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Climate Change and Mountaintop-Removal Mining: 

A MaxEnt Assessment of the Potential Threat to West 

Virginian Fishes

Lindsey R.F. Hendrick1,* and Daniel J. McGarvey1

Abstract - Accounts of species’ range shifts in response to climate change are rapidly ac-

cumulating. These range shifts are often attributed to species tracking their thermal niches 

as temperatures in their native ranges increase. Our objective was to estimate the degree to 

which shifts in water temperature driven by climate change may increase the exposure of 

West Virginia’s native freshwater fishes to mountaintop-removal surface coal mining. We 
projected midcentury shifts in habitat suitability for 9 non-game West Virginian fishes via 
maximum entropy species distribution modeling, using a combination of physical habitat, 

historical climate conditions, and future climate data. Modeling projections for a high-emis-

sions scenario (Representative Concentration Pathway 8.5) predict that habitat suitability 

will increase in high-elevation streams near mountaintop mining sites for 8 of 9 species, 

with increases in habitat suitability varying from 46% to 418%. We conclude that many 

West Virginian fishes will be at risk of increased exposure to mountaintop mining if climate 
change continues at a rapid pace.

Introduction

 Quantifying and predicting species’ responses to climate change is currently 

a high-priority research topic in biogeographical and conservation science (e.g., 

Angert et al. 2011, Lin et al. 2017, Pecl et al. 2017). In the Northern Hemisphere, 

species are responding by shifting their ranges to the north or to higher elevations 

(e.g., Chen et al. 2011, Chivers et al. 2017, Comte and Grenouillet 2013). These 

latitudinal and elevational range shifts may be a result of species tracking their ther-

mal preferences as temperatures in their historical, native ranges increase (Comte 

et al. 2013, Freeman and Class Freeman 2014, Parmesan 2006). If so, range shifts 

should be most likely for vagile species that are physically capable of long-distance 

movements and for ectothermic species that have narrow thermal tolerances (Calosi 

et al. 2008, Deutsch et al. 2008).

 Freshwater fishes of the Central Appalachian region in eastern North America 
may be particularly likely to shift to higher elevations in response to a warming 

climate. Like most primary freshwater fishes, they are obligate ectotherms that 
may encounter stressful or lethal conditions as ambient temperatures increase (see 

Farrell 2011). Furthermore, most major rivers in this region flow westward off of 
the Appalachian range to the Ohio River, which is also a predominantly westward 
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flowing river that originates at the confluence of the Alleghany and Monongahela 
rivers, near Pittsburgh, PA (~42°N latitude), or they flow east to the Atlantic Ocean. 
Thus, the topography and elevation of the Appalachian range may provide opportu-

nities for freshwater fishes to shift their ranges upslope, while latitudinal shifts that 
extend far north will not be feasible for many populations.

 Unfortunately, fishes that shift to higher elevations in central Appalachia may be 
at risk of encountering another threat: increased exposure to mountaintop-removal 

(MTR) surface coal mining. Mountaintop-removal mining is pervasive throughout 

central Appalachia (Ferreri et al. 2004) and is particularly common in the state of 

West Virginia (Fig. 1). Damages to aquatic biota may occur through acute loss of 

headwater streams (via burial by valley fill) or chronic degradation of water quality 
and instream habitat further downstream (Bernhardt et al. 2012). Empirical reports 

of MTR impacts on native fishes take on various forms from the individual-level 
toxic effects of selenium, a common byproduct of MTR that causes teratogenic 

deformities (Lemly 1993, Palmer et al. 2010), to assemblage-level effects includ-

ing decreased species richness and lower population densities (Hitt and Chambers 

Figure 1. Map of the study site showing the Ohio River Basin (ORB; light gray), the state 

of West Virginia (outline), and the active mountaintop-removal (MTR; black) mining sites 

within West Virginia.
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2014). Habitat models also suggest that MTR may have a negative effect on fish 
distributions, pushing them further downstream (Hopkins and Roush 2013).

 In this study, we used maximum entropy (MaxEnt; Phillips et al. 2006) spe-

cies distribution models (SDMs) to assess whether climate change and MTR may 

pose an interactive threat to the native fishes of West Virginia. This was a 2-stage 
process in which we first used physical habitat and historical climate data to build 
SDMs for a subset of the native fishes of West Virginia. We then predicted future 
habitat suitability under 2 midcentury climate-change scenarios. For each species 

and future climate scenario, we assessed changes in habitat suitability for streams 

in close proximity to MTR operations. However, our intent was not to model the ef-

fects of MTR on West Virginian fishes per se. Instead, we characterized the degree 
to which climate change may increase fish exposure to MTR via warming-induced 
upslope range shifts. Our analyses focused on a representative subset of non-game 

species. Other investigators have studied climate change and MTR effects on West 

Virginian game fishes, such as Salvelinus fontinalis (Mitchill) (Brook Trout; e.g., 

Ries and Perry 1995), but little is known about the potential consequences for the 

region’s diverse non-game fishes. 
 Specific research objectives were to (1) build SDMs for a select subset of non-
game fish species that are broadly representative of the native ichthyofauna of West 
Virginia, (2) predict changes in habitat suitability under 2 midcentury climate sce-

narios, and (3) use the projected habitat suitability maps to identify species that are 

likely to migrate to higher elevations, thereby increasing their exposure to MTR. 

Methods

Fish species selection and occurrence data

 We selected 9 non-game species for inclusion in our modeling study from the 

176 documented native West Virginian fishes (Stauffer et al. 1995). Selection was 

guided by an iterative process. First, we removed species from the candidate list 

that did not have at least 200 occurrence records within the Ohio River Basin. 

We then sought to ensure that the selected species would be broadly representa-

tive of the autecological characteristics of all native West Virginian fishes in the 

Ohio River Basin (i.e., westward flowing rivers). To do so, we used a multivariate 

species-traits approach. We obtained species-level descriptions for 13 functional 

traits through an extensive literature review, as detailed in Woods and McGarvey 

(2018), then compiled them in a species × trait matrix. Traits included multiple 

indicators of body size (e.g., maximum total length, female length at maturation, 
mean egg diameter), maximum longevity, degree of parental care, adult habitat, 

vertical water-column position, adult feeding behavior, egg-deposition strategy, 

spawning season, and migratory behavior. We used the species × trait matrix to 

calculate pairwise Gower dissimilarities for all 136 native West Virginian fishes 

within the Ohio River Basin. Gower dissimilarity is commonly used in functional 

traits analysis because it is compatible with a combination of continuous (e.g., to-

tal length) and categorical (e.g., feeding behavior) variables (Gower 1971). Next, 

we conducted principal coordinates analysis to build a 2-dimensional trait-space 
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ordination of the 136 fishes. Finally, we used the ordination plot to visually 

confirm that the selected fish species encompassed a large fraction of the total 

trait-space and were therefore representative of the overall range of West Virgin-

ian fish functional traits (Fig. 2).

 We obtained presence-only occurrence records for each of the selected species 

from the spatially explicit Ichthymaps digital database (Frimpong et al. 2016). 

We included occurrence records distributed throughout the entire Ohio River 

Basin, the parent drainage to most rivers in West Virginia. Incorporating species’ 

complete ranges throughout the Ohio River Basin, rather than truncated ranges 

within West Virginia, ensured that the MaxEnt background samples (see Species 

distribution models subsection below) would be representative of all habitats 

available to the modeled species (Elith et al. 2011, Yates et al. 2018). To account 

for potential spatial bias in the Ichthymaps occurrence records, we applied a 

spatial thinning algorithm to the occurrence data. Using the spThin package in 

R (Aiello-Lammens et al. 2015), we applied a nearest-neighbor search radius 

of 10 km to each Ichthymaps occurrence record. Fewer than 2% of all occur-

rence points were within 10 linear km of each other. We therefore concluded that 

geographic sampling bias was not a significant concern and retained all of the 

occurrence data in model development.

Figure 2. Ordination 

plot of the first 2 prin-

cipal coordinate axes 

from the functional-

traits analysis. The 9 

fish species modeled 

in this study are shown 

as solid black circles. 

The remaining 127 

native fishes of West 

Virginia (Ohio River 

Basin) are shown as 

gray circles. Functional 

traits that are strongly 

correlated with each 

axis are shown along 

their respective axes, 

with the direction of the 

correlation indicated 

by arrows. Light gray 

shaded regions indicate 

sections of the overall 

trait space that are not well represented by the 9 modeled species. The light gray shaded 

regions show that all but the largest species were included in our models and that lentic-type 

species are not well represented in our models. All other regions of the overall trait space 

are well represented.
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River network, physical habitat, and climate data

 We used the 1:100,000 scale National Hydrography Dataset Plus, Version 2 

(NHDplus V2; McKay et al. 2012) digital stream network, clipped to the Ohio 

River Basin, as a common physical template for all fish occurrence records, en-

vironmental covariates (i.e., predictor variables), and SDMs. In the NHDplus V2, 

every digital stream segment has a unique “COMID” identifier that we used to 
cross-reference all fish occurrence and covariate data to their respective locations 
within the Ohio River Basin. We obtained physical habitat covariates from the 

NHDplus V2 attribute tables and the Stream-Catchment dataset (StreamCat; Hill et 

al. 2016). We selected these physical habitat covariates to represent 4 broad classes 

of potential effects on fish habitat: topographic, geologic, hydrologic, or urban.
 We downloaded historical (1960–1990) and midcentury (2041–2060) climate 

data from WorldClim, Version 1.4 (Hijmans et al. 2005), as 30 arc-second–resolu-

tion grids. We captured midcentury data for 2 representative concentration pathway 

scenarios (RCPs): RCP 4.5 served as a mid-range emissions scenario (Thomson et 

al. 2011) and RCP 8.5 served as a high-range emissions scenario (Riahi et al. 2011). 

For both RCPs, we downloaded midcentury projections for 6 general circulation 

models: BCC-CSM1-1 (Wu et al. 2014), CCSM4 (Gent et al. 2011), GFDL-CM3 

(Donner et al. 2011), GISS-E2-R (Schmidt et al. 2014), HadGEM2-CC (Martin et 

al. 2011), and MRI-CGCM3 (Yukimoto et al. 2012). We re-projected all climate 

grids to a common 1-km resolution grid spanning the entire Ohio River Basin. We 

calculated ensemble mean averages for both RCP 4.5 and RCP 8.5 for monthly 

air temperature and monthly precipitation in each 1-km grid cell. We performed 

all grid calculations in ESRI ArcMap 10.5 software (Environmental Systems Re-

search Institute, Redlands, CA). We then appended gridded air temperature and 

precipitation values to the NHDplus V2 stream network by superimposing the 

climate grids directly onto the digital stream network, using System for Automated 

Geoscientific Analyses Version 2.1.4 software (Institute of Geography, Physical 
Geography Section, Hamburg University, Hamburg, DE). From these air tempera-

ture and precipitation data, we calculated mean annual streamflow for every digital 
stream segment in the Ohio River Basin using the Ohio River Basin-specific linear 
regression model of Vogel et al. (1999). We then calculated mean monthly stream 

temperatures using the logistic regression model of Segura et al. (2015).

 Finally, we generated a Pearson correlation (r) matrix for all of the NHDplus 

V2, StreamCat, and derived climate variables (streamflow and stream temperatures) 
and used it to screen highly correlated covariates (|r| ≥ 0.70) from the models. We 
selected a subset of 30 covariates that were potentially relevant to freshwater fishes 
from the remaining variables and transformed them, as necessary, for normality 

(see Table 1 for the complete covariate list with definitions, units of measure, and 
transformations).

Species distribution models

 We used MaxEnt to build the SDMs because we were working solely with pres-

ence-only data (vs. presence–absence data; see Elith et al. 2006), and despite the 



Northeastern Naturalist

504

L.R.F. Hendrick and D.J. McGarvey
2019 Vol. 26, No. 3

T
a
b

le
 1

. 
Li

st
 o

f t
he

 fi
na

l 3
0 

co
va

ria
te

s 
th

at
 w

er
e 

co
ns

id
er

ed
 in

 e
ac

h 
of

 th
e 

M
ax

im
um

 E
nt

ro
py

 s
pe

ci
es

 d
is

tri
bu

tio
n 

m
od

el
s.

 E
ac

h 
co

va
ria

te
 w

as
 c

al
cu

la
te

d 
or

 
in

te
rp

o
la

te
d

 a
t 

1
 o

f 
2

 s
p

a
ti

a
l 

e
x

te
n

ts
: 

a
n

 a
v

e
ra

g
e
 v

a
lu

e
 w

it
h

in
 t

h
e
 l

o
c
a
l 

c
a
tc

h
m

e
n

t,
 o

r 
a
 d

is
c
re

te
 s

tr
e
a
m

 s
e
g

m
e
n

t.
 F

o
r 

e
a
c
h

 c
o

v
a
ri

a
te

, 
u

n
it

s 
o

f 
m

e
a
su

re
m

e
n

t,
 

d
a
ta

 t
ra

n
sf

o
rm

a
ti

o
n

s 
(i

f 
a
p

p
li

c
a
b

le
),

 a
n

d
 d

a
ta

 s
o

u
rc

e
s 

a
re

 l
is

te
d

. 
[T

a
b

le
 c

o
n

ti
n

u
e
d

 o
n

 f
o

ll
o

w
in

g
 p

a
g

e
.]

C
o

v
a
ri

a
te

 
D

e
sc

ri
p

ti
o

n
 

S
p

a
ti

a
l 

e
x

te
n

t 
U

n
it

s 
T

ra
n

sf
o

rm
a
ti

o
n

 
S

o
u

rc
e

A
re

a
 

S
u

rf
a
c
e
 a

re
a
 o

f 
c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
k

m
2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

A
v

W
e
tn

e
ss

In
d

e
x

 
M

e
a
n

 w
e
tn

e
ss

 (
c
o

m
p

o
si

te
 t

o
p

o
g

ra
p

h
ic

 i
n

d
e
x

) 
w

it
h

in
 c

a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
n

a
 

n
a
 

S
tr

e
a
m

C
a
t

B
ar

re
nL

an
d 

Pe
rc

en
t o

f c
at

ch
m

en
t c

la
ss

ifi
ed

 a
s 

ba
rr

en
 la

nd
 c

ov
er

 
C

at
ch

m
en

t 
%

 
na

 
St

re
am

C
at

B
FI

 
B

as
e 

flo
w

 in
de

x 
as

 fr
ac

tio
n 

of
 to

ta
l fl

ow
 d

ue
 to

 b
as

e 
flo

w
 

C
at

ch
m

en
t 

%
 

na
 

St
re

am
C

at

S
iO

2
 

P
e
rc

e
n

t 
li

th
o

lo
g

ic
a
l 

si
li

c
o

n
 d

io
x

id
e
 c

o
n

te
n

t 
in

 n
e
a
r-

su
rf

a
c
e
 g

e
o

lo
g

y
 

C
a
tc

h
m

e
n

t 
%

 
n

a
 

S
tr

e
a
m

C
a
t

 
  

 w
it

h
in

 c
a
tc

h
m

e
n

t

C
o

a
lM

in
e
s 

D
e
n

si
ty

 o
f 

c
o

a
l 

m
in

e
s 

w
it

h
in

 c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

C
ro

pL
an

d 
Pe

rc
en

t o
f l

oc
al

 c
at

ch
m

en
t c

la
ss

ifi
ed

 a
s 

ro
w

 c
ro

p 
la

nd
 c

ov
er

 
C

at
ch

m
en

t 
%

 
na

 
St

re
am

C
at

E
le

v
a
ti

o
n

 
M

e
a
n

 e
le

v
a
ti

o
n

 w
it

h
in

 c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
m

 
n

a
 

S
tr

e
a
m

C
a
t

F
e

2
O

3
 

P
e
rc

e
n

t 
li

th
o

lo
g

ic
a
l 

fe
rr

ic
 o

x
id

e
 c

o
n

te
n

t 
in

 n
e
a
r-

su
rf

a
c
e
 g

e
o

lo
g

y
 

C
a
tc

h
m

e
n

t 
%

 
n

a
 

S
tr

e
a
m

C
a
t

 
  

 w
it

h
in

 c
a
tc

h
m

e
n

t

F
o

re
st

L
o

ss
 

P
e
rc

e
n

t 
tr

e
e
 c

a
n

o
p

y
 c

o
v

e
r 

lo
ss

 t
h

ro
u

g
h

o
u

t 
c
a
tc

h
m

e
n

t 
a
n

d
 w

it
h

in
 

C
a
tc

h
m

e
n

t 
%

 
ln

(x
 +

 1
) 

S
tr

e
a
m

C
a
t

 
  

 1
0

0
-m

 b
u

ff
e
r 

o
f 

st
re

a
m

 c
h

a
n

n
e
l

Ja
n

u
a
ry

P
re

c
ip

 
M

e
a
n

 J
a
n

u
a
ry

 p
re

c
ip

it
a
ti

o
n

 (
1

9
6

0
-1

9
9

0
) 

S
tr

e
a
m

 
m

m
 

n
a
 

W
o

rl
d

C
li

m

Ja
n

u
a
ry

S
tr

e
a
m

T
e
m

p
 
M

e
a
n

 J
a
n

u
a
ry

 s
tr

e
a
m

 t
e
m

p
e
ra

tu
re

 (
1

9
6

0
–

1
9

9
0

) 
S

tr
e
a
m

 
°C

 
n

a
 

O
ri

g
in

a
l 

 
 

 
 

 
c
a
lc

u
la

ti
o

n

Ju
ly

S
tr

e
a
m

T
e
m

p
 

M
e
a
n

 J
u

ly
 s

tr
e
a
m

 t
e
m

p
e
ra

tu
re

 (
1

9
6

0
–

1
9

9
0

) 
S

tr
e
a
m

 
°C

 
n

a
 

O
ri

g
in

a
l 

 
 

 
 

 
c
a
lc

u
la

ti
o

n

Ju
n

e
P

re
c
ip

 
M

e
a
n

 J
u

n
e
 p

re
c
ip

it
a
ti

o
n

 (
1

9
6

0
–

1
9

9
0

) 
S

tr
e
a
m

 
m

m
 

n
a
 

W
o

rl
d

C
li

m



Northeastern Naturalist Vol. 26, No. 3
L.R.F. Hendrick and D.J. McGarvey

2019

505

T
a
b

le
 1

, 
c
o

n
ti

n
u

e
d

.

C
o

v
a
ri

a
te

 
D

e
sc

ri
p

ti
o

n
 

S
p

a
ti

a
l 

e
x

te
n

t 
U

n
it

s 
T

ra
n

sf
o

rm
a
ti

o
n

 
S

o
u

rc
e

M
in

e
s 

D
e
n

si
ty

 o
f 

m
in

e
s 

a
n

d
 m

in
e
ra

l 
p

la
n

ts
 w

it
h

in
 c

a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

N
A

B
D

 
D

e
n

si
ty

 o
f 

d
a
m

s 
w

it
h

in
 c

a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

N
it

ro
g

e
n

 
P

e
rc

e
n

t 
li

th
o

lo
g

ic
a
l 

n
it

ro
g

e
n

 c
o

n
te

n
t 

in
 n

e
a
r-

su
rf

a
c
e
 g

e
o

lo
g

y
 w

it
h

in
 

C
a
tc

h
m

e
n

t 
%

 
n

a
 

S
tr

e
a
m

C
a
t

 
  

 c
a
tc

h
m

e
n

t

N
P

D
E

S
 

D
e
n

si
ty

 o
f 

N
a
ti

o
n

a
l 

P
o

ll
u

ta
n

t 
D

is
c
h

a
rg

e
 E

li
m

in
a
ti

o
n

 S
y

st
e
m

 s
it

e
s 

C
a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

 
  

 w
it

h
in

 c
a
tc

h
m

e
n

t

O
pe

nW
at

er
 

Pe
rc

en
t o

f c
at

ch
m

en
t c

la
ss

ifi
ed

 a
s 

op
en

 w
at

er
 

C
at

ch
m

en
t 

%
 

na
 

St
re

am
C

at

O
rg

a
n

ic
M

a
tt

e
r 

P
e
rc

e
n

t 
o

rg
a
n

ic
 m

a
tt

e
r 

w
it

h
in

 c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
%

 
ln

(x
 +

 1
) 

S
tr

e
a
m

C
a
t

R
o

a
d

C
ro

ss
in

g
s 

D
e
n

si
ty

 o
f 

ro
a
d

-s
tr

e
a
m

 c
ro

ss
in

g
s 

w
it

h
in

 c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

R
o

a
d

s 
L

e
n

g
th

 o
f 

ro
a
d

s 
w

it
h

in
 c

a
tc

h
m

e
n

t 
p

e
r 

u
n

it
 s

u
rf

a
c
e
 a

re
a
 o

f 
c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
k

m
/k

m
2
 

n
a
 

S
tr

e
a
m

C
a
t

R
u

n
o

ff
 

E
st

im
a
te

d
 r

u
n

o
ff

 w
it

h
 c

a
tc

h
m

e
n

t 
(1

9
7

1
–

2
0

0
0

) 
C

a
tc

h
m

e
n

t 
m

m
 

n
a
 

S
tr

e
a
m

C
a
t

S
a
n

d
 

P
e
rc

e
n

t 
sa

n
d

 i
n

 n
e
a
r-

su
rf

a
c
e
 g

e
o

lo
g

y
 w

it
h

in
 c

a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
%

 
n

a
 

S
tr

e
a
m

C
a
t

S
lo

p
e
 

S
lo

p
e
 o

f 
st

re
a
m

 c
h

a
n

n
e
l 

S
tr

e
a
m

 
m

/m
 

ln
 

N
H

D
p

lu
s 

v
2

S
tr

e
a
m

O
rd

e
r 

S
tr

a
h

le
r 

st
re

a
m

 o
rd

e
r 

S
tr

e
a
m

 
n

a
 

n
a
 

N
H

D
p

lu
s 

v
2

St
re

am
flo

w
 

M
ea

n 
an

nu
al

 s
tre

am
flo

w
 

St
re

am
 

m
3
/s

 
ln

(x
 +

 1
) 

O
ri

g
in

a
l 

 
 

 
 

 
c
a
lc

u
la

ti
o

n

S
u

p
e
rf

u
n

d
 

D
e
n

si
ty

 o
f 

S
u

p
e
rf

u
n

d
 s

it
e
s 

w
it

h
in

 c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

T
R

I 
D

e
n

si
ty

 o
f 

T
o

x
ic

 R
e
le

a
se

 I
n

v
e
n

to
ry

 s
it

e
s 

w
it

h
in

 c
a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
N

u
m

b
e
r/

k
m

2
 

ln
(x

 +
 1

) 
S

tr
e
a
m

C
a
t

W
a
te

rT
a
b

le
D

e
p

th
 

M
e
a
n

 w
a
te

r 
ta

b
le

 d
e
p

th
 w

it
h

in
 c

a
tc

h
m

e
n

t 
C

a
tc

h
m

e
n

t 
c
m

 
n

a
 

S
tr

e
a
m

C
a
t



Northeastern Naturalist

506

L.R.F. Hendrick and D.J. McGarvey
2019 Vol. 26, No. 3

recent recognition that MaxEnt is only one of several methods to build point-pro-

cess models (Renner et al. 2015), it remains among the most flexible and accessible 
software tools for doing so. Briefly, our modeling process was as follows. We used 
historical species occurrence and environmental covariate data to build a MaxEnt 

model for each of the 9 selected fishes. We created a background sample for each 
species by randomly selecting 20% of the complete landscape (i.e., 20% of all 

NHDplus V2 stream segments within the Ohio River Basin). To ease interpretation 

of individual covariate effects, we constrained the MaxEnt models to simple hinge 

and quadratic features (see Elith et al. 2011). We ran MaxEnt with a maximum of 

10,000 background points, 500 iterations, and a convergence threshold of 0.00001.

 For model development, we used prior knowledge of species’ autecology and 

standard MaxEnt diagnostics to evaluate the 30 potential covariates and then se-

lected a subset of covariates (n ≤ 9; Moreno-Amat et al. 2015) that were the most 
effective predictors of a given species’ occurrence (Fourcade et al. 2017, Petitpierre 

et al. 2016). Covariate evaluation was an iterative process that included standard 

MaxEnt percent contribution and permutation importance summary tables for indi-

vidual covariates as well as covariate jackknife plots (Phillips 2017).

 We used MaxEnt regularized training gain as an index of model fit. Regularized 
training gain is a measure of the distance between a multivariate distribution of co-

variates at randomly selected background sites (i.e., a random sample of the entire 

landscape that a species could potentially inhabit) and a corresponding distribution 

of covariates at sites of known species occurrences (Elith et al. 2011). Hence, a 

large training gain indicates an affinity for a narrow range of environmental condi-
tions, relative to the broader landscape, while a small training gain suggests a lack 

of specialized habitat requirements (i.e., the distribution of covariates at occur-
rence sites mirrors the background distribution; Merow et al. 2013). We also used 

the exponential transformation of the MaxEnt regularized training gain for each 
SDM to aid in model evaluation. The exponential of the regularized training gain 
is the ratio of habitat suitability between sites of known occurrence and randomly 

selected background sites (Phillips 2017). Exponential values much larger than 

1 are indicative of species with specialized habitat requirements; because these 
specialist species occupy a narrow range of habitats relative to the complete range 

of available habitats, SDMs can more efficiently discriminate between suitable and 
unsuitable habitat.

 Notably, we did not use the replication features of MaxEnt (cross-validation, 

bootstrapping, or single-split subsampling; see Phillips 2017) to assess model 

generality. Our goal was only to model potential habitat suitability throughout the 

study landscape, not to predict the probability of presence at any given locality. 

Thus, we did not seek to estimate omission and commission error rates. Our study 

was designed to characterize a potential threat to freshwater fishes within a unique 
and highly context-specific scenario: upstream movement towards MTR sites in 
West Virginia. Transferability to other regions, where environmental conditions and 

MTR activity are almost certain to be different, was not an objective in our model-

building exercises.
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 Once we had specified a final MaxEnt model for each fish species in the final 
subset, we projected habitat suitability to a midcentury time horizon (2041–2060) 
under the RCP 4.5 and RCP 8.5 climate change scenarios. We obtained the projec-

tions by substituting future values of the climate-driven covariates (streamflow, 
stream temperature, and precipitation) for the historical values used to build and 

parameterize each model. Then, by comparing aggregate distributions of MaxEnt 
raw output values among historical and future landscapes, we were able to estimate 

potential shifts in habitat suitability for each fish species.
 Finally, we used a spatial querying process to identify stream segments that are 

likely to be impacted by MTR operations in the state of West Virginia. We began 

with a digital map of all active MTR permit boundaries from the West Virginia De-

partment of Environmental Protection (http://tagis.dep.wv.gov/home/Downloads; 

downloaded on 24 October 2017). We built a 10-km–radius buffer around each of 

the MTR sites in ArcMap. The 10-km buffer provided an estimate of the potential 

spatial footprint of MTR effects on local aquatic ecosystems; in several instances, 

significant effects of MTR on aquatic biota have been documented at downstream 
distances >10 km (e.g., Bernhardt et al. 2012, Lindberg et al. 2011, Pond et al. 

2008). By using the MTR buffer to query potentially impacted stream reaches from 

the complete river network, we were able to test the hypothesis that climate change 

is likely to increase exposure of West Virginian fishes to MTR. 
 We used the nonparametric one-sided Mann–Whitney U test to make com-

parisons between historical and future SDM projections (Woods and McGarvey 

2018). This test compared the distribution of ranks between 2 unpaired datasets. 

The datasets were combined and each value was ranked from smallest to larg-

est. We calculated the average ranks of the members of each group from this rank 

distribution; a large difference between the groups’ mean ranks suggested the 

distributions were distinct. Future changes in habitat suitability were also ex-

pressed as percentages, relative to historical suitability, according to the formula: 

% change = (future median raw score - historical median raw score) ÷ historical 

median raw score × 100.

Results

Species selection

 Following functional trait analyses, we selected a representative subset of 9 

non-game fish species from the families Catostomidae, Cottidae, Cyprinidae, and 
Percidae (Table 2). These 4 families constitute the majority of native fish diversity 
in West Virginia (Stauffer et al. 1995), and an abundance of occurrence records was 

available for species in each family (Frimpong et al. 2016). Within families, we 

selected species in proportion to the overall richness of the respective family. For 

instance, we selected 4 from Cyprinidae, the most diverse family, but only 2 species 

from the less diverse Catostomidae. In general, the 9 selected species spanned the 

overall extent of the 2-dimensional trait-space represented by the native West Vir-

ginian fishes. We excluded from the representative subset only the largest fishes that 
reside in large, mainstem tributaries of the Ohio River (e.g., Aplodinotus grunniens 
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Rafinesque [Freshwater Drum]) or that prefer slow-flowing, lentic habitats in deep 
rivers and pools (e.g., Notropis wickliffi Trautman [Channel Shiner]) (Fig. 2).

MaxEnt models

 Regularized training gain varied from 0.510 to 1.613 among the final SDMs. 
Though variable, the final covariate lists included in each of the models exhibited 

Table 2. Summary information on the fit and structure of the Maximum Entropy (MaxEnt) species dis-

tribution models. For each species, the number of occurrence records (n) used to build the model and 

the MaxEnt regularized training gain (rtg) are shown with the exponential of the rtg in parentheses. 
MaxEnt % contribution and permutation importance diagnostics are also shown for each covariate that 

was retained in a species’ final model. [Table continued on following page.]

  % Permutation

Species Covariate  contribution importance

Catostomidae   

Catostomus commersonii (Lacépède) (White Sucker)

n = 2478 Catchment area 41.8 55.7

rtg = 0.614 (1.848) Mean annual streamflow 24.4 11.8
 Mean June precipitation 11.7 11.1

 Catchment runoff 7.6 6.8

 Catchment road crossings 4.4 0.5

 Catchment BFI 4.2 2.3

 Catchment elevation 4.1 8.5

 Stream order 1.7 3.4

Hypentelium nigricans (Lesueur) (Northern Hogsucker)

n = 2716 Catchment area 47.7 52.5

rtg = 0.565 (1.759) Mean annual streamflow 31.6 27.6
 Catchment elevation 9.6 11.1

 Mean June precipitation 3.1 3.3

 Catchment road crossings 2.9 1.2

 Catchment BFI 2.7 2.1

 Catchment water table depth 2.3 2.3

Cottidae   

Cottus bairdii Girard (Mottled Sculpin)

n = 893 Catchment BFI 18.0 6.7

rtg = 1.166 (3.209) Catchment area 17.0 28.1

 Catchment elevation 16.7 25.3

 Catchment runoff 13.6 20.9

 Mean annual streamflow 13.5 10.3
 Catchment sand 9.0 4.7

 Catchment road crossings 6.5 0.6

 Mean June precipitation 5.7 3.3

Cyprinidae   

Campostoma anomalum (Rafinesque) (Central Stoneroller)
n = 3156 Catchment area 42.1 46.6

rtg = 0.540 (1.716) Mean annual streamflow 34.7 31.7
 Mean June precipitation 5.5 8.3

 Catchment elevation 5.2 7.1

 Catchment runoff 4.8 3.0

 Catchment road crossings 3.8 0.6

 Catchment BFI 2.3 1.1

 Catchment Fe2O3 1.4 1.5
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Table 2, continued.

  % Permutation

Species Covariate  contribution importance

Notropis buccatus (Cope) (Silverjaw Minnow)

n = 1892 Catchment runoff 28.4 7.1

rtg = 0.869 (2.385) Mean annual streamflow 22.2 50.4
 Catchment area 21.4 5.9

 Catchment road crossings 8.1 1.2

 Catchment BFI 4.8 5.1

 Stream order 3.9 6.5

 Catchment open water 3.9 0.1

 Mean June precipitation 3.8 9.4

 Mean January precipitation 3.4 14.4

Luxilus chrysocephalus Rafinesque (Striped Shiner) 
n = 460 Mean annual streamflow 42.4 36.3
rtg = 1.613 (5.018) Mean January precipitation 24.3 33.3

 Catchment area 8.6 6.4

 Catchment wetness index 7.9 2.8

 Catchment organic matter 5.9 6.1

 Catchment BFI 4.6 10.3

 Catchment runoff 4.4 2.4

 Catchment elevation 1.9 2.3

Semotilus atromaculatus (Mitchill) (Creek Chub)

n = 3146 Catchment area 48.9 69.8

rtg = 0.510 (1.665) Mean annual streamflow 31.8 13.8
 Catchment road crossings 7.0 1.1

 Mean June precipitation 5.0 5.3

 Catchment runoff 3.8 3.4

 Stream order 2.2 4.9

 Catchment elevation 1.3 1.7

Percidae   

Etheostoma blennioides Rafinesque (Greenside Darter)
n = 2617 Catchment area 47.4 49.3

rtg = 0.597 (1.817) Mean annual streamflow 30.8 27.1
 Catchment elevation 11.1 15.6

 Catchment open water 3.2 0.2

 Catchment runoff 3.1 4.5

 Catchment road crossings 2.6 0.3

 Mean January precipitation 1.8 2.9

Etheostoma caeruleum Storer (Rainbow Darter)

n = 2365 Catchment area 42.8 43.2

rtg = 0.625 (1.868) Mean annual streamflow 25.3 19.1
 Catchment elevation 16.9 22.3

 Mean January precipitation 5.4 7.3

 Catchment road crossings 4.9 0.2

 Catchment runoff 4.7 7.9

some clear commonalities. Catchment area (percent contribution = 41.8–48.9%) 

and mean annual streamflow (percent contribution = 22.2–42.4%) were the 2 
most important predictors of suitability in 6 of 9 models, and both variables were 
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included in each of the final models (Table 2). Mean January or mean June precipi-
tation was also included in all final models. Notably, stream temperature was not a 
strong predictor of suitability for any species and was thus excluded from all mod-

els. Complete MaxEnt results for each of the 9 modeled species, including sample 

sizes, model fit diagnostics, and indices of importance for individual covariates are 
shown in Table 2.

 Interestingly, we found that the importance of some covariates tended to be pre-

served among species within a shared taxonomic affinity. For example, suitability 
was positively associated with catchment area and inversely related to streamflow 
for both Etheostoma blennioides (Greenside Darter) and Etheostoma caeruleum 

(Rainbow Darter). However, the shapes of the MaxEnt response curves for a given 

covariate were variable. For instance, habitat suitability was negatively associ-

ated with runoff of ~350–900 mm for the Rainbow Darter, but the runoff-response 

curve was bimodal with peaks at ~325 mm and ~900 mm for the Greenside Darter. 

We identified similar family-level responses to catchment area and streamflow 
among Catostomidae species and the Cyprinidae species, with the exception of 

Luxilus chrysocephalus Rafinesque (Striped Shiner), for which habitat suitability 
was positively associated with streamflow of ~0.1–3.4 m3/s but declined at higher 

streamflow. Predicted suitability among the Cyprinids generally shared a negative 
association with June precipitation in the range of ~80–140 mm/y and with runoff 

of ~325–675 mm/y, with the Striped Shiner again standing out as the exception; 

June precipitation did not have a strong influence on Striped Shiner habitat suit-
ability, but runoff of ~500–625 mm/y did. Individual covariate response curves 

are provided in the MaxEntReport html file for each species, available on Figshare 
(DOI:10.6084/m9.figshare.6106682).

Predicted habitat suitability

 Under the RCP 4.5 climate scenario, significant increases (Mann–Whitney: P < 

0.001) in habitat suitability were predicted within the MTR buffer for the 2 dart-

ers (Etheostoma), but none of the remaining species (Fig. 3). Under the RCP 8.5 

scenario, however, habitat suitability was predicted to significantly increase within 
the MTR buffer for 8 of 9 species. Percent increases in median habitat suitability 

under the RCP 8.5 scenario varied from 46% to 418%, relative to the historical 

habitat suitability values, with a grand median increase of 125% (Fig. 3). Only 

Notropis buccatus (Silverjaw Minnow) was predicted to experience a decrease 

in habitat suitability within the MTR buffer. Maps of MaxEnt raw scores for the 

Striped Shiner within the MTR buffer under the historical, RCP 4.5, and RCP 8.5 

scenarios are shown in Figure 4. Summary distributions of all MaxEnt habitat suit-

ability predictions are illustrated in Figure 3.

Discussion

Climate-change effects: hydrology vs temperature

 Using MaxEnt SDMs for 9 representative species, we tested the hypothesis that 

climate change is likely to drive directional, upslope shifts in habitat suitability for 
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Figure 3. Boxplots of the distributions of MaxEnt raw scores. Box elements are standard 

percentiles (see key). For each species, the distributions of raw scores across the Ohio River 

Basin (ORB and within the mountaintop removal buffer (MTR) are shown for historical 

data as well as the RCP 4.5 and RCP 8.5 midcentury climate-change scenarios. Percent 

differences in median MaxEnt raw scores, comparing historical averages with future RCP 

4.5 and RCP 8.5 averages, are shown for ORB and MTR data at right of each box. Mann-

Whitney test P-values (paired sample tests using individual stream segments as replicates) 

comparing historical MaxEnt raw scores with future projections are also shown in paren-

theses for the RCP 4.5 and RCP 8.5 results within the MTR buffer.
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Figure 4. Maps of MaxEnt 

raw scores for the Striped 

Shiner within the MTR buf-

fer under the (a) historical, 

(b) RCP 4.5, and (c) RCP. 8.5 

scenarios. Maximum suit-

ability scores are shown in 

blue and minimum suitabil-

ity scores are shown in red.
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West Virginian freshwater fishes, thereby placing the best habitats in close proxim-

ity to MTR operations. In many instances, our results supported this hypothesis, but 

the support was conditional, varying among species and climate-change scenarios. 

Furthermore, we were surprised by the factors that ultimately drove the shifts in 

habitat suitability. Ambient temperature is a fundamental regulator of niche space 

for ectotherms (Coulter et al. 2014, Deutsch et al. 2008); thus, we expected stream 

temperature to be a key predictor of fish habitat suitability. This was not the case, 
however, and stream temperature was not included in any of the final models (see 
Table 2).

 The apparent lack of a strong temperature effect may indicate that the modeled 

species have relatively broad thermal tolerances. At historical occurrence sites, the 

widest ranges of winter and summer stream temperature values for a given species 

(i.e., stream temperature ranges among all sites of known presence) spanned 2.74 

°C for Semotilus atromaculatus (Creek Chub) (min. = 0.38 °C, max. = 3.12 °C) and 

6.24 °C for the Silverjaw Minnow (min. = 22.72 °C, max. = 28.96 °C), respectively. 

Conversely, the narrowest ranges of historical winter and summer stream tempera-

tures for a given species spanned 2.62 °C for the Striped Shiner (min. = 0.40 °C, 

max. = 3.02 °C) and 5.53° C for Cottus bairdii (Mottled Sculpin) (min. = 23.36 ° C; 

max. = 28.89 °C), respectively. In all cases, species’ historical winter and summer 

temperature ranges encompassed a large fraction of the historical temperature range 

across the entire Ohio River Basin; historical winter and summer stream tempera-

tures spanned 2.76 °C (min. = 0.36 °C, max. = 3.12 °C) and 6.32 °C (min. = 22.69 

°C, max. = 29.01 °C), respectively.

 Together, these observations suggest that each of the 9 modeled fishes would be 
physiologically capable of occupying most or all of the streams in the Ohio River 

Basin, if mean winter or summer stream temperature were the sole determinant 

of habitat suitability. The fact that documented occurrences of each of the mod-

eled species were limited to a subset of streams within the Ohio Basin suggests 

that factors other than stream temperature are fundamental in regulating fish spe-

cies’ presences. With specific reference to MaxEnt, the fact that historical sample 
temperatures exhibit so much overlap with the background temperatures indicates 

that mean winter and summer stream temperatures may not be useful for discrimi-

nating between suitable and unsuitable fish habitat. 
 Instead, species’ responses to climate change were driven primarily by hydrol-

ogy. In each model, hydrologic variables were among the best predictors of fish 
occurrence (Table 2). For example, mean annual streamflow was included in every 
model, and in 8 of 9 cases, it was the first or second most-influential covariate when 
ranked by MaxEnt percent contribution statistics (13.5–42.4%). Other covariates 

that represent hydrology or a dimension of the hydrologic cycle included sum-

mer and winter precipitation (one of which was included in every model), runoff 

(included in 8 of 9 models), and the baseflow index (included in 6 models). Impor-
tantly, these different hydrology covariates did not provide redundant information. 

When calculated across the entire Ohio River Basin, Pearson correlation coeffi-

cients among these covariates never exceeded the collinearity threshold of |r| > 0.70 
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and in several instances were much lower. For instance, correlations between mean 

annual streamflow and January precipitation and between streamflow and June 
precipitation were r < 0.01 and r = -0.40, respectively. Furthermore, January and 

June precipitation were not highly correlated (r = 0.35). Thus, we concluded that 

the various hydrologic covariates (streamflow, precipitation, runoff, baseflow in-

dex) represented different dimensions of the hydrologic cycle and were therefore 

appropriate for inclusion in the same models. 

 In retrospect, the strong effect of hydrology was not surprising, given that 

hydrology is widely regarded as a master variable in lotic ecosystems (Poff et al. 

1997). Streamflow is a dynamic integration of many physical processes occurring 
across the landscape. Though it is clearly a function of precipitation, streamflow is 
also influenced by the geologic and antecedent factors that regulate surface runoff, 
soil water, and groundwater dynamics (Poff et al. 1997). In this way, streamflow 
becomes an efficient indicator of many different yet interrelated influences on 
aquatic habitat (McGarvey and Terra 2016). Effects of these hydrologic influences 
include direct, individual-level physiological and behavioral mechanisms (Mims 

and Olden 2011, Poff and Allan 1995, Poff et al. 1997) as well as emergent patterns 

in species’ distributions and overall richness (McGarvey 2014, Power et al. 1995, 

Wenger et al. 2011). We therefore believe it is logical that streamflow, rather than 
stream temperature, proved to be a primary determinant of habitat suitability in the 

fish models.
 It should be noted that our hydrologic variables did not account for potential 

effects of MTR on streamflow (Evans et al. 2015). Disruptive effects of MTR on 

local flow include large-scale deforestation and the resulting decreases in evapo-

transpiration and groundwater recharge, as well as increased surface runoff via 

soil compaction from heavy machinery operation (Griffith et al. 2012). These al-

terations may lead to elevated peak-flow conditions downstream from MTR sites 

(Nippgen et al. 2017, Wiley et al. 2001), but observed downstream effects have 

so far been variable across spatial and temporal scales (Evans et al. 2015, Ross 

et al. 2016, Zegre et al. 2014). Due to this variability, it is difficult to predict if 

or how climate-driven changes in hydrology may simultaneously be affected by 

MTR, but it is plausible that future hydrology in the immediate vicinity of MTR 

sites may deviate from our predicted conditions, with unknown effects on fish 

habitat suitability.

Differential responses to climate change

 Of the 9 modeled species, the 2 Etheostoma spp. may be the most likely to shift 

their ranges upstream in response to climate change. The Greenside Darter and 

Rainbow Darter were the only species predicted to experience significant increases 
in habitat suitability within the MTR buffer under both climate change scenarios 

(Fig. 3). For all other species, significant increases in habitat suitability were lim-

ited to the RCP 8.5 scenario. This responsiveness to both scenarios was driven by 

the strong influence of January precipitation on darter habitat suitability. Increas-

ing levels of January precipitation within the MTR buffer were evident among the 
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historical (mean = 83.8 mm; sd = 6.3 mm), RCP 4.5 (mean = 92.9; sd = 7.3), and 

RCP 8.5 (mean = 99.2; sd = 8.3) datasets. Predicted suitability for both Etheostoma 

spp. was, in turn, positively associated with January precipitation, particularly with 

totals of ~40–100 mm/month. Should January precipitation exceed 100 mm/month, 

however, habitat suitability is likely to decrease (see MaxEnt response-curve plots 

in the MaxEntReport html file for each species, available on Figshare; DOI:10.6084/
m9.figshare.6106682.) We therefore suggest that the projected moderate to large in-

creases in winter precipitation are likely to make habitat in high-elevation streams 

in West Virginia more suitable for Greenside Darter and Rainbow Darter.

 Currently, we do not know what specific mechanism might link winter precipita-

tion to Etheostoma habitat. Both darters in this study lack air bladders and reside 

in benthic, riffle habitats, often sheltering from fast currents behind large rocks or 
woody debris (Fahy 1954, Harding et al. 1998). This tendency to avoid suspension 

in fast water is consistent with our observation that Etheostoma habitat suitability 

decreased with increasing mean annual streamflow (each species’ response curve 
for streamflow is available in the respective MaxEntReport, available, as above, on 
Figshare; DOI:10.6084/m9.figshare.6106682). This result seems counterintuitive, 
in light of the seeming preference for higher winter precipitation, which should 

increase mean annual streamflow. One parsimonious explanation is that pulses in 
winter flow may prevent coarse riffle substrates from becoming embedded with 
fine sediments, thereby maintaining the critical physical habitats that Etheostoma 

darters utilize year-round. This dynamic was documented for a Greenside Darter 
population in the Grand River, ON, Canada (Bunt et al. 1998) and, if it is similarly 

applicable in streams in West Virginia, it is cause for heightened concern because 

increased fines and sedimentation are common byproducts of MTR (Griffith et al. 
2012, Nelson et al. 1991). 

 January precipitation and mean annual streamflow were also key predictors of 
habitat suitability for the Striped Shiner. However, the effect of streamflow differed 
from the effect on habitat of Etheostoma spp. Striped Shiner habitat suitability in-

creased rapidly with increasing streamflow (see MaxEntReport on Figshare), rather 
than decreasing from a low modal streamflow value as it did for Etheostoma spp. 

This finding accounts for the dramatic increase in Striped Shiner habitat suitability 
under RCP 8.5 (Fig. 3); a large increase in mean annual streamflow is expected 
within the MTR buffer under RCP 8.5 (mean = 0.18 m3/s; sd = 0.51 m3/s; streamflow 
values are transformed (ln[x+1]), relative to historical streamflow (mean = 0.06; sd 
= 0.22). However, a comparable increase in streamflow is not expected under RCP 
4.5 (mean = 0.06; sd = 0.24). Thus, a significant increase in Striped Shiner habitat 
suitability was not predicted for RCP 4.5 (Fig. 3).

 Predicted increases in habitat suitability for 2 of the remaining species of Cy-

prinidae, the Creek Chub and Campostoma anomalum (Central Stoneroller), as 

well as all species of Catostomidae and Cottidae, were also driven mean annual 

streamflow. For each species, maximum habitat suitability occurred at a relatively 

low streamflow value, then decreased to a stable, asymptotic level with increas-

ing streamflow (see streamflow response curves in MaxEntReports on Figshare; 
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DOI:10.6084/m9.figshare.6106682).For example, habitat suitability for the 

Creek Chub peaked at a mean annual streamflow value of ~0.02 (in natural log 

transformed units) then rapidly decreased at higher streamflows. In these cases, 

the most suitable streamflow values were similar to the average streamflow val-

ues predicted within the MTR buffer for RCP 8.5 (median streamflow = 0.012 in 

natural log units), but not for RCP 4.5 (median streamflow = 0.002). Thus, sig-

nificant increases in habitat suitability within the MTR buffer were limited to the 

RCP 8.5 scenario.

 Decreasing habitat suitability within the MTR buffer was predicted only for the 

Silverjaw Minnow (Fig. 3) and was due to the strong, negative associations that 

mean annual streamflow and precipitation had with habitat suitability. For each 
of these covariates, suitability peaked at a low value then rapidly decreased (see 

response curves on Figshare). These modeling observations are consistent with 

field studies that showed the Silverjaw Minnow is often abundant in small streams 
but highly sensitive to periods of low-flow drought and to high-flow events (Toth 
et al. 1982, Wallace 1972). In theory, the decreasing suitability of stream habitat 

within the MTR buffer might serve to protect the Silverjaw Minnow; this species 

is unlikely to be impacted by MTR if it does not inhabit streams near MTR opera-

tions. Unfortunately, the Silverjaw Minnow will experience no net benefit if the 
availability of small streams that it has historically occupied is greatly diminished 

by climate change.

Are the model predictions cause for concern?

 Our results suggest that, in a warming climate, habitat suitability for 8 of the 

9 modeled species is likely to increase in high-elevation streams near MTR op-

erations. However, we cannot prove that any of our predicted changes in habitat 

suitability will come to pass, or that the study species will in fact migrate to streams 

within the MTR buffer. We therefore conclude with some general thoughts on the 

relevance of our modeling process and findings.
 First, we emphasize that the RCP 4.5 and 8.5 climate change scenarios, though 
heuristic in nature, are broadly recognized by the scientific community as valid and 
entirely plausible. Indeed, Smith et al. (2011) have shown that global warming of 

2 °C beyond pre-industrial levels may be achieved as early as 2030 and that 4 °C 

warming may occur as soon as 2060. Similarly, Betts et al. (2011) estimate global 

mean temperature will increase by 4 °C above pre-industrial levels between 2060 

and 2070. Others propose global mean temperature is highly likely to exceed the 

benchmark of 2 °C by 2030, citing a likely temperature increase of from 2 °C to 

4.9 °C by 2100 (Raftery et al. 2016). Collectively, these reports show, despite un-

certainty, that the range of outcomes bracketed by the RCP 4.5 and RCP 8.5 climate 

scenarios are plausible and could be reached by midcentury.

 Second, there are relatively few migration barriers in the rivers and streams 

of West Virginia that would categorially prevent fishes from migrating to higher 

elevations near MTR sites. Numerous lock-and-dam structures that may constrain 

movement and reduce population connectivity exist along the mainstem Ohio, 
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Kanawha, and Monongahela rivers in West Virginia, but these structures are at 

least semi-permeable to fish movement (Argentina et al. 2018). In general, the 

number of large, impassible dams on westward-flowing Ohio River tributaries 

is modest in comparison to other eastern US states (USACE 2016). Using a GIS, 

we performed a manual search for large, impassible dams that would prevent 

upstream fish movement and identified 10: Hawks Nest (inclusive of all upstream 

dams on the mainstem New River and Kanawha Falls, ~5 km downstream of 

Hawks Nest Dam), Summersville, Sutton, Taylor Fork, Shannonpin Mine, Cheat 

Lake, Tygart, R.D. Bailey, Upper Mud River No. 2A, and East Lynn. The total 

length of stream channel that was upstream of any of these barriers and within the 

MTR buffer was 1445 km, or ~9% of the 15,732 km of total stream channel within 

the buffer.

 Less-conspicuous barriers could also constrain future fish movement. For 

instance, road crossings and culverts often impede fish movement (Januchowski-

Hartley et al. 2013, Warren and Pardew 1998). This barrier is a point of concern 

because the density of road crossings was a good predictor of fish occurrence, 

and therefore selected as a final predictor variable, for 8 of the 9 modeled spe-

cies (Table 2). Currently, we do not have comprehensive data that could be used 

to incorporate road crossings into our analyses in a spatially explicit manner, but 

we do note that most of the fishes in this study have broad ranges that historically 

include some mid- to high-elevation streams. Thus, it is likely that even in a land-

scape that is highly fragmented by road crossings, some potential colonists are al-

ready present near the MTR buffer sites and therefore capable of moving to them 

in a changing climate.

 Finally, we submit that our specific results should be broadly representative of 
the native stream ichthyofauna of West Virginia. Functional-trait analysis indicated 

that the selected model species covered much of the functional trait space encom-

passed by all Ohio River Basin fishes of West Virginia (Fig. 2). Furthermore, the 4 
families represented by our selected subset—Catostomidae, Cottidae, Cyprinidae, 

and Percidae—include 114 non-game fish species and represent 65% of all native 
fishes in West Virginia (Stauffer et al. 1995). As noted above, the model-predicted 
shifts in high-elevation habitat suitability were generally positive (i.e., increasing 

suitability) for 8 of 9 species. Thus, we believe it is logical to predict that habitat 

suitability for many of the remaining fishes will respond in a similar manner.
 Although we did not model MTR effects on fishes per se, we posit that the 
predicted tendency for habitat suitability to increase near MTR sites is, of itself, 

legitimate cause for concern. The most acute, negative effect of MTR on freshwa-

ter fishes will be direct habitat loss as MTR overburden is dumped as valley-fill, 
effectively eliminating headwater streams. Further downstream, chemical contami-

nants will accumulate through leaching and as coal is washed to lower its sulfur 

content. Toxicants from MTR are known to cause infertility (Palmer et al. 2010), 

teratogenic deformities (Palmer et al. 2010), and death among individual fishes 
(Ferreri et al. 2004), as well as population- and assemblage-level declines in fish 
abundance and diversity (Ferreri et al. 2004, Hitt and Chambers 2014). In southern 
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West Virginia, more than 750 km of high-elevation streams have already been 

buried by MTR waste, and chronic effects of MTR are now impacting 2800–4300 

km of additional stream habitat (Bernhardt et al. 2012). Thus, we conclude that the 

combined effects of climate change and MTR are likely to pose very real and sig-

nificant threats to many of West Virginia’s native freshwater fishes by midcentury.
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