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ECOLOGY

Precipitation and temperature drive continental-scale
patterns in stream invertebrate production

C. J. Patrick'*, D. J. McGarvey?, J. H. Larson®, W. F. Cross®, D. C. Allen®, A. C. Benke®,
T. Brey’, A. D. Huryn®, J. Jones®, C. A. Murphy?, C. Ruffing'’, P. Saffarinia'’,

M. R. Whiles'?, J. B. Wallace'?, G. Woodward'*

Secondary production, the growth of new heterotrophic biomass, is a key process in aquatic and terrestrial eco-
systems that has been carefully measured in many flowing water ecosystems. We combine structural equation
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modeling with the first worldwide dataset on annual secondary production of stream invertebrate communities
to reveal core pathways linking air temperature and precipitation to secondary production. In the United States,
where the most extensive set of secondary production estimates and covariate data were available, we show that
precipitation-mediated, low-stream flow events have a strong negative effect on secondary production. At larger
scales (United States, Europe, Central America, and Pacific), we demonstrate the significance of a positive two-
step pathway from air to water temperature to increasing secondary production. Our results provide insights into
the potential effects of climate change on secondary production and demonstrate a modeling framework that can

be applied across ecosystems.

INTRODUCTION

Secondary production is the generation of new heterotrophic biomass
over time. It is a fundamental ecosystem process because it requires
the consumption of basal energetic sources while sustaining consumers
at higher trophic levels in both aquatic and terrestrial food webs (1-5).
Secondary production can be used to assess higher-level responses to
environmental change (6) and human perturbations (7, 8), including
ecosystem services such as water filtration (9, 10) and fisheries produc-
tion (11, 12). Understanding how secondary production may respond
to climate change is therefore essential. Invertebrates are diverse and
productive members of most food webs and comprise the majority of
metazoan diversity globally. Previous research has characterized local-
scale effects of temperature on individual invertebrate taxa (13-15),
but the potential effects of continental- to global-scale shifts in tem-
perature and precipitation on entire communities of invertebrate sec-
ondary producers are largely unknown (16).

Identifying drivers of annual community secondary production
(ACSP), defined as the sum of annual production of all invertebrate
populations within a community (17), is particularly challenging
because individual- and species-level processes do not always scale
up to the community level in a direct additive manner. Functional
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redundancy in the roles that species play within a food web can offset
environmental perturbations via compensatory effects on overall
production (18). For this reason, ACSP may be a more useful holistic
indicator of the ecosystem-level effects of climate change than pro-
duction rates of discrete taxa or functional groups. Unfortunately,
studies of the effects of macroscale shifts in temperature and precipi-
tation on ACSP, which are difficult to conduct in experimental settings,
are rare [but see (19)].

Previous research in stream and river ecosystems provides a
unique opportunity to further understand the linkages between ACSP
and climate. When compared to other types of ecosystems, empirical
studies of ACSP in streams and rivers are relatively common (20, 21).
We leveraged this previous work by combining a literature review
on freshwater ACSP with geospatial analysis, hydrologic modeling,
and structural equation modeling (SEM) to test hypotheses linking
air temperature and precipitation to ACSP in lotic ecosystems. Our
ultimate goal was to build a systems-level framework that can be
expanded or refined in future research and used to predict climate-
driven changes in ACSP.

Our study focuses primarily on the effects of air temperature and
precipitation on ACSP because both factors are closely linked to
physicochemical conditions in freshwater ecosystems. Air tempera-
ture is a principal driver of water temperature in lotic systems (22),
and water temperature stimulates in-stream primary production
(23, 24); this two-step pathway may link air temperature to ACSP
(25). Precipitation effects on ACSP may be mediated by hydrology,
which is a key determinant of habitat stability for benthic inverte-
brates that reside on or within streambed substrates. Stable flows
promote well-sorted substrates that support high invertebrate den-
sities and allow extended growth periods (26, 27). In contrast, systems
that experience extreme floods and/or droughts tend to have low
secondary production (7, 28, 29).

We began this study with an extensive literature review of em-
pirical measurements of ACSP in lotic ecosystems and associated
in situ covariates, such as water temperature and channel substrate
characteristics. We then used a geographic information system to
append spatially derived covariates, including land use, elevation,
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slope, and local climate, to the ACSP data. Many environmental co-
variates were available for study sites within the United States, but
only climate and elevation data were consistently available for sites
outside of the United States. New hydrologic variables, such as min-
imum 30-day stream flow (the minimum average discharge that
persists for 30 consecutive days), were then calculated by using ex-
isting covariates as predictors in statistical models (see Materials
and Methods) and appended to the covariate data for U.S. sites. By
combining covariates from multiple sources, we were able to ex-
pand the number of variables and causal pathways that we tested in
models of ACSP.

Links between climate and ACSP were then tested with a combi-
nation of traditional univariate regression analysis and SEM. The
latter approach was central to our study because SEMs can be used to
evaluate cause-and-effect relationships among discrete variables (30),
can explicitly account for covariation among variables, and can
simultaneously test systems-level hypotheses that are expressed as
complex networks of interrelationships among variables (31). Devel-
opment of SEMs of ACSP constitutes a significant advance, relative
to previous reviews of aquatic secondary production (I, 32), because
it allows us to evaluate multiple drivers of ACSP within a single inte-
grative framework. In addition, this study demonstrates a novel yet
general approach to integrate meta-analysis of published results,
covariate data that were mined from independent sources and ap-
pended to published data, and statistical modeling (univariate re-
gression and SEM) for the purpose of deriving greater insight from
published information and creating new conceptual understanding
of connections among suites of environmental and biotic variables.

Before model building and testing, we outlined an a priori hy-
pothesis or “metamodel” (30) of systems-level links between major
climate variables and ACSP (Fig. 1). Habitat stability and water
temperature were predicted to be proximal drivers of ACSP. Hy-
drology (28), channel substrate (33), and land cover (34) were pre-
dicted to drive habitat stability. Air temperature (22), canopy shading
(35), and stream channel size (36) were predicted to influence water
temperature. Precipitation, latitude, and elevation were predicted to
act as distal effects on ACSP, mediated through their effects on tem-
perature and riparian vegetation.

Models were tested at two distinct spatial scales. First, we modeled
ACSP at the continental scale, using only U.S. study sites. This allowed
us to test complex cause-and-effect relationships using the full suite
of environmental covariates that was assembled for U.S. sites. Sec-
ond, we developed simpler ACSP models at a larger scale that included
sites from Europe, Central and South America, and New Zealand.
These inclusive models were constrained by the smaller number of
environmental covariates that were available at all study sites, but
they did allow us to test the generality of some key results from the
U.S. models.

RESULTS AND DISCUSSION

Among all U.S. samples, ACSP spanned four orders of magnitude
[35 to 612,231 mg ash-free dry mass (AFDM) m™2 yearfl] and was
strongly positively skewed [median, 9991; coefficient of variation
(CV), 0.41; see Fig. 2A, inset]. A nearly identical distribution of
ACSP was observed at the global scale (median, 9982; CV, 0.42; see
Fig. 2B, inset). In U.S. streams, univariate regression analyses de-
tected significant positive effects of mean annual water temperature,
basin area, minimum 30-day flow, and percent urban development on
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ACSP (Table 1), consistent with hypothesized links A, B, E, F, and
Hin Fig. 1. A significant negative effect was also detected for percent
forest cover, as predicted by link C in the metamodel. Of the univar-
iate relationships, water temperature had the strongest overall effect
on ACSP (standardized effect size B = 0.39).

Nine covariates and 14 path links were retained in the final SEM
for U.S. streams (Fig. 2A and Table 2). Of these, some paths were
simple and predictable, such as the strong effect of air temperature
on water temperature (37), the effects of latitude and elevation on
air temperature, and the effect of precipitation on minimum 30-day
discharge. However, other paths were more complex. For instance,
the total effect of precipitation on water temperature included two
paths: a direct positive link from precipitation to water tempera-
ture and a negative indirect link that was mediated by forest cover
(precipitation — forest cover — water temperature; see Fig. 2A).
This indirect effect of precipitation on water temperature may be
attributed to wetter regions having comparatively dense forests with
larger canopies and more extensive shading (38, 39) or enhanced
evaporation (40).

The U.S. SEM confirmed many of the hypothesized pathways in
the metamodel (Fig. 1), most notably the direct influence of base
flow stability and water temperature on ACSP. Significant indirect
effects of climate (air temperature and precipitation), the physical
landscape (catchment elevation and basin area), and land cover
(impervious surface area and forest cover) on ACSP were mediated
through their direct effects on water temperature and base flow sta-
bility. The final inclusive SEM complimented the U.S. model by
confirming that air temperature and precipitation have consistent,
predictable effects on ACSP that are mediated by their direct effects
on water temperature (Fig. 2B).

The positive effect of water temperature on ACSP in the U.S. and
global models is perhaps intuitive, but our quantitative results raise
pressing theoretical questions and can help to reconcile conflicting
results from previous site-specific studies. The metabolic theory of
ecology (MTE) predicts that standing stock biomass should de-
crease with increasing temperature, while the production-to-biomass
(P:B) relationship should increase with temperature, resulting in no
net change in secondary production (41). Some empirical support
for this prediction is provided by observational meta-analyses (32)
and controlled in situ stream warming experiments (16), but other
studies have documented net positive effects of temperature on body
size, growth rates, and total production (I, 25). Our results, which
constitute the most comprehensive meta-analysis to date, indicate
that the relationship between temperature and ACSP is net positive.
Given that the MTE assumes constant resource supply, we posit that
the mechanism responsible for the observed positive relationship
between water temperature and ACSP may be a temperature-mediated
increase in basal resources (42). Thus, we suggest that closer exam-
ination of the effect of basal resources on ACSP should be a priority
area in future research (43-45).

Basal resources are likely to improve systems-level models of
ACSP because food quality and quantity are already known to be
fundamental determinants of individual growth (46-48) and of ACSP
(49) in aquatic ecosystems. For instance, allochthonous leaf litter
has low nutritional value, relative to autochthonous material, but
can account for >90% of the annual variation in secondary produc-
tion within temperate streams because it is so abundant (45, 50, 51).
Allochthonous material was not included in our models because it
was not measured at most study sites (see data file 2). However,
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Fig. 1. Conceptual diagram or metamodel of major hypothesized influences on ACSP. Covariates that are external to stream ecosystems (i.e., exogenous variables)
are indicated by rectangles. Covariates that are direct measures of in-stream conditions or processes (i.e., endogenous variables) are indicated by ovals. Each covariate is
also recognized as one of five color-coded types (see inset key): biogeography, climate, terrestrial habitat, in-stream habitat, and community. Solid black arrows depict
known causal effects among covariates. Arrow labels correspond to exemplar references [A (23, 25), B (26, 27), C (35, 94), D (22, 95), E (36, 96), F (7,28), G (29, 33), H (34, 97)1.
Parenthetic signs next to black arrow labels indicate that the relationship is expected to be positive (+), negative (=), or variable (+/-). Solid green arrows depict funda-
mental relationships that are expected but not explicitly documented here (e.g., the negative relationship between latitude and air temperature). Dashed arrows depict

hypothesized covariation among variables.

using a subset of U.S. studies that measured both allochthonous
organic material and ACSP (n = 41), we detected a strong positive
univariate relationship between coarse particulate organic matter
(CPOM) and ACSP (+* = 0.279, P< 0.001). Notably, CPOM accounted
for more of the variation in ACSP than water temperature and habitat
stability combined (in the U.S. SEM; see Fig. 2A). We are therefore
confident that additional information on basal resources and the
mechanisms that link them to climate (52-55) will enhance our abil-
ity to predict ACSP in changing climates.

Hydrology also stood out as a key regulator of ACSP. Results
from U.S. streams indicated that discharge magnitude during dry or
low flow periods (i.e., minimum 30-day flow) has a significant posi-
tive effect (B = 0.24) on ACSP (Fig. 2A and Table 1). While this is
consistent with previous site-specific findings that environmental
stability increases in-stream production (56-58), our study is the
first to demonstrate this relationship at the continental scale. Hy-
drologic stability, as one dimension of environmental stability in
lotic ecosystems, is known to have a significant effect on secondary
production (59-62), particularly in drought-prone systems (63).
However, the effect of hydrology did not extend to measures of
flooding or “flashiness.” These factors are important to invertebrates
in some lotic ecosystems (26, 58, 64), but they did not have a signif-
icant effect on ACSP in our analyses. This may be due to variation
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among communities in the response to flashiness, where naturally
flashy streams are inhabited by organisms with adaptive traits that
convey resilience (59, 65).

One notable difference between the U.S. and inclusive models
was a significant positive effect of absolute latitude on ACSP; this
link between latitude and ACSP, which was independent of a latitu-
dinal effect on temperature, was detected in the inclusive model but
not in the final U.S. model. The difference may be an artifact of the
truncated range of latitudes among U.S. streams relative to the global
range. However, it may also indicate that additional information on
benthic community structure is needed to understand ACSP at global
scales. Links between benthic diversity, biomass (66, 67), and sec-
ondary production (68, 69) have been documented in freshwater
ecosystems, and benthic invertebrate diversity is known to vary with
latitude (70, 71). Incorporating new dimensions of community struc-
ture, such as diversity and standing stock biomass, may therefore
help to explain the effect of latitude on ACSP.

Moving forward, an obvious goal should be to increase the ex-
plained variation in ACSP. Coefficients of determination for ACSP
were <0.25 in both the U.S. and global SEMs (Fig. 2)—a strong
indication that some key variables were not included in the models.
Here, our goal was to advance conceptual understanding of the systems-
level drivers of ACSP by identifying causal pathways that link climate
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Fig. 2. SEMs of ACSP in streams and rivers. Models include an SEM for the U.S. (A) and for global streams and rivers (B). Exogenous variables are indicated by rectangles,
and endogenous variables are represented by ovals. Coefficients of determination () are shown for all endogenous variables, and standardized path coefficients are
shown for all modeled relationships. Positive and negative effects among variables are depicted by black and red arrows, respectively, with arrow widths proportional to
effect sizes (i.e., path coefficients). In the U.S. model, significant covariance between mean annual water temperature (“Water temperature”) and the minimum average
discharge that persists for 30 consecutive days (“30-day consec. flow”) is depicted by a dashed double-headed arrow. In the global model, the dashed arrow between
mean annual precipitation (“Precipitation”) and mean annual water temperature indicates a nominally significant (P=0.09) effect; all other relationships in the U.S. and
global models are significant at P=0.05. Both the U.S. and global models satisfied each of the three model fit criteria, with significant x* P values (U.S. = 0.06; global = 0.63),
standardized root mean squared residuals (U.S. = 0.06; global =0.02), and comparative fit index values (U.S. = 0.97; global > 0.99). Inset histograms show the distribution
of natural log (In)-transformed ACSP at U.S. and global scales. Covariate types are as shown in Fig. 1.
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Table 1. Comparison of effect sizes in univariate regression models of ACSP in U.S. streams. Unstandardized regression slopes (b) and standardized slopes
(B) are each reported with 95% confidence intervals (shown in parentheses) as well as sample sizes (n) and coefficients of determination (rz). Covariates shown in
bold text have slopes (95% confidence intervals) that exclude zero and are therefore considered statistically significant.

Hypothesized effect Covariate n

Mean annual air

b B r?
Temperature 128 1.32(-0.11 to 2.75) 0.16 (=0.01 to 0.34) 0.02
temperature
Mean annual water 107 1.32(0.74 to 1.90) 0.39 (0.22 t0 0.57) 0.15
temperature
% Forest cover in
Canopy shadlng catchment 128 —0.56 (—1.06 to —0.06) —0.19 (-0.37 to —0.02) 0.03
Stream S|ze Basm area 128 0 10 (0 02 to 0 19) 0.21(0.03 to 0.38) 0 03
Mean annual dlscharge 102 0 04 ( O 03 to 0 1 1) 0.1 0 (—0.08 to 0.27) <0 01
Hydrology Flashmess 124 —0.23( 064t00 19) —0 10( 027 t0008) <0 01
CV dlscharge 124 —0.20( 086 t0045) —0 06( 024t00 13) 001
 Minimum 30-day 124 1.36 (0.39 to 2.33) 0.24(0.07 to 0.42) 0.05
consecutwe row
Channel substrate Average sediment size 88 ~0.10(~0.22t00.02)  —0.17 (~0.38 to 0.04) 0.02
(unwe|ghted)
Average sediment size 88 ~0.12(~0.24t00.00)  —-0.20 (~0.41 to 0.01) 0.03
(waghted)
Land cover 'mperv"":fa:‘r:face n 124 3.24(~0.19t0 6.67) 0.16 (~0.01 t0 0.34) 0.02
% Medium den5|ty
urbanization in 128 3.39(1.11 to 5.68) 0.25 (0.08 to 0.42) 0.06
catchment
0
9 Crop cover n 128 0.86 (~0.46 t0 2.18) 0.11 (~0.06 t0 0.29) 0.01

catchment

to ACSP; we did not seek to maximize explained variation in ACSP
per se. The SEM allowed us to test the hypothesized linkages among
variables (Fig. 1) in a critical and explicit way. Nevertheless, future
progress will benefit from the addition and testing of new covari-
ates and links between climate and ACSP.

Basal resource availability was previously noted as a priority re-
search topic. Another focus area should be the role of anthropogenic
stressors on ACSP. Previous research has reported a positive re-
lationship between some land-use activities and ACSP that covaries
with watershed area (72). Consistent with this earlier finding,
we detected a positive relationship between watershed area and
ACSP. However, when impervious surface area and agricultural
land use were added to preliminary SEMs, we were unable to detect
a significant influence of either variable on ACSP. The apparent
lack of a strong land-use effect on ACSP may be a sampling artifact, as
many of the study sites were located at field stations where human
impacts were likely minimal. For example, 64% of all streams in the
U.S. database were entirely unaffected by row-crop agriculture and
only 7% of the U.S. streams flowed through watersheds, where row-
crop agriculture accounted for >10% of internal land use. Thus, the
current ACSP database may be ill suited to evaluate land-use effects,
leaving a key information gap to be filled.

Despite the limitations of the ACSP models, our results have clear
implications for ecosystem function in the face of climate change.
Climate models predict that over the next century, average air tem-
peratures will continue to rise (73) and precipitation patterns will
shift markedly (74, 75). Our models suggest that these changes will
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have cascading effects on ACSP mediated through water tem-
perature and discharge during dry periods. For instance, the SEMs
predict that warming temperatures will tend to increase ACSP. How-
ever, the frequency and severity of low flow events are expected
to increase in many ecosystems as subhumid regions transition
to semiarid climates (75-77). If these systems are populated by in-
vertebrates that lack physiological or life history traits that allow
them to persist under drought conditions, temperature-driven increases
in ACSP are likely to be offset by increased mortality or diminished
recruitment.

In conclusion, we suggest that four key areas of research should
now be pursued to advance understanding of ACSP. First, new ACSP
data from undersampled regions are needed to determine whether
the results presented here are applicable in other parts of the globe.
Second, a better understanding of the roles that basal resources or
other bottom-up trophic constraints play in regulating ACSP and
how these basal factors are affected by climate is needed. Third, the
effects of anthropogenic stressors should be incorporated in systems-
level models. Fourth, the general ACSP results should be tested using
habitat-specific production estimates (3, 60, 62), paying special
attention to account for differential effects on specific invertebrate
traits or functional groups (78, 79). Addressing each of these needs
will be a challenging and labor-intensive process, but we have shown
that an enhanced understanding of the complex mechanisms that
drive ACSP at continental to global scales is achievable when the
efforts and data of many ecologists are integrated within an appro-
priate modeling framework.
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Table 2. Direct and total effects of each driver on ACSP in the U.S. and global models. Total effects are calculated as the sum of the direct and indirect effects

of the predictor on the response variable.

SEM model Predictor

Response

Direct Total effect

U.S. model

Water temperature

Mean elevation ACSP -0.19
Precipitation ACSP 0.05
Water temperature ACSP 0.47 0.47

MATERIALS AND METHODS

We used the following workflow: (i) perform a literature review of
invertebrate ACSP studies; (ii) append environmental covariates to
the ACSP data assembled in the literature review; (iii) use univariate
regression to test significant relationships between key covariates
and ACSP; and (iv) use SEM to identify causal pathways within net-
works of interacting covariates, thereby distinguishing direct from
indirect drivers of ACSP (31). SEM analyses were conducted at two
scales: streams throughout the United States and a global analysis of
streams distributed across six continents (fig. S1). By first analyzing
U.S. streams, we were able to use a large standardized set of envi-
ronmental covariates in critical testing of the metamodel (Fig. 1).
The global-scale analysis was limited by a reduced number of co-
variates, but it allowed us to examine the generality of some key
pathways in the U.S. model.

Literature review

Potential sources of ACSP data were first identified through an ISI
Web of Science search (keywords “stream OR streams OR creek
OR lotic AND benthic OR benthos OR invertebrate OR macroin-
vertebrate AND production”) that returned 468 sources (peer-
reviewed publications, government reports, or indexed theses).
Each of these publications was then checked for compliance with
three a priori criteria: (i) Data were exclusive to within-channel
ACSP and did not include estimates of floodplain production; (ii)
samples were inclusive of all locally occurring taxa and did not
focus on a discrete subset of taxa or functional feeding groups; and
(iii) ACSP estimates were inferred from repeat samples collected
throughout the year [e.g., size frequency or cohort methods (17)],
rather than P:B relationships (80). However, ACSP estimates in-
ferred from P:B relationships were acceptable when used solely
to “fill in” production estimates for rare or low biomass taxa that
could not be partitioned into distinct size classes or cohorts. This
screening process reduced the initial list of 468 publications to
56, most of which included ACSP estimates for multiple sites; from
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the final 56 publications, we obtained 164 site-specific estimates
of ACSP. Most study sites are located in the contiguous United
States (n = 137; fig. S1A), with others in Europe (fig. S1B), Iceland,
Costa Rica, Panama, Chile, and New Zealand (sites not shown in
fig. S1). Complete citation information for all sites retained in
this study are listed in data file S1. Before analyses, all ACSP
estimates were standardized to units of milligrams AFDM per
square meter per year (mg AFDM m > year '), using conversion
factors by Waters (81), and then natural log-transformed to im-
prove normality.

Environmental covariates

To test the hypothesized relationships shown in the metamodel
(Fig. 1), we appended a suite of environmental covariates, as well as
author-reported total invertebrate biomass and density estimates,
to each of the 164 ACSP study sites. These covariates included loca-
tion information (longitude and latitude), water quality parameters
(e.g., water temperature, pH, and conductivity), physical habitat
characteristics (e.g., stream channel dimensions and substrate par-
ticle size), and climate conditions (air temperature and precipita-
tion). Whenever possible, covariate values were obtained from the
original literature sources or from companion studies that were
conducted at the same study sites. Complete descriptions of all co-
variates in the ACSP database are listed in table S1 and detailed
methods used to obtain them are provided in the Supplementary
Materials. Availability of covariate data was variable, with many more
covariates accessible for U.S. sites than non-U.S. sites. Two versions
of the ACSP database were therefore prepared: a U.S.-only database
with a large selection of covariates for each of the 137 U.S. sites (see
data file S2) and a global-scale database inclusive of all 164 study
sites but with a limited number of covariates for each site (see data
file $3). Many of the covariates in the U.S. database were not repre-
sented in the metamodel (Fig. 1); these were included in the com-
piled database to provide a ready data source for testing hypotheses
not considered here.
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Hydrologic modeling

Hydrologic indices were independently predicted for each U.S. site,
using time series of daily discharge records from the U.S. Geological
Survey (USGS) Water Services portal (https://waterservices.usgs.
gov), and appended to the ACSP dataset. We began by selecting a
national sample of flow gauges from the USGS Geospatial Attributes
of Gages for Evaluating Streamflow database [GAGES II; Falcone et al.
(82)] that featured (nearly) continuous discharge records from 1970
through the present day; this duration allowed robust characteriza-
tion of contemporary flow dynamics while maximizing the number
and spatial distribution of gauges used to develop hydrologic models.
We then removed gauges with upstream impoundments of >50 Ml
(megaliters) km ™ (impoundment volume scaled by watershed area),
as these sites may be more strongly influenced by dam release oper-
ations than natural precipitation and land-use factors (83). This screening
process resulted in a sample of 2568 gauges.

Random forest models were then developed for a set of hydro-
logic indices, incorporating four of five hydrologic components:
flow magnitude, frequency, duration, and rate of change (84). We
began with models of 12 hydrologic indices that are broadly repre-
sentative of perennial streams in a variety of conditions (85, 86). Flow
magnitude was characterized by variability, skewness, two mea-
sures of spread, and median annual maximum flow. Flow frequency
was characterized by low flow pulse percentage, frequency of low
flow events, and two measures of high flood pulse percentage. Flow
duration was characterized by the 30-day minimum and maximum
daily discharge. Rate of change was characterized by hydrologic
flashiness (87). Following Carlisle et al. (88), random forest models
(500 iterations per model) were built for each flow index using the
randomForest library in R (89). Each random forest model was
parameterized with a suite of predictor variables representing pre-
cipitation, underlying geology, and land use, but excluding pre-
dictor variables that were subsequently used in SEMs of secondary
production (forest cover, watershed size, and impervious surface
in the upstream watershed). Random forest model fit differed
among hydrologic indices, and we focused on those models that
explained >45% of the variance in their respective indices. These
included flashiness, high flow pulse percentage (i.e., number of
daily values within a time series) exceeding the daily median by x7
(HighFlowPulse7) and x3 margins (HighFlowPulse3), minimum
consecutive 30-day flow, low flow pulse percentage, and variation
in daily flow. The final six random forest models were then used to
predict flow indices at each of the stream sites included in the U.S.ACSP
database.

Data analyses

A subset of 13 covariates (see Table 1), each representative of a
hypothesized ACSP driver as shown in Fig. 1, was first selected for
univariate regression analyses of U.S. streams. Associations be-
tween these covariates and ACSP were then independently tested
with regression models of the general form ACSP = b x C + Y, where
C s the covariate of interest, b is a coefficient (i.e., regression model
slope) relating C to ACSP, and Y is an intercept term. Natural log
transformations were used to improve normality for covariates with
skewed distributions. In cases where C was a categorical variable (e.g.,
stream order), b was calculated for each categorical level in com-
parison to a baseline level. For example, the stream order baseline
was first-order (i.e., the smallest) streams. Thus, b for second-order
streams was the difference between first- and second-order streams.

Patrick et al., Sci. Adv. 2019; 5 : eaav2348 17 April 2019

Because measurement units differed among covariates, standardized
regression model parameter estimates were calculated [B (90)] to
facilitate direct comparisons among covariates. Coefficients of de-
termination (°) were also calculated for each regression model to
estimate the variation in ACSP explained by the respective covariate.

Next, SEM was used to confront the ACSP metamodel (Fig. 1)
with the empirical ACSP and covariate data (table S1). This allowed
us to (i) assess the complete graphical network of hypothesized in-
teractions and relationships, with the directions of links (i.e., paths)
in the SEM diagram indicating causal influences, and (ii) test the
overall fit of the network (31, 91). Separate models were fit to the
U.S. and global databases, with the former used to test the complete
network of interrelationships among covariates shown in Fig. 1 and
the latter testing for generality of the U.S. results at the global scale.
At each of the two scales, an iterative process of testing and linking
covariates, consistent with the hypotheses outlined in the metamodel,
was used to produce a final SEM of ACSP. Three indices of model
fit were used with conventional significance thresholds—the x* P value
()(2 P> 0.05), the standardized root mean squared residual (SRMR <
0.08), and the comparative fit index (CFI > 0.95)—to assess the overall
fit of each SEM (92). All SEM procedures were conducted with the
lavaan library in R (93). Code to build the final U.S. and global models
is provided in data file S4.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaav2348/DC1

Supplementary Materials and Methods

Fig. S1. Maps of study sites included in the ACSP database.

Table S1. Data dictionary for variables included in the secondary production database for U.S.
streams.

Data file S1. Citation records for all studies included in the ACSP database.

Data file S2. Complete secondary production and covariate data for all U.S. streams.

Data file S3. Secondary production and covariate data for the global streams database.
Data file S4. R code to build the U.S and global SEM models.
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Supplementary Materials and Methods

U.S. Database — Landscape and Climate Attributes

Annual community secondary production (ACSP) and attribute data from all sample sites within
the U.S., as reported by the original authors (see Data file S1), were appended with additional
environmental covariates using a geographic information system (GIS) to superimpose sample
locations on their corresponding digital stream segments from the 1:100,000 scale National
Hydrography Dataset (NHD) version 2 (98). Locations of all U.S. sample points (originally
reported longitude and latitude coordinates) were manually verified or adjusted in the GIS to
maximize spatial accuracy and consistency among all data sources. Local stream channel slope,
Strahler stream order, and the summed length of all upstream stream segments (relative to a
given sample location; the ‘ArbolateSum’) were appended directly from the NHD attribute
tables. Elevation, basin area, and mean annual runoff were obtained for each sample location
from the StreamCat database (99) at both basin (i.e., the complete drainage basin, relative to a
given NHD stream segment, when delineated from the downstream end of that segment) and
catchment scales (i.e., the fraction of the drainage basin, relative to a given NHD segment, that is
immediately lateral to the segment but exclusive of all area upstream of the upper end of that
segment). An additional 95 covariates from the StreamCat database, representing a variety of
anthropogenic, geologic, and land cover factors, were also appended at basin and catchment
scales (see Table S1). Finally, we used WorldClim (www.worldclim.org) records to append the
19 ‘bioclimate’ variables, representing mean annual and mean monthly air temperature and
precipitation, to the U.S. ACSP dataset. All StreamCat and WorldClim data were queried and
matched to the U.S. sample sites using the master cataloging codes (COMID values) from the
NHD database. All spatial procedures were implemented in ESRI ArcMap 10.2 software
(Environmental Systems Research Institute, Redlands, California). StreamCat variables that were
originally expressed as percentages were arcsine square root transformed. All other covariates
except StreamOrder were strongly skewed and therefore natural log transformed. Scaling
adjustments were made as needed to prevent transformation errors for zero-value observations.
Units, transformations, and scaling adjustments are listed for all covariates in Table S1.

U.S. Database — Hydrologic and Sediment Indices

Hydrologic indices were independently predicted for each U.S. site, using time-series of daily
discharge records from the U.S. Geological Survey (USGS) Water Services portal
(https://waterservices.usgs.gov), and appended to the U.S. ACSP dataset. We began by selecting
a national sample of flow gauges from the USGS Geospatial Attributes of Gages for Evaluating
Streamflow database (82) that featured nearly continuous discharge records from 1970 through
the present; this duration allowed for robust characterization of contemporary flow dynamics
while maximizing the number and spatial distribution of gauges used to development hydrologic
models. We then removed gauges with upstream impoundments > 50 ML/km” (impoundment
volume scaled by basin area), as these sites may be more strongly influenced by dam release
operations than natural precipitation and land use factors (83). This screening process resulted in
a flow database that included 2568 gauges.



Random forest models (/00) were then used to predict a series of hydrologic indices,
representing four of the five flow regime components: magnitude, frequency, duration, and rate
of change (84). We began with models of 12 hydrologic indices that are broadly representative of
perennial streams in a variety of conditions (85, 86). Flow magnitude was characterized by
variability, skewness, two measures of spread, and median annual maximum flow. Flow
frequency was characterized by low flow pulse percentage, frequency of low flow events, and
two measures of high flood pulse percentage. Flow duration was characterized by the 30-day
minimum and maximum daily discharge. Rate of change was characterized by hydrologic
flashiness (87). Following Carlisle et al. (/01), random forest models (500 iterations per model)
were built for each flow index using the randomForest library in R (89). Each random forest
model was parameterized with a suite of predictor variables representing precipitation,
underlying geology, and land use, but excluding predictor variables that were subsequently used
in structural equation models of ACSP (forest cover, basin size, and impervious surface in the
upstream basin). Model fit differed among hydrologic indices and we focused on those models
that explained >45% of the variance in their respective indices. These included flashiness, high
flow pulse percentage (i.e., number of daily values within a time-series) exceeding the daily
median by x7 (‘HighFlowPulse7’) and x3 margins (‘HighFlowPulse3’), minimum consecutive
30-day flow, low flow pulse percentage, and variation in daily flow (see #* values in Table S1).
The final six random forest models were then used to predict flow indices at each of the stream
sites included in the U.S. database.

Two sediment variables were also derived from empirical field data and appended to the
site attributes. Original sources most often reported a single, dominant substrate type or
proportions within 3-5 size categories (e.g., boulder, cobble, sand, etc.). We converted these
descriptive categories to average grain sizes (diameter in mm) using the Wentworth scale (/02).
When proportions by size were reported, we then calculated weighted average sediment size
(‘SedimentHierarchical’). Otherwise, we used the reported dominant grain size or un-weighted
average of all reported size categories (‘SedimentAverage’).

Global Database

Because, the NHD and StreamCat attributes were not available for non-U.S. sites, the number of
global covariates was necessarily smaller (see Data file S3). Each site in the global ACSP
database was appended with 16 covariates, most of which were obtained directly from the
original publications. Mean catchment elevation (‘ElevationCatch’) was interpolated for non-
U.S. sites from a 2.5 digital elevation model, downloaded from WorldClim. Mean annual air
temperature (‘Bioclimatel’) and mean annual precipitation (‘Bioclimatel2’) were also
interpolated from WorldClim records. All covariate units, transformations, and scaling
adjustments in the global database are consistent with definitions in Table S1.
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Fig. S1. Maps of study sites included in the ACSP database. Most reported studies were from
streams and rivers in the U.S. (panel A), with fewer studies in Central America (panel A),
Iceland and northern Europe (panel B). One site was included from Chile and three sites from
New Zealand (not shown in maps). Other regions of the globe are not shown here, as ACSP
studies have not been reported from them. Note that the continental-scale maps obscure the
locations of some sites in close spatial proximity.



Table S1. Data dictionary for variables included in the secondary production database for U.S. streams. Records include basic
descriptions of each variable with units of measurement, data sources, and data transformations that were used prior to structural
equation modeling. All natural log transformations included the addition of a non-zero scaling adjustment (Natural log = In(variable +

0.0000001); Natural log (+121) = In(variable + 121); Natural log (+200) = In(variable + 200).

Variable Description Source Transformation
Index Unique sample identifier. n/a n/a
SiteID Unique label used to identify each sample in the database (concatenation | n/a n/a
of authors, publication date, and stream/site identifiers).
Production Community-level annual secondary production, in milligrams per square | Field data (see | Natural log
meter per year (ash-free dry mass). original citation)
Biomass Total biomass density, in milligrams per square meter (ash-free dry | Field data (see | Natural log
mass). original citation)
Density Density of individuals sampled as mean abundance per square meter. Field data (see | Natural log
original citation)
Discharge Mean annual discharge, in liters per second. Field data (see | Natural log
original citation)
ChannelWidth Mean wetted channel width, in meters. Field data (see | Natural log
original citation)
WaterTemperature Mean annual water temperature, in degrees Celsius. Field data (see | Natural log
original citation)
pH Mean pH. Field data (see | Natural log
original citation)
Conductivity Mean conductivity, in microsiemens per centimeter. Field data (see | Natural log
original citation)
CPOM Coarse particulate organic matter, in grams per square meter (ash-free dry | Field data (see | Natural log
mass). original citation)
Longitude Longitude of the study site, in decimal degrees. Interpolated in GIS Natural log (x +
121)
Latitude Absolute latitude of the study site, in decimal degrees. Interpolated in GIS Natural log
ElevationCatch Mean elevation within the catchment of a focal stream segment, in meters | StreamCat® Natural log
above sea level.
ElevationWater Mean elevation within the watershed contributing to a focal stream | StreamCat® Natural log
segment, in meters above sea level.
Slope Slope of the focal stream segment in dimensionless units (rise in meters | NHD Plus Version 2° | Natural log
oVer run in meters).
StreamOrder Strahler stream order of the focal stream segment. NHD Plus Version 2° | n/a




ArbolateSum Total length of all stream segments upstream of the focal stream segment | NHD Plus Version 2b | Natural log
(including the focal segment) in kilometers.
AreaCatch Total surface area of the immediate catchment contributing to a focal | StreamCat” Natural log
stream segment (exclusive of upstream segments), in square kilometers.
AreaWater Total surface area of the watershed contributing to a focal stream | StreamCat® Natural log
segment, in square kilometers.
RunoffCatch Mean annual runoff within the catchment, in millimeters per year. StreamCat® Natural log
RunoffWater Mean annual runoff within the watershed, in millimeters per year. StreamCat® Natural log
Flashiness Cumulative changes in daily discharge, cumulative discharge for the | Random forest model | Natural log
entire time-series. (R2 =0.709)
HighFlowPulse7 Percent of daily discharge values (within a time-series) that are greater | Random forest model | Natural log
than 7 the median value. (R*=0.516)
HighFlowPulse3 Percent of daily discharge values (within a time-series) that are greater | Random forest model | Natural log
than 3~ the median value. (R*=0.533)
LowFlowPulse Incidence of daily discharge values that are less than the 25th percentile | Random forest model | Natural log
for the entire time-series. (R? = 0.458)
Minimum30DayFlow Minimum average discharge that persists for 30 consecutive days within | Random forest model | Natural log
a time-series. (R*=0.413)
DailyFlowCV Coefficient of variation in daily discharge. Random forest model | Natural log
(R? = 0.654)
SedimentAverage Un-weighted average of sediment size categories, based on the | Interpolated from field | Natural log
Wentworth scale. data
SedimentHierarchical Weighted average of sediment size categories, based on the Wentworth | Interpolated from field | Natural log
scale. data
Bioclimatel Annual mean air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢
Bioclimate2 Mean diurnal range (mean of monthly (max air temp — min air temp)), in | WorldClim Version 2 | Natural log
degrees Celsius. (30 second) °
Bioclimate3 Isothermality ((Bioclimate2 , Bioclimate7) + 100)). WorldClim Version 2 | Natural log
(30 second) ©
Bioclimate4 Temperature seasonality (standard deviation + 100). WorldClim Version 2 | Natural log
(30 second) ©
Bioclimate5 Maximum air temperature of the warmest month, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢
Bioclimate6 Minimum air temperature of the coldest month, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢
Bioclimate7 Annual air temperature range (Bioclimate5 — Bioclimate6), in degrees | WorldClim Version 2 | Natural log

Celsius.

(30 second) ¢




Bioclimate8

Mean air temperature of the wettest quarter, indegrees Celsius.

WorldClim Version 2

Natural log (x + 20)

(30 second) ©

Bioclimate9 Mean air temperature of the driest quarter, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ©

Bioclimate10 Mean air temperature of the warmest quarter, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ©

Bioclimatel 1 Mean air temperature of the coldest quarter, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ©

Bioclimate12 Annual precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Bioclimate13 Precipitation of wettest month, in millimeters per month. WorldClim Version 2 | Natural log
(30 second) ¢

Bioclimate14 Precipitation of driest month, in millimeters per month. WorldClim Version 2 | Natural log
(30 second) ¢

Bioclimatel5 Precipitation seasonality (coefficient of variation among months). WorldClim Version 2 | Natural log
(30 second) ¢

Bioclimate16 Precipitation of wettest quarter, in millimeters per three months. WorldClim Version 2 | Natural log
(30 second) ¢

Bioclimatel7 Precipitation of driest quarter, in millimeters per three months. WorldClim Version 2 | Natural log
(30 second) ¢

Bioclimate18 Precipitation of warmest quarter, in millimeters per three months. WorldClim Version 2 | Natural log
(30 second) ¢

Bioclimate19 Precipitation of coldest quarter, in millimeters per three months. WorldClim Version 2 | Natural log
(30 second) ¢

Precipitation] Mean January precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ¢

Precipitation2 Mean February precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Precipitation3 Mean March precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Precipitation4 Mean April precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ¢

Precipitation5 Mean May precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ¢

Precipitation6 Mean June precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ¢

Precipitation7 Mean July precipitation, in millimeters per year. WorldClim Version 2 | Natural log

(30 second) ¢




Precipitation8 Mean August precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Precipitation9 Mean September precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Precipitation10 Mean October precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Precipitation1 1 Mean November precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

Precipitation12 Mean December precipitation, in millimeters per year. WorldClim Version 2 | Natural log
(30 second) ©

AirTemperaturel Mean January air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature2 Mean February air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature3 Mean March air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature4 Mean April air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature5 Mean May air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature6 Mean June air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature7 Mean July air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature8 Mean August air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperature9 Mean September air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ©

AirTemperaturel0 Mean October air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ©

AirTemperaturel 1 Mean November air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second) ¢

AirTemperaturel2 Mean December air temperature, in degrees Celsius. WorldClim Version 2 | Natural log (x + 20)
(30 second)®

ImperviousCatch Mean percent imperviousness of anthropogenic surfaces within the | StreamCat® Arcsine square root

catchment for a focal stream segment. Taken from 2006 Land Cover data.
ImperviousWater Mean percent imperviousness of anthropogenic surfaces within the | StreamCat® Arcsine square root

watershed for a focal stream segment. Taken from 2006 Land Cover data.




RoadDensityCatch Density of roads within the catchment (2010 Census Tiger lines), in | StreamCat® Natural log
kilometers per square kilometer.

RoadDensityWater Density of roads within the watershed (2010 Census Tiger lines), in | StreamCat” Natural log
kilometers per square kilometer.

RoadCrossingDensityCatch Density of road-stream intersections (2010 Census Tiger lines) within the | StreamCat® Natural log
catchment, as number of crossings per square kilometer.

RoadCrossingDensityWater Density of road-stream intersections (2010 Census Tiger lines) within the | StreamCat® Natural log
watershed, as number of crossings per square kilometer.

DamDensityCatch Density of georeferenced dams within the catchment, as number of dams | StreamCat® Natural log
per square kilometer.

DamDensityWater Density of georeferenced dams within the watershed, as number of dams | StreamCat” Natural log
per square kilometer.

DamNormalStorageCatch Total volume all reservoirs (NORM_STORA) within the catchment per | StreamCat” Natural log
unit area of catchment , as cubic meters per square kilometer.

DamNormalStorageWater Total volume all reservoirs (NORM_STORA) within the watershed per | StreamCat” Natural log
unit area of catchment , as cubic meters per square kilometer.

PopulationDensityCatch Mean population density (2010 Census) within the catchment, as number | StreamCat® Natural log
of residents per square kilometer.

PopulationDensityWater Mean population density (2010 Census) within the watershed, as number | StreamCat® Natural log
of residents per square kilometer.

HousingDensityCatch Mean housing unit density within the catchment, as number of housing | StreamCat® Natural log
units per square kilometer.

HousingDensityWater Mean housing unit density within the watershed, as number of housing | StreamCat® Natural log
units per square kilometer.

PesticidesCatch Mean pesticide use within the catchment (1997 records), in kilograms per | StreamCat® Natural log
square kilometer.

PesticidesWater Mean pesticide use within the watershed (1997 records), in kilograms per | StreamCat® Natural log
square kilometer.

NPDES_DensityCatch Density of permitted NPDES (National Pollutant Discharge Elimination | StreamCat® Natural log
System) sites within the catchment, as number of sites per square
kilometer.

NPDES_DensityWater Density of permitted NPDES (National Pollutant Discharge Elimination | StreamCat® Natural log
System) sites within the watershed, as number of sites per square
kilometer.

TRI_DensityCatch Density of TRI (Toxic Release Inventory) sites within the catchment, as | StreamCat® Natural log
number of sites per square kilometer.

TRI_DensityWater Density of TRI (Toxic Release Inventory) sites within the watershed, as | StreamCat® Natural log

number of sites per square kilometer.




SuperfundDensityCatch Density of Superfund sites within the catchment, as number of sites per | StreamCat® Natural log
square kilometer.

SuperfundDensity Water Density of Superfund sites within the watershed, as number of sites per | StreamCat® Natural log
square kilometer.

MinesDensityCatch Density of permitted mining sites within the catchment, as number of | StreamCat” Natural log
mines per square kilometer.

MinesDensity Water Density of permitted mining sites within the watershed, as number of | StreamCat® Natural log
mines per square kilometer.

PctUrbanHighCatch Percent of catchment classified as developed, high-intensity land use | StreamCat® Arcsine square root
(NLCD 2006 class 24).

PctUrbanHighWater Percent of watershed classified as developed, high-intensity land use | StreamCat® Arcsine square root
(NLCD 2006 class 24).

PctUrbanMediumCatch Percent of catchment classified as developed, medium-intensity land use | StreamCat” Arcsine square root
(NLCD 2006 class 23).

PctUrbanMediumW ater Percent of watershed classified as developed, medium-intensity land use | StreamCat” Arcsine square root
(NLCD 2006 class 23).

PctUrbanLowCatch Percent of catchment classified as developed, low-intensity land use | StreamCat® Arcsine square root
(NLCD 2006 class 22).

PctUrbanLowWater Percent of watershed classified as developed, low-intensity land use | StreamCat® Arcsine square root
(NLCD 2006 class 22).

PctUrbanOpenCatch Percent of catchment classified as developed, open space land use | StreamCat® Arcsine square root
(NLCD 2006 class 21).

PctUrbanOpenWater Percent of watershed classified as developed, open space land use | StreamCat® Arcsine square root
(NLCD 2006 class 21).

PctCropCatch Percent of catchment classified as crop land use (NLCD 2006 class 82). StreamCat® Arcsine square root

PctCropWater Percent of watershed classified as crop land use (NLCD 2006 class 82). StreamCat® Arcsine square root

PctHayCatch Percent of catchment classified as hay land use (NLCD 2006 class 81). StreamCat® Arcsine square root

PctHayWater Percent of watershed classified as hay land use (NLCD 2006 class 81). StreamCat® Arcsine square root

PctDeciduousCatch Percent of catchment classified as deciduous forest land cover (NLCD | StreamCat® Arcsine square root
2006 class 41).

PctDeciduousWater Percent of watershed classified as deciduous forest land cover (NLCD | StreamCat® Arcsine square root
2006 class 41).

PctConiferousCatch Percent of catchment classified as evergreen forest land cover (NLCD | StreamCat” Arcsine square root
2006 class 42).

PctConiferousWater Percent of watershed classified as evergreen forest land cover (NLCD | StreamCat” Arcsine square root
2006 class 42).

PctMixedForestCatch Percent of catchment classified as mixed deciduous/evergreen forest land | StreamCat® Arcsine square root

cover (NLCD 2006 class 43).




PctMixedForestWater Percent of watershed classified as mixed deciduous/evergreen forest land | StreamCat” Arcsine square root
cover (NLCD 2006 class 43).

PctTotalForestCatch Sum of PctDeciduousCatch + PctConiferousCatch + | Derived from | Arcsine square root
PctMixedForestCatch. StreamCat®

PctBarrenLandCatch Percent of catchment classified as barren land cover (NLCD 2006 class | StreamCat” Arcsine square root
31).

PctBarrenLandWater Percent of watershed classified as barren land cover (NLCD 2006 class | StreamCat” Arcsine square root
31).

PctOpenWaterCatch Percent of catchment classified as open water land cover (NLCD 2006 | StreamCat” Arcsine square root
class 11).

PctOpenWaterWater Percent of watershed classified as open water land cover (NLCD 2006 | StreamCat” Arcsine square root
class 11).

PctlceCatch Percent of catchment classified as ice/snow land cover (NLCD 2006 class | StreamCat” Arcsine square root
12).

PctlceWater Percent of watershed classified as ice/snow land cover (NLCD 2006 class | StreamCat” Arcsine square root
12).

PctHerbWetlandCatch Percent of catchment classified as herbaceous wetland land cover (NLCD | StreamCat® Arcsine square root
2006 class 95).

PctHerbWetlandWater Percent of watershed classified as herbaceous wetland land cover (NLCD | StreamCat® Arcsine square root
2006 class 95).

PctWoodWetlandCatch Percent of catchment classified as woody wetland land cover (NLCD | StreamCat® Arcsine square root
2006 class 90).

PctWoodWetlandWater Percent of watershed classified as woody wetland land cover (NLCD | StreamCat® Arcsine square root
2006 class 90).

PctShrubCatch Percent of catchment classified as shrub/scrub land cover (NLCD 2006 | StreamCat® Arcsine square root
class 52).

PctShrubWater Percent of watershed classified as shrub/scrub land cover (NLCD 2006 | StreamCat® Arcsine square root
class 52).

PctGrasslandCatch Percent of catchment classified as grassland/herbaceous land cover | StreamCat® Arcsine square root
(NLCD 2006 class 71).

PctGrasslandWater Percent of watershed classified as grassland/herbaceous land cover | StreamCat® Arcsine square root
(NLCD 2006 class 71).

PctCarbonateResidualCatch Percent of catchment classified as lithology type: carbonate residual | StreamCat® Arcsine square root
material.

PctCarbonateResidualWater Percent of watershed classified as as lithology type: carbonate residual | StreamCat® Arcsine square root
material.

PctNonCarbonateResidualCatch Percent of catchment classified as lithology type: non-carbonate residual | StreamCat® Arcsine square root

material.




PctNonCarbonateResidualWater

Percent of watershed classified as as lithology type: non-carbonate
residual material.

StreamCat?

Arcsine square root

PctAlkalinelntrusiveVolcanicCatch | Percent of catchment classified as lithology type: alkaline intrusive | StreamCat® Arcsine square root
volcanic rock.

PctAlkalinelntrusiveVolcanicWater | Percent of watershed classified as as lithology type: alkaline intrusive | StreamCat® Arcsine square root
volcanic rock.

PctSilicicCatch Percent of catchment classified as lithology type: silicic residual material. | StreamCat” Arcsine square root

PctSilicicWater Percent of watershed classified as as lithology type: silicic residual | StreamCat” Arcsine square root
material.

PctExtrusiveVolcanicCatch Percent of catchment classified as lithology type: extrusive volcanic rock. | StreamCat” Arcsine square root

PctExtrusiveVolcanicWater Percent of watershed classified as as lithology type: extrusive volcanic | StreamCat” Arcsine square root
rock.

PctColluvialSedimentCatch Percent of catchment classified as lithology type: colluvial sediment. StreamCat” Arcsine square root

PctColluvialSedimentWater Percent of watershed classified as as lithology type: colluvial sediment. StreamCat” Arcsine square root

PctGlacialTillClayCatch Percent of catchment classified as lithology type: glacial till, clayey. StreamCat” Arcsine square root

PctGlacialTillClayWater Percent of watershed classified as as lithology type: glacial till, clayey. StreamCat” Arcsine square root

PctGlacialTillLoamyCatch Percent of catchment classified as lithology type: glacial till, loamy. StreamCat” Arcsine square root

PctGlacialTillLoamyWater Percent of watershed classified as as lithology type: glacial till, loamy. StreamCat” Arcsine square root

PctGlacialTillCoarseCatch Percent of catchment classified as lithology type: glacial till, coarse- | StreamCat” Arcsine square root
textured.

PctGlacialTillCoarseWater Percent of watershed classified as as lithology type: glacial till, coarse- | StreamCat” Arcsine square root
textured.

PctGlacialLakeCoarseCatch Percent of catchment classified as lithology type: glacial outwash and | StreamCat® Arcsine square root
glacial lake sediment, coarse-textured.

PctGlacialLakeCoarseWater Percent of watershed classified as as lithology type: glacial outwash and | StreamCat® Arcsine square root
glacial lake sediment, coarse-textured.

PctGlacialLakeFineCatch Percent of catchment classified as lithology type: glacial lake sediment, | StreamCat® Arcsine square root
fine-textured.

PctGlacialLakeFineWater Percent of watershed classified as as lithology type: glacial lake | StreamCat® Arcsine square root
sediment, fine-textured.

PctHydricCatch Percent of catchment classified as lithology type: hydric, peat and muck. | StreamCat® Arcsine square root

PctHydricWater Percent of watershed classified as as lithology type: hydric, peat and | StreamCat® Arcsine square root
muck.

PctEolianCoarseCatch Percent of catchment classified as lithology type: eolian sediment, | StreamCat® Arcsine square root
coarse-textured (sand dunes).

PctEolianCoarseWater Percent of watershed classified as as lithology type: eolian sediment, | StreamCat” Arcsine square root
coarse-textured (sand dunes).

PctEolianFineCatch Percent of catchment classified as lithology type: eolian sediment, fine- | StreamCat” Arcsine square root

textured (glacial loess).




PctEolianFineWater Percent of watershed classified as as lithology type: eolian sediment, | StreamCat” Arcsine square root
fine-textured (glacial loess).
PctSalineLakeCatch Percent of catchment classified as lithology type: saline lake sediment. StreamCat® Arcsine square root
PctSalineLakeWater Percent of watershed classified as as lithology type: saline lake sediment. | StreamCat” Arcsine square root
PctAlluviumCoastalCatch Percent of catchment classified as lithology type: alluvium and fine- | StreamCat® Arcsine square root
textured coastal zone sediment.
PctAlluviumCoastalWater Percent of watershed classified as as lithology type: alluvium and fine- | StreamCat” Arcsine square root
textured coastal zone sediment.
PctCoastalCoarseCatch Percent of catchment classified as lithology type: coastal zone sediment, | StreamCat” Arcsine square root
coarse-textured.
PctCoastalCoarseWater Percent of watershed classified as as lithology type: coastal zone | StreamCat” Arcsine square root
sediment, coarse-textured.
PctWaterCatch Percent of catchment classified as lithology type: water. StreamCat” Arcsine square root
PctWaterWater Percent of watershed classified as as lithology type: water. StreamCat” Arcsine square root
WaterTableDepthCatch Mean seasonal water table depth of soils (STATSGO) within catchment, | StreamCat” Natural log
in centimeters.
WaterTableDepthWater Mean seasonal water table depth (cm) of soils (STATSGO) within | StreamCat” Natural log
watershed, in centimeters.
OrganicMatterCatch Mean organic matter content of soils (STATSGO) within catchment, as | StreamCat” Natural log
percent by weight.
OrganicMatterWater Mean organic matter content of soils (STATSGO) within watershed, as | StreamCat® Natural log
percent by weight.
PermeabilityCatch Mean permeability of soils (STATSGO) within catchment, in centimeters | StreamCat® Natural log
per hour.
PermeabilityWater Mean permeability of soils (STATSGO) within watershed, in centimeters | StreamCat® Natural log
per hour.
BedrockDepthCatch Mean depth to bedrock (STATSGO) within catchment, in centimeters. StreamCat® Natural log
BedrockDepthWater Mean depth to bedrock (STATSGO) within watershed, in centimeters. StreamCat® Natural log
ClayCatch Mean percent clay content of soils (STATSGO) within catchment. StreamCat® Natural log
ClayWater Mean percent clay content of soils (STATSGO) within watershed. StreamCat® Natural log
SandCatch Mean percent sand content of soils (STATSGO) within catchment. StreamCat® Natural log
SandWater Mean percent sand content of soils (STATSGO) within watershed. StreamCat® Natural log

“ — http://newftp.epa.gov/EPADataCommons/ORD/NHDPIlusLandscapeAttributes/StreamCat/WelcomePage.html
» — http://www.horizon-systems.com/NHDPlus/
¢ — http://worldclim.org/version2
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