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The stabilizer rank of a quantum state ψ is the minimal r such that |ψ〉 =
∑r
j=1 cj |ϕj〉 for cj ∈ C and stabilizer states ϕj . The running time of several

classical simulation methods for quantum circuits is determined by the stabi-
lizer rank of the n-th tensor power of single-qubit magic states.

We prove a lower bound of Ω(n) on the stabilizer rank of such states, im-
proving a previous lower bound of Ω(

√
n) of Bravyi, Smith and Smolin [7].

Further, we prove that for a sufficiently small constant δ, the stabilizer rank
of any state which is δ-close to those states is Ω(

√
n/ logn). This is the first

non-trivial lower bound for approximate stabilizer rank.
Our techniques rely on the representation of stabilizer states as quadratic

functions over affine subspaces of Fn2 , and we use tools from analysis of boolean
functions and complexity theory. The proof of the first result involves a careful
analysis of directional derivatives of quadratic polynomials, whereas the proof
of the second result uses Razborov-Smolensky low degree polynomial approxi-
mations and correlation bounds against the majority function.

1 Introduction

The conventional wisdom is that quantum computers are more powerful than classical
computers. Among other reasons, this belief is supported by the fact that quantum com-
puters are able to efficiently solve problems such as integer factorization [22], which are
believed by some to be hard for classical computers; by provable black box separations
[23, 11, 3, 20]; and by quantum computers’ advantage in solving certain sampling prob-
lems that are deemed intractable for classical computers under well established complexity
theoretic conjectures [1].

There is, however, very little that we can unconditionally prove with regard to the im-
possibility of efficiently simulating quantum computers using classical computers. Indeed,
barring a computational complexity theoretic breakthrough, such as — at the very least —
separating P from PSPACE, we can’t hope to prove general and unconditional impossibility
results.

Nevertheless, it remains an interesting and important problem to prove lower bounds
on the running time of certain restricted types of simulation techniques for quantum cir-
cuits. One such result is a lower bound of Huang, Newman and Szegedy [12], who prove
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unconditional exponential lower bounds for a subclass of simulators they call monotone
simulators, which includes many, but not all, of the known simulation techniques.

Simulation algorithms based on stabilizer rank decompositions for quantum circuits
dominated by Clifford gates [7, 5, 4] is a recent powerful class of algorithms for classi-
cally simulating quantum circuits (which is not covered by the lower bound of [12]). The
computational cost of these algorithms is dominated by a certain natural algebraic and
complexity-theoretic rank measure for quantum states, which we now define.

1.1 Clifford Circuits, Magic States and Stabilizer Rank

Clifford circuits are quantum circuits which only apply Clifford gates (for background on
the Clifford group and the definitions of the type of gates considered in this paper, see
Appendix A). Equivalently, such circuits only use CNOT, Hadamard, and phase gates.
This is an important class of quantum circuits which, by the Gottesman-Knill theorem
[10, 2], can be efficiently simulated (on, say, the input |0n〉) by a classical algorithm. This
highly non-obvious theorem follows from the fact that such circuits can only maintain
certain states known as stabilizer states. These can be succinctly represented, and it is
easy to track the state and update the succinct representation after any application of a
Clifford gate.

Adding T gates (we refer again to Appendix A for the definition) on top of the Clifford
gates results in a universal quantum gate set, that is, a set which can approximate every
unitary operation. It is then possible, using a simple gadget-based transformation, to “push
the T gates to the inputs” and obtain an equivalent circuit, of roughly the same size, which
only uses Clifford operations, and is given, as additional auxiliary inputs, sufficiently many
copies of qubits in a so-called magic state [6, 7]. This transformation only increases the
circuit size by a polynomial factor. For classical circuit complexity theorists, a useful albeit
imperfect analogy is the fact that any size-s circuit can be simulated by a monotone circuit
of size polynomial in s, which is given as additional inputs the n negations of the input
variables x1, . . . , xn.

Two examples for such magic states are |H〉 = cos(π/8) |0〉 + sin(π/8) |1〉 and |R〉 =
cos(β) |0〉 + eiπ/4 sin(β) |1〉, where β = 1

2 arccos(1/
√

3) [6].1 This suggests the possibil-
ity of simulating a general quantum circuit by decomposing |H⊗n〉 or |R⊗n〉 as a linear
combination of stabilizer states.

More formally, |ϕ〉 is a stabilizer state if |ϕ〉 = U |0n〉 where U is an n-bit Clifford
unitary (see also Equation (1) and the following paragraph). The stabilizer rank of a state
|ψ〉, denoted χ(ψ), is the minimal integer r such that

|ψ〉 =
r
∑

j=1

cj |ϕj〉 ,

where for every 1 ≤ j ≤ r, |ϕj〉 is a stabilizer state and cj ∈ C.
For any n-qubit state, the stabilizer rank is at most 2n. Interestingly, much smaller

upper bounds can be shown for the the stabilizer rank of |H⊗n〉: Bravyi, Smith and Smolin
[7] proved that χ(H⊗6) ≤ 7 which implies that χ(H⊗n) ≤ 7n/6 ≤ 20.468n. Bravyi, Smith
and Smolin [7] then use this identity to obtain simulation algorithms for circuits with
a small number of T gates, whose running time is much faster than the trivial brute-
force simulation. A slightly faster algorithm was presented by Kocia who proved that

1The state |R〉 is often called |T 〉. However, to avoid confusion, we follow the notation of [7], and reserve
the notation |T 〉 for a different state. For a handy reference to our notation, see Appendix A.
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χ(H⊗12) ≤ 47 [14], and upper bound was further improved by Qassim, Pashayan and
Gosset [19] who proved that χ(H⊗n) = O(2αn) for α = 1

4 log2 3 ≤ 0.3963.
When simulating quantum circuits, it is often enough, for all intents and purposes,

to obtain an approximation of their output state. Thus, it’s natural to define a similar
approximation notion for stabilizer rank. The δ-approximate stabilizer rank of |ψ〉, denoted
χδ(ψ), is defined as the minimum of χ(ϕ) over all states |ϕ〉 such that ‖ψ − ϕ‖2 ≤ δ
[4]. By considering approximate stabilizer decomposition of |H⊗n〉, improved simulation
algorithms were obtained by Bravyi and Gosset [5].

A natural question is then what is the limit of such simulation methods. As the running
time of the simulation scales with the stabilizer rank, an upper bound which is polynomial
(in n) on χ(H⊗n) or χ(R⊗n) will imply that BPP = BQP and even (by simulating quantum
circuits with postselection) P = NP [4], and thus seems highly improbable.2 Much stronger
hardness assumptions than P 6= NP, such as the exponential time hypothesis, imply that
χ(H⊗n) = 2Ω(n) [17, 12].

However, the starting point of this discussion was our desire to obtain unconditional
impossibility results, and thus we are interested in provable lower bounds on χ(H⊗n) and
χδ(H

⊗n), and similarly for R⊗n.
While it’s easy to see, using counting arguments, that the stabilizer rank of a random

quantum state would be exponential, it is a challenging open problem to prove super-
polynomial lower bounds on the rank of |H⊗n〉 or for other explicit states. Bravyi, Smith
and Smolin proved that χ(H⊗n) = Ω(

√
n). In this paper, we improve this lower bound,

and also prove the first non-trivial lower bounds for approximate stabilizer rank.

1.2 Our results: Improved Lower Bounds on Stabilizer Rank and Approximate Stabilizer

Rank

Our first result is an improved lower bound on χ(H⊗n) and χ(R⊗n).

Theorem 1.1. χ(H⊗n) = Ω(n), and similarly, χ(R⊗n) = Ω(n).

As we remark in Section 1.3, proving super-linear lower bound on χ(H⊗n) will solve
a notable open problem in complexity theory. We discuss this challenge, as well us some
barriers preventing our technique from proving super-linear lower bounds, in Section 1.5.

The result of Theorem 1.1 can be immediately adapted to prove the same lower bounds
on the δ-approximate stabilizer rank for exponentially small δ. We are, however, interested
in much coarser approximations, and we are able to prove a meaningful result even for δ
being a small enough positive constant.

Theorem 1.2. There exists an absolute constant δ > 0 such that χδ(H
⊗n) = Ω(

√
n/ logn),

and similarly χδ(R
⊗n) = Ω(

√
n/ logn).

By definition, the stabilizer rank of any two states which are Clifford-equivalent is the
same, and thus the lower bounds of Theorem 1.1 and Theorem 1.2, while stated as lower
bounds on the ranks of |H⊗n〉 and |R⊗n〉 hold for any state which is Clifford-equivalent to
them, even up to a phase.

2This implication holds up to uniformity issues having to do with finding the decomposition of |H⊗n〉
as a linear combination of stabilizer states. However, these complexity classes collapses are not believed
to hold even in the non-uniform world, and further, by the Karp-Lipton theorem, a non-uniform collapse
also implies a collapse of the polynomial hierarchy in the uniform world.
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1.3 Technique: Stabilizer States as Quadratic Polynomials

The original proof of the Gottesman-Knill Theorem used the stabilizer formalism and
tracked the current state of the circuit by storing the generators of the subgroup of the Pauli
group which stabilizes the state, and updating them after each application of a Clifford
operation. It turns out, however, that there is an alternative succinct representation of
stabilizer states, using their amplitudes in the computational basis {|x〉}x∈Fn

2

[8, 26]. This

representation also leads to an alternative proof of the theorem, as explained in [26].
If |ϕ〉 is a stabilizer state then (up to normalization)

|ϕ〉 =
∑

x∈A
i`(x)(−1)q(x) |x〉 (1)

where A ⊆ Fn2 is an affine subspace, `(x) is an F2-linear function and q(x) is a quadratic
polynomial over F2. The amplitudes of |H⊗n〉 and |R⊗n〉 are also easy to compute. For
example, recall that |H〉 = cos(π/8) |0〉 + sin(π/8) |1〉, and thus

|H⊗n〉 =
∑

x∈Fn
2

cos(π/8)n−|x| sin(π/8)|x| |x〉 ,

where |x| denotes the Hamming weight of x.
It is convenient to recast this problem as a problem about functions on the boolean cube

in the following natural way. For an n-qubit state |ψ〉 we associate a function Fψ : Fn2 → C

such that Fψ(x) equals the amplitude of |x〉 when writing |ψ〉 in the computational basis.
In this formulation, our “building blocks” are stabilizer functions, i.e., functions of the form

ϕ(x) = i`(x)(−1)q(x)
1A

where A is an affine subspace, 1A is the indicator function of A (i.e., 1A(x) = 1 if x ∈ A
and zero otherwise), ` is a linear function and q is a quadratic polynomial. Let Hn denote
the function associated with |H⊗n〉. We would like to show that in any decomposition

Hn(x) =
r
∑

j=1

cjϕj(x) =
r
∑

j=1

cji
`(x)(−1)qj(x)

1Aj
(x)

where cj ∈ C and ϕj(x) are stabilizer functions, r must be large.
Our techniques for showing that use tools from the analysis of boolean functions and

from complexity theory. In Section 1.4 we recall some similar questions that have arisen
in complexity theory.

For the proof of Theorem 1.1, we show that if f is a function of stabilizer rank at most,
say, n/100, then it is possible to find two vectors x, y ∈ Fn2 such that the Hamming weight
of x is very small, the Hamming weight of y is very large, and f(x) = f(x + y). Since
|x+y| ≥ |y|−|x|, for the correctly chosen parameters we get that |x+y| > |x|, which leads
to a contradiction if f = Hn, since Hn takes different value on each layer of the Hamming
cube.

To find such x and y, given a decomposition
∑r
j=1 cji

`(x)(−1)qj1Aj
with r ≤ n/100, we

find x, y such that `j(x) = `j(x + y), qj(x) = qj(x + y) and 1Aj
(x) = 1Aj

(x + y) for all
j ∈ [r].

Observe that for a fixed y ∈ Fn2 and a quadratic polynomial q(x), the equation q(x) =
q(x+y) is an affine linear equation in unknowns x. Thus, denoting ∆y(q) = q(x)+q(x+y)
(this is also called the directional derivative of q with respect to y), we get a system of affine
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linear equations {∆y(qj) = 0}j∈[r] in x, which, assuming r is small, has many solutions

(assuming it is solvable at all).
The additional requirements `j(x) = `j(x + y) and 1Aj

(x) = 1Aj
(x + y) make things

more complicated. However, using an averaging argument and by again utilizing the fact
that r is relatively small, we are able to find a large affine subspace U of vectors which
satisfy those equations, and then we analyze the above system of linear equations over the
affine subspace U .

In order to satisfy the conditions on the Hamming weights of x and y we use Kleitman’s
theorem [13] which gives an upper bound on the size of sets of the boolean cube with small
diameter, as well as some elementary linear algebra. The full proof of Theorem 1.1 appears
in Section 3.

The proof of Theorem 1.2 follows a different strategy. Starting from a state |ψ〉 of rank
r which is δ-close to |H⊗n〉 for some small enough constant δ > 0, we show how to use |ψ〉
in order to construct an F2-polynomial of degree O(r log r) which (1−ε)-approximates the
majority function on m = Ω(n) bits. By a well known correlation bound of Razborov and
Smolensky [21, 24, 25], this implies that r = Ω(

√
n/ logn).

We now explain how to obtain this polynomial approximating the majority function.
Let p = sin2(π/8) = 0.146 . . . . Instead of majority, it is convenient to first consider the
function THRpn which is 1 on all inputs x whose Hamming weight is at least pn, and zero
otherwise. Note that this function is trivial to approximate under the uniform distribution
by the constant 1 polynomial, but the approximation question becomes meaningful when
considering B(n, p), the binomial distribution with parameter p on the n-dimensional cube.
This is useful since the L2 mass of the vector |H⊗n〉 is distributed according to this distribu-
tion. In particular it is heavily concentrated on coordinates x such that |x| = pn±O(

√
n),

and a state |ψ〉 which is δ-close to |H⊗n〉 must contain in almost all of these coordinates
values which are very close to those of |H⊗n〉. It is then possible to obtain from ψ a
boolean function f which approximates the function THRpn. We observe that a restriction
g of f to a random set of 2pn coordinates will approximate the majority function, and
further, assuming |ψ〉 has stabilizer rank r, and using standard techniques again borrowed
from Razborov and Smolensky, g itself can be approximated by a polynomial g̃ of degree
O(r log r). It follows that g̃ approximates the majority function over 2pn bits. The full
proof of Theorem 1.2 appears in Section 4.

1.4 Related Work

As mentioned above, the previous best lower bound was an Ω(
√
n) lower bound for exact

stabilizer rank of |H⊗n〉 proved by Bravyi, Smith and Smolin [7]. Stronger lower bounds
are known in restricted models. As mentioned by [7] (see also Lemma 2 in [5]), for ev-
ery stabilizer state |ϕ〉 it holds that |〈ϕ|H⊗n〉| ≤ 2−Ω(n) which immediately implies an
exponential lower bound in the case that the coefficients cj are bounded in magnitude (in
particular, this holds if the states in the decomposition are orthogonal). It is worth noting
that by Cramer’s rule, in any rank r decomposition the coefficients cj can be taken to be
of magnitude at most exponential in n and r.

Bravyi et al. [4] present a different restricted model in which they prove an exponential
lower bound.

Related questions have been considered before in complexity theory. The so called
“quadratic uncertainty principle” [9, 27] is a conjecture which states that in any decompo-
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sition of the AND function as a sum

r
∑

j=1

cj(−1)qj(x), (2)

for quadratic functions {qj}j∈[r] and cj ∈ C, r = 2Ω(n). The best lower bound known is

r ≥ n/2 (see [27]). Note that since in the stabilizer rank case we allow functions of the
form (−1)q · 1A for affine subspaces A, the model we consider in this paper is stronger: in
particular the AND function itself is a stabilizer function and its stabilizer rank is 1.

Williams [27] has constructed, for every positive integer k, a function fk ∈ NP which
requires r = Ω(nk) in any decomposition as in (2). It remains, however, an intriguing
open problem to construct boolean function in P which requires a super-linear number of
summands.

We remark that proving super linear lower bounds on the stabilizer rank of |H⊗n〉 will
solve this problem. Indeed, as mentioned above, the stabilizer rank model is even stronger,
and thus lower bounds carry over to weaker models. Furthermore, even though Hn itself
is not a boolean function, |H〉 is Clifford-equivalent (up to an unimportant phase) to
|T 〉 := 1√

2
(|0〉 + eiπ/4 |1〉) (see [7]), which implies that the stabilizer rank of |H⊗n〉 equals

the stabilizer rank of |T⊗n〉. Denoting Tn the function associated with T⊗n, it is now
evident that Tn(x) depends only on |x| mod 8, and therefore

Tn =
7
∑

j=0

bjMj(x),

where for j ∈ {0, ..., 7}, bj ∈ C and Mj : Fn2 → {0, 1} is a boolean function such that
Mj(x) = 1 if and only if |x| = j mod 8. Thus, a super-linear lower bound on the stabilizer
rank of |H⊗n〉 will imply a super-linear lower bound on the rank of the (boolean) mod 8
function.

Following the initial publication of this work, our results were reproved using different
techniques. Labib [15] used higher-order Fourier analysis in order to prove a result similar
to Theorem 1.1, and extended it to qudits of any prime dimension. Lovitz and Steffan
[16] proved nearly identical lower bounds for exact and approximate stabilizer rank using
number-theoretic techniques.

1.5 Open Problems

While Theorem 1.1 improves upon the previous best lower bound known, we are unfortu-
nately unable to prove super-polynomial or even super-linear lower bounds on χ(H⊗n) or
χ(R⊗n). Further, our techniques seem incapable of proving super-linear lower bounds, as
they extend to any representation of Hn as an arbitrary function of r stabilizer functions,
and not necessarily a linear combination of them.

As mentioned in Section 1.4, it seems that a first step could be proving super-linear
lower bounds for the quadratic uncertainty principle problem. A different approachable
open problem is to improve our lower bound on the δ-approximate stabilizer rank to be
closer to Ω(n). This could perhaps be easier assuming δ is polynomially small in n.

Acknowledgements The third author would like to thank Andru Gheorghiu for intro-
ducing him to the notion of stabilizer rank.
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2 Preliminaries

2.1 General Notation

As mentioned in the introduction, it is often convenient to speak about functions on the
boolean cube rather than quantum states. For an n-qubit state |ψ〉 =

∑

x∈Fn
2

cx |x〉, the

associated function Fψ : Fn2 → C is defined as Fψ(x) = cx.
The L2 norm of the function F : Fn2 → C is then the same as the norm of the corre-

sponding vector, i.e., ‖F‖ =
(

∑

x∈Fn
2

|F (x)|2
)1/2

.

A function ϕ : Fn2 → C is called a stabilizer function if there exists an n-variate
linear function `(x), an n-variate quadratic polynomial q(x) ∈ F2[x1, . . . , xn] and an affine
subspace A ⊆ Fn2 such that ϕ(x) = i`(x)(−1)q(x)

1A, where 1A denotes the characteristic
function of A. As shown in [8, 26], stabilizer functions indeed correspond to stabilizer
states up to normalization (which has no effect on the stabilizer rank).

The stabilizer rank of a function F : Fn2 → C, denoted χ(F ), is the minimal r such
that there exist c1, . . . , cr ∈ C and stabilizer functions ϕ1, . . . , ϕr such that F (x) =
∑r
j=1 cjϕj(x).
For a vector x ∈ Fn2 we denote by |x| its Hamming weight. We denote by Majm : Fm2 →

F2 the m-bit majority function, that is Majm(x) = 1 if and only if |x| ≥ m/2.

Definition 2.1. Let A ⊂ Fn2 . The diameter of A, denoted diam(A), is defined as

max
u,v∈A

d(u, v) = max
u,v∈A

|u+ v|.

Here d(u, v) denotes the Hamming distance of u and v.

Kleitman [13] proved that sets of small diameter cannot be too large.

Theorem 2.2 ([13]). Let A ⊂ Fn2 such that diam(A) ≤ 2k for k < n/2. Then,

|A| ≤
k
∑

j=0

(

n

j

)

≤ 2H2( k
n )n,

where H2(p) = −p log2 p− (1 − p) log2(1 − p) is the binary entropy function.

This result is obviously tight as shown by the example of the set of all vectors of
Hamming weight at most k.

2.2 Linear Algebraic Facts

Recall that an affine subspace U ∈ Fn2 is a the set of solutions to a system of affine
equations, i.e., a system of the form Mx = b for some M ∈ Fk×n

2 and b ∈ Fk2. Every affine
subspace can be written as U = u + U0 for u ∈ Fn2 and a linear subspace U0 ⊆ Fn2 . In
our terminology, linear subspaces are in particular affine subspaces (and similarly, linear
functions are a special case of affine functions).

We record the following useful facts.

Fact 2.3. Let U ( Fn2 be an affine subspace, and let v ∈ Fn2 \ U . Then there is an affine
function a(x) : Fn2 → F2 such that a(v) = 1 and for every u ∈ U , a(u) = 0.

Fact 2.4. Let U1, U2 ⊆ Fn2 be affine subspaces such that U1 ∩ U2 6= ∅. Then

dim(U1 + U2) = dim(U1) + dim(U2) − dim(U1 ∩ U2).
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Claim 2.5. Let U ⊆ Fn2 be an affine subspace, with dim(U) = n − k > 0. There exists
a subset S ⊂ [n], of size |S| = n − k such that for every v ∈ Fn−k

2 there is u ∈ U with
u|S = v (where u|S denotes the restriction of u to the coordinates indexed by S).

Proof. U is the set of solutions for an equation Mx = b for a matrix M ∈ Fk×n
2 and b ∈ Fk2.

The fact that dim(U) = n−k implies that M has rank k, and there is a k×k non-singular
submatrix M ′ of M . Denote by S the columns of M that do not appear in M ′. For every
v ∈ Fn−k

2 , fixing x|S = v in the equation Mx = b gives a system of equations M ′x′ = b′ in
the set of remaining k unknowns x′, which has a solution since M ′ is non-singular.

Corollary 2.6. Let U ⊆ Fn2 be an affine subspace with dim(U) = n− k > 0. Then, there
exists u ∈ U with |u| ≤ k.

Proof. Follows immediately from applying Claim 2.5 with v = 0.

Finally, we define the directional derivative of a quadratic function over F2.

Definition 2.7. Let q ∈ F2[x1, . . . , xn] be a polynomial of degree 2. Let 0 6= y ∈ Fn2 . The
directional derivative of q in direction y is defined to be the function

∆y(q)(x) := q(x) + q(x+ y) ∈ F2[x1, . . . , xn].

Observe that for every y, ∆y(q) is an affine function in x.

3 A Lower Bound for Exact Stabilizer Rank

In this section we prove Theorem 1.1. We first present the main lemma of this section.

Lemma 3.1. Let F : Fn2 → C be a function of stabilizer rank r such that r ≤ n/100.
Then, there exist y, z ∈ Fn2 such that |y| 6= |z| and F (y) = F (z).

Theorem 1.1, which we now restate, is an immediate corollary of Lemma 3.1.

Theorem 3.2. Let |B〉 be either |H〉 or |R〉. Then χ(B⊗n) = Ω(n).

Proof. In the case where |B〉 = |H〉, the associated function FH : Fn2 → C is defined by
FH(x) = cos(π/8)n−|x| sin(π/8)|x|. If |B〉 = |R〉, the associated function FR : Fn2 → C is
defined by FR(x) = cos(β)n−|x|(eiπ/4 sin(β))|x| where β = arccos(1/

√
3)/2.

It is immediate to verify that for every y, z ∈ Fn2 of different Hamming weight those
functions attain different values. Thus, by Lemma 3.1, their stabilizer rank is at least
n/100.

We turn to the proof of Lemma 3.1.

Proof of Lemma 3.1. Let F : Fn2 → C be a function of stabilizer rank at most r ≤ n/100,
i.e.,

F (x) =
r
∑

j=1

cji
`j(x)(−1)qj(x)

1Aj
(x),

where for every j ∈ [r], `j is a linear function, qj is a quadratic function, and Aj ⊆ Fn2 is
an affine subspace.

To prove the statement of the lemma, we will show that there exist y, z ∈ Fn2 such that
|y| < |z| and for every j ∈ [r] all of the following hold:
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1. `j(y) = `j(z)

2. 1Aj
(y) = 1Aj

(z)

3. qj(y) = qj(z).

The first two items are handled by the following claim, which shows that there is a
large affine subspace satisfying both conditions.

Claim 3.3. There’s an affine subspace U ⊆ Fn2 of dimension at least n− 3r such that for
every j ∈ [r] and for every u1, u2 ∈ U , `j(u1) = `j(u2) and 1Aj

(u1) = 1Aj
(u2).

We defer the proof of Claim 3.3 to the end of this proof. Write U = u + U0 where
u ∈ Fn2 and U0 ⊆ Fn2 is a linear subspace. The next claim handles the third item above.

Claim 3.4. There exists v ∈ U0 with |v| ≥ 2n/3 such that the system of equations

{qj(x) = qj(x+ v)}j∈[r]

(in unknowns x) has a solution in U .

We postpone the proof of this claim as well, and now explain how it implies the result.
Let v ∈ U0 as promised in Claim 3.4. The set of solutions in U to the system of affine
equations

{qj(x) = qj(x+ v)}j∈[r] = {∆v(q)(x) = 0}j∈[r] (3)

is non-empty (by Claim 3.4), and thus by Fact 2.4, the set of solutions in U to (3) is an
affine subspace V ⊆ U of dimension at least n− 4r.

By Corollary 2.6, there is y ∈ V with |y| ≤ 4r. Set z = y+v, so that qj(y) = qj(y+v) =
qj(z) for all j ∈ [r]. Observe that z ∈ U , since Claim 3.4 promises that v ∈ U0. Thus
y and z attain the same values on `j and 1Aj

for all j ∈ [r] as well. Finally note that
|y| ≤ 4r whereas

|z| = |y + v| ≥ |v| − |y| ≥ 2n

3
− 4r > 4r.

It remains to prove Claim 3.3 and Claim 3.4.

Proof of Claim 3.3. Let V1 ⊂ Fn2 be the linear subspace defined by the system of equations
{`j = 0} for all j ∈ [r]. It holds that dim(V1) ≥ n− r > 0.

Consider now the map E : V1 → {0, 1}r, defined by

E(x) = (1A1
(x), . . . ,1Ar (x)).

By the pigeonhole principle, there is α ∈ {0, 1}r with |E−1(α)| ≥ 2dimV1−r ≥ 2n−2r. Let
S be the support of α, that is, the set of indices j ∈ [r] such that αj = 1. We have that

E−1(α) =









⋂

j∈S
Aj



 \




⋃

j 6∈S
Aj







 ∩ V1 ⊆




⋂

j∈S
Aj



 ∩ V1

(for notational convenience, if S = ∅, then
⋂

j∈S Aj = Fn2 ).

Let V2 =
(

⋂

j∈S Aj
)

∩V1. Then V2 is an affine subspace, and |V2| ≥ |E−1(α)| ≥ 2n−2r,

so dim(V2) ≥ n− 2r > 0.
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Pick now an arbitrary x0 ∈ E−1(α). Thus, x0 ∈ V2, and for every j 6∈ S, x0 6∈ Aj . By
Fact 2.3, for every j 6∈ S there is an affine equation aj such that aj(x0) = 1 and for all
x ∈ Aj , aj(x) = 0. Let

U = {x ∈ V2 : for all j 6∈ S, aj(x) = 1} .

Then U is an affine subspace (as it is defined by at most r additional affine constraints on
V2), and it is non-empty (since x0 ∈ U). By Fact 2.4, it follows that dim(U) ≥ n−2r−r =
n− 3r. Further, for every x ∈ U and j ∈ [r], it holds that `j(x) = 0 and

1Aj
(x) =

{

1 j ∈ S

0 j 6∈ S

which completes the proof.

We finish the section by proving Claim 3.4.

Proof of Claim 3.4. Consider the map Γ : U → {0, 1}r defined by

Γ(x) = (q1(x), . . . , qr(x)).

For every α ∈ {0, 1}r, let Γα =
{

x1 + x2 : x1, x2 ∈ Γ−1(α)
}

. Observe that for every α,
Γα ⊆ U0. Furthermore, for every v ∈ Γα, the set of affine equations

{∆v(qj)(x) = 0}j∈[r] ,

in unknowns x, has a solution in U . Indeed, v = x1 + x2 where x1, x2 ∈ Γ−1(α), and thus
qj(x1) = qj(x2) = qj(x1 + v) for every j ∈ [r], which implies that x1 is a solution.

In order to finish the proof we need to show that there is α ∈ {0, 1}r and v ∈ Γα such
that |v| ≥ 2n

3 . By the pigeonhole principle there is α0 ∈ {0, 1}r such that |Γ−1(α0)| ≥
|U |/2r = 2n−4r. Observe that the maximal Hamming weight of an element in Γα0

equals
the diameter of the set Γ−1(α0).

By Theorem 2.2 (for k = n/3), the size of every set of diameter 2n/3 is at most
2H2(1/3)n ≤ 20.92n. Since r ≤ n/100, |Γ−1(α0)| > 20.95n, so diam(Γ−1(α0)) ≥ 2n/3, and
there is v ∈ Γα0

of weight at least 2n/3.

4 A Lower Bound for Approximate Stabilizer Rank

In this section we prove Theorem 1.2. In Section 4.1, we show how to obtain, given a
function f that approximates the function THRpn (with respect to the binomial distribution
on the n-dimensional cube with parameter p, B(n, p)), a random restriction of f which
approximates the majority function over m = 2bpnc, bits with respect to the uniform
distribution.3 In Section 4.2, we construct, given a state |ψ〉 that is δ close to either |H⊗n〉
or |R⊗n〉, a boolean function fψ that approximates THRpn. In Section 4.3 we then show
how to get low-degree polynomial approximations to restrictions of fψ, which, as we specify
in Section 4.4, completes the proof.

3In what follows, in order to help with the readability of the argument we often omit the floor and
ceiling signs. For example, we’ll use “pn” to refer to bpnc. We reintroduce floor and ceiling signs in cases
where there is a chance of confusion.
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4.1 A Reduction from Threshold Functions to Majority

Let 0 < p < 1/2. Recall that THRpn(x) equals 1 if |x| ≥ pn and 0 otherwise. In this
section we prove that given any function f : Fn2 → F2 that approximates THRpn with
respect to B(n, p), we can find a function g, which is a restriction of f to 2pn random
coordinates, which approximates the majority function on those bits with respect to the
uniform distribution.

In anticipation of the next section, when considering approximations for THRpn we will
work with a slightly different notion of approximation than approximation with respect to
B(n, p), which we now explain.

Let Lk = {x ∈ Fn2 | |x| = k} denote the k-th layer of the boolean cube. We say that a
function f : Fn2 → F2 is ε-wrong on Lk (with respect to THRpn) if the fraction of elements
x ∈ Lk such that f(x) 6= THRpn(x) is at least ε.

We say that f (ε, γ)-approximates THRpn if f is ε-wrong on at most a γ fraction of the
layers Lk for k ∈ [pn− d5

√
2pne, pn+ d5

√
2pne].

For the rest of the proof we will always set ε = γ = 0.01.
Since B(n, p) is heavily concentrated on layers Lk with k ∈ [pn−O(

√
n), pn+O(

√
n)],

and for every k in that range, Prx∼B(n,p)[x ∈ Lk] = Θ(1/
√
n), this notion and the notion

of approximation with respect to B(n, p) are in fact very similar, up to the precise choice
of constants.

Lemma 4.1. Let 0 < p < 1/2 be an absolute constant, and let f : Fn2 → F2 be a boolean
function that (0.01, 0.01)-approximates THRpn. For every D ⊆ [n] of size m := 2pn, let
gD : Fm2 → F2 be the function obtained from f by fixing all input bits outside of D to 0.
Then there exists D0 such that for g := gD0

, Prx∈Fm
2

[g(x) = Majm(x)] ≥ 3/4, where x is
chosen according to the uniform distribution.

Proof. Let m = 2pn. For every D ⊆ [n] of size m, let gD be the function obtained from f
by fixing all input bits outside of D to 0. It will be convenient to consider gD as a function
whose domain is Fm2 using some bijection between D and [m]. Every x ∈ Fn2 which is zero
on coordinates outside of D then corresponds to a unique x̄ ∈ Fm2 , and vice versa.

We will now pick D uniformly at random among all subsets of [n] of size m, so that
gD is a random restriction of f .

We say x ∈ Fn2 survives D if the set of indices j ∈ [n] such that xj = 1 is contained in
D. The probability that x ∈ Lk survives D is

(m
k

)

/
(n
k

)

.
For an input x ∈ Fn2 , we say x is correct if f(x) = THRpn(x), and incorrect otherwise.

If x is correct and survives, then Majm(x̄) = THRpn(x) = f(x) = gD(x̄).
Let Xk be a random variable, which denotes the number of incorrect inputs x ∈ Lk

that survive D, and

X =

pn+d5
√

2pne
∑

k=pn−d5
√

2pne
Xk.

By the assumption, for at least 0.99 fraction of the layers Lk, the number of incorrect x’s
is at most 0.01

(n
k

)

, and thus for each such layer Lk for k ∈ [pn− d5
√

2pne, pn+ d5
√

2pne],
ED[Xk] ≤ 0.01

(m
k

)

. We call such layers good. For the rest of the layers, which we call bad,
obviously ED[Xk] ≤ (m

k

)

. The total number of layers in the interval [pn− d5
√

2pne, pn+
d5

√
2pne] is at most

2 · (5
√

2pn+ 1) + 1 ≤ 11
√

2pn,

and thus the number of bad layers is at most 0.01 · 11 · √
2pn. Further, for every k,

(m
k

) ≤ 1√
m

· 2m.
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Therefore,

ED[X] =
∑

Lk is good

ED[Xk] +
∑

Lk is bad

ED[Xk]

≤
∑

Lk is good

0.01

(

m

k

)

+ 0.01 · 11
√
m · 1√

m
· 2m

≤ 0.01 ·
(

∑

k

(

m

k

))

+
11

100
· 2m ≤ 12

100
· 2m.

In particular, there is some D0 such that the number if incorrect x’s in layers [pn −
d5

√
2pne, pn + d5

√
2pne] that survive D0 is at most 12

1002m. Let g := gD0
. We now claim

that g and Majm agree on more than 3/4 of the inputs in Fm2 .
First, By the Chernoff bound, the number of vectors x̄ ∈ Fm2 whose Hamming weight

is not in the range

[pn−e5
√

2pnd, pn+ d5
√

2pne] = [m/2 − d5
√
me,m/2 + d5

√
me],

is at most 2e−((5/
√
pn)2·pn/6) · 2m ≤ 1

152m. On these inputs we have no guarantee. By
the choice of D0, the number of x̄’s such that |x̄| ∈ [m/2 − d5

√
me,m/2 + d5

√
me] and

g(x) 6= Maj(x) is at most 12
1002m. It follows that g(x̄) 6= Majm(x̄) on less than 1

4 · 2m

inputs.

4.2 From Stabilizer Decompositions to Threshold Functions

Let |B〉 = α |0〉 + β |1〉 with |α|2 + |β|2 = 1. Let p = |β|2 and suppose that 0 < p < 1/2.
Let FB : Fn2 → C be the function associated with |B⊗n〉, i.e., FB(x) = αn−|x|β|x|.

In this section we prove that if ψ : Fn2 → C is such that χ(ψ) ≤ r and ‖ψ − FB‖ ≤ δ,
then it is possible to construct a boolean function fψ that (0.01, 0.01)-approximates THRpn.
In Section 4.3, we will prove that if χ(ψ) ≤ r, fψ has low degree polynomial approximations.

From here on, δ will denote a sufficiently small constant, which may depend on |B〉
and its parameters (i.e., δ is some function of p), but does not depend on n. Since we are
interested in the case |B〉 = |H〉 or |B〉 = |R〉, δ can be taken to be some small universal
constant.

For k ∈ [n], let mk := |αn−kβk| denote the absolute value of FB on the k-th layer. Let
wk = m2

k = pk(1 − p)n−k and Wk =
(n
k

)

wk the total mass on the k-th layer, with respect

to B(n, p). Let η = |β|
|α| . Observe that by assumption, 0 < η < 1.

Suppose ψ : Fn2 → C is such that χ(ψ) ≤ r and ‖ψ − FB‖ ≤ δ. We define a boolean
function fψ : Fn2 → F2 as follows:4

fψ(x) =







1 if |ψ(x)| ≤
(

1+η
2

)

mpn−1

0 otherwise
(4)

The intuition for the definition is that, since ‖ψ − FB‖ ≤ δ, we expect ψ(x) to be very close
to FB(x) for most inputs x. For every such x, fψ will correctly compute THRpn. Further,
inputs x such that fψ(x) 6= THRpn(x) correspond to inputs x such that |ψ(x) − FB(x)| is
large. Assuming there are many such x’s will lead to a contradiction to the assumption
that ‖ψ − FB‖ ≤ δ.

4Observe that if |x| < |x′| then |ψ(x)| > |ψ(x′)|.
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Lemma 4.2. Let ψ : Fn2 → C be a function such that ‖ψ − FB‖ ≤ δ for a sufficiently
small δ. Let fψ the boolean function defined as in (4). Then fψ (0.01, 0.01)-approximates
THRpn.

We begin with the following calculation.

Claim 4.3. Suppose x ∈ Fn2 is such that fψ(x) 6= THRpn(x) and |x| = k. Then |ψ(x) −
FB(x)|2 ≥ wk ·

(

1−η
2

)2
.

Proof. Since |x| = k, |FB(x)| = mk. Suppose first that k ≤ pn− 1 so that THRpn(x) = 0.
By assumption, fψ(x) = 1, which implies that

|ψ(x)| ≤
(

1 + η

2

)

mpn−1.

Observe that mk = (η−1)pn−1−kmpn−1 ≥ mpn−1 for k ≤ pn − 1, and therefore by the
triangle inequality

|ψ(x) − FB(x)| ≥ |FB(x)| − |ψ(x)| ≥ mk −
(

1 + η

2

)

mpn−1

≥ mk −
(

1 + η

2

)

mk =

(

1 − η

2

)

mk,

which implies the statement of the claim (for k ≤ pn− 1) by squaring both sides.
If k ≥ pn, then THRpn(x) = 1 which implies fψ(x) = 0, i.e.,

|ψ(x)| ≥
(

1 + η

2

)

mpn−1.

Note that mk = ηk−pn+1mpn−1 and in particular mk ≤ ηmpn−1 for all k ≥ pn. Thus,

|ψ(x) − FB(x)| ≥ |ψ(x)| − |FB(x)| ≥
(

1 + η

2

)

mpn−1 −mk

≥
(

1 + η

2

)

mpn−1 − ηmpn−1 =

(

1 − η

2

)

mpn−1

≥
(

1 − η

2

)

mk,

which proves the lemma for this case as well.

We use the following standard estimates on the concentration of the binomial distribu-
tion. Recall that Wk =

(n
k

)

pk(1 − p)n−k.

Claim 4.4. Let C ∈ R. Then Wpn+C
√
n = Ω(1/

√
n), where the constant hidden under the

Ω notation depends on C and p, but not on n.

Observe that C in the above claim may be negative. The proof is a direct application
of Stirling’s approximation. For completeness, we provide a crude estimate which suffices
for us in Appendix B.

We are now ready to prove the main lemma of the section.

Proof of Lemma 4.2. Let k be a layer such that fψ is 0.01-wrong on Lk. By Claim 4.3,

∑

x∈Lk

|ψ(x) − FB(x)|2 ≥ 0.01 ·
(

n

k

)

·
(

1 − η

2

)2

wk = 0.01

(

1 − η

2

)2

Wk.
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Suppose, towards a contradiction, fψ is 0.01-wrong on more than 0.01 fraction of the layers
k ∈ [pn − d5

√
2pne, pn + d5

√
2pne], i.e., on more than 0.1

√
2pn layers. By Claim 4.4, for

every such k, Wk ≥ c/
√
n for some constant c which does not depend on n. It follows that

‖ψ − FB‖ ≥ 0.1
√

2pn · 0.01

(

1 − η

2

)2

· c√
n
,

which is a contradiction for δ < 0.001
√

2pc
(

1−η
2

)2
.

4.3 A Low Degree Polynomial Approximation

In this section we show that for the function fψ defined as in (4), and for any restriction gD
of fψ as in Lemma 4.1, the function gD has a polynomial approximating it, whose degree
is at most O(r log r). To prove this we apply standard approximation techniques used for
proving lower bounds for bounded depth circuits with modular gates, although in our case
the details are somewhat simpler.

We begin with the following lemma that shows how to approximate indicator functions
of affine subspaces with low degree polynomials.

Claim 4.5 ([21, 25]). Let A ⊆ Fm2 be an affine subspace. For every t ∈ N, there exists a
polynomial P ∈ F2[x1, . . . , xm] of degree at most t such that Prx∈Fm

2
[P (x) 6= 1A(x)] ≤ 2−t.

Proof. Since A is an affine subspace, there exist k ≤ m affine functions a1, . . . , ak such that
x ∈ A if and only if aj(x) = 0 for every j ∈ [k], or equivalently, 1A(x) =

∏k
j=1(aj(x) + 1).

Let D be a uniformly random subset of [k] and aD =
∑

j∈D aj . Observe that for x ∈ A,
aD(x) = 0 with probability 1, whereas for x 6∈ A, there is some j ∈ [k] such that aj(x) = 1
and hence PrD[aD(x) = 0] = 1/2 (as j is included in D with probability 1/2).

Hence, for t ∈ N, define PD(x) =
∏t
k=1(aDk

(x)+1), where D = (D1, . . . , Dt) are chosen
uniformly and independently. Then, PD is a degree t (random) polynomial, PD(x) = 1
for all x ∈ A, and for x 6∈ A, PrD[PD(x) = 1] ≤ 2−t. In particular, in expectation PD

and 1A disagree on at most 2m−t of the inputs, which implies that there exists a choice of
D

′ = (D1, ..., Dt) such that P := PD′ satisfies the properties required in the lemma.

We now show how to approximate restrictions of the boolean function fψ.

Lemma 4.6. Let FB and ψ be functions as in Section 4.2 and let fψ defined as in (4).
Let D ⊆ [n] and denote g := gD the restriction of fψ obtained by setting variables outside
of D to 0, as in Section 4.1. Then, there is a polynomial g̃ of degree O(r log r) such that
Prx̄∈Fm

2
[g(x̄) 6= g̃(x̄)] ≤ 1

20 .

Proof. Write

ψ(x) =
r
∑

j=1

cjϕj(x) =
r
∑

j=1

cji
`j(x)(−1)qj(x)

1Aj
(x), (5)

where for every j ∈ [r], `j is a linear function, qj a quadratic function, and Aj an affine
subspace.

For every j ∈ [r], let A′
j , `

′
j , q

′
j denote the projection of Aj , `j , qj respectively, obtained

by setting the coordinates outside of D to zero. Observe that A′
j ⊆ Fm2 is an affine

subspace, `′j an m-variate linear function over F2, and q′
j an m-variate quadratic function

over F2, and that

g(x̄) =







1 if |∑r
j=1 cj · i`′j(x̄) · (−1)q

′
j
(x̄) · 1A′

j
(x̄)| ≤

(

1+η
2

)

mpn−1

0 otherwise.

Accepted in Quantum 2022-02-07, click title to verify. Published under CC-BY 4.0. 14



Let h : F3r
2 → F2 denote the following function:

h(y1, . . . , yr, z1, . . . , zr, v1, . . . , vr) =







1 if |∑r
j=1 cj · iyj · (−1)zj · vj | ≤

(

1+η
2

)

mpn−1

0 otherwise.

(note that here vj ∈ {0, 1} is considered as a real number). Then

g(x̄) = h(`′1(x̄), . . . , `′r(x̄), q′
1(x̄), . . . , q′

r(x̄),1A′
1
(x̄), . . . ,1A′

r
(x̄)).

For every j ∈ [r], let Pj be a polynomial of degree O(log(r)) such that Prx̄∈Fm
2

[Pj(x̄) 6=
1A′

j
(x̄)] ≤ 1

20r , as guaranteed by Claim 4.5. Note that h is a function on 3r boolean

variables, and hence can be represented exactly by a polynomial of degree at most 3r. As
the `′j ’s have degree 1 and q′

j ’s degree 2, it follows that

g̃(x̄) = h(`′1(x̄), . . . , `′r(x̄), q′
1(x̄), . . . , q′

r(x̄), P1(x̄), . . . , Pr(x̄))

is a polynomial of degree O(r log r), and by the union bound

Pr
x̄∈Fm

2

[g̃(x̄) 6= g(x̄)] ≤ Pr
x̄∈Fm

2

[

∃j ∈ [r] such that Pj(x) 6= 1A′
j
(x)

]

≤ 1

20
.

4.4 A Lower Bound for Approximate Stabilizer Rank via Correlation Bounds

We now observe that the results of Section 4.1, Section 4.2 and Section 4.3 imply our lower
bounds. The final ingredient we require is the following correlation lower bound.

Lemma 4.7 ([21, 25]). Let f : Fm2 → F2 be a boolean function such that

Pr
x∈Fm

2

[f(x) = Majm(x)] ≥ 2

3
.

Then deg(f) = Ω(
√
m).

We recall Theorem 1.2

Theorem 4.8 (Restatement of Theorem 1.2). Let |B〉 be either |H〉 or |R〉. Then, for a
sufficiently small constant δ, it holds that χδ(B

⊗n) = Ω(
√
n/ logn).

Proof. Let ψ be a state such that ‖ψ −B⊗n‖ ≤ δ. By Lemma 4.2, this implies that
the boolean function f := fψ, as defined in (4), (0.01, 0.01)-approximates THRpn. By
Lemma 4.1 this implies that there exists a restriction of f , g, such that

Pr
x̄∈Fm

2

[g(x̄) 6= Majm(x̄)] ≤ 1

4

for m = 2pn. Further, by Lemma 4.6, there is a polynomial g̃, of degree O(r log r), such
that

Pr
x̄∈Fm

2

[g(x̄) 6= g̃(x̄)] ≤ 1

20
.

It follows that

Pr
x̄∈Fm

2

[g̃(x̄) 6= Majm(x̄)] ≤ 1

3

and thus, by Lemma 4.7, r log r = Ω(
√

2pn), as the theorem states.
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A The Clifford Group and Magic States

The purpose of this section is to provide a brief introduction to the Clifford group for
readers who are unfamiliar with it. We shall not cover the entire background, motivation
and various applications of this group in quantum computing and quantum information,
but rather only provide the bare minimum of definitions needed to understand this work
and its motivation. The book [18] is good extensive reference on these topics, and in
particular Sections 10.5.1 and 10.5.2 which deal with the stabilizer formalism. We also
provide a notational reference to the various gates and magic states we consider in this
paper.
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A.1 Pauli and Clifford Group

The Pauli matrices are three 2 × 2 complex unitary matrices defined as follows:

X =

[

0 1
1 0

]

, Y =

[

0 −i
i 0

]

, Z =

[

1 0
0 −1

]

.

These matrices generate a subgroup of 2x2 matrices of order 16, denoted by P1 and called
the single qubit Pauli group, that contains the elements

{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} .

The n-qubit Pauli group, denoted Pn is defined as

Pn = {σ1 ⊗ σ2 ⊗ · · · ⊗ σn : for all j ∈ [n], σj ∈ P1} .

The Clifford group Cn can now be defined as the normalizer of Pn in the group U(n) of
n-qubit unitary matrices. It is convenient, however, to consider Cn as a finite group, which
is why it is usually defined modulo U(1), i.e., we identify two matrices U and V if U = cV
for some c ∈ C with |c| = 1 (c is called a global phase):

Cn :=
{

U ∈ U(n) : UPnU
† = Pn

}

/U(1).

It turns out that Cn has a set of generators which is very easy to describe. Every U ∈ Cn
can be generated using the following simple set of gates:

CNOT =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











, H =
1√
2

[

1 1
1 −1

]

, S =

[

1 0
0 i

]

.

H is called the Hadamard gate and S is called the phase gate. The set of stabilizer states
is the set of states ϕ such that |ϕ〉 = U |0n〉.

Evidently, {CNOT, H, S} is thus not a universal quantum gate set. However, the set
{CNOT, H, S, T}, where

T =

[

1 0

0 eiπ/4

]

is the so-called π/8 gate, is universal.

A.2 Magic States

As explained in Section 1.1, any circuit over the (universal) gate set {CNOT, H, S, T} can
be converted to a circuit of roughly the same size with only Clifford gates, which is given
as additional inputs an ample supply of qubits in a magic state. The two types of magic
states defined by Bravyi and Kitaev [6] are

|H〉 = cos(π/8) |0〉 + sin(π/8) |1〉 , and |R〉 = cos(β) |0〉 + eiπ/4 sin(β) |1〉 ,

where β = arccos(1/
√

3)/2.
We say two n-qubit states ψ and ϕ are Clifford-equivalent if |ψ〉 = U |ϕ〉 for U ∈ Cn.

Up to a phase, state |H〉 is Clifford-equivalent to the state |T 〉 = 1√
2
(|0〉 + eiπ/4 |1〉) (see

[7]), and thus Clifford circuits provided with |H⊗n〉 as auxiliary inputs have the same
computational power as Clifford circuits provided with |T⊗n〉.
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B Proof of Claim 4.4

Proof of Claim 4.4. Recall that by Stirling’s approximation, m! ∼
√

2πm
(

m
e

)m
. In par-

ticular, for large enough n,

(

n

pn

)

=
n!

(pn)!((1 − p)n)!

≥ 1

2

√
2πn · (n/e)n

√

2π(pn)(pn/e)pn ·
√

2π(1 − p)n · ((1 − p)n/e)(1−p)n
.

Thus,

Wpn =

(

n

pn

)

ppn(1 − p)(1−p)n = Ω(1/
√
n),

where the constant hidden under the Ω notation depends on p. Now, for C > 0, we will
show that Wpn/Wpn+C

√
n = O(1) (where again, the constant depends on C and p).

Wpn

Wpn+C
√
n

=

( n
pn

)

ppn(1 − p)(1−p)n

( n
pn+C

√
n

)

ppn+C
√
n(1 − p)(1−p)n−C√

n

=
(pn+ C

√
n) · · · (pn+ 1)

((1 − p)n) · · · ((1 − p)n− C
√
n+ 1)

·
(

1 − p

p

)C
√
n

≤
(

pn+ C
√
n

(1 − p)n− C
√
n

)C
√
n

·
(

1 − p

p

)C
√
n

=
pn

(1 − p)n

C
√
n

·

(

1 + C
p
√
n

)C
√
n

(

1 − C
(1−p)

√
n

)C
√
n

·
(

1 − p

p

)C
√
n

=

(

1 + C
p
√
n

)C
√
n

(

1 − C
(1−p)

√
n

)C
√
n
.

The last term is bounded by a constant, as

lim
n→∞

(

1 +
C

p
√
n

)C
√
n

= eC
2/p,

and similarly

lim
n→∞

(

1 − C

(1 − p)
√
n

)C
√
n

= e−C2/(1−p).

A similar calculation works when C < 0.
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