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A Polynomial Degree Bound on Equations for Non-rigid

Matrices and Small Linear Circuits
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We show that there is an equation of degree at most poly(n) for the (Zariski closure of the) set of the non-

rigid matrices: That is, we show that for every large enough field F, there is a non-zero n2-variate polynomial

P ∈ F[x1,1, . . . ,xn,n] of degree at most poly(n) such that every matrix M that can be written as a sum of

a matrix of rank at most n/100 and a matrix of sparsity at most n2/100 satisfies P (M ) = 0. This confirms

a conjecture of Gesmundo, Hauenstein, Ikenmeyer, and Landsberg [9] and improves the best upper bound

known for this problem down from exp(n2) [9, 12] to poly(n).
We also show a similar polynomial degree bound for the (Zariski closure of the) set of all matrices M such

that the linear transformation represented by M can be computed by an algebraic circuit with at most n2/200

edges (without any restriction on the depth). As far as we are aware, no such bound was known prior to this

work when the depth of the circuits is unbounded.

Our methods are elementary and short and rely on a polynomial map of Shpilka and Volkovich [21] to con-

struct low-degree “universal” maps for non-rigid matrices and small linear circuits. Combining this construc-

tion with a simple dimension counting argument to show that any such polynomial map has a low-degree

annihilating polynomial completes the proof.

As a corollary, we show that any derandomization of the polynomial identity testing problem will imply

new circuit lower bounds. A similar (but incomparable) theorem was proved by Kabanets and Impagliazzo

[11].
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1 INTRODUCTION

1.1 Equations for Varieties in Algebraic Complexity Theory

A set V ⊆ Fn is called an affine variety if it is the common zero set of a set of polynomials in
F[x1, . . . ,xn]. LetV ⊆ Fn be an affine variety and let I(V ) denote its ideal, i.e., the set of polynomials
vanishing on V .1 A non-zero polynomial P ∈ I(V ) is called an equation for V . An equation for V
may serve as a “proof” that a point x ∈ Fn is not in V , by showing that P (x) � 0.

A fundamental idea that dates back to Strassen [23] is that many important circuit lower bounds
problems in algebraic complexity theory fit naturally into the setting of showing that a point x lies
outside a varietyV . It was vastly extended in the Geometric Complexity Theory program [17], and
was recently central to the algebraic natural proofs paradigm [5, 7, 8, 10]. In this formulation, one
considers V to be the closure of a class of polynomials of low complexity, and x is the coefficient
vector of the candidate hard polynomial.

Let Δ(V ) := min0�P ∈I(V ) {deg(P )}. The quantity Δ(V ) can be thought of as a measure of com-
plexity for the geometry of the varietyV . The quantity Δ(V ) is a very coarse complexity measure.
The recent line of work regarding algebraic natural proofs [8, 10] suggests to study the arithmetic
circuit complexity of equations for varieties V that correspond to polynomials with small circuit
complexity. Having Δ(V ) growing like a polynomial in n is a necessary (but not a sufficient) condi-
tion for a variety V to have an algebraic natural proof for non-containment if one insists that the
“proof” (that is, the equation P ) belongs to the class VP.

The usefulness of equations was also noticed by Raz [18] in his elusive functions approach for
proving circuit lower bounds. Briefly, one component of Raz’s method is the observation that
it is possible to consider not only a single point x describing the coefficient vector of a single
polynomial, but also a larger set of polynomials that is the image of an explicit polynomial map
f (y) in a small number of variables. The image of f is thought of as a family of polynomials indexed
by the variables y, or as a polynomial in the original set of variables and additional auxiliary
variables y (but, since their number is so small, this has little effect on the total circuit complexity).
IfV is a variety and P is an equation for P , then if P ( f (y)) is a non-zero polynomial in y, the map
f is called “elusive” and its image contains a point that is not in V , which implies a circuit lower
bound for the explicit polynomial (in the original set of variables and additional auxiliary variables
y) described by f .

1.2 Rigid Matrices

A matrix M is (r , s )-rigid ifM cannot be written as a sum R+S where rank(R) ≤ r and S contains at
most s non-zero entries. Valiant [24] proved that ifA is (εn,n1+δ )-rigid for some constants ε,δ > 0,
then A cannot be computed by arithmetic circuits of size O (n) and depth O (logn), and posed the
problem of explicitly constructing rigid matrices with these parameters, which is still open. It is
easy to prove that most matrices have much stronger rigidity parameters: Over algebraically closed
fields a generic matrix is (r , (n − r )2)-rigid for any target rank r .

Let F be an algebraically closed field. Let Ar,s ⊆ Fn×n denote the set of matrices that are not

(r , s )-rigid. LetVr,s = Ar,s denote the Zariski closure ofAr,s . A geometric study ofVr,s was initiated
by Kumar, Lokam, Patankar, and Sarma [12]. Among other results, they prove that for every s <

(n − r )2, Δ(Vr,s ) ≤ n4n2
. A slightly improved (but still exponential) upper bound was obtained by

Gesmundo, Hauenstein, Ikenmeyer, and Landsberg [9], who also conjectured that for some ε,δ > 0,
Δ(Vεn,n1+δ ) grows like a polynomial function in n. The following theorem, which we prove in this
article, confirms this conjecture:

1For completeness, we provide the formal (standard) definitions for these notions in Section 2.1.
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Theorem 1.1. Let ε < 1/25, and let F be a field of size at least n2. For every large enough n,

there exists a non-zero polynomial Q ∈ F[x1,1, . . . ,xn,n], of degree at most n3, which is a non-trivial

equation for matrices that are not (εn, εn2)-rigid. That is, for every such matrix M , Q (M ) = 0.

In fact, the conjecture of Reference [9] was slightly weaker: They conjectured that Δ(U ) is poly-
nomial in n for every irreducible component U of Vεn,n1+δ . As shown by Reference [12], the ir-

reducible components are in one-to-one correspondence with subsets of [n] × [n] of size n1+δ

corresponding to possible supports of the sparse matrix S .
As we observe in Remark 3.3, it is somewhat simpler to show that each of these irreducible

components has an equation with a polynomial degree bound. However, since the number of such
irreducible components is exponentially large, it is not clear if there is a single equation for the
whole variety that is of polynomially bounded degree. We do manage to reverse the order of quan-
tifiers and prove such an upper bound in Theorem 1.1. This suggests that the set of non-rigid
matrices is much less complex than what one may suspect given the results of References [9, 12].

1.3 Circuits for Linear Transformations

The original motivation for defining rigidity was in the context of proving lower bounds for al-
gebraic circuits [24]. If A ∈ Fn×n is an (εn,n1+δ )-rigid matrix, for any ε,δ > 0, then the linear
transformation represented by A cannot be computed by an algebraic circuit of depth O (logn)
and size O (n).

Every algebraic circuit computing a linear transformation is without loss of generality a linear

circuit. A linear circuit is a directed acyclic graph that has n inputs labeledX1, . . . ,Xn and n output
nodes. Each edge is labeled by a scalar α ∈ F. Each node computes a linear function in X1, . . . ,Xn

defined inductively. An internal node u with children, v1, . . . ,vk , connected to it by edges labeled
α1, . . . ,αk , computes the linear function �v =

∑
i αi�vi

, where �vi
is the linear function computed

by vi , 1 ≤ i ≤ k . The size of the circuit is the number of edges in the circuit.
It is possible to use similar techniques to those used in the proof of Theorem 1.1 to prove a

polynomial upper bound on an equation for a variety containing all matrices A ∈ Fn×n whose cor-
responding linear transformation can be computed by an algebraic circuit of size at most n2/200
(even without restriction on the depth). Note that this is nearly optimal as any such linear trans-
formation can be computed by a circuit of size n2. More formally, we show the following:

Theorem 1.2. Let F be a field of size at least n2. For every large enough n, there exists a non-zero

polynomial Q ∈ F[x1,1, . . . ,xn,n], of degree at most n3, which is a non-trivial equation for matrices

that are computed by algebraic circuit of size at most n2/200.

Let PIT denote the set of strings that describe arithmetic circuits (say, over C) that compute
the zero polynomial. It is well known that PIT ∈ coRP. Kabanets and Impagliazzo [11] proved
that certain circuit lower bounds follow from the assumption that PIT ∈ P. As a corollary to
Theorem 1.2, we are able to prove theorem of a similar kind.

Corollary 1.3. Suppose PIT ∈ P. Then at least one of the following is true:

(1) There exists a family of n-variate polynomials of degree poly(n) over C, which can be computed

(as its list of coefficients, given the input 1n) in PSPACE, which does not have polynomial size

constant free arithmetic circuits.

(2) there exists a family of matrices, constructible in polynomial time with an NP oracle (given the

input 1n), which requires linear circuits of size Ω(n2).

A constant free arithmetic circuit is an arithmetic circuit that is only allowed to use the constants
{0,±1}.
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6:4 B. L. Volk and M. Kumar

A different way to interpret Corollary 1.3 is by saying that at least one of the following three
lower bound results hold: Either PIT � P, or (at least) one of the two circuit lower bounds stated in
the corollary. We emphasize that the result holds under any derandomization of PIT, that is, even
under white box derandomization of PIT, which is a weaker assumption then black-box derandom-
ization of PIT.

Our statement is similar to, but incomparable with the result of Kabanets and Impagliazzo [11],
who proved that if PIT ∈ P, then either the permanent does not have polynomial size constant
free arithmetic circuits, or NEXP � P/poly.

Since (εn, εn2)-rigid matrices have linear circuit of size 3εn2, the last item of Corollary 1.3 in
particular implies a conditional construction of (Ω(n),Ω(n2))-rigid matrices (it is also possible to
directly use Theorem 1.1 instead of Theorem 1.2 to deduce this result). Unconditional constructions
of rigid matrices in polynomial time with an NP oracle were recently given in References [2, 3].
However, the rigidity parameters in these papers are not strong enough to imply circuit lower
bounds (furthermore, even optimal rigidity parameters do not imply Ω(n2) lower bounds for gen-
eral linear circuits).

Since it is widely believed that PIT ∈ P, the answer to which of the last two items of Corollary 1.3
holds boils down to the question of whether there exists an equation for non-rigid matrices of de-
gree poly(n) and circuit size poly(n). If determining if a matrix is rigid is coNP-hard (as is known
for some restricted ranges of parameters [15]), then it is tempting to also believe that the equa-
tions should not be easily computable, as they provide “proof” for rigidity that can be verified in
randomized polynomial time. However, it could still be the case that those equations that have
polynomial size circuits only prove the rigidity of “easy” instances; and it could also be the case
that the number of equations defining the set of non-rigid matrices is very large, so even if each
one of them was easily computable, one still would not get an efficient algorithm for deciding
rigidity.

As another application of our our techniques used in the proofs of Theorems 1.1 and 1.2, we can
also prove the following upper bound on the degree of equations for low rank tensors:

Theorem 1.4. For every field F and for all n,d ∈ N, there exists a non-zero polynomial Q on

nd variables and degree at most n2d , which is a non-trivial equation for d-dimensional tensors τ :
[n]⊗d → F of rank at most nd−1/100d .

Raz [19] proved that when d is a super-constant but slowly growing function of n (e.g., d =
O (logn/ log logn)), strong enough lower bounds for tensor rank would imply super-polynomial
lower bounds for general arithmetic formulas. While Theorem 1.4 holds for such super-constant
values of d (and a rank lower bound of nd−1/100d would suffice for Raz’s approach), the equations
we get for such values of d are of slightly super-polynomial degree.

1.4 Proof Techniques

Our proof of Theorems 1.1 and 1.2 are short, elementary, and based on a two-step argument.
In the first step, we show that there is a polynomial map of low degree and on a small number of

variables such that any non-rigid matrix (respectively, a matrix with a small algebraic circuit) lies
in its image. The parameters of the polynomial map, e.g., its degree and arity depend on the upper
bound on the rigidity of the matrices we are working with (and the size of the algebraic circuit
for Theorem 1.2). Once we have such a map, an immediate observation is that any non-trivial
annihilating polynomial of this polynomial map gives us an equation satisfied by everything in
the image of the maps. To complete our proof, we use the bounds on the degree and arity of these
maps to show that they do indeed have low-degree annihilating polynomials. This second step is
a very simple linear algebraic argument based on dimension counting. For our construction of the
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polynomial map, we rely on an application of a polynomial map due to Shpilka and Volkovich [21].
Shpilka and Volkovich constructed this map in the context of designing deterministic algorithms
for polynomial identity testing for various subclasses of algebraic circuits.

This technique shares some similarities with Raz’s elusive function approach for circuit lower
bounds [18]. In both cases, the main underlying observation is that the set of low complexity
objects is contained in an image of a low-degree polynomial map in a small number of variables.

One downside of the fact that our proofs are based on dimension counting arguments is that they
are non-constructive and do not give explicit equations for the relevant varieties. It thus remains
a very interesting open problem to provide explicit low-degree equations for any of the varieties
considered in this article. Here, “explicit” means a polynomial that has arithmetic circuits of size
poly(n), although one can be even more permissive and ask for polynomials in the class VNP.

The question of whether such equations exists has a win-win flavor: If they do, then this can
aid in explicit constructions of rigid matrices; if, however, all equations are hard, then we have
identified a family of polynomials that requires super-polynomial arithmetic circuits. Assuming
the existence of a polynomial time algorithm for polynomial identity testing, we are able to make
this connection formal to prove Corollary 1.3.

2 PRELIMINARIES

2.1 Some Basic Notions in Algebraic Geometry

For completeness, in this section, we define some basic notions in algebraic geometry. A reader
who is familiar with this topic may skip to the next section.

Let F be an algebraically closed field. A set V ⊆ Fn is called an affine variety if there exist
polynomials f1, . . . , ft ∈ F[x1, . . . ,xn] such that V = {x : f1 (x) = f2 (x) = · · · = ft (x) = 0}. For
convenience, in this article, we often refer to affine varieties simply as varieties.

For each variety V there is a corresponding ideal I(V ) ⊆ F[x1, . . . ,xn] that is defined as

I(V ) := { f ∈ F[x1, . . . ,xn] : f (x) = 0 for all x ∈ V }.

Conversely, for an ideal I ⊆ F[x1, . . . ,xn], we may define the variety

V(I ) = {x : f (x) = 0 for all f ∈ I }.

Given a set A ⊆ Fn , we may similarly define the ideal I(A). The (Zariski) closure of a set A,

denoted A, is the set V(I(A)). In words, the closure of A is the set of common zeros of all the
polynomials that vanish on A. It is also the smallest variety with respect to inclusion that contains

A. By construction,A is a variety, and a polynomial that vanishes everywhere onA is also vanishes

on A.
Over C, it is instructive to think of the Zariski closure of A as the usual Euclidean closure. In

fact, for the various setsAwe consider in this article (which correspond to sets of “low complexity”
objects, e.g., non-rigid matrices or matrices that can be computed with a small circuit), it can be
shown that these two notions of closure coincide (see, e.g., Section 4.2 of Reference [4]).

A varietyV is called irreducible if it cannot be written as a unionV = V1∪V2 of varietiesV1,V2 that
are properly contained inV . Every variety can be uniquely written as a unionV = V1∪V2∪· · ·∪Vm

of irreducible varieties. The varieties V1, . . . ,Vm are then called the irreducible components of V .

2.2 A Low-degree Equation for Images of Polynomial Maps

A key ingredient in our proofs is the following elementary lemma, which shows that images of
low-degree polynomial maps in a small number of variables have a low-degree annihilator:
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6:6 B. L. Volk and M. Kumar

Lemma 2.1. Let F be a field and let P : FK → FN be a polynomial map of degree at mostD. Suppose

Δ is such that (
N + Δ

N

)
>

(
K + DΔ

K

)
.

Then there’s a non-zero polynomial Q ∈ F[y1, . . . ,yN ] of degree at most Δ such that for any α in the

image of P , Q (α ) = 0.

Proof. LetV1 denote the subspace of polynomials over F in N variables of degree at most Δ. Let
V2 denote the subspace of polynomials over F in K variables of degree at most DΔ. Consider the
linear transformationT : V1 → V2 given byQ �→ Q ◦P , whereQ ◦P denotes the composition of the
polynomial Q with the map P , i.e., (Q ◦ P ) (x) = Q (P (x))(indeed, observe that, since deg(Q ) ≤ Δ
and deg(P ) ≤ D, it follows that degQ ◦ P ≤ DΔ).

We have that dim(V1) =
(

N+Δ
N

)
, whereas dim(V2) =

(
K+DΔ

K

)
< dim(V1) by assumption. This

implies that T has a non-trivial kernel, that is, there exists 0 � Q0 ∈ V1 such that Q0 ◦ P ≡ 0.
Suppose α is in the image of P . That this, there exists β ∈ FK such that P (β ) = α . Then

Q0 (α ) = Q0 (P (β )) = Q0 ◦ P (β ) = 0,

as Q0 ◦ P ≡ 0. �

3 DEGREE UPPER BOUND FOR NON-RIGID MATRICES

In this section, we prove Theorem 1.1. A key component of the proof is the use of the following
construction, due to Shpilka and Volkovich, which provides an explicit low-degree polynomial map
on a small number of variables, which contains all sparse matrices in its image. For completeness,
we provide the construction and prove its basic property.

Lemma 3.1 ([21]). Let F be a field such that |F| > n. Then for all k ∈ N, there exists an explicit poly-

nomial map SVn,k (x, y) : F2k → Fn of degree at mostn such that for any subsetT = {i1, . . . , ik } ⊆ [n]
of size k , there exists a setting y = α such that SV(x,α ) is identically zero on every coordinate j � T ,

and equals x j in coordinate i j for all j ∈ [k].

Proof. Arbitrarily pick distinct α1, . . . αn ∈ F, and let u1, . . . ,un be their corresponding La-
grange’s interpolation polynomials, i.e., polynomials of degree at most n − 1 such that ui (α j ) = 1

if j = i and 0 otherwise (more explicitly, ui (z) =
∏

j�i (z−α j )∏
j�i (αi−α j ) ).

Let Pi (x1, . . . ,xk ,y1, . . . ,yk ) =
∑k

j=1 ui (yj ) · x j , and finally let

SVn,k (x, y) = (P1 (x, y), . . . , Pn (x, y)).

It readily follows that givenT = {i1, . . . , ik } as in the statement of the lemma, we can setyj = αi j
for

j ∈ [k] to derive the desired conclusion. The upper bound on the degree follows by inspection. �

As a step toward the proof of Theorem 1.1, we show there is a polynomial map on much fewer
than n2 variables with degree polynomially bounded in n such that its image contains every non-
rigid matrix. In the next step, we show that the image of every such polynomial map has an equa-
tion of degree poly(n).

Lemma 3.2. For every r ≤ n and s ≤ n2, there exists an explicit polynomial map P : F2rn+2s →
Fn×n , of degree at most n2, such that every matrix M that is not (r , s ) rigid lies in its image.

Proof. Let u, v be disjoint sets of rn variables each, and x, y be disjoint sets of s variables each.
Let U be a symbolic n × r matrix whose entries are labeled by the variables u, and similarly let

V be a symbolic r ×n matrix labeled by v. Let UV(u, v) : F2rn → Fn×n be the degree 2 polynomial
map defined by the matrix multiplication UV .
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Finally, let P : F2rn+2s → Fn×n be defined as

P (u, v, x, y) = UV(u, v) + SVn2,s (x, y),

where SVn2,s is as defined in Lemma 3.1.
Suppose now M is a not an (r , s ) rigid matrix, i.e., M = R + S for R of rank at most r and S that

is s-sparse. Decompose R = U0V0 for n × r matrixU0 and r ×n matrixV0. LetT denote the support
of S . For convenience, we may assume |T | = s (otherwise, pad with zeros arbitrarily). Let α ∈ Fs

denote the setting for y in SVn2,s that maps x1, . . . ,xs to T , and let β = (β1, . . . , βs ) denote the
non-zero entries of S . Then

P (U0,V0, β,α ) = U0V0 + S = R + S = M . �

To complete the proof of Theorem 1.1, we need to show that for the relevant range of parameters
it is possible to combine Lemma 3.2 with Lemma 2.1.

Proof of Theorem 1.1. We apply Lemma 2.1 with the map P from Lemma 3.2 for r = εn and
s = εn2 so 2rn + 2s = 4εn2.

It remains to be shown that the assumption of Lemma 2.1 indeed holds if we pick Δ = n3. Indeed,

note that N = n2, D = n2 and K = 4εn2, so
(

n2+n3

n2

)
≥ nn2

whereas
(

4εn2+n5

4εn2

)
≤ (2n5)4εn2

, and thus

by the choice of ε , this is smaller than nn2
for every large enough n.

As the map P from Lemma 3.2 contains in its image all matrices that are not (εn, εn2)-rigid, the
statement follows: �

Remark 3.3. If the support of the sparse matrix is fixed a priori to some set S ⊆ [n] × [n] of

cardinality at most ϵn2, then it is easier to come up with a universal map P̃ : F3ϵn2 �→ Fn×n such
that every matrix M whose rank can be reduced to at most ϵn by changing entries in the set S is

contained in the image of P̃ . Just consider P̃ (w, x, y) = UV(u, v)+W , whereW is a matrix such that
for all (i, j ) ∈ [n]× [n], if (i, j ) ∈ S , thenW (i, j ) = wi, j andW (i, j ) is zero otherwise. Here, eachwi, j

is a distinct formal variable. Combined with the dimension comparison argument of Lemma 2.1, it

can be seen that there is a non-zero low-degree polynomial Q̃ such that Q̃ ◦ P̃ ≡ 0. This argument
provides a (different) equation of polynomial degree for each irreducible component of the variety

of non-rigid matrices. Note that the degree of P̃ is 2 (rather than n2 as in the construction of P
in Lemma 3.2) but other methods are currently unable to leverage that to obtain a meaningful
improvement in the parameters.

Remark 3.4. It is possible to use the equation given in Theorem 1.1, and using the methods of Ref-
erence [12], to construct “semi-explicit” (εn, εn2)-rigid matrices. These are matrices whose entries
are algebraic numbers (over Q) with short description, which are non-explicit from the compu-
tational complexity point of view. However, such constructions are also known using different
methods (see Section 2.4 of Reference [14]).

4 DEGREE UPPER BOUND FOR MATRICES WITH A SMALL CIRCUIT

In this section, we prove Theorem 1.2. Our strategy, as before, is to observe that all matrices with
a small circuit lie in the image of a polynomial map P on a small number of variables and small de-
gree. Circuits of size s can have many different topologies and thus, we first construct a “universal”
linear circuit, of size s ′ ≤ s4, that contains as subcircuits all linear circuits of size s . Importantly,
s ′ will affect the degree of P but not its number of variables. We note that constructions of such
universal maps whose image contain all polynomials with small circuits have appeared before in
the literature. In the context of circuits computing univariate polynomials, similar maps were con-
structed by Strassen [23] and Lipton [13], who used those maps to prove the existence of certain
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6:8 B. L. Volk and M. Kumar

such polynomials that are hard to compute. Our approach is much more reminiscent of that of
Raz [18], who constructed universal maps for circuits computing multivariate polynomials. Raz’s
approach first constructs a universal circuit graph, which is a graph of size poly(s ) that contains
a subgraph every circuit of size s . The universal circuit graph is then used to construct the uni-
versal map by associating a variable with every edge of the universal graph. This poly(s ) size
blow up, which translates to a polynomial map with poly(s ) variables, is fine when one considers
multivariate polynomials of large degree and wishes to find polynomials with exponential circuit
complexity. In our context, however, this increase in the number of variables is unacceptable, since
every n×n matrix defines a linear transformation that can be computed by circuits of size at most
O (n2), and we wish to separate between those who can be computed by linear size circuits and
those who require super-linear size. Thus, a naive use of ideas in Reference [18] is insufficient, and
we compose the universal circuit construction with the Shpilka-Volkovich map to get around this
difficulty.

4.1 A Construction of Universal Map for Small Linear Circuits

We now define a mapU (x, y) that is “universal” for size s linear circuits, i.e., it contains in its image
all n×n matricesAwhose corresponding linear transformation can be computed by a linear circuit
of size at most s .

Let s ≥ n. We first define a universal graph G for size s . G has a set V0 of n input nodes labeled
X1, . . .Xn and a setVs+1 of n designated output nodes. In addition,G is composed of s disjoint sets
of vertices V1, . . . ,Vs , each contains s vertices.

Each vertex v ∈ Vi , for 0 ≤ i ≤ s + 1, has as its children all vertices u ∈ Vj for all 0 ≤ j < i . It
is clear than every directed acyclic graph with s edges (and hence at most s vertices, and depth at
most s) can be (perhaps non-uniquely) embedded in G as a subgraph.

We now describe the edge labeling. Let s ′ ≤ s4 be the number of edges in G and let ei denote
the ith edge, 1 ≤ i ≤ s ′. The edge ei is labeled by the ith coordinate of the map SVs ′,s (x, y) given
in Lemma 3.1.

Thus, the graphG with this labeling computes a linear transformation (over the field F(x, y)) in
the variables X1, . . . ,Xn . More explicitly, the (i, j )th entry of the matrix U (x, y) representing this
linear transformation is given by the sum, over all paths from Xi to the jth output node, of the
product of the edge labels on that path. This entry is a polynomial in x, y, so we can think ofU as

a polynomial map from F2s to Fn2
.

Lemma 4.1. The mapU (x, y) : F2s → Fn2
defined above contains in its image all n ×n matrices A

whose corresponding linear transformation can be computed by a linear circuit of size at most s . The

degree of U is at most s ′ · (s + 1).

Proof. Let A be a matrix whose linear transformation is computed by a size s circuit C . The
graph of C can be embedded as a subgraph in the graph G constructed above (if the embedding
is not unique, pick one arbitrarily). Let ei1 , . . . , eis

be the edges of this subgraph, and let β =
(β1, . . . , βs ) be their corresponding labels in C . By the properties of the map SVs ′,s (x, y) given in
Lemma 3.1, it is possible to set the tuple of variables y to field elements α1, . . . ,αs such that the
jth coordinate of SV(β,α ) equals βi if j = ik for some 1 ≤ k ≤ s the 0 otherwise. Observe that
under this labeling of the edges, the circuit G computes the same transformation as the circuit C .
Hence, U (β,α ) = A.

To upper bound the degree ofU , note that each edge label inG is a polynomial of degree s ′, and
each path is of length at most s + 1. �
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4.2 Low-degree Equations for Small Linear Circuits

In a similar manner to the proof of Theorem 1.1, we now combine Lemma 2.1 with the mapU (x, y)
to show that its image has a equation of degree at most n3. This would complete the proof of
Theorem 1.2.

Proof of Theorem 1.2. Let U : F2s → Fn2
be the map given by Lemma 4.1 for s = n2/200 so

s ′ ≤ n8, and the degree of U is at most s ′(s + 1) ≤ n10.
We apply Lemma 2.1 with the map U (x, y) so now N = n2, D ≤ n10 and K = 2s . Setting Δ = n3,

we once again get that
(
n3+n2

n2

)
≥ nn2

, whereas
(

n2/100+n13

n2/100

)
≤ (2n13)n2/100 < nn2

for every large

enough n, so we can get a non-zero polynomial Q of degree at most n3 such that Q (A) = 0 for
every matrix in the image of U . By Lemma 4.1, if A has a circuit of size n2/200, then it is in the
image of U . �

5 DEGREE UPPER BOUND FOR THREE-DIMENSIONAL TENSORS

In this section, we prove Theorem 1.4. We start by quickly recalling the definitions of a tensors
and that of tensor rank.

Definition 5.1. Let d,n1,n2, . . . ,nd be natural numbers and let F be a field. Then, a tensor of
dimension d and size (n1,n2, . . . ,nd ) over F is a function τ : [n1] × [n2] × · · · × [nd ]→ F.

For tensors considered in this article, n1, . . . ,nd are all equal and denoted by the parameter n.
Thus, such tensors simply functions from [n]d to F. Tensors are alternatively defined in terms of
multilinear maps and in algebraic complexity, often as set-multilinear polynomials. For the dis-
cussion in this article, we work with Definition 5.1 and refer to the survey by Saptharishi [20]
for further discussions on these alternative definitions and their equivalence. We now define the
notion of a rank one tensor and use it to define tensor rank, which is the main property of interest
in this section.

Definition 5.2. Let d,n ∈ N, F be a field and τ : [n]d → F be a tensor. Then, τ is said to be of
rank one if there exist vectors u1, u2, . . . , ud ∈ Fn such that for every (i1, i2, . . . , id ) ∈ [n]d ,

τ (i1, i2, . . . , id ) = (u1)i1 · (u2)i2 · · · (ud )id
,

where, (uj )i j
denotes the i j th coordinate of ui ∈ Fn .

In other words, τ is a rank one tensor if there exist vectors u1, u2, . . . , ud ∈ Fn such that τ is an
outer product of u1, u2, . . . , ud , i.e.,

τ = u1 ⊗ u2 ⊗ · · · ⊗ ud .

We are now ready to define the rank of a tensor.

Definition 5.3. Let d,n ∈ N, F be a field and τ : [n]d → F be a tensor. Then, the rank of τ is the
smallest r ∈ N such that τ can be written as a sum of r rank one tensors.

A fairly standard dimension-based argument shows for all n,d ∈ N and every field F, there exist
tensors τ : [n]d → F of rank at least nd−1/d . However, constructing an explicit family of tensors

of such high rank (or in fact even rank nd (1/2+ϵ ) for any ϵ > 0) continues to be a challenging open
problem. In addition to being a clean and natural question on its own, one of the reasons of interest
in this question of tensor rank lower bounds is its connection to arithmetic circuit lower bounds.
For instance, it is known that a three-dimensional tensor of rank at least r implies a lower bound
of Ω(r ) on an arithmetic circuit computing the bi-linear function associated with the tensor. As
mentioned earlier, Raz [19] proved that strong enough lower bounds ford-dimensional tensors (for
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6:10 B. L. Volk and M. Kumar

d = O (logn/ log logn)) would even imply super-polynomial lower bounds for general arithmetic
formulas.

In this section, we observe that our techniques also provide a polynomial degree upper bounds
for the set of tensors of (border) rank at most n2/300. The ideas in this proof then generalize
immediately to d-dimensional tensors and give Theorem 1.4.

Lemma 5.4. Let F be any field. There is a polynomial map P : F3nr → Fn3
of degree 3 such that for

every 3-dimensional tensor τ : [n]3 → F of rank at most r lies in its image.

Proof. The map follows naturally from the definition of rank.
Let u1, . . . , ur , v1, . . . , vr ,w1, . . . ,wr be disjoint n-tuples of variables. LetU be a tensor over the

ring F[u1, . . . , ur , v1, . . . , vr ,w1, . . . ,wr ] defined as follows:

U (u, v,w) =
r∑

i=1

ui ⊗ vi ⊗ wi .

From the definition of U , it can be readily observed that for every tensor τ : F[n]3 → F of rank at
most r , there is a setting α , β,γ of the variables in u, v,w, respectively, such that U (α , β,γ ) = τ .
Moreover, each of the coordinates of U is a polynomial of degree equal to three in the variables
in u, v,w. Let P be the degree three polynomial map that maps the variables u1, . . . , ur , v1, . . . , vr

and w1, . . . ,wr to the coordinates of U . �

We now argue that for r = n2/300, the image of the polynomial map P given by Lemma 5.4 has
an equation of not too large degree.

Theorem 5.5. Let F be any field. There exists a non-zero polynomial Q ∈ F[x1,1,1, . . . ,xn,n,n], of

degree at most n4, which is a non-trivial equation for three-dimensional tensors τ : [n]×[n]×[n] �→ F
of rank at most n2/300.

Proof. We once again instantiate Lemma 2.1, with r = n2/300. This time N = n3, D = 3 and

K = 3nr = n2/100. Picking Δ = n4, we get that
(
n4+n3

n3

)
≥ nn3

, whereas
(

n3/100+3n4

n3/100

)
≤ (2n4)n3/100,

which implies that existence of the desired equation. �

The arguments here also generalize to tensors in higher dimensions. In particular, the following
analog of Lemma 5.4 is true:

Lemma 5.6. Let F be any field. Then, for all n,d ∈ N, there is a polynomial map P : Fdnr → Fnd

of degree at most d such that for every d-dimensional tensor τ : [n]⊗d → F of rank at most r lies in

its image.

Setting r = nd−1/(100d ) and combining this lemma with a dimension comparison argument
analogous to that in the proof of Theorem 5.5 gives Theorem 1.4. We skip the details of the proof.

We remark that similar methods can be used to prove the existence of an equation of degree
poly(n) for three-dimensional tensors of slice rank (see, e.g., Reference [5]) at most, say, n/1,000.
The existence of such an equations was proved (using different techniques) in Reference [5].

6 APPLICATIONS TO CIRCUIT LOWER BOUNDS

In this section, we prove Corollary 1.3. The strategy of the proof is simple: The proof of Theorem 1.2
implies a PSPACE algorithm that produces a sequence of polynomials that are equations for the
set of matrices with small linear circuits. If those equations require large circuits, then we are
done, and if not, then there exists an equation with small circuits that (assuming PIT ∈ P) can
be found using an NP-oracle. Using, once again, the assumption that PIT ∈ P, we can also find
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deterministically a matrix on which the equation evaluates to non-zero, which implies the matrix
requires large linear circuits.

There are some technical difficulties involved with this plan that we now describe. The first
problem is that even arithmetic circuits of small size can have large description as bit strings, due
to the field constants appearing in the circuits. To prevent this issue, we only consider constant free

arithmetic circuits, which are only allowed inputs labeled by {0,±1} (but can still compute other
constants in the circuit using arithmetic operations).

The second problem is that, to be able to find a non-zero of the equation in the last step of the
algorithm (using the mere assumption that PIT ∈ P), we need not only the size of the circuit but
also its degree to be bounded by poly(n). Of course, by Theorem 1.2, there exists such a circuit, but
we need to be able to prevent a malicious prover from providing us with a poly(n) size circuit of
exponential degree, and it is not known how to compute the degree of a circuit in deterministic
polynomial time, even assuming PIT ∈ P. To solve this issue, we use an idea of Malod and Portier
([16], Theorem 1), who showed that any polynomial with circuit of size poly(n) and degree d also
has a multiplicatively disjoint (MD) circuit of size poly(n,d ). An MD circuit is a circuit in which
every multiplication gate multiplies two disjoint subcircuits. This is a syntactic notion that is easy
to verify efficiently and deterministically, and an MD circuit of size s is guaranteed to compute a
polynomial of degree at most s .

A final technical issue is that the notion of MD circuits does not fit perfectly within the frame-
work of constant free circuits. Therefore, we use the notion of “almost MD” circuits, where the
inputs to a multiplication gates are not disjoint, but at least one of these inputs is the root of a
subcircuit in which only constants appear.

Definition 6.1. We say a gatev in a circuit is constant producing (CP) if in the subcircuit rooted
at v , all input nodes are field constants.

An almost-MD circuit is a circuit where every multiplication gate either multiplies two disjoint
subcircuits, or at least one of its children is constant producing.

Lemma 6.2. Suppose f is an n-variate polynomial of degree poly(n) that has a constant free arith-

metic circuit of degree poly(n). Then f has a constant free almost-MD circuit of size poly(n).

Proof. Let C0 be a constant free arithmetic circuit for f . We first homogenize the circuit C0 to
obtain a circuitC1 (a homogeneous circuit is a circuit in which every gate computes a homogeneous
polynomial; see, e.g., Reference [22]). SinceC1 is homogeneous, all the gates that compute non-zero
field constants are CP gates. We then eliminate all gates that compute constants by allowing the
edges entering sum gates to be labeled by field scalars and interpreting a sum gate as computing
a linear combination whose coefficients are given by the edge labels. We call this circuit C2. Note
that we are now in a more general model in which the edges of the circuit are allowed to be labeled
by field constants, and this step does not maintain constant-freeness. However, the new circuit still
computes the same polynomial, and every label appearing on the edges ofC2 was computed inC1,
so it can be computed by a constant-free arithmetic circuit of polynomial size.

We now do the transformation detailed in Lemma 2 of Reference [16] to C2 to obtain an MD
circuit C3, which has labels on the edges (we emphasize that Lemma 2 of Reference [16] indeed
applies for this more general model of circuits with labels on the edges). This step does not produce
new constants. Finally, we convert C3 to an almost-MD constant free circuit C4 by re-computing
every label appearing on the edge using a fresh subcircuit for each label and rewiring the circuit.
accordingly (this step will convert the circuit from an MD circuit to an almost MD circuit). These
subcircuits are guaranteed to have polynomial size constant free circuits, since these constant were
all computed in C0, which keeps the total size poly(n). �
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For circuits that compute low-degree polynomials, the mere existence of an algorithm for the
decision version of PIT allows one to construct an algorithm for the search version.

Lemma 6.3. Suppose PIT ∈ P. Then there is a polynomial time algorithm that given a non-zero

almost-MD arithmetic circuit C of size s computing an n-variate polynomial, finds in time poly(n, s )
an element a ∈ {0, 1, . . . , s}n such that C (a) � 0.

Proof. We abuse notation by denoting by C also the polynomial computed by the circuit C .
Note that, since C is almost-MD, the degree of C is at most s . Thus, there exists a1 ∈ {0, 1, . . . , s}
such that C (a1,x2, . . . ,xn ) is a non-zero polynomial in x2, . . . ,xn . By iterating over those s + 1
values from 0 to s and using the assumption that PIT ∈ P, we can find such a value for a1 in time
poly(n, s ). We then continue in the same manner with the rest of the variables. �

As we noted above, the assumption that C is almost-MD was used in Lemma 6.3 to bound the
degree of the circuit. It is also useful, because it is easy to decide in deterministic polynomial time
whether a circuit is almost-MD. We now complete the proof of Corollary 1.3.

Proof of Corollary 1.3. For everyn, the proof of Theorem 1.2 provides an equationQn for the
set of n × n matrices with small linear circuits. This polynomial can be found by solving a linear
system of equations in a linear space whose dimension is exp(poly(n)). Using standard, small space
algorithm for linear algebra [1, 6], this implies that there exists a PSPACE algorithm that, on input
1n , outputs the list of coefficients of the polynomial Qn .

Consider now the family {Qn }n∈N. If for any constant k ∈ N there exist infinitely many n ∈ N
such that Qn requires circuits of size at least nk , then it follows (by definition) that the PSPACE

algorithm above outputs a family of polynomials with super-polynomial constant-free arithmetic
circuits.

We are thus left to consider the case that there exists a constant k ∈ N such that for all large
enough n ∈ N, Qn can be computed by circuits of size nk . By Lemma 6.2, we may assume without
loss of generality that these circuits are almost-MD circuits. Further suppose PIT ∈ P. We will
show how to construct a matrix in polynomial time using an NP oracle (for a language L that we
define) that requires large linear circuits.

Consider the language L of pairs (1n ,x ) such that there exists a string y of length at most nk

such that xy describes an almost-MD circuit C such that C is non-zero, and C ◦U ≡ 0, whereU is
the polynomial map given in the proof of Theorem 1.2.

Assuming PIT ∈ P, the language L is in NP, and by assumption for every large enough n there
exists such a circuit. Thus, we can use the NP oracle to construct such a circuitC bit-by-bit. Finally,
using Lemma 6.3, we can output a matrix M such that C (M ) � 0.

By the properties of the circuit C and the map U , M does not have linear circuits of size less
than n2/200. �

Many variations of Corollary 1.3 can be proved as well, with virtually the same proof. By slightly
modifying the language L used in the proof, it is possible to prove the same result even under the
assumption PIT ∈ NP (recall that PIT ∈ coRP). A similar statement also holds over finite fields
of size poly(n), in which case the proof is simpler, since there are no issues related to the bit
complexity of the field constants. Finally, we record the fact that an analog of Corollary 1.3 also
holds for tensor rank, using an identical proof that uses Theorem 5.5 instead of Theorem 1.2.

Corollary 6.4. Assuming PIT ∈ P, at least one of the following is true:

(1) There exists a family of n-variate polynomials of degree poly(n) over C, which can be computed

(as its list of coefficients, given the input 1n) in PSPACE, which does not have polynomial size

constant free arithmetic circuits.
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(2) There is an efficient construction with an NP oracle of a three-dimensional tensor of rank

Ω(n2).

We remark that for tensors of large rank there are no analogs of References [2, 3], i.e., there do
not exist even constructions with an NP oracle of tensors with slightly super-linear rank.
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