squares, from Robinson et al. (53)], scale United States and Organisation for Economic Co-operation
and Development member country values based on different elasticities (here, 1). Last, triangles show the social cost of aerosols using the global average VSL (51.8 M)
from Viscusi and Masterman (52) The dashed red line is the central value for the GSCC ($418 metric ton of CO;) from Ricke et al. (4). Red crosses show the COz-only CSCC
from the same source (4) or the portion of CO,-related damages that accrue locally. In many cases, local aerosol social costs exceed the CSCC. Dollar values in black and
blue correspond to the global and local aerosol impacts, respectively, calculated with Viscusi VSL (52); table 59 shows all values. CO,-normalized local and global impacts
from aerosol emissions from the eight regions are summarized in tables S8 and S7 (where impacts are scaled using a global aerosol-to-CO; emission ratio instead).

Burney et al,, Sci. Adv. 8, eabn7307 (2022) 23 September 2022 50f14

TZOT 01 3290190 U0 03AI(] UBS BILIOJI[E) JO AISIDAIU[ & §10°20USI08 mmmy/:sdNy WOL) papEO[UMOC]



SCIENCE ADVANCES | RESEARCH ARTICLE

crosses). It more than doubles the value for China and raises it from
negative to positive for Europe. India’s value rises by 40%, South
Africa’s value rises by a factor of 10 (from $3.3 for CO, alone to $32
when localized aerosol effects are included), and Eastern Africa’s
value grows from less than $1 due to CO,-related damages to over
$30 when aerosol effects are included. These values are even higher
when the local composition of emissions is taken into account.
Areas with high coal and diesel emissions (China and India) have
higher ratios of aerosols to CO, emissions and therefore a much
greater fraction of social costs due to aerosol-related damages. Last,
while emissions from all locations generate total global GDP bene-
fits via cooling, we find that this is not driven by net benefits in
agriculture, which we consider to be included in the total GDP
benefit estimate (fig. S16). For example, most GDP gains from Indian
emissions are generated locally, but crop losses total to around a
10th of that amount.

These per-unit costs enable flexible generation of emissions
“scenarios” by scaling region-specific marginal impacts of aerosols
coemitted with CO, (table S7) by actual (or projected) CO, emis-
sions. Figure 4 shows how the impacts generated from each regional
experiment compare to four more real-world example emissions
scenarios. These include two historical scenarios where regional
CO; emissions are set to estimated emissions from 2000 and 2019, a
scenario where CO, emissions are set to the modeled upper limit
fair-share Paris target for each region and a scenario in which higher
aerosol-to-CO, emitting regions “clean up” their emissions ratio to
the global minimum ratio and maintain year 2019 CO, emissions
levels (see Methods and Table 1, which summarizes CO2 emissions
in each scenario). Paris fair-share targets have been designed to
meet the 1.5°C warming goal by bringing all countries eventually
to equal cumulative per capita CO; emissions, with individual path-
ways and timelines modified by present needs and capacity (55, 56).
The technology scenario can be viewed as a proxy for the tech-
nology transfer and “leapfrogging” that is built into integrated assess-
ment model projections of future aerosol emissions in developing
countries (57).

The impacts from these emissions scenarios are generally smaller
in magnitude than the regional experiments, with China the notable
exception, as prescribed aerosol emissions in the regional experi-
ments roughly match year-2000 aerosol emissions in China. The
historical real-world emissions scenarios reveal the strong aerosol-
based mortality and crop production impacts, mostly damages, of
the past two decades of development. They also quantify the associated
substantial benefit to global GDP from historical and current aero-
sol cooling. The Paris fair-share scenario highlights how these tar-
gets, while obviously beneficial for climate stability, do not improve
mortality and crop impacts relative to 2019 emissions, largely be-
cause the equity principles behind the fair share targets lead to the
most mitigation from the United States and the European Union
relative to other regions (whose emissions may even increase slightly),
and the United States and the European Union per-CO, aerosol
impacts are lower than for other regions (table §9). This indicates
the potential benefits of targeted measures to reduce aerosol emis-
sions directly to supplement reductions of aerosol coemissions with
COs,. The technology scenario, which maintains year 2019 CO; but
reduces aerosol coemissions intensity for higher aerosol-to-CO;
emitters, illustrates how these targeted aerosol emissions reductions
could substantially improve infant mortality and crop damages.
While these simulations are highly stylized and unlikely to precisely
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represent specific real-world scenarios, they show how the estimates
of the marginal impacts of aerosols coemitted with CO, computed
in this analysis could be used to inform policy analysis. They also
again demonstrate the importance of the integrated modeling frame-
work used here, which allows for geographically resolved and
differentiated societal impacts along both air quality and climate
pathways, as evidenced by the finding that global impacts of each region
and outcome do not simply scale with the amount of emissions.
Rather, the impacts scale with emissions differently depending on
the source location and specific societal outcome.

DISCUSSION

Although warming from anthropogenic CO, emissions creates
heterogeneous impacts around the world, these CO,-specific damages
are independent of emission location. The key conclusion of this
analysis is that the dynamics of aerosol damages are entirely different:
their short-term local and global impacts are strongly dependent
on the location of emission, and heterogeneity in those impacts is
strongly driven by the physical interactions between aerosols and
the general circulation, not simply the spatial dispersion of aerosols
or the simple distribution of affected human systems or their under-
lying vulnerabilities. Therefore, because aerosols are coemitted with
CO,, accounting for them in the social cost of emissions fundamen-
tally changes the mitigation paradigm. The analysis presented here
builds on previous work to characterize these different types of
anthropogenic emissions (10, 15, 22, 58), through use of a coupled
climate-chemistry model, and extends and formalizes these ideas by
creating an experimental framework and methodology to more
fully assess the full impact of a diverse emissions portfolio in a physi-
cally consistent manner.

The importance of our full-system approach that jointly considers
both air quality and climate pathways is illustrated in fig. S10, which
shows how crop impact estimates vary when they are assessed using
only AOD versus AOD, temperature, and precipitation. Considering
AOD impacts alone, global damages exceed local damages for all
regions; however, when changes in temperature and precipitation
are also considered, local damages exceed global damages for half of
the regions and two regions switch from negative to positive esti-
mated global impacts. While the chemical transport models (and
reduced complexity models) used in previous research are extremely
useful for building detailed source-receptor matrices for direct
pollution impacts, this spatial resolution comes at the expense of
assessing aerosol climate-mediated impacts. Our results (evaluated
at the roughly two degree resolution of CAMS5) suggest that climate-
mediated aerosol impacts are both important in magnitude and may
create different and more complicated incentive structures for miti-
gation than implied in chemical transport model-based studies. For
example, global aerosol impacts on GDP per metric ton of CO, emitted
(a purely climate-mediated impact) vary by region of emission from
around 4% (East Africa) to more than 50% (Indonesia) of the mag-
nitude of global infant mortality impacts (a direct impact of aerosol
distribution) but with the opposite sign.

By assessing the impacts of identical emissions from multiple
major source regions, we are able to identify the geographic distri-
bution of marginal damages and, consequently, of mitigation incentives
for each source region, enabling mapping of cooperation incentives
and optimal mitigation investments. Inclusion of impacts of coemitted
aerosols and their precursors changes both the global and localized
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Fig. 4. Emissions scenarios and their estimated societal impacts. We map the annual impacts from our experimental conditions to a more real world context by scaling
per-CO; aerosol impacts to different annual emissions scenarios. Left panels show how region-specific impacts presented above ("*Experiment”) scale to actual year 2000 and
year 2019 emissions, as well as the fair-share Paris targets (“Paris”) and a scenario in which regions with higher-than-average aerosol-to-CO; emissions ratios (i.e., dirtier
emitters) improve their emissions ratio to the global average ("Technology”). Light bars show global impacts from each emitting region, and dark bars show local impacts
(corresponding data are presented in table S13). Right panels show global total impacts from these eight emitting regions added together for each scenario, as well as
the portion of those impacts that accrues locally (i.e., emissions and impacts within the same region).
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Table 1. Scenarios to contextualize experimental (equal-by-region) results. The first three columns show the CO; emissions by region for the year 2000,
year 2019, and Paris fair-share scenarios. The technology scenario uses year 2019 CO, emissions but scales the aerosol-to-CO; ratio for above-average regions to

the global average, as shown in the last two columns.

Year 2000 Year 2019 Fair share Regional ratio Technology ratio
Gt CO5 Gt CO; Gt CO; Aerosol to CO; Scaling factor

Brazil 0.320 0.460 0.860 0.001 0.829
China 3.330 10.110 8.400 0.005 0.236
East Africa 0.020 0.070 0.050 0.003 0.336
Europe 6.120 5410 0.360 0.001 0.843
India 0.970 2.600 3.460 0.004 0.239
Indonesia 0.260 0610 0.860 0.001 1

South Africa 0.380 0.480 0.350 0.003 0.330
United States 5.960 5.250 1.860 0.002 0.581

costs associated with anthropogenic emissions. For the eight emitting
regions, inclusion of these effects should raise marginal willingness
to pay for mitigation of emissions in global and purely self-serving
(“localized”) terms. Perhaps unexpectedly, even when using nonlinear
damage functions that have the potential for positive impacts
(benefits) to aerosol emissions, we find that local impacts are always
negative. This is a critical note, because simultaneous mitigation of
shorter-lived pollutants and CO, would be expected to amplify local
warming in the short run by removing the aerosol-driven cooling
(e.g., Fig. 1) that currently masks a portion of longer-run greenhouse
gas—driven warming.

At the regional scale, these analyses suggest that inclusion of
coemitted aerosol impacts may change the nature of cooperation
incentives as well. It has been noted that Arctic nations would benefit
from formation of mitigation “clubs” outside the international
climate change framework (59). When we aggregate our estimated
impacts from the eight test regions and consider each as both sources
of emissions and receptors of impacts (fig. S9 and tables S10 to S12),
we see that the receptor regions’ interests lie disproportionately
across subgroups of source regions and thus that the potential for
mitigation clubs also arises here. The regional pairs of Eastern Africa
and India and India and China share strong connections for infant
mortality and crop impacts that might incentivize additional miti-
gation, even for these emerging economies. Europe, the United States,
and China exert strong temperature-driven GDP impacts around
the world that meaningfully change the financial value of mitigation
for each region, whether considering global or localized impacts.
Although these 8 x 8 matrices are only a subset of source/receptor
relationships, this framework provides a roadmap for the type of
analyses that should eventually underlie valuation of the full suite of
emissions from human activity and how their downstream effects
are “traded.” Impacts of each source region globally, on specific
receptor regions, and locally are different for each type of societal
impact. An understanding of a full suite of impacts and relationships
would thus allow each country to proceed with mitigation decisions
according to their own valuations of damages and partnerships across
the globe.

This analysis has several limitations that suggest that specific
impact numbers should be interpreted cautiously. We start from a
framework of identical emissions from each source region to appro-
priately disentangle the effect of the physical Earth system—how it
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processes and disperses aerosols from different locations—from
the underlying heterogeneous distributions of populations and land
uses at the Earth’s surface. Although we subsequently normalize
results to make them more easily translatable to present conditions,
this analysis underscores the importance for future observationally
constrained emissions inventories to both probe potential short-
comings of the linearities assumed here and to more finely capture
regional variations in emissions (this is especially important in
biomass-dependent economies where inventories are known to be
much less accurate) (60-62).

Our experimental design is motivated by the fact that social cost
calculations, emissions accounting, and many regulatory limits use
the mass of pollutant emissions as the relevant unit and that compa-
rability across emitting regions is of great interest in international
policy discussions. We, therefore, choose to equalize emissions
amount across the regions in our simulations rather than atmo-
spheric concentration or emission intensity, which are less straight-
forwardly translatable in these policy contexts. This could potentially
introduce effects because of the differing spatial extents of the re-
gions over which the emissions are imposed, primarily by amplifying
air quality impacts in regions with a smaller spatial extent (i.e.,
where the emissions are more concentrated). To some extent, this
reflects actual increased risks from emissions in confined regions where
industrial activity is necessarily spatially concentrated and likely to
be colocated with population centers (in all cases, emissions are
distributed within country according to year 2000 realistic emissions
distributions). However, smaller regions do not systematically exhibit
stronger air quality effects or associated societal impacts in our
results (e.g., Fig. 2), suggesting that this effect does not dominate.

Certain aspects of aerosols’ climate effects can also be sensitive to
the background aerosol concentrations onto which the additional
perturbation is added. In particular, there is evidence that adding
aerosol to a relatively pristine atmosphere results in (in some cases,
two times) larger marginal radiative and cloud effects than adding
aerosol to a relatively dirty atmosphere (63, 64), but confidence in
this effect is low (65, 66). Constructing equal emissions perturbation
experiments such as ours will necessarily require making certain deci-
sions about the background climate onto which emissions are added.
The aerosol background onto which we add our equal emissions
perturbation is not pristine (year 2000 biomass burning aerosols
and natural background dust and sea salt aerosols are present in
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both the control and perturbation experiments) nor is it as polluted
as the present-day atmosphere (other anthropogenic aerosol are set
at 1850 levels in the control). Hence, the marginal physical system
effects calculated from our simulations could be viewed as a slight
overestimate of the effects of future marginal changes in aerosol
emissions, if background atmospheric aerosols increase, or as a slight
underestimate, if they decline—both of which are contemplated in
future emissions scenarios (67).

The damage functions we use are derived from empirical statis-
tical studies of annual outcomes. They thus capture adaptations to
short-run changes in physical states (such as a farmer irrigating in
response to a series of hot days) but do not capture long-run adap-
tations (such as a farmer installing irrigation in response to a warmer
climate). Hence, long-run adaptation may cause realized outcomes
to differ from simulated responses. We also note that, in addition to
spatial colocation of physical changes and human systems, the tem-
poral dimension also affects calculations of societal damages based
on these damage functions. Crops are sensitive to environmental
changes within their location-specific growing season. Figure S12
shows the local climatology from the control scenario for each
source region along with perturbations to that climatology created
by emissions from each source region. For example, Europe’s local
temperature impacts are strongly concentrated in the summer
growing season months, whereas South Africa’s are year-round;
Eastern Africa’s precipitation effects are primarily in the second
rainy season, whereas Indonesia’s are year-round. Similarly, although
we calculate average annual effects on infant mortality, given that
we find strong seasonal variation in PM; 5 concentrations driven
by transport and deposition mode timing, we would expect that the
variation in total PM; s burden, as well as individual BC, OC, and
sulfate burdens (fig. S13), would vary at subannual scales. Better
understanding of the fidelity of the seasonal behavior of both physical
models and damage functions will thus be an important component
of improving damage estimates going forward.

The results should also be interpreted in the context of the subset
and mix of coemissions applied here. The potential attractiveness of
CO, + aerosol mitigation would be expected to change if new tech-
nologies (e.g., diesel truck filters) altered the ratio of aerosol to CO;
emissions. These technologies can also preferentially mitigate
specific aerosol species over others (e.g., SO, scrubbers on coal-fired
power plants) to achieve optimal societal outcomes. We choose to
impose a mixture of aerosol emissions (sulfate, BC, and OC) that
captures the aerosol mix present in a modern industrial economy
(i.e., China; see Methods), because many industrial processes coemit
these species, and their trajectories vary in concert across future
emission scenarios (57, 68, 69). However, because we impose an
aerosol suite rather than individual aerosol species, the effects we
quantify should be construed as a proxy for the effects of economy-
wide aerosol emission changes rather than as the effects of imple-
menting any specific technology. Variations in individual aerosol
species may produce different and potentially nonadditive physical
system effects compared to the aggregate effects imposed here (70),
and future work will explore this. In addition, in particular regions,
other aerosol precursors such as nitrates and volatile organic com-
pounds can contribute substantially to surface PM; 5 levels, although
the source apportionment and fidelity of emissions inventories for
these compounds remain challenging (37). Hence, the infant
mortality estimates given here likely constitute an underestimate of
the true damages associated with all non-GHG coemissions. This
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further underscores the importance of spatially, temporally, and
sectorally resolved multispecies inventories to anchor benefit-cost
analyses of all human activities that generate emissions.

Last, our analyses here include only a small subset of aerosol-
related impact pathways, selected because they involve responses
that occur over shorter (and, therefore, separable) time scales, have
large welfare implications, and for which response functions are
well established. However, aerosols are expected to exhibit impacts
through other pathways—for example, PM; 5 has been shown to have
impacts on adult morbidity and mortality, cognitive performance,
and productivity (44, 71, 72); aerosol-driven radiation effects would
be expected to affect forests and native habitats in addition to crops
(73-75); and changes in temperature and precipitation have been
linked to other important social impacts besides economic output
(76, 77)—that are not included here. In addition, other coemitted
pollutants—including heavy metals, high-GWP gases, and especially
ozone precursors such as NOx, methane, and other volatile organic
compounds—are known to affect human health, plant health, and
climate. NOx itself is a main precursor to nitrate aerosols, and the
ability of future models to more fully include nitrogen and other
secondary organic aerosol dynamics into this framework will be
critical. Our analyses do not replicate the highest pollution levels
currently observed globally—this is more an “average modern”
idealization—and thus, we do not capture dynamics specific to the
highest pollution levels including likely smaller marginal responses
to each additional unit of PM, 5. Future empirical work estimating
heterogeneous climate and social effects of regional aerosol emissions,
such as those from volcanic eruptions or fires, and at higher base-
line pollution levels, could provide both valuable evaluation of our
findings and improved exposure-response functions to incorporate
into this framework. This analysis thus represents a starting point
for consideration of the full suite of human emissions and their
impact pathways.

METHODS

Climate model perturbation experiments

This study uses nine 100-year, repeating annual cycle simulations
conducted in the NCAR CAMS5, run with the modal aerosol module
with three log-normal modes (MAM3) and coupled to a mixed-layer
ocean. Full details on the simulation setup may be found in Persad
and Caldeira (8).

We conduct a control simulation using year 2000 climate condi-
tions, including year 2000 atmospheric concentrations of carbon
dioxide (367 parts per million) and other greenhouse gases, with
nonbiomass burning anthropogenic aerosols (BC, SO,, and OC)
fixed at 1850 values. We then conduct eight regional perturbation
experiments in which a total annual emission of 22.4 Tg of SO,,
1.61 Tg of BC, and 4.03 Tg of OC emissions—equivalent to China’s
year 2000 emissions in CAMS5’s baseline emissions inventory (78)—
is added to one of the eight source regions, defined according to the
Intergovernmental Panel on Climate Change’s regional definitions.
We opt to focus on this suite of short-lived pollutants because of
their dominant role in both climate and air quality impacts. We
exclude secondary pollutants, such as tropospheric ozone and
nitrate-based secondary aerosol, for which computationally prohibi-
tive interactive gas-phase chemistry would be required and for
which geographic source apportionment is not straightforward.
This fixed emissions burden is distributed within the given source
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region according to that region’s year 2000 values (i.e., according
with the realistic within-region distribution of emissions sources),
scaled equally at each grid point and time step to produce the
desired total addition. Within-region emissions distributions are
shown in fig. S14. The difference between each regional perturbation
simulation and the control simulation thereby captures the climate
response to the addition of an identical total annual aerosol emission
located in a given region.

The eight regions are selected to sample a range of past, present,
and projected future major source regions of aerosol emissions.
Europe and the United States dominated nonbiomass burning
aerosol emissions through the second half of the 20th century; China
and India are currently the largest source regions of aerosol emis-
sions; and Indonesia, East Africa, South Africa, and Brazil are all
regions where aerosol emissions are projected to grow substantially
over the early 21st century across the Representative Concentration
Pathway and Shared Socioeconomic Pathway scenarios (68, 78, 79).
The selection of regions, which are located in a range of climatological
environments, also allows us to test the sensitivity of the responses
to dominant atmospheric and climate processes present in the
Northern and Southern Hemisphere mid-latitudes, tropical regions,
monsoonal regimes, and upwind and downwind of the major
ocean basins.

Our use of a fully coupled earth system model allows us to assess
combined climate and air quality impacts of aerosols from the
different regions in a fully consistent and physically integrated way.
Given that many societal damage functions indicate that societal
outcomes respond nonlinearly to combined climate and air quality
pressures (represented most clearly in this study in crop yields
(39)), the simultaneous, internally consistent simulation of these
effects that our methodology provides is particularly valuable. The
CAMS5 model with MAM3 has been shown to produce atmospheric
burdens of sulfate, OC and BC that align strongly (difference < 10%)
with atmospheric models containing more complex atmospheric
chemistry (80). The same holds for radiative forcing from historical
aerosol emissions (81). When run with historical emissions, the model
captures observed geographic and temporal patterns of aerosols
concentrations. It produces low-biased AOD, particularly over East
and South Asia, but this may be partially the result of uncertainties
in historical emissions inventories, which our equal-emissions simu-
lations will not be subject to (80). The fully coupled CESM model
has demonstrated skill in simulating historical temperature and
precipitation at both the global and regional scale, consistently
performing among the top 10 or top half of the Fifth Coupled Model
Intercomparison Project (CMIP5) models for a range of climate
metrics (82).

The model simulations are constructed as equilibrium or “time-slice”
simulations to allow quantification of the response to the imposed
aerosol perturbation with a robust signal to noise ratio [see e.g.,
(83, 84)]. Output from the model is monthly, nominal 2° (144 x 96)
grids, in netcdf format. The first 40 years of the time-slice simula-
tions are excluded to allow the model to stabilize from initial condi-
tions (determined by when trends in sea surface temperature and
top-of-atmosphere energy imbalance become negligible), and analysis
is conducted on the past 60 years (720 months) of data as the steady-
state response. Each year can be treated as an “ensemble member”
(so, parameters for this period are calculated for n = 60), because
of the primarily subannual effects of aerosols and minimal auto-
correlation between years. From experiment and control condition
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runs, we extract the following variables: surface BC, OC, and sulfate
mixing ratios, surface temperature, surface pressure, precipitation,
and column AOD. We add surface BC, OC, and SO, and convert to
concentration using local temperature and pressure. For each variable,
we then calculate mean changes between each source region and
the control condition (e.g., Fig. 1), and we aggregate over both the
source region and the globe to compare local versus global changes
(e.g., fig. S4).

Damage functions and their application

From perturbation experiments, we calculate spatially explicit changes
in four summary physical responses APM;, AAOD¢, AT, and AP
where for each, c is the receptor cell and s is the source region where
the aerosols were emitted. Values are aggregated to either annual
average changes (infant mortality and GDP) or crop-growing-season
averages (corn, wheat, rice, and soybean) in each physical parameter,
relative to the control runs.

To connect these physical changes to human-related damages,
we then use existing empirically estimated damage functions that
relate changes in these parameters to changes in infant mortality,
changes in production from major crops, and changes in economic
output. We use published damage functions from studies that use
panel data (repeated observations of many locations over time) and
fixed-effects regression models to isolate variation in the exposure
of interest (e.g., temperature or PM,5) from other time-invariant
and time-varying factors that could be correlated with both this expo-
sure and the outcome of interest.

Changes in infant mortality

To understand impacts on human life, we relate APM, to changes in
infant mortality. Impacts are calculated on the basis of the exposure-
response function in Heft-Neal ef al. (38), who in a study of nearly a
million African births find that the infant mortality rate (IMR) in-
creases linearly with PM, 5 exposures, with a 0.9% increase in infant
mortality per 1 ug/m’ increase in PM, 5 (table $2). While this response
was estimated in the African context, other work has suggested
strong similarity in the relative response of IMR to PMp, 5 across
both the developed and developing world from studies that use
similar quasi-experimental methodologies (85-87). That is, while
the total number of infant deaths that occur as a result of a unit
increase in PM exposure declines substantially at lower baseline
IMR, the proportional impact—i.e., the percent increase in IMR per
unit increase in PM—is, if anything, empirically smaller in lower-
income higher-mortality regions (fig. S11), perhaps because there
are more competing risks for infant death in lower-income regions.
Thus, assuming a constant proportional increase based on the African
estimate is likely a lower bound on the proportional increase in
much of the rest of the world. Total additional excess infant deaths
in each receptor country are then calculated as

AIMg = APM* pMR*IMR *], (1)

where APM,; is the change in infant population-weighted surface
particulate matter, B™MR — 0,009 is the percentage increase in IMR
per unit increase in particulate matter (see table S2), IMR_ is the
baseline infant mortality rate in each country (88), and I is the esti-
mated infant population in each country (89) [we approximate the
under-1 population as one-fifth of the under-5 population provided
in (89)]. AIM; then gives total excess infant mortality in each country
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cin a single average year due to emissions in source region s, relative
to a no-aerosol scenario.

Parameter uncertainty in infant deaths for each scenario is
calculated on the basis of the SEs of the empirical estimate in (38)
(table S2); uncertainty due to internal climate variability is calculated
from variation in APM3y s across the 60 ensemble members. While
many estimates of this impact coefficient (B™F) exist in the litera-
ture, we use the coefficient from (38) because it draws on nearly a
million births that spans one of our test regions (Eastern Africa, for
which there are no other estimates) and is not statistically different
from estimates drawn from other study regions (e.g., the United
States, Europe, and China) (fig. S11). Moreover, linearity in the
response over the relevant range of PM, 5 concentrations is consistent
with other available mortality response functions estimated for
different age groups (90-92).

Changes in crop production
To calculate changes in crop production, we use estimates from
Proctor et al. (39), who used variations in AOD created by large
volcanic eruptions to estimate the impacts of aerosol-driven radia-
tion changes on crop yields while also accounting for changes in
temperature and precipitation also driven by the atmospheric aero-
sol burden. We calculate change in total production of each of four
main staple crops (maize, wheat, rice, and soybean) as
APROD;;; = [AYjes* Yicl *Ajc 2)
where Yj; is the baseline yield of each crop j in country c and Ajc is
the baseline area, where for both we use the estimated 2000 area and
yields from (93). The percentage change in yield AY; is calculated
by applying AAOD,,, AT, and AP, to the response functions estimated
in Proctor ef al. (39) and is done as follows
ijcs = AﬂAOchs) + AﬂT)c.s) + Aﬂpjcs) (3)
where we apply model coefficients to changes in temperature,
precipitation, and AOD (table S3) over crop-specific growing sea-
sons (94) and areas in each country to calculate national-level yield
changes. Specifically, we calculate changes in yield at the pixel-
growing season resolution and then average over space (cropped-area
weighted average of pixels within a country) and time (60 years) to
get asingle estimate of AY for each crop, country and source region.

Uncertainty in the crop response from imperfectly estimated
empirical model parameters is calculated as in Proctor et al. (39).
Uncertainty in the crop response from imperfectly estimated changes
in the climate variables is calculated, for each crop, country, and
source region as the SE of Yj.; over years, 1.

Changes in economic output
To calculate changes in macroeconomic output, we use response
functions from Burke et al. (40), who find that per capita national
economic growth varies strongly and nonlinearly with annual average
temperature. We calculate the change in total economic output in
each country c due to the change in temperature from aerosols from
source region s as

AGDPy = [T, + ATs) — AAT.)]*GDPpc,.* pop, (4)
where GDPpc, and pop, are the baseline (2010) per capita GDP and
population in country ¢ and f{) is the function from Burke ef al. (40)
that estimates the percentage change in per capita GDP in a given
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year from a change in temperature: f{) = B, T+ + B2 T%t, where T is
the annually averaged temperature in country c in year f. Coefficients
and standard errors for B; and B, are given in table S4. AGDP,; then
gives the total change in GDP in country c over 1 year due to aerosol
emissions from source region s.

As for infant mortality and crop production, we estimate SEs on
the basis of the statistical model parameter uncertainty and due to
the internal variability of the climate system (e.g., error bars shown
in fig. S4).

Partitioning aerosol impacts

A key question is the extent to which aerosol impacts on human
systems are driven by changes in the physical system versus the
distribution of underlying human systems and/or their baseline
vulnerabilities. To assess this, we compare the results from our
main experiments with impacts estimated from three counterfactual
scenarios:

1) Globally homogeneous physical changes: In this scenario, we
use the global-mean change in all parameters induced by aerosols
instead of the locally resolved changes.

2) Globally homogeneous distribution of human systems: In this
scenario, we spread human systems (infant populations, crop area,
and human populations) equally over all land areas.

3) Globally homogeneous vulnerability: In this scenario, we
assume all human systems (infant mortality, crop yields, and per
capita GDP) are held at the global average as opposed to their
local values.

We estimate impacts from each emissions region for these three
additional scenarios for each of the three impact pathways and compare
the results in figs. S7 and S8. At the global level (fig. S7, left), we find
that the physical system changes (i.e., the geographic heterogeneity
of aerosol interactions with the general circulation from different
regions) are the main contributor to both excess infant mortality and
crop production changes; the green bars or the estimates of impacts
from a counterfactual homogeneous physical system response are
most different from the actual experimental conditions, shown by
the gray bars. For macroeconomic (GDP) impacts, the combination
of physical system impacts and underlying population distributions
(the generators of economic activity) both exert strong influences,
but across scenarios, the physical impacts are consistently the major
drivers, while population distribution importance varies across
emission regions.

To more concretely understand the relative importance of these
factors, we conduct a simple analysis at the country level from the
above simulations (fig. S7, right). We use a regression model to under-
stand how within-country estimates change as a function of each of
the factors, using the actual experiments across source regions and
the counterfactual scenarios above. These findings suggest that, on
average, the physical system is the primary main driver of impacts
at the national scale and is not dominated by (e.g.) the national-level
vulnerabilities or population distributions on average. The macro-
economic impacts are much more heterogeneous, likely due to the
nonlinearity in the damage function. Aerosol-driven cooling improves
economic output in countries whose climatological temperature is
above the economic optimum and damages output in those below.

Contextualizing aerosol impacts
In addition to the absolute damages (table S5), we report the damages
normalized by the total aerosol emissions perturbation (28.04 Tg of
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combined BC, OC, and SO; for each scenario; table $6). We then
additionally normalize to CO, emissions in two ways, as described
below.

While aerosols and their precursors are emitted in many
combustion processes, the relative production of these compounds
(compared to CO3) varies by technology, feedstock, and combustion
conditions, and this is manifest in regional- and sectoral-scale
differences in aerosol-to-GHG emissions ratios. (50) We scale the
equal-aerosol-emission results described above by converting from
a per-Tg aerosol basis to a per-CO,, basis using either a global average
aerosol-to-CO, emissions ratio (table S7) or a region-specific ratio
(table S8). Both ratios [i.e., (BC + OC + SO,)/CO,] are drawn from
the Emission Database for Global Atmospheric Research global
emissions inventory (50). These values are then locally specific esti-
mates of the impact of the concomitant aerosol emissions coproduced
with a metric ton of CO, emissions from that region. We include all
CO3 emissions, including short-cycle CO», to calculate this ratio.

We use these per-unit regional results to create a set of four global
scenarios (Table 1) by scaling unit-level aerosol impacts per CO;
emission (table S7) to different regional levels of CO, emissions.
Using data from the Global Carbon Project (GCP) (95), we first
scale to historical 2000 and 2019 CO; emissions from each region
to show the evolution of regional contributions. (We note that the
GCP inventory differs slightly from the CAMS5 baseline inventory
used in our experimental simulations.) We then additionally coarsely
model the impact of “fair share” 2030 Paris targets taken from the
Climate Action Tracker (55). The fair share method seeks to balance
mitigation effort equitably across the globe. In this approach, countries’
cumulative emissions per capita eventually converge for equity, but
the pathway by which each arrives at that value varies according to
their capability and needs (55, 56). Here, we use the upper limit of
the fair-share range compatible with the global +1.5C target; for
Eastern Africa, we follow the modeled pathways for Kenya and
Ethiopia, which put 2030 emissions at approximately 77% of 2019
level emissions. Last, we simulate global improvements in the
aerosol-to-CO; ratio by reducing regional aerosol-to-CO; ratios to the
lowest regional average value (Table 1; Indonesia, Europe, and Brazil
have the lowest ratios). This scaling is an approximation of technology
transfer to regions (and in sectors) with “dirtier” production.

Social cost of emission calculations

Policy analysts face a choice between accounting for benefits and
damages across different units (e.g., premature deaths, metric tons of
wheat, and dollars of GDP) using multiattribute methods or convert-
ing all benefits and damages to a common unit (typically currency) for
a single-dimensional benefit-cost analysis. To facilitate the latter, we
convert infant mortality and crop production impacts to U.S. dollar
values using standard methodologies (these are both presented in
tables S7 and S8). We note that welfare impacts may differ considerably
from monetary impacts (e.g., a lost metric ton of wheat production
likely reduces the welfare of a subsistence farmer more than a large-
scale producer).

To convert crop production changes to monetary values, we use
an average crop price (across the four crops) of $300/metric ton,
with fig. S16 showing a comparison between low and high values of
$100/metric ton to $400/metric ton. We similarly convert deaths to
monetary values using value of statistical life estimates from the
literature (52-54). The main values presented in tables S7 and S8
use Viscusi and Masterman (52) local values. However, we present

Burney et al,, Sci. Adv. 8, eabn7307 (2022) 23 September 2022

social cost estimates based on an alternative region-specific VSL
(53) and using the global average VSL ($1.8 million) from Viscusi
and Masterman (52). This global average is lower than, for example,
the value used by the U.S. Environmental Protection Agency
($9.1 million) (54), but numerous studies have shown a wide diver-
gence in values across countries and different weightings for infants
versus other age cohorts (52, 54, 96). Per-emission damages are
multiplied by these values to estimate the aerosol-related changes to
the SCC (both GSCC and CSCC). These parameters could take on a
wide range of values, but as the goal here is to demonstrate how
inclusion of coemitted aerosols changes the social cost of a CO;
emission, we have used these low-to-moderate values for conserva-
tive estimates.

‘We use Ricke et al. (4) as a baseline value for both the GSCC and
the CSCC. The GSCC represents the global total damages estimated
to accrue from a marginal future metric ton of CO; emissions, and
the CSCC represents the portion of those damages accruing to each
country (irrespective of location of emission). Although Ricke et al. (4)
represents a higher GSCC than values currently used in policy (and
some others suggested in studies), it is ideal for comparison because
it provides a self-consistent estimate of both country-level and global-
level SCCs. We extend this methodology here by comparing the
social costs (via infant mortality, crop production, and economic
output) due to aerosol emissions that are coproduced with CO,
to the CO;-only values. Because aerosol atmospheric lifetimes are
much shorter than CO,; (days to months versus decades to centu-
ries), we assume a separability of time scales and calculate aerosol-
related damages on an annual basis, without any discounting.

Significance statement

Carbon dioxide affects the Earth’s climate independent of where on
the planet it is released into the atmosphere. However, most CO; is
coemitted with other pollutants such as aerosols and aerosol pre-
cursors that are not similarly long lived or well mixed in the atmo-
sphere. Here, we show that emitting the same aerosols from different
locations produces very different physical climate responses, which
in turn create divergent impacts on human health, agricultural pro-
duction, and economic output. Consideration of these coemitted
aerosols thus markedly changes the SCC, with important geographic
variations and linkages.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn7307
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Figure S1: Schematic of analysis methods for estimating impact of regional aerosol emissions. We run a 100 year repeat-cycle simula-
tion, comparing the physical and societal impacts of the same aerosol emissions released from different locations on the globe. The 8
different source regions used in perturbation experiments are: Brazil, China, (Western) Europe, Eastern Africa, India, Indonesia, South
Africa, and the United States. In each experiment, 22.4 Tg of Sulfate precursor (SO3), 1.61 Tg Black Carbon, and 4.03 Tg Organic Car-
bon were emitted from an individual region, spread evenly over the year temporally, against a backdrop of modern global CO5 emis-
sions. (The colors here correspond to colors used in impacts plots throughout this analysis.) We use the last 60 years of each condition
as the steady-state response, and then use ambient changes in surface PMs 5, column aerosol optical depth, temperature, and precipi-
tation relative to a pre-industrial aerosol control condition (the responses to US emissions perturbation scenario are shown as exam-
ple) to drive empirical exposure-response functions for infant mortality (38), yields of major staple crops (39), and macroeconomic
growth (40). We use underlying population, agricultural, and economic distributions from 2010 (Figure S3) to estimate impacts.



(A)

-0.5

--- r=078

(B)

0.004

AP [mm]

=10

-15 -

—(;.—.ﬂe;.f'—.- South-Afrea

United|Statgs

Figure S2: Physical correlations between global-mean responses of aerosol optical depth, tem-
perature, and precipitation for each experimental condition relative to control. Global mean re-
sponses for AOD across emitting regions vary by a factor of ~2.5, while temperature and precipi-
tation vary by approximately an order of magnitude. (A) Changes in AOD are strongly correlated
with cooling (strong direct radiative effects), and (B) global-mean precipitation reductions are
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impacts.
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Figure S4: Internal impacts (Local to emitting region) versus External impacts (Global - Local)
of aerosol emissions from different regions. Effects are shown for (top to bottom) temperature,
precipitation, column AOD, and surface PM, 5 relative to control conditions. Dashed lines are la-
beled with the ratio of local to global signals they delineate. The left column shows simple land
average exposure changes and thus encapsulates the variation in the physical system response
across regions. The central column shows population-weighted average exposure changes, and
the right column shows crop-area weighted average exposure changes. The differences between
the center and right columns and the left column thus illustrate how the distribution of popula-
tions and land use interact with the physical system to either magnify or mitigate vulnerability.
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Figure S5: Global distributions of (A) Infant deaths, (B) Crop production, and (C) Gross Domestic Product for each emission region
compared to control condition.
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Figure S6: The contribution of AOD, temperature, and precipitation effects due to aerosol emis-
sions from each of the eight source regions to the total changes in productivity for the four sta-
ple crops (corn, wheat, soy, and rice) and their total (all crops) shows the sometimes-aligned,
sometimes-canceling effects of crop responses to different physical system changes. Light (total)
bars match total impacts reported in Table S11.



(A) Global Partitioning of Infant Mortality Impacts (B) Country-Level Infant Mortality Impacts

Marginal Impacts
18406
1% Increase in PMzs — .
Condition
Actual Condiians
[ oo Additional 1/10000 IMR — .
% W urstorm intant Mortality Rate
1% Increase in Infant Population HH
I i I
-1.0 -0.5 0.0 0.5 1.0
1e+04
pur Average % Change, Total Deaths
i

Global Excess Infant Deaths
i

Bracl China Enal Africa Eurape indonesa  South Africalnied States
Emissions Region
(C) Global Partitioning of Crop Production Impacts (D) Country-Level Crop Production Impacts
20
Marginal Impacts
10
g +100mm Precipitation — L
" Condition 19 |
g ‘ -. L P 1°C Temperature i
g’ 1 r n el 0.1 Increase in AOD — ———@—
; W untorm vieid
2 1% Increase in Area — [ ]
o
-10 1% Increase in Yield - L]
T T T
6 -4 -2 0 2
. Barazil China East Africa Eurnope ndia Indoresis South Africa United States A\‘Grage % Changs' cmp Pmdumlon
Emissions Region
(E) Global Partitioning of Economic Impacts (F) Country-Level Economic Impacts
200
. J I Marginal Impacts
L 0 ‘ +19C e
§ Condition
E Actual Cordiions
S I o o Pt Onttton 1% Baseline Per Capita GDP | -
78“ Wl unitom Per Capita GOP
]
200 1% Change in Population — —a—
. T T T T T T
s 6 4 2 0 2 4 & 8
Brazil China Easl Afnca Europe india Indonesa South Alricalngad Stales Amragg GDP Changel $B
Emissions Region

Figure S7: Left-hand column shows the contribution of the spatial pattern of physical system
changes due to aerosol emissions (light blue), human systems (light purple), and baseline vul-
nerability (dark purple) to the total global impacts estimated from each emission region (grey).
Where colored bars are smaller (larger) than the total, the actual spatial distribution of that factor
(e.g. crop yield) magnifies (damps) the impact relative to a uniform baseline. Grey bars match
total impacts reported in Tables S10, S11, and S12. Right-hand column shows the country-level
associations between total impacts and human system distribution, vulnerability, and physical
system impacts across the true experimental conditions and the three comparison scenarios.
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Figure S8: As in Figure S7, but showing individual staple crops.



(A) Infant Mortality (B) Crop Production (C) Gross Domestic Product
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Figure S9: Total global and pairwise ‘source-receptor’ relationships for (A) infant mortality, (b)
crop production, and (¢) economic output among the 8 emissions source regions vary widely.
These teleconnections can be uni-directional (e.g., India negatively affects East African GDP, but
not the other way around; Europe impacts Chinese infant mortality but not the other way around),
bi-directional with the same sign (e.g., China and India impact the other’s infant mortality), or
bi-directional with opposite signs (e.g., European emissions help crop production in China, but
Chines emissions hurt crop production in Europe). These different types of connections would
be expected to change the incentives for joint mitigation of COy+aerosols by groups of countries.
Values in this figure are shown in Tables S10-S12.
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Figure S10: Estimated crop production impacts when (A) only a partial impact (AOD) is used,
versus (B) when the full suite of environmental changes (Temperature, Precipitation, and AOD) is
used to calculate impacts in a multi-dimensional exposure-response function. The single-variable
version results in mis-estimated impacts by including only a partial response: it estimates uni-
formly negative impacts from reduced incoming solar radiation, but neglects partially-offsetting
positive impacts, including reduced heat exposure. For clarity, only climate-related uncertainty
(grey bars) is shown.
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Figure S11: Quasi-experimental estimates of the percentage change in infant mortality per unit
of PM; 5 exposure show relative stability across the distribution of infant mortality. The esti-
mate used to calculate aerosol impacts here is drawn from nearly a million births in sub-Saharan
Africa (38) and is similar or conservative relative to other available estimates. (86, 87, 97—104)
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Figure S12: The seasonality of physical system changes has important implications for human
impacts. As a simple model, we show here the connections between the 8 experimental regions.
Four pairs of plots are shown for each region, for temperature, precipitation, column AOD, and
surface PMs 5. Each region’s climatology for the control scenario is the left plot of the pair, with
the climatology of impacts from each experiment shown in deviations in the right plot of each
pair. The grey region in the impact plot shows the 95% confidence interval for natural variability
in that month’s value. For example, Europe’s baseline temperature is unimodal, peaking in bo-
real summer. Aerosol emissions from Europe (pink line) reduce temperature most strongly in the
summer months, but US emissions also reduce European temperatures relative to baseline in late
summer. The seasonal variability in impacts is important for agricultural impacts, due to interac-
tions with growing seasons, as well as for any impact based on shorter-run (< annual) variations.
In particular, infants may be most sensitive to air quality during their first month of life, so Indian
aerosol emissions would affect local infants most strongly in Oct-Nov-Dec, but emissions from
Eastern Africa would also contribute to Indian impacts in July and August.
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Figure S13: Different chemistry (e.g., sulfate formation from sulfur dioxide), aging, and deposi-
tion mechanisms result in different chemical composition of surface PMs 5 during the year across
regions, even in our experimental conditions of uniform emissions throughout the year. For ex-
ample, carbonaceous aerosols (BC+0OC) dominate the mix in the United States throughout the
year, with overall concentrations peaking in August-September. In South Africa, however, the
main component is carbonaceous aerosols in the July-August, but sulfates in December-January.
At present most empirical damage functions consider all PM, 5 jointly, but research suggests that
different chemical species are likely to vary in toxicity.
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Figure S14: The spatial distribution of net BC, OC, and SO, surface emissions imposed within
each of the 8 regional perturbation experiments is shown. Each grid cell is shaded according to
the percent of the total regional emission originating from that grid cell in the perturbation ex-
periment. Emissions are distributed according to the realistic year 2000 spatial distribution of
emissions from (78).
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Figure S15: The ratio of aerosol-to-CO, emissions varies within the experiment source regions,
both geographically and by sector. Lines show the range of ratio values over source region area,
by half-degree grid cell (thin line), and by sector (thick line). Small squares show the areal av-
erages of grid-cell-level ratios, and large squares show the average co-emissions ratio based on
regional totals (the central estimate used in the analyses presented in the main manuscript). Data
are from the EDGAR emissions inventory. (50)
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Figure S16: Comparison between crop production and GDP impacts of aerosols, calculated in a
number of ways. Crop production is the sum of wheat, rice, corn, and soybeans. Because agri-
cultural damages or benefits from aerosol emissions might be captured by overall GDP effects,
we report only GDP+mortality costs in Figure 3. As in the main manuscript, wide bars and large
points show global total impacts; thinner bars and smaller points show local impacts (local to the
emitting region). Social costs are calculated for two different aerosol-to-COs ratios (for each re-
gion, the lower set = global average ratio and the upper set = regional average ratio) and low and
high crop prices ($100/tonne and $400/tonne; circles and diamonds, respectively). Note that neg-
ative costs reflect increases in GDP, largely driven by temperature effects in hotter locations.



Additional Tables

Table S1: Summary of global average physical impacts for each emissions region.

Country

PMy 5 [pg m™?]

AOD

T[°C]

P [mm)]

Brazil

China

East Africa
Europe
India
Indonesia
South Africa
United States

0.110 (£0.006)
0.097 (0.007)
0.097 (£0.007)
0.170 (£0.011)
0.140 (£0.007)
0.071 (£0.007)
0.120 (£0.009)
0.120 (£0.008)

0.001 (£0.001)
0.001 (£0.001)
0.002 (£0.001)
0.002 (£0.001)
0.001 (£0.001)
0.001 (£0.001)
0.001 (£0.001)
0.002 (£0.001)

—0.083 (£0.140)

—0.180 (£0.140)
—0.078 (£0.120)

—0.370 (£0.130)

—0.019 (£0.140)

—0.074 (£0.130)

—0.110 (£0.120)

—0.230 (£0.120)

—4.700 (43.600)
—6.200 (43.600)
—3.900 (£3.600)
—10 (£2.900)
—1.700 (£3.300)
—4.600 (£2.900)

—6.200 (£3.700)
—6.900 (£2.800)




Table S2: Infant Mortality Rate Damage Function. (38) The dependent variable is a local infant
mortality rate (deaths in the first year of life per 100k births). PM, 5 is in g m 2 averaged over
the first year of life of the infant. Standard errors shown in parentheses.

log(In fantMortalityRate)

PM,s 0.09
(0.026)

Table S3: Crop Damage Functions. (39) Parameter estimates for the influence of SAOD, Temper-
ature and Precipitation on corn, wheat, soy and rice yields. Standard errors shown in parentheses.
Response functions are plotted in Extended Data Fig. 2 of (39).

log(Yield.or,) log(Yieldypeat) log(Yieldy,,) log(Yield,ic)
SAOD -0.649 -0.257 -0.482 -0.301
(1.122e-01) (1.205e-01) (2.701e-01) (2.173e-01)
Temp. (RCS feature 1) 0.197 0.0678 0.129 00266
(7.184e-02) (2.363e-02) (8.058e-02) (4.703e-02)
Temp. (RCS feature 2) -.000321 -.000183 -.000244 .0000163
(1.082e-04) (4.290e-05) (1.136e-04) (6.213e-05)
Temp. (RCS feature 3) 00104 000816 000804 -.000157
(3.886e-04) (2.315e-04) (4.074e-04) (2.304e-04)
Precip. (RCS feature 1) 00274 000186 00323 -.00115
(8.0623e-04) (9.623e-04) (1.575e-03) (6.285e-04)
Precip. (RCS feature 2) -4.09e-08 -3.05e-09 -4.97e-08 1.34e-08
(1.175e-08) (2.007e-08 ) (2.452e-08) (9.839¢-09)

Table S4: Economic Damage Function. (40) The dependent variable is per capita GDP growth
rate. T is in degrees Celsius averaged over a calendar year. Standard errors shown in parentheses.

A(GDPper capita)
Tong 0.01268
(0.003248)
T2, -0.0004942

(0.0001024)




Table S5: Total impacts for identical total BC + OC + SO; emissions from each of the 8 source
regions. Excess infant (< 1y) deaths, total crop production changes, and economic productivity
changes are shown with both global and local (the portion confined to the emissions source re-
gion) totals.

Infant Mortality Crop Production GDP
[Excess Deaths] [Mt Crops] [$B 2010)]
Global Local Global Local Global Local

Brazil 92,584 78,445 —10.3 —-2.9 61.5 6.2
China 432,705 387,068 —0.7 —4.6 85.4 —16.6
East Africa 1,468,102 1,253,009 —-2.9 —0.6 13.4 0.8
Europe 116,773 23,002 8.3 —-1.8 85.8 22.5
India 3,342,144 3,077,521 —19.2 —12.1 57.1 40
Indonesia 301, 818 283,114 -3 —1.2 52.3 4.6
South Africa 353, 397 261,443 0.5 —1.6 52.5 3.9
United States 40, 390 20,757 —4.1 -9.5 59.2 —-3.5

Table S6: Total impacts for each of the 8 emitting regions per Tg of emitted aerosol. Excess in-
fant (< 1y) deaths, total crop production changes, and economic productivity changes are shown
with both global and local (the portion confined to the emissions source region) totals.

Infant Mortality Crop Production GDP
[Excess Deaths] [Mt Crops] [$B 2010)]
Global Local Global Local Global Local

Brazil 3,301.9 2,797.6 —-0.4 —0.1 2.1 0.2
China 15,431.7 13,804.1 0 —0.2 2.9 —-0.7
East Africa 52,357.4  44,686.5 —0.1 0 0.5 0
Europe 4,164.5 820.3 0.3 —0.1 2.8 0.7
India 119,192 109, 754.7 —-0.7 —-04 2 1.4
Indonesia 10,763.8  10,096.8 —0.1 0 1.8 0.2
South Africa  12,603.3 9,323.9 0 —0.1 1.9 0.1

United States 1,440.4 740.3 —0.1 -0.3 2 —0.2




Table S7: The top panel of the table shows aerosol impacts normalized to the full emissions bas-
ket, or the impacts per ton of CO5 emitted, due to the impacts of the co-emitted aerosols, cal-
culated using global average ratios of aerosols to CO,. Both global totals and impacts confined
to the emissions source region (local) are shown. The bottom panel provides monetary values
for normalized per-CO; impact values, converted using VSL values from (52) and a per-ton crop
price of $300. In the bottom panel, negative signs correspond to losses, positive to gains.

Infant Mortality Crop Production GDP
Global Local Global Local Global Local
#pertCOy,  #pertCO, tpertCO;  tpertCOy  $pertCOy  $ per tCO,
Brazil 0.00001 0.00001 —0.002 —0.0004 8.90 0.92
China 0.0001 0.0001 —0.0001 —0.001 12 —2.70
East Africa 0.0002 0.0002 —0.0004 —0.0001 1.90 0.11
Europe 0.00002 0.00000 0.001 —0.0003 12 3
India 0.0005 0.0004 —0.003 —0.002 8.30 5.80
Indonesia 0.00004 0.00004 —0.0004 —0.0002 7.60 0.67
South Africa 0.0001 0.00004 0.0001 —0.0002 7.80 0.55
United States 0.00001 0.00000 —0.001 —0.001 8.30 —0.74
$SpertCO;, S$pertCOy  SpertCO;  S$pertCOy  $pertCO;  $ per tCO,

Brazil —23.26 —19.71 —0.46 —0.13 8.90 0.92
China —89.52 —80.08 —0.03 —0.20 11.98 -2.71
East Africa —43.39 —37.03 —0.13 —0.03 1.91 0.11
Europe —51.77 —10.20 0.37 —0.08 11.54 2.99
India —148.17 —136.44 —0.85 —0.54 8.29 5.80
Indonesia —13.38 —12.55 —0.13 —0.05 7.63 0.67
South Africa —52.23 —38.64 0.02 —0.07 7.78 0.55
United States —57.30 —29.45 —0.18 —0.42 8.32 —0.74




Table S8: As in Table S7, but with region-specific normalization based on emissions inventories.

Infant Mortality Crop Production GDP
Global Local Global Local Global Local
#pertCO2  #pertCO;  tpertCO; t per tCO, $pertCO;  $ per tCO,
Brazil 0.0000043  0.0000036  —0.00048 —0.00013 2.8 0.29
China 0.00007 0.000063 —0.00012 —0.00074 13 -3
East Africa 0.00017 0.00014 —0.00033  —0.000069 1.5 0.086
Europe 0.0000053  0.000001 0.00038 —0.000081 3.6 0.92
India 0.00054 0.00049 —0.0031 —0.002 9 6.3
Indonesia 0.000012 0.000011 —0.00012  —0.000046 2 0.17
South Africa 0.000041 0.00003 0.000054 —0.00019 6.1 0.43
United States  0.0000027  0.0000014  —0.00027 —0.00063 3.7 —0.33
$SpertCO, S$SpertCOy  SpertCO; S$pertCOy  $pertCO,  $ pertCOy

Brazil —7.29 —6.18 —0.14 —0.04 2.79 0.29
China —98.49 —88.1 —0.03 —0.22 13.18 —2.99
East Africa —33.51 —28.6 —0.1 —0.02 1.47 0.09
Europe —15.95 —3.14 0.11 —0.02 3.55 0.92
India —161.1 —148.34 —0.92 —0.59 9.02 6.3
Indonesia —3.48 —3.26 —0.03 —0.01 1.98 0.17
South Africa —41.18 —-30.47 0.02 —0.06 6.14 0.43
United States —25.63 —13.17 —0.08 —0.19 3.72 —0.33

Table S9: Comparison of aerosol social costs (infant mortality + GDP) calculated using three dif-
ferent VSLs (from Viscusi and Masterman (52), Harvard School of Public Health (53), and the
United States EPA (54) for US and Europe, and a global average VSL from Viscusi and Master-
man). Values correspond to the points plotted in Figure 3. All values are in USD, with positive

indicating damages.

Region Viscusi  Viscusi  Average Average @ HSPH  HSPH
Global Local Global Local Global  Local
Brazil 4.5 59 4.9 6.2 7.5 8.4
China 85.3 91.1 1134 116.3 148.6 147.7
East Africa 32 28.5 300.1 257.3 65.6 57.1
Europe 12.4 2.2 6 | 47.5 9.1
India 152.1 142 957.6 883.8 528 488.2
Indonesia 1.5 3.1 18.9 19.4 17.7 18.3
South Africa 35 30 68 544 76.2 60.5
United States 21.9 13.5 1.1 2.8 21.9 13.5




Table S10: Infant mortality impacts of the 8 emissions scenarios (excess deaths compared to control scenario), shown both globally
(left column), and distributed across the 8 emitting regions.

Global Brazil China East Africa  Europe India Indonesia  South Africa  United States

Brazil 92,584 78,445 1,265 —480) 16 2,903 173 230 64
China 432,705 27 387,068 198 —16 16,487 125 2 8

East Africa 1,468,102 96 1,526 1,253,009 125 44,971 140 520 19
Europe 116,773 —14 1,609 4,796 23,002 11,356 26 b4 29
India 3,342 144 —63 25,878 21,762 68 3,077,521 296 24 65
Indonesia 301,818 16 871 —1,096 —118 4,362 283,114 30 —16
South Africa 353, 397 186 464 —3, 066 —64 —1,568 323 261,443 24
United States 40, 390 —4 1,237 —1,126 362 6, 686 256 12 20,757

Number of excess infant (<1) deaths compared to control scenario



Table S11: Crop production impacts of the 8 emissions scenarios, shown both globally (left column), and distributed across the 8 emit-
ting regions.

Global Brazil China  East Africa  Europe India Indonesia  South Africa  United States

Brazil —-10.260 —2.880 —0.200 0.040 —-1.370  —1.230 0.120 0.080 —4.010
China —0.720 0.370 —4.570 0.090 —0.400  —1.280 0.110 0.140 3.270
East Africa —2.900 0.580 1.970 —0.600 —1.540  —1.430 0.090 0.040 —1.520
Europe 8.290 0.880 5.640 0.070 —-1.790  —0.170 0.170 0.160 2.260
India —19.190 0.040 —0.210 —0.010 —-2.190 —12.150 0.090 0.110 —2.940
Indonesia —3.040 0.090 0.660 0.040 —-2.600  —0.460 —1.190 0.070 2
South Africa 0.460 0.400 1.470 0.060 —-0.370  —0.210 0.140 —1.610 —0.150
United States ~ —4.060 0.530 3.170 0.010 0.370 —0.610 0.150 0.150 —9.520

Millions of Tonnes of crop gain/loss compared to control scenario



Table S12: Economic impacts of the 8 emissions scenarios, shown both globally (left column), and distributed across the 8 emitting

regions.
Global Brazil China East Africa  Europe India Indonesia  South Africa  United States

Brazil 60.230 6.220 1.090 0.220 —3.330  22.550 2.430 0.910 0.230

China 81.050 4.520 —18.360 0.730 7.720 34.590 3.550 0.950 —2.480
East Africa 12.900 2.920 —0.930 0.750 —2.240  2.450 1.040 0.250 —0.400
Europe 78.080 8.830 —15.680 0.730 20.230  26.220 4.380 0.980 —3.650
India 56.120  —0.880 0.880 —0.050 —7.020  39.230 1.220 0.460 —0.710
Indonesia 51.610 2.390 —0.400 0.280 —4.250  20.140 4.550 0.630 —0.220
South Africa  52.670 3.780 0.010 0.470 0.170 13.650 3.440 3.730 —0.800
United States  56.280 5.450 —8.520 0.230 8.210 19.080 3.500 1.030 —5.040

Change in GDP ($B) compared to control scenario



Table S13: Results of Scenarios (shown in Figure 4 in the main manuscript).

Infant Mortality (x1e3 deaths) | Crop Production (x1e6 tonnes) | GDF (x1e9 §)
Source Region Scale Exp 2000 2019 Paris Tech Exp 2000 2019 Paris Tech Exp 2000 209 Paris
Brazil Global 92.6 1.4 2.0 3.7 1.6 -10.3 -0.2 =0.2 —0.4 =0.2 60.2 0.9 1.3 2.4
Local 78.4 1.2 1.7 3.1 1.4 -2.9 —0.04 =0.1 —-0.1 =0.1 6.2 0.1 0.1 0.2
China Global 432.7 234.1 T11.1 591.1 167.9 -0.7 —-0.4 -1.2 -1.0 =0.3 81.0 43.8 133.2 110.7
Local 387.1 209.4 636.1 528.7 150.2 —4.6 —-2.5 -7.5 —-6.2 —-1.8 —18.4 —-9.9 —30.2 —25.1
E. Africa Global 1,468.1 4.1 11.8 9.1 4.0 -2.9 —-0.01 —0.02 =0.02 —0.01 12.9 0.04 0.1 0.1
Local 1,253.0 3.5 10.1 7.8 3.4 =0.6 —0.002 —0.005 —0.004 —0.002 0.8 0.002 0.01 0.005 .
Europe Global 116.8 32.5 28.8 1.9 24.3 8.3 2.3 2.0 0.1 1.7 78.1 21.8 19.2 1.3 16.
Local 23.0 6.4 5.7 0.4 4.8 —-1.8 —0.5 —-0.4 —0.03 —=0.4 20.2 5.6 5.0 0.3 4.2
India Global 3,3421 522.0 1,395.5 1,859.1 333.4 —=19.2 =3.0 —8.0 —-10.7 -1.9 56.1 8.8 23.4 31.2 5.6
Local 3,077.5 480.6 1,285.0 1,711.9 307.0 -12.1 -1.9 -5.1 —6.8 -1.2 39.2 6.1 16.4 21.8 3.9
Indonesia Global 301.8 31 7.1 10.0 7.1 —-3.0 —0.03 -0.1 —-0.1 -0.1 51.6 0.5 1.2 1.7 1.2
Local 283.1 2.9 6.7 9.3 6.7 -1.2 =0.01 —0.03 —0.04 —-0.03 4.6 0.05 0.1 0.2 0.1
South Africa Global 353.4 15.5 19.6 14.3 6.5 0.5 0.02 0.03 0.02 0.01 52.7 2.3 2.9 2.1 1.0
Local 261.4 11.4 14.5 10.6 4.8 —1.6 —0.1 -0.1 —-0.1 —-0.03 3.7 0.2 0.2 0.2 0.1
United States Global 40.4 15.9 14.0 5.0 8.1 —-4.1 —-1.6 —-1.4 —0.5 =0.8 56.3 22.2 19.5 6.9 11.3
Local 20.8 8.2 7.2 2.5 4.2 —9.5 —3.7 —3.3 —1.2 —-1.9 —5.0 —2.0 —-1.7 —0.6 —-1.0




