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E C O L O G Y

Precipitation and temperature drive continental-scale 
patterns in stream invertebrate production

C. J. Patrick1*, D. J. McGarvey2, J. H. Larson3, W. F. Cross4, D. C. Allen5, A. C. Benke6,  

T. Brey7, A. D. Huryn6, J. Jones8, C. A. Murphy9, C. Ruffing10, P. Saffarinia11, 

M. R. Whiles12, J. B. Wallace13, G. Woodward14

Secondary production, the growth of new heterotrophic biomass, is a key process in aquatic and terrestrial eco-
systems that has been carefully measured in many flowing water ecosystems. We combine structural equation 
modeling with the first worldwide dataset on annual secondary production of stream invertebrate communities 
to reveal core pathways linking air temperature and precipitation to secondary production. In the United States, 
where the most extensive set of secondary production estimates and covariate data were available, we show that 
precipitation-mediated, low–stream flow events have a strong negative effect on secondary production. At larger 
scales (United States, Europe, Central America, and Pacific), we demonstrate the significance of a positive two-
step pathway from air to water temperature to increasing secondary production. Our results provide insights into 
the potential effects of climate change on secondary production and demonstrate a modeling framework that can 
be applied across ecosystems.

INTRODUCTION

Secondary production is the generation of new heterotrophic biomass 
over time. It is a fundamental ecosystem process because it requires 
the consumption of basal energetic sources while sustaining consumers 
at higher trophic levels in both aquatic and terrestrial food webs (1–5). 
Secondary production can be used to assess higher- level responses to 
environmental change (6) and human perturbations (7, 8), including 
ecosystem services such as water filtration (9, 10) and fisheries produc-
tion (11, 12). Understanding how secondary production may respond 
to climate change is therefore essential. Invertebrates are diverse and 
productive members of most food webs and comprise the majority of 
metazoan diversity globally. Previous research has characterized local- 
scale effects of temperature on individual invertebrate taxa (13–15), 
but the potential effects of continental- to global-scale shifts in tem-
perature and precipitation on entire communities of invertebrate sec-
ondary producers are largely unknown (16).

Identifying drivers of annual community secondary production 
(ACSP), defined as the sum of annual production of all invertebrate 
populations within a community (17), is particularly challenging 
because individual- and species-level processes do not always scale 
up to the community level in a direct additive manner. Functional 

redundancy in the roles that species play within a food web can offset 
environmental perturbations via compensatory effects on overall 
production (18). For this reason, ACSP may be a more useful holistic 
indicator of the ecosystem-level effects of climate change than pro-
duction rates of discrete taxa or functional groups. Unfortunately, 
studies of the effects of macroscale shifts in temperature and precipi-
tation on ACSP, which are difficult to conduct in experimental settings, 
are rare [but see (19)].

Previous research in stream and river ecosystems provides a 
unique opportunity to further understand the linkages between ACSP 
and climate. When compared to other types of ecosystems, empirical 
studies of ACSP in streams and rivers are relatively common (20, 21). 
We leveraged this previous work by combining a literature review 
on freshwater ACSP with geospatial analysis, hydrologic modeling, 
and structural equation modeling (SEM) to test hypotheses linking 
air temperature and precipitation to ACSP in lotic ecosystems. Our 
ultimate goal was to build a systems-level framework that can be 
expanded or refined in future research and used to predict climate- 
driven changes in ACSP.

Our study focuses primarily on the effects of air temperature and 
precipitation on ACSP because both factors are closely linked to 
physicochemical conditions in freshwater ecosystems. Air tempera-
ture is a principal driver of water temperature in lotic systems (22), 
and water temperature stimulates in-stream primary production 
(23, 24); this two-step pathway may link air temperature to ACSP 
(25). Precipitation effects on ACSP may be mediated by hydrology, 
which is a key determinant of habitat stability for benthic inverte-
brates that reside on or within streambed substrates. Stable flows 
promote well-sorted substrates that support high invertebrate den-
sities and allow extended growth periods (26, 27). In contrast, systems 
that experience extreme floods and/or droughts tend to have low 
secondary production (7, 28, 29).

We began this study with an extensive literature review of em-
pirical measurements of ACSP in lotic ecosystems and associated 
in situ covariates, such as water temperature and channel substrate 
characteristics. We then used a geographic information system to 
append spatially derived covariates, including land use, elevation, 
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slope, and local climate, to the ACSP data. Many environmental co-
variates were available for study sites within the United States, but 
only climate and elevation data were consistently available for sites 
outside of the United States. New hydrologic variables, such as min-
imum 30-day stream flow (the minimum average discharge that 
persists for 30 consecutive days), were then calculated by using ex-
isting covariates as predictors in statistical models (see Materials 
and Methods) and appended to the covariate data for U.S. sites. By 
combining covariates from multiple sources, we were able to ex-
pand the number of variables and causal pathways that we tested in 
models of ACSP.

Links between climate and ACSP were then tested with a combi-
nation of traditional univariate regression analysis and SEM. The 
latter approach was central to our study because SEMs can be used to 
evaluate cause-and-effect relationships among discrete variables (30), 
can explicitly account for covariation among variables, and can 
simultaneously test systems-level hypotheses that are expressed as 
complex networks of interrelationships among variables (31). Devel-
opment of SEMs of ACSP constitutes a significant advance, relative 
to previous reviews of aquatic secondary production (1, 32), because 
it allows us to evaluate multiple drivers of ACSP within a single inte-
grative framework. In addition, this study demonstrates a novel yet 
general approach to integrate meta-analysis of published results, 
covariate data that were mined from independent sources and ap-
pended to published data, and statistical modeling (univariate re-
gression and SEM) for the purpose of deriving greater insight from 
published information and creating new conceptual understanding 
of connections among suites of environmental and biotic variables.

Before model building and testing, we outlined an a priori hy-
pothesis or “metamodel” (30) of systems-level links between major 
climate variables and ACSP (Fig. 1). Habitat stability and water 
temperature were predicted to be proximal drivers of ACSP. Hy-
drology (28), channel substrate (33), and land cover (34) were pre-
dicted to drive habitat stability. Air temperature (22), canopy shading 
(35), and stream channel size (36) were predicted to influence water 
temperature. Precipitation, latitude, and elevation were predicted to 
act as distal effects on ACSP, mediated through their effects on tem-
perature and riparian vegetation.

Models were tested at two distinct spatial scales. First, we modeled 
ACSP at the continental scale, using only U.S. study sites. This allowed 
us to test complex cause-and-effect relationships using the full suite 
of environmental covariates that was assembled for U.S. sites. Sec-
ond, we developed simpler ACSP models at a larger scale that included 
sites from Europe, Central and South America, and New Zealand. 
These inclusive models were constrained by the smaller number of 
environmental covariates that were available at all study sites, but 
they did allow us to test the generality of some key results from the 
U.S. models.

RESULTS AND DISCUSSION

Among all U.S. samples, ACSP spanned four orders of magnitude 
[35 to 612,231 mg ash-free dry mass (AFDM) m−2 year−1] and was 
strongly positively skewed [median, 9991; coefficient of variation 
(CV), 0.41; see Fig. 2A, inset]. A nearly identical distribution of 
ACSP was observed at the global scale (median, 9982; CV, 0.42; see 
Fig. 2B, inset). In U.S. streams, univariate regression analyses de-
tected significant positive effects of mean annual water temperature, 
basin area, minimum 30-day flow, and percent urban development on 

ACSP (Table 1), consistent with hypothesized links A, B, E, F, and 
H in Fig. 1. A significant negative effect was also detected for percent 
forest cover, as predicted by link C in the metamodel. Of the univar-
iate relationships, water temperature had the strongest overall effect 
on ACSP (standardized effect size b = 0.39).

Nine covariates and 14 path links were retained in the final SEM 
for U.S. streams (Fig. 2A and Table 2). Of these, some paths were 
simple and predictable, such as the strong effect of air temperature 
on water temperature (37), the effects of latitude and elevation on 
air temperature, and the effect of precipitation on minimum 30-day 
discharge. However, other paths were more complex. For instance, 
the total effect of precipitation on water temperature included two 
paths: a direct positive link from precipitation to water tempera-
ture and a negative indirect link that was mediated by forest cover 
(precipitation → forest cover → water temperature; see Fig. 2A). 
This indirect effect of precipitation on water temperature may be 
attributed to wetter regions having comparatively dense forests with 
larger canopies and more extensive shading (38, 39) or enhanced 
evaporation (40).

The U.S. SEM confirmed many of the hypothesized pathways in 
the metamodel (Fig. 1), most notably the direct influence of base 
flow stability and water temperature on ACSP. Significant indirect 
effects of climate (air temperature and precipitation), the physical 
landscape (catchment elevation and basin area), and land cover 
(impervious surface area and forest cover) on ACSP were mediated 
through their direct effects on water temperature and base flow sta-
bility. The final inclusive SEM complimented the U.S. model by 
confirming that air temperature and precipitation have consistent, 
predictable effects on ACSP that are mediated by their direct effects 
on water temperature (Fig. 2B).

The positive effect of water temperature on ACSP in the U.S. and 
global models is perhaps intuitive, but our quantitative results raise 
pressing theoretical questions and can help to reconcile conflicting 
results from previous site-specific studies. The metabolic theory of 
ecology (MTE) predicts that standing stock biomass should de-
crease with increasing temperature, while the production-to-biomass 
(P:B) relationship should increase with temperature, resulting in no 
net change in secondary production (41). Some empirical support 
for this prediction is provided by observational meta-analyses (32) 
and controlled in situ stream warming experiments (16), but other 
studies have documented net positive effects of temperature on body 
size, growth rates, and total production (1, 25). Our results, which 
constitute the most comprehensive meta-analysis to date, indicate 
that the relationship between temperature and ACSP is net positive. 
Given that the MTE assumes constant resource supply, we posit that 
the mechanism responsible for the observed positive relationship 
between water temperature and ACSP may be a temperature-mediated 
increase in basal resources (42). Thus, we suggest that closer exam-
ination of the effect of basal resources on ACSP should be a priority 
area in future research (43–45).

Basal resources are likely to improve systems-level models of 
ACSP because food quality and quantity are already known to be 
fundamental determinants of individual growth (46–48) and of ACSP 
(49) in aquatic ecosystems. For instance, allochthonous leaf litter 
has low nutritional value, relative to autochthonous material, but 
can account for >90% of the annual variation in secondary produc-
tion within temperate streams because it is so abundant (45, 50, 51). 
Allochthonous material was not included in our models because it 
was not measured at most study sites (see data file 2). However, 
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using a subset of U.S. studies that measured both allochthonous 
organic material and ACSP (n = 41), we detected a strong positive 
univariate relationship between coarse particulate organic matter 
(CPOM) and ACSP (r2 = 0.279, P < 0.001). Notably, CPOM accounted 
for more of the variation in ACSP than water temperature and habitat 
stability combined (in the U.S. SEM; see Fig. 2A). We are therefore 
confident that additional information on basal resources and the 
mechanisms that link them to climate (52–55) will enhance our abil-
ity to predict ACSP in changing climates.

Hydrology also stood out as a key regulator of ACSP. Results 
from U.S. streams indicated that discharge magnitude during dry or 
low flow periods (i.e., minimum 30-day flow) has a significant posi-
tive effect (b = 0.24) on ACSP (Fig. 2A and Table 1). While this is 
consistent with previous site-specific findings that environmental 
stability increases in-stream production (56–58), our study is the 
first to demonstrate this relationship at the continental scale. Hy-
drologic stability, as one dimension of environmental stability in 
lotic ecosystems, is known to have a significant effect on secondary 
production (59–62), particularly in drought-prone systems (63). 
However, the effect of hydrology did not extend to measures of 
flooding or “flashiness.” These factors are important to invertebrates 
in some lotic ecosystems (26, 58, 64), but they did not have a signif-
icant effect on ACSP in our analyses. This may be due to variation 

among communities in the response to flashiness, where naturally 
flashy streams are inhabited by organisms with adaptive traits that 
convey resilience (59, 65).

One notable difference between the U.S. and inclusive models 
was a significant positive effect of absolute latitude on ACSP; this 
link between latitude and ACSP, which was independent of a latitu-
dinal effect on temperature, was detected in the inclusive model but 
not in the final U.S. model. The difference may be an artifact of the 
truncated range of latitudes among U.S. streams relative to the global 
range. However, it may also indicate that additional information on 
benthic community structure is needed to understand ACSP at global 
scales. Links between benthic diversity, biomass (66, 67), and sec-
ondary production (68, 69) have been documented in freshwater 
ecosystems, and benthic invertebrate diversity is known to vary with 
latitude (70, 71). Incorporating new dimensions of community struc-
ture, such as diversity and standing stock biomass, may therefore 
help to explain the effect of latitude on ACSP.

Moving forward, an obvious goal should be to increase the ex-
plained variation in ACSP. Coefficients of determination for ACSP 
were <0.25 in both the U.S. and global SEMs (Fig. 2)—a strong 
indication that some key variables were not included in the models. 
Here, our goal was to advance conceptual understanding of the systems- 
level drivers of ACSP by identifying causal pathways that link climate 
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Fig. 1. Conceptual diagram or metamodel of major hypothesized influences on ACSP. Covariates that are external to stream ecosystems (i.e., exogenous variables) 

are indicated by rectangles. Covariates that are direct measures of in-stream conditions or processes (i.e., endogenous variables) are indicated by ovals. Each covariate is 

also recognized as one of five color-coded types (see inset key): biogeography, climate, terrestrial habitat, in-stream habitat, and community. Solid black arrows depict 
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hypothesized covariation among variables.
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to ACSP; we did not seek to maximize explained variation in ACSP 
per se. The SEM allowed us to test the hypothesized linkages among 
variables (Fig. 1) in a critical and explicit way. Nevertheless, future 
progress will benefit from the addition and testing of new covari-
ates and links between climate and ACSP.

Basal resource availability was previously noted as a priority re-
search topic. Another focus area should be the role of anthropogenic 
stressors on ACSP. Previous research has reported a positive re-
lationship between some land-use activities and ACSP that covaries 
with watershed area (72). Consistent with this earlier finding, 
we detected a positive relationship between watershed area and 
ACSP. However, when impervious surface area and agricultural 
land use were added to preliminary SEMs, we were unable to detect 
a significant influence of either variable on ACSP. The apparent 
lack of a strong land-use effect on ACSP may be a sampling artifact, as 
many of the study sites were located at field stations where human 
impacts were likely minimal. For example, 64% of all streams in the 
U.S. database were entirely unaffected by row-crop agriculture and 
only 7% of the U.S. streams flowed through watersheds, where row-
crop agriculture accounted for >10% of internal land use. Thus, the 
current ACSP database may be ill suited to evaluate land-use effects, 
leaving a key information gap to be filled.

Despite the limitations of the ACSP models, our results have clear 
implications for ecosystem function in the face of climate change. 
Climate models predict that over the next century, average air tem-
peratures will continue to rise (73) and precipitation patterns will 
shift markedly (74, 75). Our models suggest that these changes will 

have cascading effects on ACSP mediated through water tem-
perature and discharge during dry periods. For instance, the SEMs 
predict that warming temperatures will tend to increase ACSP. How-
ever, the frequency and severity of low flow events are expected 
to increase in many ecosystems as subhumid regions transition 
to semiarid climates (75–77). If these systems are populated by in-
vertebrates that lack physiological or life history traits that allow 
them to persist under drought conditions, temperature-driven increases 
in ACSP are likely to be offset by increased mortality or diminished 
recruitment.

In conclusion, we suggest that four key areas of research should 
now be pursued to advance understanding of ACSP. First, new ACSP 
data from undersampled regions are needed to determine whether 
the results presented here are applicable in other parts of the globe. 
Second, a better understanding of the roles that basal resources or 
other bottom-up trophic constraints play in regulating ACSP and 
how these basal factors are affected by climate is needed. Third, the 
effects of anthropogenic stressors should be incorporated in systems- 
level models. Fourth, the general ACSP results should be tested using 
habitat-specific production estimates (3, 60, 62), paying special 
attention to account for differential effects on specific invertebrate 
traits or functional groups (78, 79). Addressing each of these needs 
will be a challenging and labor-intensive process, but we have shown 
that an enhanced understanding of the complex mechanisms that 
drive ACSP at continental to global scales is achievable when the 
efforts and data of many ecologists are integrated within an appro-
priate modeling framework.

Table 1. Comparison of effect sizes in univariate regression models of ACSP in U.S. streams. Unstandardized regression slopes (b) and standardized slopes 
(b) are each reported with 95% confidence intervals (shown in parentheses) as well as sample sizes (n) and coefficients of determination (r2). Covariates shown in 
bold text have slopes (95% confidence intervals) that exclude zero and are therefore considered statistically significant. 

Hypothesized effect Covariate n b b r
2

Temperature
Mean annual air 

temperature
128 1.32 (−0.11 to 2.75) 0.16 (−0.01 to 0.34) 0.02

Mean annual water 

temperature
107 1.32 (0.74 to 1.90) 0.39 (0.22 to 0.57) 0.15

Canopy shading
% Forest cover in 

catchment
128 −0.56 (−1.06 to −0.06) −0.19 (−0.37 to −0.02) 0.03

Stream size Basin area 128 0.10 (0.02 to 0.19) 0.21 (0.03 to 0.38) 0.03

Mean annual discharge 102 0.04 (−0.03 to 0.11) 0.10 (−0.08 to 0.27) <0.01

Hydrology Flashiness 124 −0.23 (−0.64 to 0.19) −0.10 (−0.27 to 0.08) <0.01

CV discharge 124 −0.20 (−0.86 to 0.45) −0.06 (−0.24 to 0.13) 0.01

Minimum 30-day 

consecutive flow
124 1.36 (0.39 to 2.33) 0.24 (0.07 to 0.42) 0.05

Channel substrate
Average sediment size 

(unweighted)
88 −0.10 (−0.22 to 0.02) −0.17 (−0.38 to 0.04) 0.02

Average sediment size 
(weighted)

88 −0.12 (−0.24 to 0.00) −0.20 (−0.41 to 0.01) 0.03

Land cover
Impervious surface in 

basin
124 3.24 (−0.19 to 6.67) 0.16 (−0.01 to 0.34) 0.02

% Medium density 

urbanization in 

catchment

128 3.39 (1.11 to 5.68) 0.25 (0.08 to 0.42) 0.06

% Crop cover in 
catchment

128 0.86 (−0.46 to 2.18) 0.11 (−0.06 to 0.29) 0.01
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MATERIALS AND METHODS

We used the following workflow: (i) perform a literature review of 
invertebrate ACSP studies; (ii) append environmental covariates to 
the ACSP data assembled in the literature review; (iii) use univariate 
regression to test significant relationships between key covariates 
and ACSP; and (iv) use SEM to identify causal pathways within net-
works of interacting covariates, thereby distinguishing direct from 
indirect drivers of ACSP (31). SEM analyses were conducted at two 
scales: streams throughout the United States and a global analysis of 
streams distributed across six continents (fig. S1). By first analyzing 
U.S. streams, we were able to use a large standardized set of envi-
ronmental covariates in critical testing of the metamodel (Fig. 1). 
The global-scale analysis was limited by a reduced number of co-
variates, but it allowed us to examine the generality of some key 
pathways in the U.S. model.

Literature review
Potential sources of ACSP data were first identified through an ISI 
Web of Science search (keywords “stream OR streams OR creek 
OR lotic AND benthic OR benthos OR invertebrate OR macroin-
vertebrate AND production”) that returned 468 sources (peer- 
reviewed publications, government reports, or indexed theses). 
Each of these publications was then checked for compliance with 
three a priori criteria: (i) Data were exclusive to within-channel 
ACSP and did not include estimates of floodplain production; (ii) 
samples were inclusive of all locally occurring taxa and did not 
focus on a discrete subset of taxa or functional feeding groups; and 
(iii) ACSP estimates were inferred from repeat samples collected 
throughout the year [e.g., size frequency or cohort methods (17)], 
rather than P:B relationships (80). However, ACSP estimates in-
ferred from P:B relationships were acceptable when used solely 
to “fill in” production estimates for rare or low biomass taxa that 
could not be partitioned into distinct size classes or cohorts. This 
screening process reduced the initial list of 468 publications to 
56, most of which included ACSP estimates for multiple sites; from 

the final 56 publications, we obtained 164 site-specific estimates 
of ACSP. Most study sites are located in the contiguous United 
States (n = 137; fig. S1A), with others in Europe (fig. S1B), Iceland, 
Costa Rica, Panama, Chile, and New Zealand (sites not shown in 
fig. S1). Complete citation information for all sites retained in 
this study are listed in data file S1. Before analyses, all ACSP 
estimates were standardized to units of milligrams AFDM per 
square meter per year (mg AFDM m−2 year−1), using conversion 
factors by Waters (81), and then natural log–transformed to im-
prove normality.

Environmental covariates
To test the hypothesized relationships shown in the metamodel 
(Fig. 1), we appended a suite of environmental covariates, as well as 
author-reported total invertebrate biomass and density estimates, 
to each of the 164 ACSP study sites. These covariates included loca-
tion information (longitude and latitude), water quality parameters 
(e.g., water temperature, pH, and conductivity), physical habitat 
characteristics (e.g., stream channel dimensions and substrate par-
ticle size), and climate conditions (air temperature and precipita-
tion). Whenever possible, covariate values were obtained from the 
original literature sources or from companion studies that were 
conducted at the same study sites. Complete descriptions of all co-
variates in the ACSP database are listed in table S1 and detailed 
methods used to obtain them are provided in the Supplementary 
Materials. Availability of covariate data was variable, with many more 
covariates accessible for U.S. sites than non-U.S. sites. Two versions 
of the ACSP database were therefore prepared: a U.S.-only database 
with a large selection of covariates for each of the 137 U.S. sites (see 
data file S2) and a global-scale database inclusive of all 164 study 
sites but with a limited number of covariates for each site (see data 
file S3). Many of the covariates in the U.S. database were not repre-
sented in the metamodel (Fig. 1); these were included in the com-
piled database to provide a ready data source for testing hypotheses 
not considered here.

Table 2. Direct and total effects of each driver on ACSP in the U.S. and global models. Total effects are calculated as the sum of the direct and indirect effects 
of the predictor on the response variable. 

SEM model Predictor Response Direct Total effect

U.S. model Water temperature ACSP 0.39 0.39

30-day consecutive flow ACSP 0.28 0.28

Precipitation ACSP 0.18

Air temperature ACSP 0.36

Impervious cover ACSP 0.02

Watershed area ACSP 0.16

Mean elevation ACSP −0.10

Absolute latitude ACSP −0.01

Forest cover ACSP −0.08

Global model Absolute latitude ACSP 0.35 0.19

Air temperature ACSP 0.38

Mean elevation ACSP −0.19

Precipitation ACSP 0.05

Water temperature ACSP 0.47 0.47
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Hydrologic modeling
Hydrologic indices were independently predicted for each U.S. site, 
using time series of daily discharge records from the U.S. Geological 
Survey (USGS) Water Services portal (https://waterservices.usgs.
gov), and appended to the ACSP dataset. We began by selecting a 
national sample of flow gauges from the USGS Geospatial Attributes 
of Gages for Evaluating Streamflow database [GAGES II; Falcone et al. 
(82)] that featured (nearly) continuous discharge records from 1970 
through the present day; this duration allowed robust characteriza-
tion of contemporary flow dynamics while maximizing the number 
and spatial distribution of gauges used to develop hydrologic models. 
We then removed gauges with upstream impoundments of >50 Ml 
(megaliters)  km−2 (impoundment volume scaled by watershed area), 
as these sites may be more strongly influenced by dam release oper-
ations than natural precipitation and land-use factors (83). This screening 
process resulted in a sample of 2568 gauges.

Random forest models were then developed for a set of hydro-
logic indices, incorporating four of five hydrologic components: 
flow magnitude, frequency, duration, and rate of change (84). We 
began with models of 12 hydrologic indices that are broadly repre-
sentative of perennial streams in a variety of conditions (85, 86). Flow 
magnitude was characterized by variability, skewness, two mea-
sures of spread, and median annual maximum flow. Flow frequency 
was characterized by low flow pulse percentage, frequency of low 
flow events, and two measures of high flood pulse percentage. Flow 
duration was characterized by the 30-day minimum and maximum 
daily discharge. Rate of change was characterized by hydrologic 
flashiness (87). Following Carlisle et al. (88), random forest models 
(500 iterations per model) were built for each flow index using the 
randomForest library in R (89). Each random forest model was 
parameterized with a suite of predictor variables representing pre-
cipitation, underlying geology, and land use, but excluding pre-
dictor variables that were subsequently used in SEMs of secondary 
production (forest cover, watershed size, and impervious surface 
in the upstream watershed). Random forest model fit differed 
among hydrologic indices, and we focused on those models that 
explained ≥45% of the variance in their respective indices. These 
included flashiness, high flow pulse percentage (i.e., number of 
daily values within a time series) exceeding the daily median by ×7 
(HighFlowPulse7) and ×3 margins (HighFlowPulse3), minimum 
consecutive 30-day flow, low flow pulse percentage, and variation 
in daily flow. The final six random forest models were then used to 
predict flow indices at each of the stream sites included in the U.S.ACSP 
database.

Data analyses
A subset of 13 covariates (see Table 1), each representative of a 
hypothesized ACSP driver as shown in Fig. 1, was first selected for 
univariate regression analyses of U.S. streams. Associations be-
tween these covariates and ACSP were then independently tested 
with regression models of the general form ACSP = b × C + Y, where 
C is the covariate of interest, b is a coefficient (i.e., regression model 
slope) relating C to ACSP, and Y is an intercept term. Natural log 
transformations were used to improve normality for covariates with 
skewed distributions. In cases where C was a categorical variable (e.g., 
stream order), b was calculated for each categorical level in com-
parison to a baseline level. For example, the stream order baseline 
was first-order (i.e., the smallest) streams. Thus, b for second-order 
streams was the difference between first- and second-order streams. 

Because measurement units differed among covariates, standardized 
regression model parameter estimates were calculated [b (90)] to 
facilitate direct comparisons among covariates. Coefficients of de-
termination (r2) were also calculated for each regression model to 
estimate the variation in ACSP explained by the respective covariate.

Next, SEM was used to confront the ACSP metamodel (Fig. 1) 
with the empirical ACSP and covariate data (table S1). This allowed 
us to (i) assess the complete graphical network of hypothesized in-
teractions and relationships, with the directions of links (i.e., paths) 
in the SEM diagram indicating causal influences, and (ii) test the 
overall fit of the network (31, 91). Separate models were fit to the 
U.S. and global databases, with the former used to test the complete 
network of interrelationships among covariates shown in Fig. 1 and 
the latter testing for generality of the U.S. results at the global scale. 
At each of the two scales, an iterative process of testing and linking 
covariates, consistent with the hypotheses outlined in the metamodel, 
was used to produce a final SEM of ACSP. Three indices of model 
fit were used with conventional significance thresholds—the c2 P value 
(c2 P > 0.05), the standardized root mean squared residual (SRMR ≤ 
0.08), and the comparative fit index (CFI ≥ 0.95)—to assess the overall 
fit of each SEM (92). All SEM procedures were conducted with the 
lavaan library in R (93). Code to build the final U.S. and global models 
is provided in data file S4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/5/4/eaav2348/DC1

Supplementary Materials and Methods

Fig. S1. Maps of study sites included in the ACSP database.

Table S1. Data dictionary for variables included in the secondary production database for U.S. 

streams.

Data file S1. Citation records for all studies included in the ACSP database.

Data file S2. Complete secondary production and covariate data for all U.S. streams.

Data file S3. Secondary production and covariate data for the global streams database.

Data file S4. R code to build the U.S and global SEM models.

References (98–102)

REFERENCES AND NOTES
 1. A. D. Huryn, J. B. Wallace, Life history and production of stream insects. Annu. Rev. 

Entomol. 45, 83–110 (2000).

 2. R. O. Hall Jr., J. B. Wallace, S. L. Eggert, Organic matter flow in stream food webs with 

reduced detrital resource base. Ecology 81, 3445–3463 (2000).

 3. A. C. Benke, J. B. Wallace, High secondary production in a Coastal Plain river is dominated 

by snag invertebrates and fuelled mainly by amorphous detritus. Freshw. Biol. 60, 

236–255 (2015).

 4. G. Woodward, D. C. Speirs, A. G. Hildrew, Quantification and resolution of a complex,  

size-structured food web. Adv. Ecol. Res. 36, 85–135 (2005).

 5. W. F. Cross, C. V. Baxter, E. J. Rosi-Marshall, R. O. Hall Jr., T. A. Kennedy, K. C. Donner, 

H. A. Wellard Kelly, S. E. Z. Seegert, K. E. Behn, M. D. Yard, Food-web dynamics in a large 

river discontinuum. Ecol. Monogr. 83, 311–337 (2013).

 6. D. P. Whiting, M. R. Whiles, M. L. Stone, Patterns of macroinvertebrate production, trophic 

structure, and energy flow along a tallgrass prairie stream continuum. Limnol. Oceanogr. 

56, 887–898 (2011).

 7. M. R. Whiles, J. B. Wallace, Macroinvertebrate production in a headwater stream during 

recovery from anthropogenic disturbance and hydrologic extremes. Can. J. Fish. Aq. Sci. 

52, 2402–2422 (1995).

 8. D. M. Carlisle, W. H. Clements, Growth and secondary production of aquatic insects along 

a gradient of Zn contamination in Rocky Mountain streams. J. N. Am. Benthol. Soc. 22, 

582–597 (2003).

 9. N. S. Ismail, C. E. Müller, R. R. Morgan, R. G. Luthy, Uptake of contaminants of emerging 

concern by the bivalves Anodonta californiensis and Corbicula fluminea. Environ. Sci. 

Technol. 48, 9211–9219 (2014).

 10. National Research Council, Ecosystem services of bivalves: Implications for restoration, in 

Ecosystem Concepts for Sustainable Bivalve Mariculture (National Academies Press, 2010), 

pp. 123–132.

 o
n
 A

p
ril 1

7
, 2

0
1
9

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Patrick et al., Sci. Adv. 2019; 5 : eaav2348     17 April 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 9

 11. E. Mortensen, J. L. Simonsen, Production estimates of the benthic invertebrate 

community in a small Danish stream. Hydrobiologia 102, 155–162 (1983).

 12. M. A. Wilzbach, K. W. Cummins, J. D. Hall, Influence of habitat manipulations on 

interactions between cutthroat trout and invertebrate drift. Ecology 67, 898–911  

(1986).

 13. A. D. Huryn, Growth and voltinism of lotic midge larvae: Patterns across an Appalachian 

Mountain basin. Limnol. Oceanogr. 35, 339–351 (1990).

 14. A. D. Huryn, A. C. Benke, G. M. Ward, Direct and indirect effects of geology on the 

distribution, biomass, and production of the freshwater snail Elimia. J. N. Am. Benthol. Soc. 

14, 519–534 (1995).

 15. A. Morin, P. Dumont, A simple model to estimate growth rate of lotic insect larvae and its 

value for estimating population and community production. J. N. Am. Benthol. Soc. 13, 

357–367 (1994).

 16. D. Nelson, J. P. Benstead, A. D. Huryn, W. F. Cross, J. M. Hood, P. W. Johnson, J. R. Junker, 

G. M. Gíslason, J. S. Ólafsson, Shifts in community size structure drive temperature 

invariance of secondary production in a stream-warming experiment. Ecology 98, 

1797–1806 (2017).

 17. A. C. Benke, A. D. Huryn, Secondary production and quantitative food webs, in Stream 

Ecology. Volume 2: Ecosystem Function (Elsevier, ed. 3, 2017), pp. 235–254.

 18. A. P. Covich, M. A. Palmer, T. A. Crowl, The role of benthic invertebrate species in 

freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. 

Bioscience 49, 119–127 (1999).

 19. D. Nelson, J. P. Benstead, A. D. Huryn, W. F. Cross, J. M. Hood, P. W. Johnson, J. R. Junker, 

G. M. Gíslason, J. S. Ólafsson, Experimental whole-stream warming alters community size 

structure. Glob. Chang. Biol. 23, 2618–2628 (2017).

 20. A. C. Benke, M. R. Whiles, Life table vs secondary production analyses—Relationships and 

usage in ecology. J. N. Am. Benthol. Soc. 30, 1024–1032 (2011).

 21. A. C. Benke, Secondary production as part of bioenergetic theory—Contributions from 

freshwater benthic science. River Res. Appl. 26, 36–44 (2010).

 22. C. Segura, P. Caldwell, G. Sun, S. McNulty, Y. Zhang, A model to predict stream water 

temperature across the conterminous USA. Hydrol. Process. 29, 2178–2195 (2015).

 23. P. J. Mulholland, C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Martí, 

L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. Mcdowell, M. J. Paul, B. J. Peterson, 

Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 46, 

1503–1517 (2001).

 24. B. O. L. Demars, J. R. Manson, J. S. Ólafsson, G. M. Gíslason, R. Gudmundsdóttir, 

G. Woodward, J. Reiss, D. E. Pichler, J. J. Rasmussen, N. Friberg, Temperature and the 

metabolic balance of streams. Freshw. Biol. 56, 1106–1121 (2011).

 25. E. R. Hannesdóttir, G. M. Gíslason, J. S. Ólafsson, Ó. P. Ólafsson, E. J. O’Gorman, Increased 

stream productivity with warming supports higher trophic levels. Adv. Ecol. Res. 48, 

285–342 (2013).

 26. N. B. Grimm, S. G. Fisher, Stability of periphyton and macroinvertebrates to disturbance 

by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8, 293–307 (1989).

 27. R. G. Death, The effect of habitat stability on benthic invertebrate communities:  

The utility of species abundance distributions. Hydrobiologia 317, 97–107 (1996).

 28. I. G. Jowett, Hydraulic constraints on habitat suitability for benthic invertebrates in 

gravel-bed rivers. River Res. Appl. 19, 495–507 (2003).

 29. P. D. Markos, M. D. Kaller, W. E. Kelso, Channel stability and the structure of coastal stream 

aquatic insect assemblages. Fundam. Appl. Limnol. 188, 187–199 (2016).

 30. J. B. Grace, D. R. Schoolmaster Jr., G. R. Guntenspergen, A. M. Little, B. R. Mitchell, 

K. M. Miller, E. W. Schweiger, Guidelines for a graph-theoretic implementation of 

structural equation modeling. Ecosphere 3, 1–44 (2012).

 31. J. B. Grace, Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 

Cambridge, 2006).

 32. A. C. Benke, Concepts and patterns of invertebrate production in running waters.  

Verh. Int. Ver. Theor. Angew. Limnol. 25, 15–38 (1993).

 33. L. R. Harrison, C. J. Legleiter, M. A. Wydzga, T. Dunne, Channel dynamics and habitat 

development in a meandering, gravel bed river. Water Resour. Res. 47, W04513 (2011).

 34. K. M. Potter, F. W. Cubbage, R. H. Schaberg, Multiple-scale landscape predictors of 

benthic macroinvertebrate community structure in North Carolina. Landscape Urban 

Plann. 71, 77–90 (2005).

 35. J. C. Rutherford, S. Blackett, C. Blackett, L. Saito, R. J. Davies-Colley, Predicting the effects 

of shade on water temperature in small streams. N. Z. J. Mar. Freshwat. Res. 31, 707–721 

(1997).

 36. D. Caissie, The thermal regime of rivers: A review. Freshw. Biol. 51, 1389–1406 (2006).

 37. J. C. Morrill, R. C. Bales, M. H. Conklin, Estimating stream temperature from air 

temperature: Implications for future water quality. J. Environ. Eng. 131, 139–146 (2005).

 38. L. L. Larry, L. L. Shane, Riparian shade and stream temperature: A perspective.  

Rangelands 18, 149–152 (1996).

 39. G. C. Poole, C. H. Berman, An ecological perspective on in-stream temperature: Natural 

heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 

27, 787–802 (2001).

 40. M. A. Rahman, A. Moser, T. Rötzer, S. Pauleit, Within canopy temperature differences and 

cooling ability of Tilia cordata trees grown in urban conditions. Build. Environ. 114, 

118–128 (2017).

 41. J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory 

of ecology. Ecology 85, 1771–1789 (2004).

 42. C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the 

biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

 43. J. S. Richardson, Seasonal food limitation of detritivores in a montane stream:  

An experimental test. Ecology 72, 873–887 (1991).

 44. B. J. Peterson, L. Deegan, J. Helfrich, J. E. Hobbie, M. Hullar, B. Moller, T. E. Ford, 

A. Hershey, A. Hiltner, G. Kipphut, M. A. Lock, D. M. Fiebig, V. McKinley, M. C. Miller, 

J. R. Vestal, R. Ventullo, G. Volk, Biological responses of a tundra river to fertilization. 

Ecology 74, 653–672 (1993).

 45. J. B. Wallace, S. L. Eggert, J. L. Meyer, J. R. Webster, Effects of resource limitation on a 

detrital-based ecosystem. Ecol. Monogr. 69, 409–442 (1999).

 46. T. M. Iversen, Ingestion and growth in Sericostoma personatum (Trichoptera) in relation to 

the nitrogen content of ingested leaves. Oikos 25, 278–282 (1974).

 47. G. M. Ward, K. W. Cummins, Effects of food quality on growth of a stream detritivore, 

Paratendipes Albimanus (Meigen) (Diptera: Chironomidae). Ecology 60, 57–64 (1979).

 48. C. L. Fuller, M. A. Evans-White, S. A. Entrekin, Growth and stoichiometry of a common 

aquatic detritivore respond to changes in resource stoichiometry. Oecologia 177, 

837–848 (2015).

 49. W. F. Cross, J. B. Wallace, A. D. Rosemond, S. L. Eggert, Whole-system nutrient enrichment 

increases secondary production in a detritus-based ecosystem. Ecology 87, 1556–1565 

(2006).

 50. J. B. Wallace, S. L. Eggert, J. L. Meyer, J. R. Webster, Multiple trophic levels of a forest 

stream linked to terrestrial litter inputs. Science 277, 102–104 (1997).

 51. W. K. Dodds, Eutrophication and trophic state in rivers and streams.  

Limnol. Oceanogr. 51, 671–680 (2006).

 52. F. Woodward, Climate and Plant Distribution (Cambridge Univ. Press, 1987).

 53. A. Hoffman, P. Parsons, Extreme Environmental Change and Evolution (Cambridge Univ. 

Press, 1997).

 54. P. B. Reich, J. Oleksyn, Global patterns of plant leaf N and P in relation to temperature  

and latitude. Proc. Natl. Acad. Sci. U.S.A. 101, 11001–11006 (2004).

 55. W. K. Dodds, K. Gido, M. R. Whiles, M. D. Daniels, B. P. Grudzinski, The stream biome 

gradient concept: Factors controlling lotic systems across broad biogeographic scales. 

Freshw. Sci. 34, 1–19 (2015).

 56. B. Bond-Lamberty, S. D. Peckham, D. E. Ahl, S. T. Gower, Fire as the dominant driver of 

central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).

 57. M. Zhao, S. W. Running, Drought-induced reduction in global terrestrial net primary 

production from 2000 through 2009. Science 329, 940–943 (2010).

 58. M. Piniewski, C. Prudhomme, M. C. Acreman, L. Tylec, P. Oglęcki, T. Okruszko, Responses 

of fish and invertebrates to floods and droughts in Europe. Ecohydrology 10, e1793 (2017).

 59. J. Jackson, S. G. Fisher, Secondary production, emergence, and export of aquatic insects 

of a Sonoran Desert stream. Ecology 67, 629–638 (1986).

 60. J. E. Gladden, L. A. Smock, Macroinvertebrate distribution and production on the 

floodplains of two lowland headwater streams. Freshw. Biol. 24, 533–545 (1990).

 61. R. O. Hall Jr., M. F. Dybdahl, M. C. VanderLoop, Extremely high secondary production of 

introduced snails in rivers. Ecol. Appl. 16, 1121–1131 (2006).

 62. M. A. Chadwick, A. D. Huryn, Role of habitat in determining macroinvertebrate 

production in an intermittent-stream system. Freshw. Biol. 52, 240–251 (2007).

 63. M. E. Ledger, F. K. Edwards, L. E. Brown, A. M. Milner, G. Woodward, Impact of simulated 

drought on ecosystem biomass production: An experimental test in stream mesocosms. 

Glob. Chang. Biol. 17, 2288–2297 (2011).

 64. N. Majdi, B. Mialet, S. Boyer, M. Tackx, J. Leflaive, S. Boulêtreau, L. Ten-Hage, F. Julien, 

R. Fernandez, E. Buffan-Dubau, The relationship between epilithic biofilm stability  

and its associated meiofauna under two patterns of flood disturbance.  

Freshw. Sci. 31, 38–50 (2012).

 65. S. G. Fisher, L. J. Gray, N. B. Grimm, D. E. Busch, Temporal succession in a desert stream 

ecosystem following flash flooding. Ecol. Monogr. 52, 93–110 (1982).

 66. G. G. Mittelbach, C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, 

M. R. Willig, S. I. Dodson, L. Gough, What is the observed relationship between species 

richness and productivity? Ecology 82, 2381–2396 (2001).

 67. B. J. Cardinale, D. S. Srivastava, J. Emmett Duffy, J. P. Wright, A. L. Downing, M. Sankaran, 

C. Jouseau, Effects of biodiversity on the functioning of trophic groups and ecosystems. 

Nature 443, 989–992 (2006).

 68. B. Statzner, V. H. Resh, Multiple-site and-year analyses of stream insect emergence: A test 

of ecological theory. Oecologia 96, 65–79 (1993).

 69. M. R. Whiles, B. S. Goldowitz, Hydrologic influences on insect emergence production 

from Central Platte River WETLANDS. Ecol. Appl. 11, 1829–1842 (2001).

 70. M. R. Vinson, C. P. Hawkins, Broad-scale geographical patterns in local stream insect 

genera richness. Ecography 26, 751–767 (2003).

 o
n
 A

p
ril 1

7
, 2

0
1
9

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



Patrick et al., Sci. Adv. 2019; 5 : eaav2348     17 April 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

 71. L. A. Bêche, B. Statzner, Richness gradients of stream invertebrates across the USA: 

Taxonomy- and trait-based approaches. Biodivers. Conserv. 18, 3909–3930 (2009).

 72. J. C. Finlay, Stream size and human influences on ecosystem production in river 

networks. Ecosphere 2, 1–21 (2011).

 73. Intergovernmental Panel on Climate Change, "AR5 synthesis report: Climate change 

2014" (Technical Report, 2014).

 74. R. Allen, B. Soden, Atmospheric warming and the amplification of precipitation extremes. 

Science 321, 1481–1484 (2008).

 75. R. Seager, M. Ting, C. Li, N. Naik, B. Cook, J. Nakamura, H. Liu, Projections of declining 

surface-water availability for the southwestern United States. Nat. Clim. Chang. 3, 

482–486 (2013).

 76. R. Seager, M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H. P. Huang, N. Harnik, A. Leetmaa, 

N. C. Lau, C. Li, J. Velez, N. Naik, Model projections of an imminent transition to a more 

arid climate in southwestern North America. Science 316, 1181–1184 (2007).

 77. A. Dai, Increasing drought under global warming in observations and models.  

Nat. Clim. Chang. 3, 52–58 (2013).

 78. N. L. Poff, J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons, B. C. Kondratieff, Functional 

trait niches of North American lotic insects: Traits-based ecological applications in light of 

phylogenetic relationships. J. N. Am. Benthol. Soc. 25, 730–755 (2006).

 79. J. C. White, D. M. Hannah, A. House, S. J. V. Beatson, A. Martin, P. J. Wood, 

Macroinvertebrate responses to flow and stream temperature variability across 

regulated and non-regulated rivers. Ecohydrology 10, e1773 (2017).

 80. D. G. Jenkins, Estimating ecological production from biomass. Ecosphere 6, 1–31 (2015).

 81. T. F. Waters, Secondary production in inland waters. Adv. Ecol. Res. 10, 91–164 (1977).

 82. J. A. Falcone, D. M. Carlisle, D. M. Wolock, M. R. Meador, GAGES: A stream gage database 

for evaluating natural and altered flow conditions in the conterminous United States. 

Ecology 91, 621 (2010).

 83. L. L. Yuan, Using correlation of daily flows to identify index gauges for ungauged 

streams. Water Resour. Res. 49, 604–613 (2013).

 84. N. L. Poff, J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, 

J. C. Stromberg, The natural flow regime. Bioscience 47, 769–784 (1997).

 85. J. D. Olden, N. L. Poff, Redundancy and the choice of hydrologic indices for characterizing 

streamflow regimes. River Res. Appl. 19, 101–121 (2003).

 86. C. J. Patrick, L. L. Yuan, Modeled hydrologic metrics show links between hydrology and 

the functional composition of stream assemblages. Ecol. Appl. 27, 1605–1617 (2017).

 87. D. B. Baker, R. P. Richards, T. T. Loftus, J. W. Kramer, A new flashiness index: Characteristics 

and applications to midwestern rivers and streams. J. Am. Water Resour. Assoc. 40, 

503–522 (2004).

 88. D. M. Carlisle, D. M. Wolock, M. R. Meador, Alteration of streamflow magnitudes and 

potential ecological consequences: A multiregional assessment. Front. Ecol. Environ. 9, 

264–270 (2010).

 89. D. R. Cutler, T. C. Edwards Jr., K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, J. J. Lawler, 

Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

 90. J. R. Hair, R. C. Anderson, R. Tatham, W. Black, Multivariate Data Analysis (Prentice Hall, ed. 5, 1998).

 91. B. Shipley, Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural 

Equations and Causal Inference (Cambridge Univ. Press, 2002).

 92. L. Hu, P. M. Bentler, Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Struct. Equ. Modeling 6, 1–55 (1999).

 93. Y. Rosseel, lavaan: An R Package for structural equation modeling. J. Stat. Softw. 48 (2012).

 94. N. J. Hetrick, M. A. Brusven, W. R. Meehan, T. C. Bjornn, Changes in solar input, water 

temperature, periphyton accumulation, and allochthonous input and storage after 

canopy removal along two small salmon streams in southeast Alaska. Trans. Am. Fish. Soc. 

127, 859–875 (1998).

 95. O. Mohseni, T. R. Erickson, H. G. Stefan, Upper bounds for stream temperatures in the 

contiguous United States. J. Environ. Eng. 128, 4–11 (2002).

 96. R. L. Vannote, G. W. Minshall, K. W. Cummins, J. R. Sedell, C. E. Cushing, The river 

continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

 97. M. Diana, J. D. Allan, D. Infante, The influence of physical habitat and land use  

on stream fish assemblages in southeastern Michigan. Am. Fish. Soc. Symp. 48, 359–374 

(2006).

 98. L. McKay, T. Bondelid, T. Dewald, A. Rea, C. Johnston, R. Moore, NHDPlus Version 2: User 

Guide (Data Model Version 2.1) (Horizon Systems, 2015).

 99. R. A. Hill, M. H. Weber, S. G. Leibowitz, A. R. Olsen, D. J. Thornbrugh, The Stream-

Catchment (StreamCat) dataset: A database of watershed metrics for the conterminous 

United States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).

 100. L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001).

 101. D. M. Carlisle, J. Falcone, D. M. Wolock, M. R. Meador, R. H. Norris, Predicting the natural 

flow regime: Models for assessing hydrological alteration in streams. River Res. Appl. 26, 

118–136 (2010).

 102. C. K. Wentworth, A scale of grade and class terms for clastic sediments. J. Geol. 30, 

377–392 (1922).

Acknowledgments 

Funding: We thank the U.S. NSF (grant no. DEB-1354867) for funding the Stream Resiliency 

Research Coordination Network (RCN) and the National Center for Ecological Analysis and 

Synthesis (NCEAS) for hosting the Structural Equation and Mechanistic Modeling Working 

Group, where many of these ideas were developed. C.J.P. received additional support from 

the National Academy of Science, Engineering, and Medicine (GRP-ECRF). D.J.M. received 

additional support through the NSF (DEB-1553111). G.W. was supported by the UK Natural 

Environment Research Council Large Grant (NE/M020843/1). W.F.C. received additional 

support through the NSF (DEB-0949774). Graphic icons used in Figs. 1 and 2 were 

downloaded from Freepik (www.freepik.com) and the Integration and Application Network, 

University of Maryland Center for Environmental Science (ian.umces.edu/imagelibrary/). 

Author contributions: All authors contributed to the development of the dataset used in 

these analyses and writing and editing of the manuscript and supplementary documents. 

C.J.P. was responsible for the hydrologic modeling. D.J.M. was responsible for the geospatial 

analyses. C.J.P., D.J.M., and J.H.L. were responsible for the statistical analyses. Competing 

interests: The authors declare that they have no competing interests. Data and materials 

availability: All data needed to evaluate the conclusions in the paper are present in the 

paper and/or the Supplementary Materials. Additional data related to this paper may be 

requested from the authors.

Submitted 28 August 2018

Accepted 27 February 2019

Published 17 April 2019

10.1126/sciadv.aav2348

Citation: C. J. Patrick, D. J. McGarvey, J. H. Larson, W. F. Cross, D. C. Allen, A. C. Benke, T. Brey, 

A. D. Huryn, J. Jones, C. A. Murphy, C. Ruffing, P. Saffarinia, M. R. Whiles, J. B. Wallace, G. Woodward, 

Precipitation and temperature drive continental-scale patterns in stream invertebrate production. 

Sci. Adv. 5, eaav2348 (2019).

 o
n
 A

p
ril 1

7
, 2

0
1
9

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



 

 
advances.sciencemag.org/cgi/content/full/5/4/eaav2348/DC1 

 
Supplementary Materials for 

 
Precipitation and temperature drive continental-scale patterns in stream 

invertebrate production 
 

C. J. Patrick*, D. J. McGarvey, J. H. Larson, W. F. Cross, D. C. Allen, A. C. Benke, T. Brey, A. D. Huryn, J. Jones, 
 C. A. Murphy, C. Ruffing, P. Saffarinia, M. R. Whiles, J. B. Wallace, G. Woodward 

 
*Corresponding author. Email: christopher.patrick@tamucc.edu 

 
Published 17 April 2019, Sci. Adv. 5, eaav2348 (2019) 

DOI: 10.1126/sciadv.aav2348 
 

The PDF file includes: 
 

Supplementary Materials and Methods 
Fig. S1. Maps of study sites included in the ACSP database. 
Table S1. Data dictionary for variables included in the secondary production database for U.S. 
streams. 
References (98–102) 

 
Other Supplementary Material for this manuscript includes the following: 
 
(available at advances.sciencemag.org/cgi/content/full/5/4/eaav2348/DC1) 
 

Data file S1 (.csv format). Citation records for all studies included in the ACSP database. 
Data file S2 (.csv format). Complete secondary production and covariate data for all U.S. 
streams. 
Data file S3 (.csv format). Secondary production and covariate data for the global streams 
database. 
Data file S4 (.txt format). R code to build the U.S and global SEM models. 



 

 

Supplementary Materials and Methods 

 

U.S. Database – Landscape and Climate Attributes 

 

Annual community secondary production (ACSP) and attribute data from all sample sites within 

the U.S., as reported by the original authors (see Data file S1), were appended with additional 

environmental covariates using a geographic information system (GIS) to superimpose sample 

locations on their corresponding digital stream segments from the 1:100,000 scale National 

Hydrography Dataset (NHD) version 2 (98). Locations of all U.S. sample points (originally 

reported longitude and latitude coordinates) were manually verified or adjusted in the GIS to 

maximize spatial accuracy and consistency among all data sources. Local stream channel slope, 

Strahler stream order, and the summed length of all upstream stream segments (relative to a 

given sample location; the ‘ArbolateSum’) were appended directly from the NHD attribute 
tables. Elevation, basin area, and mean annual runoff were obtained for each sample location 

from the StreamCat database (99) at both basin (i.e., the complete drainage basin, relative to a 

given NHD stream segment, when delineated from the downstream end of that segment) and 

catchment scales (i.e., the fraction of the drainage basin, relative to a given NHD segment, that is 

immediately lateral to the segment but exclusive of all area upstream of the upper end of that 

segment). An additional 95 covariates from the StreamCat database, representing a variety of 

anthropogenic, geologic, and land cover factors, were also appended at basin and catchment 

scales (see Table S1). Finally, we used WorldClim (www.worldclim.org) records to append the 

19 ‘bioclimate’ variables, representing mean annual and mean monthly air temperature and 
precipitation, to the U.S. ACSP dataset. All StreamCat and WorldClim data were queried and 

matched to the U.S. sample sites using the master cataloging codes (COMID values) from the 

NHD database. All spatial procedures were implemented in ESRI ArcMap 10.2 software 

(Environmental Systems Research Institute, Redlands, California). StreamCat variables that were 

originally expressed as percentages were arcsine square root transformed. All other covariates 

except StreamOrder were strongly skewed and therefore natural log transformed. Scaling 

adjustments were made as needed to prevent transformation errors for zero-value observations. 

Units, transformations, and scaling adjustments are listed for all covariates in Table S1.  

 

U.S. Database – Hydrologic and Sediment Indices 

 

Hydrologic indices were independently predicted for each U.S. site, using time-series of daily 

discharge records from the U.S. Geological Survey (USGS) Water Services portal 

(https://waterservices.usgs.gov), and appended to the U.S. ACSP dataset. We began by selecting 

a national sample of flow gauges from the USGS Geospatial Attributes of Gages for Evaluating 

Streamflow database (82) that featured nearly continuous discharge records from 1970 through 

the present; this duration allowed for robust characterization of contemporary flow dynamics 

while maximizing the number and spatial distribution of gauges used to development hydrologic 

models. We then removed gauges with upstream impoundments > 50 ML/km
2
 (impoundment 

volume scaled by basin area), as these sites may be more strongly influenced by dam release 

operations than natural precipitation and land use factors (83). This screening process resulted in 

a flow database that included 2568 gauges. 



 

 

 Random forest models (100) were then used to predict a series of hydrologic indices, 

representing four of the five flow regime components: magnitude, frequency, duration, and rate 

of change (84). We began with models of 12 hydrologic indices that are broadly representative of 

perennial streams in a variety of conditions (85, 86). Flow magnitude was characterized by 

variability, skewness, two measures of spread, and median annual maximum flow. Flow 

frequency was characterized by low flow pulse percentage, frequency of low flow events, and 

two measures of high flood pulse percentage. Flow duration was characterized by the 30-day 

minimum and maximum daily discharge. Rate of change was characterized by hydrologic 

flashiness (87). Following Carlisle et al. (101), random forest models (500 iterations per model) 

were built for each flow index using the randomForest library in R (89). Each random forest 

model was parameterized with a suite of predictor variables representing precipitation, 

underlying geology, and land use, but excluding predictor variables that were subsequently used 

in structural equation models of ACSP (forest cover, basin size, and impervious surface in the 

upstream basin). Model fit differed among hydrologic indices and we focused on those models 

that explained ≥45% of the variance in their respective indices. These included flashiness, high 
flow pulse percentage (i.e., number of daily values within a time-series) exceeding the daily 

median by ×7 (‘HighFlowPulse7’) and ×3 margins (‘HighFlowPulse3’), minimum consecutive 
30-day flow, low flow pulse percentage, and variation in daily flow (see r

2
 values in Table S1). 

The final six random forest models were then used to predict flow indices at each of the stream 

sites included in the U.S. database. 

Two sediment variables were also derived from empirical field data and appended to the 

site attributes. Original sources most often reported a single, dominant substrate type or 

proportions within 3-5 size categories (e.g., boulder, cobble, sand, etc.). We converted these 

descriptive categories to average grain sizes (diameter in mm) using the Wentworth scale (102). 

When proportions by size were reported, we then calculated weighted average sediment size 

(‘SedimentHierarchical’). Otherwise, we used the reported dominant grain size or un-weighted 

average of all reported size categories (‘SedimentAverage’). 
 

Global Database 

 

Because, the NHD and StreamCat attributes were not available for non-U.S. sites, the number of 

global covariates was necessarily smaller (see Data file S3). Each site in the global ACSP 

database was appended with 16 covariates, most of which were obtained directly from the 

original publications. Mean catchment elevation (‘ElevationCatch’) was interpolated for non-

U.S. sites from a 2.5’ digital elevation model, downloaded from WorldClim. Mean annual air 

temperature (‘Bioclimate1’) and mean annual precipitation (‘Bioclimate12’) were also 
interpolated from WorldClim records. All covariate units, transformations, and scaling 

adjustments in the global database are consistent with definitions in Table S1. 



 

 

 

 
 

 

Fig. S1. Maps of study sites included in the ACSP database. Most reported studies were from 

streams and rivers in the U.S. (panel A), with fewer studies in Central America (panel A), 

Iceland and northern Europe (panel B). One site was included from Chile and three sites from 

New Zealand (not shown in maps). Other regions of the globe are not shown here, as ACSP 

studies have not been reported from them. Note that the continental-scale maps obscure the 

locations of some sites in close spatial proximity. 

 

 

 



 

 

 

Table S1. Data dictionary for variables included in the secondary production database for U.S. streams. Records include basic 

descriptions of each variable with units of measurement, data sources, and data transformations that were used prior to structural 

equation modeling. All natural log transformations included the addition of a non‐zero scaling adjustment (Natural log = ln(variable + 
0.0000001); Natural log (+121) = ln(variable + 121); Natural log (+200) = ln(variable + 200). 

 
Variable Description Source Transformation 

Index Unique sample identifier. n/a n/a 

SiteID Unique label used to identify each sample in the database (concatenation 

of authors, publication date, and stream/site identifiers). 

n/a n/a 

Production Community-level annual secondary production, in milligrams per square 

meter per year (ash-free dry mass). 

Field data (see 

original citation) 

Natural log 

Biomass Total biomass density, in milligrams per square meter (ash-free dry 

mass). 

Field data (see 

original citation) 

Natural log 

Density Density of individuals sampled as mean abundance per square meter. Field data (see 

original citation) 

Natural log 

Discharge Mean annual discharge, in liters per second. Field data (see 

original citation) 

Natural log 

ChannelWidth Mean wetted channel width, in meters. Field data (see 

original citation) 

Natural log 

WaterTemperature Mean annual water temperature, in degrees Celsius. Field data (see 

original citation) 

Natural log 

pH Mean pH. Field data (see 

original citation) 

Natural log 

Conductivity Mean conductivity, in microsiemens per centimeter. Field data (see 

original citation) 

Natural log 

CPOM Coarse particulate organic matter, in grams per square meter (ash-free dry 

mass). 

Field data (see 

original citation) 

Natural log 

Longitude Longitude of the study site, in decimal degrees. Interpolated in GIS Natural log (x + 

121) 

Latitude Absolute latitude of the study site, in decimal degrees. Interpolated in GIS Natural log 

ElevationCatch Mean elevation within the catchment of a focal stream segment, in meters 

above sea level. 

StreamCata Natural log 

ElevationWater Mean elevation within the watershed contributing to a focal stream 

segment, in meters above sea level. 

StreamCata Natural log 

Slope Slope of the focal stream segment in dimensionless units (rise in meters 

over run in meters). 

NHD Plus Version 2b Natural log 

StreamOrder Strahler stream order of the focal stream segment. NHD Plus Version 2b n/a 



 

 

ArbolateSum Total length of all stream segments upstream of the focal stream segment 

(including the focal segment) in kilometers. 

NHD Plus Version 2b Natural log 

AreaCatch Total surface area of the immediate catchment contributing to a focal 

stream segment (exclusive of upstream segments), in square kilometers. 

StreamCata Natural log 

AreaWater Total surface area of the watershed contributing to a focal stream 

segment, in square kilometers. 

StreamCata Natural log 

RunoffCatch Mean annual runoff within the catchment, in millimeters per year. StreamCata Natural log 

RunoffWater Mean annual runoff within the watershed, in millimeters per year. StreamCata Natural log 

Flashiness Cumulative changes in daily discharge¸ cumulative discharge for the 

entire time-series. 

Random forest model 

(R2 = 0.709) 

Natural log 

HighFlowPulse7 Percent of daily discharge values (within a time-series) that are greater 

than 7´ the median value. 

Random forest model 

(R2 = 0.516) 

Natural log 

HighFlowPulse3 Percent of daily discharge values (within a time-series) that are greater 

than 3´ the median value. 

Random forest model 

(R2 = 0.533) 

Natural log 

LowFlowPulse Incidence of daily discharge values that are less than the 25th percentile 

for the entire time-series. 

Random forest model 

(R2 = 0.458) 

Natural log 

Minimum30DayFlow Minimum average discharge that persists for 30 consecutive days within 

a time-series. 

Random forest model 

(R2 = 0.413) 

Natural log 

DailyFlowCV Coefficient of variation in daily discharge. Random forest model 

(R2 = 0.654) 

Natural log 

SedimentAverage Un-weighted average of sediment size categories, based on the 

Wentworth scale. 

Interpolated from field 

data 

Natural log 

SedimentHierarchical Weighted average of sediment size categories, based on the Wentworth 

scale. 

Interpolated from field 

data 

Natural log 

Bioclimate1 Annual mean air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate2 Mean diurnal range (mean of monthly (max air temp – min air temp)), in 

degrees Celsius. 

WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate3 Isothermality ((Bioclimate2  ¸ Bioclimate7) ÷ 100)). WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate4 Temperature seasonality (standard deviation ÷ 100). WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate5 Maximum air temperature of the warmest month, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate6 Minimum air temperature of the coldest month, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate7 Annual air temperature range (Bioclimate5 – Bioclimate6), in degrees 

Celsius. 

WorldClim Version 2 

(30 second) c 

Natural log 

 

 



 

 

Bioclimate8 Mean air temperature of the wettest quarter, indegrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate9 Mean air temperature of the driest quarter, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate10 Mean air temperature of the warmest quarter, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate11 Mean air temperature of the coldest quarter, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

Bioclimate12 Annual precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate13 Precipitation of wettest month, in millimeters per month. WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate14 Precipitation of driest month, in millimeters per month. WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate15 Precipitation seasonality (coefficient of variation among months). WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate16 Precipitation of wettest quarter, in millimeters per three months. WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate17 Precipitation of driest quarter, in millimeters per three months. WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate18 Precipitation of warmest quarter, in millimeters per three months. WorldClim Version 2 

(30 second) c 

Natural log 

Bioclimate19 Precipitation of coldest quarter, in millimeters per three months. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation1 Mean January precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation2 Mean February precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation3 Mean March precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation4 Mean April precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation5 Mean May precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation6 Mean June precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation7 Mean July precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

 

 



 

 

Precipitation8 Mean August precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation9 Mean September precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation10 Mean October precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation11 Mean November precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

Precipitation12 Mean December precipitation, in millimeters per year. WorldClim Version 2 

(30 second) c 

Natural log 

AirTemperature1 Mean January air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature2 Mean February air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature3 Mean March air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature4 Mean April air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature5 Mean May air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature6 Mean June air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature7 Mean July air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature8 Mean August air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature9 Mean September air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature10 Mean October air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature11 Mean November air temperature, in degrees Celsius. WorldClim Version 2 

(30 second) c 

Natural log (x + 20) 

AirTemperature12 Mean December air temperature, in degrees Celsius. WorldClim Version 2 

(30 second)c 

Natural log (x + 20) 

ImperviousCatch Mean percent imperviousness of anthropogenic surfaces within the 

catchment for a focal stream segment. Taken from 2006 Land Cover data. 

StreamCata Arcsine square root 

ImperviousWater Mean percent imperviousness of anthropogenic surfaces within the 

watershed for a focal stream segment. Taken from 2006 Land Cover data. 

StreamCata Arcsine square root 

 

 



 

 

RoadDensityCatch Density of roads within the catchment (2010 Census Tiger lines), in 

kilometers per square kilometer. 

StreamCata Natural log 

RoadDensityWater Density of roads within the watershed (2010 Census Tiger lines), in 

kilometers per square kilometer. 

StreamCata Natural log 

RoadCrossingDensityCatch Density of road-stream intersections (2010 Census Tiger lines) within the 

catchment, as number of crossings per square kilometer. 

StreamCata Natural log 

RoadCrossingDensityWater Density of road-stream intersections (2010 Census Tiger lines) within the 

watershed, as number of crossings per square kilometer. 

StreamCata Natural log 

DamDensityCatch Density of georeferenced dams within the catchment, as number of dams 

per square kilometer. 

StreamCata Natural log 

DamDensityWater Density of georeferenced dams within the watershed, as number of dams 

per square kilometer. 

StreamCata Natural log 

DamNormalStorageCatch Total volume all reservoirs (NORM_STORA) within the catchment per 

unit area of catchment , as cubic meters per square kilometer. 

StreamCata Natural log 

DamNormalStorageWater Total volume all reservoirs (NORM_STORA) within the watershed per 

unit area of catchment , as cubic meters per square kilometer. 

StreamCata Natural log 

PopulationDensityCatch Mean population density (2010 Census) within the catchment, as number 

of residents per square kilometer. 

StreamCata Natural log 

PopulationDensityWater Mean population density (2010 Census) within the watershed, as number 

of residents per square kilometer. 

StreamCata Natural log 

HousingDensityCatch Mean housing unit density within the catchment, as number of housing 

units per square kilometer. 

StreamCata Natural log 

HousingDensityWater Mean housing unit density within the watershed, as number of housing 

units per square kilometer. 

StreamCata Natural log 

PesticidesCatch Mean pesticide use within the catchment (1997 records), in kilograms per 

square kilometer. 

StreamCata Natural log 

PesticidesWater Mean pesticide use within the watershed (1997 records), in kilograms per 

square kilometer. 

StreamCata Natural log 

NPDES_DensityCatch Density of permitted NPDES (National Pollutant Discharge Elimination 

System) sites within the catchment, as number of sites per square 

kilometer. 

StreamCata Natural log 

NPDES_DensityWater Density of permitted NPDES (National Pollutant Discharge Elimination 

System) sites within the watershed, as number of sites per square 

kilometer. 

StreamCata Natural log 

TRI_DensityCatch Density of TRI (Toxic Release Inventory) sites within the catchment, as 

number of sites per square kilometer. 

StreamCata Natural log 

TRI_DensityWater Density of TRI (Toxic Release Inventory) sites within the watershed, as 

number of sites per square kilometer. 

StreamCata Natural log 

 

 



 

 

SuperfundDensityCatch Density of Superfund sites within the catchment, as number of sites per 

square kilometer. 

StreamCata Natural log 

SuperfundDensityWater Density of Superfund sites within the watershed, as number of sites per 

square kilometer. 

StreamCata Natural log 

MinesDensityCatch Density of permitted mining sites within the catchment, as number of 

mines per square kilometer. 

StreamCata Natural log 

MinesDensityWater Density of permitted mining sites within the watershed, as number of 

mines per square kilometer. 

StreamCata Natural log 

PctUrbanHighCatch Percent of catchment classified as developed, high-intensity land use 

(NLCD 2006 class 24). 

StreamCata Arcsine square root 

PctUrbanHighWater Percent of watershed classified as developed, high-intensity land use 

(NLCD 2006 class 24). 

StreamCata Arcsine square root 

PctUrbanMediumCatch Percent of catchment classified as developed, medium-intensity land use 

(NLCD 2006 class 23). 

StreamCata Arcsine square root 

PctUrbanMediumWater Percent of watershed classified as developed, medium-intensity land use 

(NLCD 2006 class 23). 

StreamCata Arcsine square root 

PctUrbanLowCatch Percent of catchment classified as developed, low-intensity land use 

(NLCD 2006 class 22). 

StreamCata Arcsine square root 

PctUrbanLowWater Percent of watershed classified as developed, low-intensity land use 

(NLCD 2006 class 22). 

StreamCata Arcsine square root 

PctUrbanOpenCatch Percent of catchment classified as developed, open space land use 

(NLCD 2006 class 21). 

StreamCata Arcsine square root 

PctUrbanOpenWater Percent of watershed classified as developed, open space land use 

(NLCD 2006 class 21). 

StreamCata Arcsine square root 

PctCropCatch Percent of catchment classified as crop land use (NLCD 2006 class 82). StreamCata Arcsine square root 

PctCropWater Percent of watershed classified as crop land use (NLCD 2006 class 82). StreamCata Arcsine square root 

PctHayCatch Percent of catchment classified as hay land use (NLCD 2006 class 81). StreamCata Arcsine square root 

PctHayWater Percent of watershed classified as hay land use (NLCD 2006 class 81). StreamCata Arcsine square root 

PctDeciduousCatch Percent of catchment classified as deciduous forest land cover (NLCD 

2006 class 41). 

StreamCata Arcsine square root 

PctDeciduousWater Percent of watershed classified as deciduous forest land cover (NLCD 

2006 class 41). 

StreamCata Arcsine square root 

PctConiferousCatch Percent of catchment classified as evergreen forest land cover (NLCD 

2006 class 42). 

StreamCata Arcsine square root 

PctConiferousWater Percent of watershed classified as evergreen forest land cover (NLCD 

2006 class 42). 

StreamCata Arcsine square root 

PctMixedForestCatch Percent of catchment classified as mixed deciduous/evergreen forest land 

cover (NLCD 2006 class 43). 

StreamCata Arcsine square root 

 

 



 

 

PctMixedForestWater Percent of watershed classified as mixed deciduous/evergreen forest land 

cover (NLCD 2006 class 43). 

StreamCata Arcsine square root 

PctTotalForestCatch Sum of PctDeciduousCatch + PctConiferousCatch + 

PctMixedForestCatch. 

Derived from 

StreamCata 

Arcsine square root 

PctBarrenLandCatch Percent of catchment classified as barren land cover (NLCD 2006 class 

31). 

StreamCata Arcsine square root 

PctBarrenLandWater Percent of watershed classified as barren land cover (NLCD 2006 class 

31). 

StreamCata Arcsine square root 

PctOpenWaterCatch Percent of catchment classified as open water land cover (NLCD 2006 

class 11). 

StreamCata Arcsine square root 

PctOpenWaterWater Percent of watershed classified as open water land cover (NLCD 2006 

class 11). 

StreamCata Arcsine square root 

PctIceCatch Percent of catchment classified as ice/snow land cover (NLCD 2006 class 

12). 

StreamCata Arcsine square root 

PctIceWater Percent of watershed classified as ice/snow land cover (NLCD 2006 class 

12). 

StreamCata Arcsine square root 

PctHerbWetlandCatch Percent of catchment classified as herbaceous wetland land cover (NLCD 

2006 class 95). 

StreamCata Arcsine square root 

PctHerbWetlandWater Percent of watershed classified as herbaceous wetland land cover (NLCD 

2006 class 95). 

StreamCata Arcsine square root 

PctWoodWetlandCatch Percent of catchment classified as woody wetland land cover (NLCD 

2006 class 90). 

StreamCata Arcsine square root 

PctWoodWetlandWater Percent of watershed classified as woody wetland land cover (NLCD 

2006 class 90). 

StreamCata Arcsine square root 

PctShrubCatch Percent of catchment classified as shrub/scrub land cover (NLCD 2006 

class 52). 

StreamCata Arcsine square root 

PctShrubWater Percent of watershed classified as shrub/scrub land cover (NLCD 2006 

class 52). 

StreamCata Arcsine square root 

PctGrasslandCatch Percent of catchment classified as grassland/herbaceous land cover 

(NLCD 2006 class 71). 

StreamCata Arcsine square root 

PctGrasslandWater Percent of watershed classified as grassland/herbaceous land cover 

(NLCD 2006 class 71). 

StreamCata Arcsine square root 

PctCarbonateResidualCatch Percent of catchment classified as lithology type: carbonate residual 

material. 

StreamCata Arcsine square root 

PctCarbonateResidualWater Percent of watershed classified as as lithology type: carbonate residual 

material. 

StreamCata Arcsine square root 

PctNonCarbonateResidualCatch Percent of catchment classified as lithology type: non-carbonate residual 

material. 

StreamCata Arcsine square root 

 

 



 

 

PctNonCarbonateResidualWater Percent of watershed classified as as lithology type: non-carbonate 

residual material. 

StreamCata Arcsine square root 

PctAlkalineIntrusiveVolcanicCatch Percent of catchment classified as lithology type: alkaline intrusive 

volcanic rock. 

StreamCata Arcsine square root 

PctAlkalineIntrusiveVolcanicWater Percent of watershed classified as as lithology type: alkaline intrusive 

volcanic rock. 

StreamCata Arcsine square root 

PctSilicicCatch Percent of catchment classified as lithology type: silicic residual material. StreamCata Arcsine square root 

PctSilicicWater Percent of watershed classified as as lithology type: silicic residual 

material. 

StreamCata Arcsine square root 

PctExtrusiveVolcanicCatch Percent of catchment classified as lithology type: extrusive volcanic rock. StreamCata Arcsine square root 

PctExtrusiveVolcanicWater Percent of watershed classified as as lithology type: extrusive volcanic 

rock. 

StreamCata Arcsine square root 

PctColluvialSedimentCatch Percent of catchment classified as lithology type: colluvial sediment. StreamCata Arcsine square root 

PctColluvialSedimentWater Percent of watershed classified as as lithology type: colluvial sediment. StreamCata Arcsine square root 

PctGlacialTillClayCatch Percent of catchment classified as lithology type: glacial till, clayey. StreamCata Arcsine square root 

PctGlacialTillClayWater Percent of watershed classified as as lithology type: glacial till, clayey. StreamCata Arcsine square root 

PctGlacialTillLoamyCatch Percent of catchment classified as lithology type: glacial till, loamy. StreamCata Arcsine square root 

PctGlacialTillLoamyWater Percent of watershed classified as as lithology type: glacial till, loamy. StreamCata Arcsine square root 

PctGlacialTillCoarseCatch Percent of catchment classified as lithology type: glacial till, coarse-

textured. 

StreamCata Arcsine square root 

PctGlacialTillCoarseWater Percent of watershed classified as as lithology type: glacial till, coarse-

textured. 

StreamCata Arcsine square root 

PctGlacialLakeCoarseCatch Percent of catchment classified as lithology type: glacial outwash and 

glacial lake sediment, coarse-textured. 

StreamCata Arcsine square root 

PctGlacialLakeCoarseWater Percent of watershed classified as as lithology type: glacial outwash and 

glacial lake sediment, coarse-textured. 

StreamCata Arcsine square root 

PctGlacialLakeFineCatch Percent of catchment classified as lithology type: glacial lake sediment, 

fine-textured. 

StreamCata Arcsine square root 

PctGlacialLakeFineWater Percent of watershed classified as as lithology type: glacial lake 

sediment, fine-textured. 

StreamCata Arcsine square root 

PctHydricCatch Percent of catchment classified as lithology type: hydric, peat and muck. StreamCata Arcsine square root 

PctHydricWater Percent of watershed classified as as lithology type: hydric, peat and 

muck. 

StreamCata Arcsine square root 

PctEolianCoarseCatch Percent of catchment classified as lithology type: eolian sediment, 

coarse-textured (sand dunes). 

StreamCata Arcsine square root 

PctEolianCoarseWater Percent of watershed classified as as lithology type: eolian sediment, 

coarse-textured (sand dunes). 

StreamCata Arcsine square root 

PctEolianFineCatch Percent of catchment classified as lithology type: eolian sediment, fine-

textured (glacial loess). 

StreamCata Arcsine square root 



 

 

PctEolianFineWater Percent of watershed classified as as lithology type: eolian sediment, 

fine-textured (glacial loess). 

StreamCata Arcsine square root 

PctSalineLakeCatch Percent of catchment classified as lithology type: saline lake sediment. StreamCata Arcsine square root 

PctSalineLakeWater Percent of watershed classified as as lithology type: saline lake sediment. StreamCata Arcsine square root 

PctAlluviumCoastalCatch Percent of catchment classified as lithology type: alluvium and fine-

textured coastal zone sediment. 

StreamCata Arcsine square root 

PctAlluviumCoastalWater Percent of watershed classified as as lithology type: alluvium and fine-

textured coastal zone sediment. 

StreamCata Arcsine square root 

PctCoastalCoarseCatch Percent of catchment classified as lithology type: coastal zone sediment, 

coarse-textured. 

StreamCata Arcsine square root 

PctCoastalCoarseWater Percent of watershed classified as as lithology type: coastal zone 

sediment, coarse-textured. 

StreamCata Arcsine square root 

PctWaterCatch Percent of catchment classified as lithology type: water. StreamCata Arcsine square root 

PctWaterWater Percent of watershed classified as as lithology type: water. StreamCata Arcsine square root 

WaterTableDepthCatch Mean seasonal water table depth of soils (STATSGO) within catchment, 

in centimeters. 

StreamCata Natural log 

WaterTableDepthWater Mean seasonal water table depth (cm) of soils (STATSGO) within 

watershed, in centimeters. 

StreamCata Natural log 

OrganicMatterCatch Mean organic matter content of soils (STATSGO) within catchment, as 

percent by weight. 

StreamCata Natural log 

OrganicMatterWater Mean organic matter content of soils (STATSGO) within watershed, as 

percent by weight. 

StreamCata Natural log 

PermeabilityCatch Mean permeability of soils (STATSGO) within catchment, in centimeters 

per hour. 

StreamCata Natural log 

PermeabilityWater Mean permeability of soils (STATSGO) within watershed, in centimeters 

per hour. 

StreamCata Natural log 

BedrockDepthCatch Mean depth to bedrock (STATSGO) within catchment, in centimeters. StreamCata Natural log 

BedrockDepthWater Mean depth to bedrock (STATSGO) within watershed, in centimeters. StreamCata Natural log 

ClayCatch Mean percent clay content of soils (STATSGO) within catchment. StreamCata Natural log 

ClayWater Mean percent clay content of soils (STATSGO) within watershed. StreamCata Natural log 

SandCatch Mean percent sand content of soils (STATSGO) within catchment. StreamCata Natural log 

SandWater Mean percent sand content of soils (STATSGO) within watershed. StreamCata Natural log 

 
a
 − http://newftp.epa.gov/EPADataCommons/ORD/NHDPlusLandscapeAttributes/StreamCat/WelcomePage.html 

b
 − http://www.horizon-systems.com/NHDPlus/ 

c
 − http://worldclim.org/version2 
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