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Climate Change and Mountaintop-Removal Mining:
A MaxEnt Assessment of the Potential Threat to West
Virginian Fishes

Lindsey R.F. Hendrick"" and Daniel J. McGarvey'

Abstract - Accounts of species’ range shifts in response to climate change are rapidly ac-
cumulating. These range shifts are often attributed to species tracking their thermal niches
as temperatures in their native ranges increase. Our objective was to estimate the degree to
which shifts in water temperature driven by climate change may increase the exposure of
West Virginia’s native freshwater fishes to mountaintop-removal surface coal mining. We
projected midcentury shifts in habitat suitability for 9 non-game West Virginian fishes via
maximum entropy species distribution modeling, using a combination of physical habitat,
historical climate conditions, and future climate data. Modeling projections for a high-emis-
sions scenario (Representative Concentration Pathway 8.5) predict that habitat suitability
will increase in high-elevation streams near mountaintop mining sites for 8 of 9 species,
with increases in habitat suitability varying from 46% to 418%. We conclude that many
West Virginian fishes will be at risk of increased exposure to mountaintop mining if climate
change continues at a rapid pace.

Introduction

Quantifying and predicting species’ responses to climate change is currently
a high-priority research topic in biogeographical and conservation science (e.g.,
Angert et al. 2011, Lin et al. 2017, Pecl et al. 2017). In the Northern Hemisphere,
species are responding by shifting their ranges to the north or to higher elevations
(e.g., Chen et al. 2011, Chivers et al. 2017, Comte and Grenouillet 2013). These
latitudinal and elevational range shifts may be a result of species tracking their ther-
mal preferences as temperatures in their historical, native ranges increase (Comte
et al. 2013, Freeman and Class Freeman 2014, Parmesan 2006). If so, range shifts
should be most likely for vagile species that are physically capable of long-distance
movements and for ectothermic species that have narrow thermal tolerances (Calosi
et al. 2008, Deutsch et al. 2008).

Freshwater fishes of the Central Appalachian region in eastern North America
may be particularly likely to shift to higher elevations in response to a warming
climate. Like most primary freshwater fishes, they are obligate ectotherms that
may encounter stressful or lethal conditions as ambient temperatures increase (see
Farrell 2011). Furthermore, most major rivers in this region flow westward off of
the Appalachian range to the Ohio River, which is also a predominantly westward
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flowing river that originates at the confluence of the Alleghany and Monongahela
rivers, near Pittsburgh, PA (~42°N latitude), or they flow east to the Atlantic Ocean.
Thus, the topography and elevation of the Appalachian range may provide opportu-
nities for freshwater fishes to shift their ranges upslope, while latitudinal shifts that
extend far north will not be feasible for many populations.

Unfortunately, fishes that shift to higher elevations in central Appalachia may be
at risk of encountering another threat: increased exposure to mountaintop-removal
(MTR) surface coal mining. Mountaintop-removal mining is pervasive throughout
central Appalachia (Ferreri et al. 2004) and is particularly common in the state of
West Virginia (Fig. 1). Damages to aquatic biota may occur through acute loss of
headwater streams (via burial by valley fill) or chronic degradation of water quality
and instream habitat further downstream (Bernhardt et al. 2012). Empirical reports
of MTR impacts on native fishes take on various forms from the individual-level
toxic effects of selenium, a common byproduct of MTR that causes teratogenic
deformities (Lemly 1993, Palmer et al. 2010), to assemblage-level effects includ-
ing decreased species richness and lower population densities (Hitt and Chambers
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Figure 1. Map of the study site showing the Ohio River Basin (ORB; light gray), the state
of West Virginia (outline), and the active mountaintop-removal (MTR; black) mining sites
within West Virginia.
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2014). Habitat models also suggest that MTR may have a negative effect on fish
distributions, pushing them further downstream (Hopkins and Roush 2013).

In this study, we used maximum entropy (MaxEnt; Phillips et al. 2006) spe-
cies distribution models (SDMs) to assess whether climate change and MTR may
pose an interactive threat to the native fishes of West Virginia. This was a 2-stage
process in which we first used physical habitat and historical climate data to build
SDMs for a subset of the native fishes of West Virginia. We then predicted future
habitat suitability under 2 midcentury climate-change scenarios. For each species
and future climate scenario, we assessed changes in habitat suitability for streams
in close proximity to MTR operations. However, our intent was not to model the ef-
fects of MTR on West Virginian fishes per se. Instead, we characterized the degree
to which climate change may increase fish exposure to MTR via warming-induced
upslope range shifts. Our analyses focused on a representative subset of non-game
species. Other investigators have studied climate change and MTR effects on West
Virginian game fishes, such as Salvelinus fontinalis (Mitchill) (Brook Trout; e.g.,
Ries and Perry 1995), but little is known about the potential consequences for the
region’s diverse non-game fishes.

Specific research objectives were to (1) build SDMs for a select subset of non-
game fish species that are broadly representative of the native ichthyofauna of West
Virginia, (2) predict changes in habitat suitability under 2 midcentury climate sce-
narios, and (3) use the projected habitat suitability maps to identify species that are
likely to migrate to higher elevations, thereby increasing their exposure to MTR.

Methods

Fish species selection and occurrence data

We selected 9 non-game species for inclusion in our modeling study from the
176 documented native West Virginian fishes (Stauffer et al. 1995). Selection was
guided by an iterative process. First, we removed species from the candidate list
that did not have at least 200 occurrence records within the Ohio River Basin.
We then sought to ensure that the selected species would be broadly representa-
tive of the autecological characteristics of all native West Virginian fishes in the
Ohio River Basin (i.e., westward flowing rivers). To do so, we used a multivariate
species-traits approach. We obtained species-level descriptions for 13 functional
traits through an extensive literature review, as detailed in Woods and McGarvey
(2018), then compiled them in a species x trait matrix. Traits included multiple
indicators of body size (e.g., maximum total length, female length at maturation,
mean egg diameter), maximum longevity, degree of parental care, adult habitat,
vertical water-column position, adult feeding behavior, egg-deposition strategy,
spawning season, and migratory behavior. We used the species X trait matrix to
calculate pairwise Gower dissimilarities for all 136 native West Virginian fishes
within the Ohio River Basin. Gower dissimilarity is commonly used in functional
traits analysis because it is compatible with a combination of continuous (e.g., to-
tal length) and categorical (e.g., feeding behavior) variables (Gower 1971). Next,
we conducted principal coordinates analysis to build a 2-dimensional trait-space
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ordination of the 136 fishes. Finally, we used the ordination plot to visually
confirm that the selected fish species encompassed a large fraction of the total
trait-space and were therefore representative of the overall range of West Virgin-
ian fish functional traits (Fig. 2).

We obtained presence-only occurrence records for each of the selected species
from the spatially explicit Ichthymaps digital database (Frimpong et al. 2016).
We included occurrence records distributed throughout the entire Ohio River
Basin, the parent drainage to most rivers in West Virginia. Incorporating species’
complete ranges throughout the Ohio River Basin, rather than truncated ranges
within West Virginia, ensured that the MaxEnt background samples (see Species
distribution models subsection below) would be representative of all habitats
available to the modeled species (Elith et al. 2011, Yates et al. 2018). To account
for potential spatial bias in the Ichthymaps occurrence records, we applied a
spatial thinning algorithm to the occurrence data. Using the spThin package in
R (Aiello-Lammens et al. 2015), we applied a nearest-neighbor search radius
of 10 km to each Ichthymaps occurrence record. Fewer than 2% of all occur-
rence points were within 10 linear km of each other. We therefore concluded that
geographic sampling bias was not a significant concern and retained all of the
occurrence data in model development.

Figure 2. Ordination
plot of the first 2 prin-
cipal coordinate axes Largest
from the functional- species
traits analysis. The 9
fish species modeled
in this study are shown
as solid black circles.
The remaining 127
native fishes of West
Virginia (Ohio River
Basin) are shown as
gray circles. Functional _ )
traits that are strongly . Lentic species
correlated with each °

axis are shown along -0.8 y T i ' ' ‘ ' ‘
their respective axes, -0.8 -0.4 0 0.4 0.8
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trait space that are not well represented by the 9 modeled species. The light gray shaded
regions show that all but the largest species were included in our models and that lentic-type
species are not well represented in our models. All other regions of the overall trait space
are well represented.
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River network, physical habitat, and climate data

We used the 1:100,000 scale National Hydrography Dataset Plus, Version 2
(NHDplus V2; McKay et al. 2012) digital stream network, clipped to the Ohio
River Basin, as a common physical template for all fish occurrence records, en-
vironmental covariates (i.e., predictor variables), and SDMs. In the NHDplus V2,
every digital stream segment has a unique “COMID” identifier that we used to
cross-reference all fish occurrence and covariate data to their respective locations
within the Ohio River Basin. We obtained physical habitat covariates from the
NHDplus V2 attribute tables and the Stream-Catchment dataset (StreamCat; Hill et
al. 2016). We selected these physical habitat covariates to represent 4 broad classes
of potential effects on fish habitat: topographic, geologic, hydrologic, or urban.

We downloaded historical (1960—-1990) and midcentury (2041-2060) climate
data from WorldClim, Version 1.4 (Hijmans et al. 2005), as 30 arc-second-resolu-
tion grids. We captured midcentury data for 2 representative concentration pathway
scenarios (RCPs): RCP 4.5 served as a mid-range emissions scenario (Thomson et
al. 2011) and RCP 8.5 served as a high-range emissions scenario (Riahi et al. 2011).
For both RCPs, we downloaded midcentury projections for 6 general circulation
models: BCC-CSM1-1 (Wu et al. 2014), CCSM4 (Gent et al. 2011), GFDL-CM3
(Donner et al. 2011), GISS-E2-R (Schmidt et al. 2014), HadGEM2-CC (Martin et
al. 2011), and MRI-CGCM3 (Yukimoto et al. 2012). We re-projected all climate
grids to a common 1-km resolution grid spanning the entire Ohio River Basin. We
calculated ensemble mean averages for both RCP 4.5 and RCP 8.5 for monthly
air temperature and monthly precipitation in each 1-km grid cell. We performed
all grid calculations in ESRI ArcMap 10.5 software (Environmental Systems Re-
search Institute, Redlands, CA). We then appended gridded air temperature and
precipitation values to the NHDplus V2 stream network by superimposing the
climate grids directly onto the digital stream network, using System for Automated
Geoscientific Analyses Version 2.1.4 software (Institute of Geography, Physical
Geography Section, Hamburg University, Hamburg, DE). From these air tempera-
ture and precipitation data, we calculated mean annual streamflow for every digital
stream segment in the Ohio River Basin using the Ohio River Basin-specific linear
regression model of Vogel et al. (1999). We then calculated mean monthly stream
temperatures using the logistic regression model of Segura et al. (2015).

Finally, we generated a Pearson correlation () matrix for all of the NHDplus
V2, StreamCat, and derived climate variables (streamflow and stream temperatures)
and used it to screen highly correlated covariates (|r| > 0.70) from the models. We
selected a subset of 30 covariates that were potentially relevant to freshwater fishes
from the remaining variables and transformed them, as necessary, for normality
(see Table 1 for the complete covariate list with definitions, units of measure, and
transformations).

Species distribution models
We used MaxEnt to build the SDMs because we were working solely with pres-
ence-only data (vs. presence—absence data; see Elith et al. 2006), and despite the
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recent recognition that MaxEnt is only one of several methods to build point-pro-
cess models (Renner et al. 2015), it remains among the most flexible and accessible
software tools for doing so. Briefly, our modeling process was as follows. We used
historical species occurrence and environmental covariate data to build a MaxEnt
model for each of the 9 selected fishes. We created a background sample for each
species by randomly selecting 20% of the complete landscape (i.e., 20% of all
NHDplus V2 stream segments within the Ohio River Basin). To ease interpretation
of individual covariate effects, we constrained the MaxEnt models to simple hinge
and quadratic features (see Elith et al. 2011). We ran MaxEnt with a maximum of
10,000 background points, 500 iterations, and a convergence threshold of 0.00001.

For model development, we used prior knowledge of species’ autecology and
standard MaxEnt diagnostics to evaluate the 30 potential covariates and then se-
lected a subset of covariates (n < 9; Moreno-Amat et al. 2015) that were the most
effective predictors of a given species’ occurrence (Fourcade et al. 2017, Petitpierre
et al. 2016). Covariate evaluation was an iterative process that included standard
MaxEnt percent contribution and permutation importance summary tables for indi-
vidual covariates as well as covariate jackknife plots (Phillips 2017).

We used MaxEnt regularized training gain as an index of model fit. Regularized
training gain is a measure of the distance between a multivariate distribution of co-
variates at randomly selected background sites (i.e., a random sample of the entire
landscape that a species could potentially inhabit) and a corresponding distribution
of covariates at sites of known species occurrences (Elith et al. 2011). Hence, a
large training gain indicates an affinity for a narrow range of environmental condi-
tions, relative to the broader landscape, while a small training gain suggests a lack
of specialized habitat requirements (i.e., the distribution of covariates at occur-
rence sites mirrors the background distribution; Merow et al. 2013). We also used
the exponential transformation of the MaxEnt regularized training gain for each
SDM to aid in model evaluation. The exponential of the regularized training gain
is the ratio of habitat suitability between sites of known occurrence and randomly
selected background sites (Phillips 2017). Exponential values much larger than
1 are indicative of species with specialized habitat requirements; because these
specialist species occupy a narrow range of habitats relative to the complete range
of available habitats, SDMs can more efficiently discriminate between suitable and
unsuitable habitat.

Notably, we did not use the replication features of MaxEnt (cross-validation,
bootstrapping, or single-split subsampling; see Phillips 2017) to assess model
generality. Our goal was only to model potential habitat suitability throughout the
study landscape, not to predict the probability of presence at any given locality.
Thus, we did not seek to estimate omission and commission error rates. Our study
was designed to characterize a potential threat to freshwater fishes within a unique
and highly context-specific scenario: upstream movement towards MTR sites in
West Virginia. Transferability to other regions, where environmental conditions and
MTR activity are almost certain to be different, was not an objective in our model-
building exercises.
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Once we had specified a final MaxEnt model for each fish species in the final
subset, we projected habitat suitability to a midcentury time horizon (2041-2060)
under the RCP 4.5 and RCP 8.5 climate change scenarios. We obtained the projec-
tions by substituting future values of the climate-driven covariates (streamflow,
stream temperature, and precipitation) for the historical values used to build and
parameterize each model. Then, by comparing aggregate distributions of MaxEnt
raw output values among historical and future landscapes, we were able to estimate
potential shifts in habitat suitability for each fish species.

Finally, we used a spatial querying process to identify stream segments that are
likely to be impacted by MTR operations in the state of West Virginia. We began
with a digital map of all active MTR permit boundaries from the West Virginia De-
partment of Environmental Protection (http://tagis.dep.wv.gov/home/Downloads;
downloaded on 24 October 2017). We built a 10-km-radius buffer around each of
the MTR sites in ArcMap. The 10-km buffer provided an estimate of the potential
spatial footprint of MTR effects on local aquatic ecosystems; in several instances,
significant effects of MTR on aquatic biota have been documented at downstream
distances >10 km (e.g., Bernhardt et al. 2012, Lindberg et al. 2011, Pond et al.
2008). By using the MTR buffer to query potentially impacted stream reaches from
the complete river network, we were able to test the hypothesis that climate change
is likely to increase exposure of West Virginian fishes to MTR.

We used the nonparametric one-sided Mann—Whitney U test to make com-
parisons between historical and future SDM projections (Woods and McGarvey
2018). This test compared the distribution of ranks between 2 unpaired datasets.
The datasets were combined and each value was ranked from smallest to larg-
est. We calculated the average ranks of the members of each group from this rank
distribution; a large difference between the groups’ mean ranks suggested the
distributions were distinct. Future changes in habitat suitability were also ex-
pressed as percentages, relative to historical suitability, according to the formula:
% change = (future median raw score - historical median raw score) + historical
median raw score % 100.

Results

Species selection

Following functional trait analyses, we selected a representative subset of 9
non-game fish species from the families Catostomidae, Cottidae, Cyprinidae, and
Percidae (Table 2). These 4 families constitute the majority of native fish diversity
in West Virginia (Stauffer et al. 1995), and an abundance of occurrence records was
available for species in each family (Frimpong et al. 2016). Within families, we
selected species in proportion to the overall richness of the respective family. For
instance, we selected 4 from Cyprinidae, the most diverse family, but only 2 species
from the less diverse Catostomidae. In general, the 9 selected species spanned the
overall extent of the 2-dimensional trait-space represented by the native West Vir-
ginian fishes. We excluded from the representative subset only the largest fishes that
reside in large, mainstem tributaries of the Ohio River (e.g., Aplodinotus grunniens
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Rafinesque [Freshwater Drum]) or that prefer slow-flowing, lentic habitats in deep
rivers and pools (e.g., Notropis wickliffi Trautman [Channel Shiner]) (Fig. 2).

MaxEnt models
Regularized training gain varied from 0.510 to 1.613 among the final SDMs.
Though variable, the final covariate lists included in each of the models exhibited

Table 2. Summary information on the fit and structure of the Maximum Entropy (MaxEnt) species dis-
tribution models. For each species, the number of occurrence records () used to build the model and
the MaxEnt regularized training gain (rtg) are shown with the exponential of the rtg in parentheses.
MaxEnt % contribution and permutation importance diagnostics are also shown for each covariate that
was retained in a species’ final model. [Table continued on following page.]

% Permutation

Species Covariate contribution importance

Catostomidae

Catostomus commersonii (Lacépede) (White Sucker)

n=2478 Catchment area 41.8 55.7

rtg = 0.614 (1.848) Mean annual streamflow 24.4 11.8
Mean June precipitation 11.7 11.1
Catchment runoff 7.6 6.8
Catchment road crossings 4.4 0.5
Catchment BFI 4.2 2.3
Catchment elevation 4.1 8.5
Stream order 1.7 3.4

Hypentelium nigricans (Lesueur) (Northern Hogsucker)

n=2716 Catchment area 47.7 52.5

rtg = 0.565 (1.759) Mean annual streamflow 31.6 27.6
Catchment elevation 9.6 11.1
Mean June precipitation 3.1 33
Catchment road crossings 2.9 1.2
Catchment BFI 2.7 2.1
Catchment water table depth 2.3 2.3

Cottidae

Cottus bairdii Girard (Mottled Sculpin)

n =893 Catchment BFI 18.0 6.7

rtg = 1.166 (3.209) Catchment area 17.0 28.1
Catchment elevation 16.7 25.3
Catchment runoff 13.6 20.9
Mean annual streamflow 13.5 10.3
Catchment sand 9.0 4.7
Catchment road crossings 6.5 0.6
Mean June precipitation 5.7 33

Cyprinidae

Campostoma anomalum (Rafinesque) (Central Stoneroller)

n=3156 Catchment area 42.1 46.6

rtg = 0.540 (1.716) Mean annual streamflow 34.7 31.7
Mean June precipitation 5.5 8.3
Catchment elevation 5.2 7.1
Catchment runoff 4.8 3.0
Catchment road crossings 3.8 0.6
Catchment BFI 2.3 1.1
Catchment Fe203 1.4 1.5
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some clear commonalities. Catchment area (percent contribution = 41.8-48.9%)
and mean annual streamflow (percent contribution = 22.2-42.4%) were the 2
most important predictors of suitability in 6 of 9 models, and both variables were

Table 2, continued.

Species

Covariate

%

Permutation

contribution importance

Notropis buccatus (Cope) (Silverjaw Minnow)

n=1892
rtg = 0.869 (2.385)

Catchment runoff

Mean annual streamflow
Catchment area

Catchment road crossings
Catchment BFI

Stream order

Catchment open water
Mean June precipitation
Mean January precipitation

Luxilus chrysocephalus Rafinesque (Striped Shiner)

n =460
rtg =1.613 (5.018)

Mean annual streamflow
Mean January precipitation
Catchment area

Catchment wetness index
Catchment organic matter
Catchment BFI

Catchment runoff
Catchment elevation

Semotilus atromaculatus (Mitchill) (Creek Chub)

n=23146
rtg = 0.510 (1.665)

Percidae

Catchment area

Mean annual streamflow
Catchment road crossings
Mean June precipitation
Catchment runoff

Stream order

Catchment elevation

Etheostoma blennioides Rafinesque (Greenside Darter)

n=2617
rtg = 0.597 (1.817)

Catchment area

Mean annual streamflow
Catchment elevation
Catchment open water
Catchment runoff
Catchment road crossings
Mean January precipitation

Etheostoma caeruleum Storer (Rainbow Darter)

n=2365
rtg = 0.625 (1.868)

Catchment area

Mean annual streamflow
Catchment elevation

Mean January precipitation
Catchment road crossings
Catchment runoff

28.4
222
21.4
8.1
4.8
3.9
3.9
3.8
3.4

42.4
24.3
8.6
7.9
5.9
4.6
4.4
1.9

48.9
31.8
7.0
5.0
3.8
2.2
1.3

47.4
30.8
11.1
3.2
3.1
2.6
1.8

42.8
25.3
16.9
5.4
4.9
4.7

7.1
50.4
5.9
1.2
5.1
6.5
0.1
9.4
14.4

36.3
333
6.4
2.8
6.1
10.3
2.4
2.3

69.8
13.8
1.1
53
34
4.9
1.7

49.3
27.1
15.6
0.2
4.5
0.3
2.9

43.2
19.1
22.3
7.3
0.2
7.9
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included in each of the final models (Table 2). Mean January or mean June precipi-
tation was also included in all final models. Notably, stream temperature was not a
strong predictor of suitability for any species and was thus excluded from all mod-
els. Complete MaxEnt results for each of the 9 modeled species, including sample
sizes, model fit diagnostics, and indices of importance for individual covariates are
shown in Table 2.

Interestingly, we found that the importance of some covariates tended to be pre-
served among species within a shared taxonomic affinity. For example, suitability
was positively associated with catchment area and inversely related to streamflow
for both Etheostoma blennioides (Greenside Darter) and Etheostoma caeruleum
(Rainbow Darter). However, the shapes of the MaxEnt response curves for a given
covariate were variable. For instance, habitat suitability was negatively associ-
ated with runoff of ~350-900 mm for the Rainbow Darter, but the runoff-response
curve was bimodal with peaks at ~325 mm and ~900 mm for the Greenside Darter.
We identified similar family-level responses to catchment area and streamflow
among Catostomidae species and the Cyprinidae species, with the exception of
Luxilus chrysocephalus Rafinesque (Striped Shiner), for which habitat suitability
was positively associated with streamflow of ~0.1-3.4 m*/s but declined at higher
streamflow. Predicted suitability among the Cyprinids generally shared a negative
association with June precipitation in the range of ~80—140 mm/y and with runoff
of ~325-675 mm/y, with the Striped Shiner again standing out as the exception;
June precipitation did not have a strong influence on Striped Shiner habitat suit-
ability, but runoff of ~500-625 mm/y did. Individual covariate response curves
are provided in the MaxEntReport html file for each species, available on Figshare
(DOI:10.6084/m9.figshare.6106682).

Predicted habitat suitability

Under the RCP 4.5 climate scenario, significant increases (Mann—Whitney: P <
0.001) in habitat suitability were predicted within the MTR buffer for the 2 dart-
ers (Etheostoma), but none of the remaining species (Fig. 3). Under the RCP 8.5
scenario, however, habitat suitability was predicted to significantly increase within
the MTR buffer for 8 of 9 species. Percent increases in median habitat suitability
under the RCP 8.5 scenario varied from 46% to 418%, relative to the historical
habitat suitability values, with a grand median increase of 125% (Fig. 3). Only
Notropis buccatus (Silverjaw Minnow) was predicted to experience a decrease
in habitat suitability within the MTR buffer. Maps of MaxEnt raw scores for the
Striped Shiner within the MTR buffer under the historical, RCP 4.5, and RCP 8.5
scenarios are shown in Figure 4. Summary distributions of all MaxEnt habitat suit-
ability predictions are illustrated in Figure 3.

Discussion

Climate-change effects: hydrology vs temperature
Using MaxEnt SDMs for 9 representative species, we tested the hypothesis that
climate change is likely to drive directional, upslope shifts in habitat suitability for
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Figure 3. Boxplots of the distributions of MaxEnt raw scores. Box elements are standard
percentiles (see key). For each species, the distributions of raw scores across the Ohio River
Basin (ORB and within the mountaintop removal buffer (MTR) are shown for historical
data as well as the RCP 4.5 and RCP 8.5 midcentury climate-change scenarios. Percent
differences in median MaxEnt raw scores, comparing historical averages with future RCP
4.5 and RCP 8.5 averages, are shown for ORB and MTR data at right of each box. Mann-
Whitney test P-values (paired sample tests using individual stream segments as replicates)
comparing historical MaxEnt raw scores with future projections are also shown in paren-
theses for the RCP 4.5 and RCP 8.5 results within the MTR buffer.
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Figure 4. Maps of MaxEnt
raw scores for the Striped
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(b) RCP 4.5, and (c) RCP. 8.5
scenarios. Maximum suit-
ability scores are shown in
blue and minimum suitabil-
ity scores are shown in red.
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West Virginian freshwater fishes, thereby placing the best habitats in close proxim-
ity to MTR operations. In many instances, our results supported this hypothesis, but
the support was conditional, varying among species and climate-change scenarios.
Furthermore, we were surprised by the factors that ultimately drove the shifts in
habitat suitability. Ambient temperature is a fundamental regulator of niche space
for ectotherms (Coulter et al. 2014, Deutsch et al. 2008); thus, we expected stream
temperature to be a key predictor of fish habitat suitability. This was not the case,
however, and stream temperature was not included in any of the final models (see
Table 2).

The apparent lack of a strong temperature effect may indicate that the modeled
species have relatively broad thermal tolerances. At historical occurrence sites, the
widest ranges of winter and summer stream temperature values for a given species
(i.e., stream temperature ranges among all sites of known presence) spanned 2.74
°C for Semotilus atromaculatus (Creek Chub) (min. = 0.38 °C, max. = 3.12 °C) and
6.24 °C for the Silverjaw Minnow (min. = 22.72 °C, max. = 28.96 °C), respectively.
Conversely, the narrowest ranges of historical winter and summer stream tempera-
tures for a given species spanned 2.62 °C for the Striped Shiner (min. = 0.40 °C,
max. = 3.02 °C) and 5.53° C for Cottus bairdii (Mottled Sculpin) (min. =23.36 ° C;
max. = 28.89 °C), respectively. In all cases, species’ historical winter and summer
temperature ranges encompassed a large fraction of the historical temperature range
across the entire Ohio River Basin; historical winter and summer stream tempera-
tures spanned 2.76 °C (min. = 0.36 °C, max. = 3.12 °C) and 6.32 °C (min. = 22.69
°C, max. = 29.01 °C), respectively.

Together, these observations suggest that each of the 9 modeled fishes would be
physiologically capable of occupying most or all of the streams in the Ohio River
Basin, if mean winter or summer stream temperature were the sole determinant
of habitat suitability. The fact that documented occurrences of each of the mod-
eled species were limited to a subset of streams within the Ohio Basin suggests
that factors other than stream temperature are fundamental in regulating fish spe-
cies’ presences. With specific reference to MaxEnt, the fact that historical sample
temperatures exhibit so much overlap with the background temperatures indicates
that mean winter and summer stream temperatures may not be useful for discrimi-
nating between suitable and unsuitable fish habitat.

Instead, species’ responses to climate change were driven primarily by hydrol-
ogy. In each model, hydrologic variables were among the best predictors of fish
occurrence (Table 2). For example, mean annual streamflow was included in every
model, and in 8 of 9 cases, it was the first or second most-influential covariate when
ranked by MaxEnt percent contribution statistics (13.5-42.4%). Other covariates
that represent hydrology or a dimension of the hydrologic cycle included sum-
mer and winter precipitation (one of which was included in every model), runoff
(included in 8 of 9 models), and the baseflow index (included in 6 models). Impor-
tantly, these different hydrology covariates did not provide redundant information.
When calculated across the entire Ohio River Basin, Pearson correlation coeffi-
cients among these covariates never exceeded the collinearity threshold of |#| > 0.70
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and in several instances were much lower. For instance, correlations between mean
annual streamflow and January precipitation and between streamflow and June
precipitation were 7 < 0.01 and » = -0.40, respectively. Furthermore, January and
June precipitation were not highly correlated (» = 0.35). Thus, we concluded that
the various hydrologic covariates (streamflow, precipitation, runoff, baseflow in-
dex) represented different dimensions of the hydrologic cycle and were therefore
appropriate for inclusion in the same models.

In retrospect, the strong effect of hydrology was not surprising, given that
hydrology is widely regarded as a master variable in lotic ecosystems (Poff et al.
1997). Streamflow is a dynamic integration of many physical processes occurring
across the landscape. Though it is clearly a function of precipitation, streamflow is
also influenced by the geologic and antecedent factors that regulate surface runoff,
soil water, and groundwater dynamics (Poff et al. 1997). In this way, streamflow
becomes an efficient indicator of many different yet interrelated influences on
aquatic habitat (McGarvey and Terra 2016). Effects of these hydrologic influences
include direct, individual-level physiological and behavioral mechanisms (Mims
and Olden 2011, Poff and Allan 1995, Poff et al. 1997) as well as emergent patterns
in species’ distributions and overall richness (McGarvey 2014, Power et al. 1995,
Wenger et al. 2011). We therefore believe it is logical that streamflow, rather than
stream temperature, proved to be a primary determinant of habitat suitability in the
fish models.

It should be noted that our hydrologic variables did not account for potential
effects of MTR on streamflow (Evans et al. 2015). Disruptive effects of MTR on
local flow include large-scale deforestation and the resulting decreases in evapo-
transpiration and groundwater recharge, as well as increased surface runoff via
soil compaction from heavy machinery operation (Griffith et al. 2012). These al-
terations may lead to elevated peak-flow conditions downstream from MTR sites
(Nippgen et al. 2017, Wiley et al. 2001), but observed downstream effects have
so far been variable across spatial and temporal scales (Evans et al. 2015, Ross
et al. 2016, Zegre et al. 2014). Due to this variability, it is difficult to predict if
or how climate-driven changes in hydrology may simultaneously be affected by
MTR, but it is plausible that future hydrology in the immediate vicinity of MTR
sites may deviate from our predicted conditions, with unknown effects on fish
habitat suitability.

Differential responses to climate change

Of the 9 modeled species, the 2 Etheostoma spp. may be the most likely to shift
their ranges upstream in response to climate change. The Greenside Darter and
Rainbow Darter were the only species predicted to experience significant increases
in habitat suitability within the MTR buffer under both climate change scenarios
(Fig. 3). For all other species, significant increases in habitat suitability were lim-
ited to the RCP 8.5 scenario. This responsiveness to both scenarios was driven by
the strong influence of January precipitation on darter habitat suitability. Increas-
ing levels of January precipitation within the MTR buffer were evident among the
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historical (mean = 83.8 mm; sd = 6.3 mm), RCP 4.5 (mean = 92.9; sd = 7.3), and
RCP 8.5 (mean = 99.2; sd = 8.3) datasets. Predicted suitability for both Etheostoma
spp. was, in turn, positively associated with January precipitation, particularly with
totals of ~40—100 mm/month. Should January precipitation exceed 100 mm/month,
however, habitat suitability is likely to decrease (see MaxEnt response-curve plots
in the MaxEntReport html file for each species, available on Figshare; DOI:10.6084/
m9.figshare.6106682.) We therefore suggest that the projected moderate to large in-
creases in winter precipitation are likely to make habitat in high-elevation streams
in West Virginia more suitable for Greenside Darter and Rainbow Darter.

Currently, we do not know what specific mechanism might link winter precipita-
tion to Etheostoma habitat. Both darters in this study lack air bladders and reside
in benthic, riffle habitats, often sheltering from fast currents behind large rocks or
woody debris (Fahy 1954, Harding et al. 1998). This tendency to avoid suspension
in fast water is consistent with our observation that Etheostoma habitat suitability
decreased with increasing mean annual streamflow (each species’ response curve
for streamflow is available in the respective MaxEntReport, available, as above, on
Figshare; DOI:10.6084/m9.figshare.6106682). This result seems counterintuitive,
in light of the seeming preference for higher winter precipitation, which should
increase mean annual streamflow. One parsimonious explanation is that pulses in
winter flow may prevent coarse riffle substrates from becoming embedded with
fine sediments, thereby maintaining the critical physical habitats that Etheostoma
darters utilize year-round. This dynamic was documented for a Greenside Darter
population in the Grand River, ON, Canada (Bunt et al. 1998) and, if it is similarly
applicable in streams in West Virginia, it is cause for heightened concern because
increased fines and sedimentation are common byproducts of MTR (Griffith et al.
2012, Nelson et al. 1991).

January precipitation and mean annual streamflow were also key predictors of
habitat suitability for the Striped Shiner. However, the effect of streamflow differed
from the effect on habitat of Etheostoma spp. Striped Shiner habitat suitability in-
creased rapidly with increasing streamflow (see MaxEntReport on Figshare), rather
than decreasing from a low modal streamflow value as it did for Etheostoma spp.
This finding accounts for the dramatic increase in Striped Shiner habitat suitability
under RCP 8.5 (Fig. 3); a large increase in mean annual streamflow is expected
within the MTR buffer under RCP 8.5 (mean = 0.18 m*/s; sd = 0.51 m?/s; streamflow
values are transformed (In[x+1]), relative to historical streamflow (mean = 0.06; sd
=0.22). However, a comparable increase in streamflow is not expected under RCP
4.5 (mean = 0.06; sd = 0.24). Thus, a significant increase in Striped Shiner habitat
suitability was not predicted for RCP 4.5 (Fig. 3).

Predicted increases in habitat suitability for 2 of the remaining species of Cy-
prinidae, the Creek Chub and Campostoma anomalum (Central Stoneroller), as
well as all species of Catostomidae and Cottidae, were also driven mean annual
streamflow. For each species, maximum habitat suitability occurred at a relatively
low streamflow value, then decreased to a stable, asymptotic level with increas-
ing streamflow (see streamflow response curves in MaxEntReports on Figshare;
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DOI:10.6084/m9.figshare.6106682).For example, habitat suitability for the
Creek Chub peaked at a mean annual streamflow value of ~0.02 (in natural log
transformed units) then rapidly decreased at higher streamflows. In these cases,
the most suitable streamflow values were similar to the average streamflow val-
ues predicted within the MTR buffer for RCP 8.5 (median streamflow = 0.012 in
natural log units), but not for RCP 4.5 (median streamflow = 0.002). Thus, sig-
nificant increases in habitat suitability within the MTR buffer were limited to the
RCP 8.5 scenario.

Decreasing habitat suitability within the MTR buffer was predicted only for the
Silverjaw Minnow (Fig. 3) and was due to the strong, negative associations that
mean annual streamflow and precipitation had with habitat suitability. For each
of these covariates, suitability peaked at a low value then rapidly decreased (see
response curves on Figshare). These modeling observations are consistent with
field studies that showed the Silverjaw Minnow is often abundant in small streams
but highly sensitive to periods of low-flow drought and to high-flow events (Toth
et al. 1982, Wallace 1972). In theory, the decreasing suitability of stream habitat
within the MTR buffer might serve to protect the Silverjaw Minnow; this species
is unlikely to be impacted by MTR if it does not inhabit streams near MTR opera-
tions. Unfortunately, the Silverjaw Minnow will experience no net benefit if the
availability of small streams that it has historically occupied is greatly diminished
by climate change.

Are the model predictions cause for concern?

Our results suggest that, in a warming climate, habitat suitability for 8 of the
9 modeled species is likely to increase in high-elevation streams near MTR op-
erations. However, we cannot prove that any of our predicted changes in habitat
suitability will come to pass, or that the study species will in fact migrate to streams
within the MTR buffer. We therefore conclude with some general thoughts on the
relevance of our modeling process and findings.

First, we emphasize that the RCP 4.5 and 8.5 climate change scenarios, though
heuristic in nature, are broadly recognized by the scientific community as valid and
entirely plausible. Indeed, Smith et al. (2011) have shown that global warming of
2 °C beyond pre-industrial levels may be achieved as early as 2030 and that 4 °C
warming may occur as soon as 2060. Similarly, Betts et al. (2011) estimate global
mean temperature will increase by 4 °C above pre-industrial levels between 2060
and 2070. Others propose global mean temperature is highly likely to exceed the
benchmark of 2 °C by 2030, citing a likely temperature increase of from 2 °C to
4.9 °C by 2100 (Raftery et al. 2016). Collectively, these reports show, despite un-
certainty, that the range of outcomes bracketed by the RCP 4.5 and RCP 8.5 climate
scenarios are plausible and could be reached by midcentury.

Second, there are relatively few migration barriers in the rivers and streams
of West Virginia that would categorially prevent fishes from migrating to higher
elevations near MTR sites. Numerous lock-and-dam structures that may constrain
movement and reduce population connectivity exist along the mainstem Ohio,
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Kanawha, and Monongahela rivers in West Virginia, but these structures are at
least semi-permeable to fish movement (Argentina et al. 2018). In general, the
number of large, impassible dams on westward-flowing Ohio River tributaries
is modest in comparison to other eastern US states (USACE 2016). Using a GIS,
we performed a manual search for large, impassible dams that would prevent
upstream fish movement and identified 10: Hawks Nest (inclusive of all upstream
dams on the mainstem New River and Kanawha Falls, ~5 km downstream of
Hawks Nest Dam), Summersville, Sutton, Taylor Fork, Shannonpin Mine, Cheat
Lake, Tygart, R.D. Bailey, Upper Mud River No. 2A, and East Lynn. The total
length of stream channel that was upstream of any of these barriers and within the
MTR buffer was 1445 km, or ~9% of the 15,732 km of total stream channel within
the buffer.

Less-conspicuous barriers could also constrain future fish movement. For
instance, road crossings and culverts often impede fish movement (Januchowski-
Hartley et al. 2013, Warren and Pardew 1998). This barrier is a point of concern
because the density of road crossings was a good predictor of fish occurrence,
and therefore selected as a final predictor variable, for 8 of the 9 modeled spe-
cies (Table 2). Currently, we do not have comprehensive data that could be used
to incorporate road crossings into our analyses in a spatially explicit manner, but
we do note that most of the fishes in this study have broad ranges that historically
include some mid- to high-elevation streams. Thus, it is likely that even in a land-
scape that is highly fragmented by road crossings, some potential colonists are al-
ready present near the MTR buffer sites and therefore capable of moving to them
in a changing climate.

Finally, we submit that our specific results should be broadly representative of
the native stream ichthyofauna of West Virginia. Functional-trait analysis indicated
that the selected model species covered much of the functional trait space encom-
passed by all Ohio River Basin fishes of West Virginia (Fig. 2). Furthermore, the 4
families represented by our selected subset—Catostomidae, Cottidae, Cyprinidae,
and Percidae—include 114 non-game fish species and represent 65% of all native
fishes in West Virginia (Stauffer et al. 1995). As noted above, the model-predicted
shifts in high-elevation habitat suitability were generally positive (i.e., increasing
suitability) for 8 of 9 species. Thus, we believe it is logical to predict that habitat
suitability for many of the remaining fishes will respond in a similar manner.

Although we did not model MTR effects on fishes per se, we posit that the
predicted tendency for habitat suitability to increase near MTR sites is, of itself,
legitimate cause for concern. The most acute, negative effect of MTR on freshwa-
ter fishes will be direct habitat loss as MTR overburden is dumped as valley-fill,
effectively eliminating headwater streams. Further downstream, chemical contami-
nants will accumulate through leaching and as coal is washed to lower its sulfur
content. Toxicants from MTR are known to cause infertility (Palmer et al. 2010),
teratogenic deformities (Palmer et al. 2010), and death among individual fishes
(Ferreri et al. 2004), as well as population- and assemblage-level declines in fish
abundance and diversity (Ferreri et al. 2004, Hitt and Chambers 2014). In southern
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West Virginia, more than 750 km of high-elevation streams have already been
buried by MTR waste, and chronic effects of MTR are now impacting 2800-4300
km of additional stream habitat (Bernhardt et al. 2012). Thus, we conclude that the
combined effects of climate change and MTR are likely to pose very real and sig-
nificant threats to many of West Virginia’s native freshwater fishes by midcentury.
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