FCOGRAPHY

Research

Assessing the relative influences of abiotic and biotic factors on
American eel Anguilla rostrata distribution using hydrologic,
physical habitat, and functional trait data

Taylor Woods and Daniel J. McGarvey

1. Woods (http:/orcid.org/0000-0002-6277-1260) (woodstaylorelizabeth@gmail.com) and D. J. McGarvey (http:/forcid.org/0000-0002-1218-5896),
Center for Environmental Studies, Virginia Commonwealth Univ., Richmond, VA, USA.

Ecography Species’ distributions are influenced by abiotic and biotic factors but direct compari-
41: 2067-2079, 2018 son of their relative importance is difficult, particularly when working with complex,
doi: 10.1111/ecog.03782 multi-species datasets. Here, we compare the relative effects of hydrology, physical

habitat, and co-occurring fish functional traits on the contemporary (1950-1990)
Subject Editor: Carsten Dormann distribution of the American eel Anguilla rostrata in six Mid-Atlantic (USA) rivers.
Editor-in-Chief: Miguel Aratjo To do so, we implement a null model approach that compares conditions at sites
Accepted 20 March 2018 of known American eel presence to a random sample of sites throughout a broader

landscape, allowing us to identify variables that may have the strongest influences on
American eel distribution. Results suggest that, within this subset of the American
eel’s geographic range, the functional characteristics of locally co-occurring fishes and
habitat fragmentation by dams may have the strongest influences on American eel
distribution, compared to other predictor variables included in the analysis. Given
the widespread distribution and complex biology of this species, we caution that our
results may not apply to all American eel subpopulations or life stages. Nonetheless,
the observed importance of co-occurring fish functional traits may inform American
eel conservation and, more generally, provide a means to incorporate biotic influences
in research on species’ distributions.
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Introduction

Characterizing the effects of biotic and abiotic influences on species’ distributions
and community structure is a long-standing challenge in ecology (Hutchinson 1957,
Chase and Leibold 2003). To make this endeavor more tractable, abiotic and biotic
effects have often been conceptualized as distinct levels in a series of nested, hierarchal
filters that sort regional species pools into local communities (Poff 1997, Jackson et al.
2001). Notably, abiotic effects tend to comprise the higher, large-scale levels of the
hierarchal filter model, while biotic influences comprise the lower, local-scale levels.
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In this way, species from a regional pool must navigate a series
of relatively coarse-scale filters, such as physiological thermal
constraints, before they can potendially take up residence at
a particular locality. Then, to become a successful colonist, a
species must navigate the final local-scale filter: coexistence
within the previously established community of resident
species.

Perhaps due to the inherent complexity of characterizing
biotic interactions within natural communities, evidence for
the role of abiotic filtering in nature has accumulated more
quickly than for biotic filtering, particularly at landscape or
regional scales (Lawton 1999, Morales-Castilla et al. 2015).
But with global change and other large-scale perturbations
rearranging species’ distributions and creating novel com-
munities, ecologists are now earnestly working to enhance
understanding of biotic influences (Parmesan and Yohe 2003,
Gallardo and Aldridge 2013). For instance, improved meth-
ods to incorporate biotic interactions in species distribution
models are an active area of inquiry (Guisan and Thuiller
2005, Wisz et al. 2013). Yet despite this progress, two key
developments remain that would greatly benefit basic and
applied research on biotic filtering: 1) improved methods to
efficiently and systematically characterize biotic influences
within complex multi-species communities; and 2) analytical
tools and/or databases that can be used to assess the relative
importance of abiotic and biotic factors at common spatial
scales.

Methods to characterize biotic interactions are often based
upon records of pairwise species’ co-occurrences (Connor
and Simberloff 1979, Gotelli and McCabe 2002). For
example, species distribution models seeking to incorpo-
rate biotic influences on the distribution of a focal species
have made use of heterospecific occurrence records, abun-
dances, and co-occurrence-based indices as biotic predictor
variables (Leathwick and Austin 2001, Meier et al. 2011).
Unfortunately, inferences based on co-occurrence data may
be compromised by the fact that multiple processes can
sometimes lead to the same co-occurrence patterns (Peres-
Neto 2004, Cazelles et al. 2016). Direct observational
evidence of pairwise interactions (positive, negative, or oth-
erwise) can overcome these limitations, but such empirical
data are difficult to obtain and only available for a relatively
small number of species pairs (Bascompte and Jordano 2007,
Connor et al. 2013). Furthermore, biotic influences may
manifest as direct or indirect associations between many spe-
cies that are not well-described by pairwise scenarios (Wooton
1994). Methods to efficiently characterize biotic interactions
within complex, multi-species datasets (the ‘biotic milieu” of
McGill et al. 2006) are therefore needed (Tylianakis et al.
2008, Gallien et al. 2017).

The second development — direct comparisons of the rela-
tive importance of abiotic and biotic factors — is necessary
because differing scales are often used to characterize abiotic
and biotic influences (Wiens 2011, Staniczenko et al. 2017),
which makes direct comparison difficult. Abiotic factors are
commonly represented by coarse-scale environmental sur-
veys or standardized data from a geographic information
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system, while biotic interactions are evaluated at finer scales,
often through experimental studies (Jackson et al. 2001,
Ovaskainen et al. 2017). Also hindering direct comparisons
are the assumptions and logistical hurdles that must be navi-
gated when scaling up from fine-scale biotic data (e.g. point
observations) to the larger scales at which abiotic data are most
often available (Aradjo and Luoto 2007, Funk et al. 2016).
As noted above, a hierarchal filtering framework that a priori
assumes abiotic habitat filtering is dominant at coarser scales
while biotic influences are paramount at finer scales is often
used to integrate abiotic and biotic data in a single, regional
analysis (Pearson and Dawson 2003, Boulangeat et al. 2012).
But large-scale species distribution and co-occurrence pat-
terns may arise from habitat filtering, biotic interactions,
or a combination of both processes (HilleRisLambers et al.
2012, Cadotte and Tucker 2017). Thus, direct comparisons
of abiotic and biotic influences at common scales may help
to resolve this issue.

In this study, we compare abiotic and biotic influences
on the distribution of a focal freshwater fish species, using
multiple data sources that have been carefully aligned to a
common spatial scale. Specifically, we use a combination
of hydrologic and physical habitat data to quantify abiotic
conditions, then use fish functional trait data to characterize
the effects of multi-species biotic influences. Functional trait
analyses emphasize species’ physiological, morphological,
and behavioral characteristics, rather than their taxonomic
identities (McGill et al. 2006, Frimpong and Angermeier
2010). They are ideal for assessing biotic influences in multi-
species datasets because traits often regulate biotic interac-
tions (e.g. resource competition among species with similar
feeding behaviors; MacArthur and Levins 1967). Functional
trait data can also be aggregated into assemblage- or com-
munity-level summaries of biotic influences (Carmona et al.
2016), then contrasted with abiotic variables. Finally, at very
large regional to global scales where extensive turnover in
species composition is likely, functional traits may facilitate
direct comparison because similar or analogous trait pro-
files are often shared among taxonomically distinct biotas
(Mims et al. 2010).

As an empirical context, we focus on the contemporary
(records collected between 1950-1990) distribution of the
American eel Anguilla rostrata in six Mid-Adantic (USA)
rivers. Freshwater eels (family: Anguillidae) occur in rivers
around the world and have complex biological and life his-
tory characteristics that make them particularly suitable for a
comparison of abiotic and biotic effects. Eels are catadromous
(ocean spawning) fishes with tremendous migratory capabili-
ties and are not believed to undergo a juvenile imprinting
process (Gagnaire et al. 2012). This suggests that freshwa-
ter habitat selection by upstream migrating elvers (juvenile
eels) is a ‘real-time’ function of an individual’s perception
of local habitat conditions and/or other locally occurring
organisms, rather than a programmed or inherited response.
Furthermore, while American eel spawning events have yet to
be empirically observed, genetic evidence suggests this species
is panmictic: adults spawn only once and do so within large



aggregations of conspecifics (Wirth and Bernatchez 2003).
This ‘all eggs in one basket’ strategy minimizes the probabil-
ity that selective forces will promote diversification in local
habitat use among distinct populations or lineages (Oliveira
1999). Anguillids are also notable for their widespread distri-
butions and generalist habitat tendencies. For instance, the
North and South American distribution of the American eel
ranges from Canada to Venezuela, with American eels known
to inhabit most freshwater habitats within this range (Jenkins
and Burkhead 1993).

Unfortunately, the American eel is, like most other
freshwater eel species, in a state of decline (Dekker 2003).
Key threats include commercial fishing, habitat fragmen-
tation and turbine entrainment at dams, and invasive
species (Chaput et al. 2014). Stocking and translocation
of juvenile eels in upstream habitats has helped mitigate
European eel declines (Moriarty and Dekker 1997). But
these methods have less often been used with American
eel populations; the first large-scale stocking program
in North America was implemented in Canada in 2005
(Pratt and Threader 2011). Conservation of the American
eel may ultimately require a better understanding of the
factors that influence its distribution, particularly during
the freshwater, inland stages of its life cycle (Smogor et al.
1995). We therefore believe that a large-scale comparison
of abiotic and biotic factors that influence American eel
occurrences within freshwater will benefit both basic ecol-
ogy and applied conservation.

Using a combination of contemporary American eel
occurrence records with data on local hydrology and physical
habitat (abiotic influences), as well as functional trait data
for local fish assemblages (biotic influences), our objectives
are to: 1) use a combination of species’ occurrence and func-
tional trait data to quantify potential biotic influences within
stream networks; and 2) perform a direct comparison of the
relative effects of abiotic and biotic factors on the regional
distribution of the American eel.

Material and methods

Study area and spatial framework

Our study area includes six of the major Mid-Atlantic (USA)
river basins within the native range of the American eel
(Jenkins and Burkhead 1993): the Potomac, Rappahannock,
York, James, Chowan, and Roanoke rivers (Supplementary
material Appendix 1 Fig. Al). To facilitate direct compari-
sons among variables, all hydrologic, physical habitat, and
fish data were aggregated within ‘subwatersheds’ or 12-digit
hydrologic units from the USGS (2012) Watershed Boundary
Dataset. A total of 1407 subwatersheds exist within the six
major river basins included in our study, with a mean surface
area of 89.3 km?* (SD =40.5 km?). They were chosen for this
study because they maximized our ability to match American
eel occurrence records with independent data on hydrology
and physical habitat at local spatial scales.

Hydrologic data and subwatershed selection

Selection of subwatersheds to include in our analyses began
with a survey of available hydrologic data, as these data
were the most limiting of the three data classes (hydrologic,
physical habitat, and biotic). Hydrologic metrics were
calculated from daily discharge records, downloaded for all
stream gauges located within the six study basins via the
US Geological Survey’s Water Data for the Nation website
(<https://waterdata.usgs.gov/nwis>). Within each subwa-
tershed that contained at least one stream gauge, we used
three criteria to determine which gauge data would be
used to represent local hydrology (Fig. 1). First, we queried
gauges with a minimum of 20 yr of nearly continuous (peri-
odic instances of several days or weeks of missing data were
acceptable) discharge records between the 1955-1985 water
years (i.e. 1 October-30 September; n=158 gauges with
sufficient records). This ensured that our hydrologic metrics
would be broadly representative of contemporary flow condi-
tions (Gan et al. 1991) and temporally consistent with the
majority of the fish occurrence records (collected between
1950-1990 in our study basins; see ‘Fish and functional
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Figure 1. Map illustrating the process used to select subwatersheds
used in this study. Four hypothetical scenarios are shown for subwa-
tersheds that were: (a) not considered due to absence of an internal
stream gauge (white, thin grey outline); (b) eliminated from further
analysis due to inadequate flow data (e.g. internal gauge supplied
flow data outside of water years 1960—1980; see text); (c) eliminated
from further analysis due to inadequate fish sampling effort (< 10th
percentile of sample densities; see text); and (d) retained for further
analysis, with adequate fish and flow data (white with heavy black
outline).
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trait data’ section below). Second, we identified subwa-
tersheds with more than one internal gauge (n=>5), deter-
mined which gauge was closest to the downstream terminus
or ‘pour point’ of each subwatershed, then removed gauges
that were further upstream. This process narrowed the pool
of suitable hydrologic units with representative flow data to
153 subwatersheds.

Hydrology in each of the remaining subwatersheds was
then characterized with a subset of the indicators of hydro-
logic alteration (IHA) metrics (Richter et al. 1996). Sixteen
IHA metrics were selected to represent the five primary flow
regime components: magnitude, frequency, duration, tim-
ing, and rate of change (Olden and Poff 2003). For example,
the median Julian date of annual minimum flow specifies
the median day of the calendar year when streamflow is at
an annual minimum, across all years of record. This index
of the timing of extreme low flow events may be critical
in regulating the occurrence of stream organisms that have
low drought tolerances (Richter et al. 1996). IHA metrics
were calculated with the THA’ package (Law 2013) in R
(R Core Team), then appended to a subwatershed X IHA
metrics matrix. From this matrix, we calculated Pearson’s cor-
relation coefficients and removed highly correlated metrics
( | r| > 0.7), taking care to retain at least one variable from
each flow regime component (Table 1).

Physical habitat data

Stream habitat within subwatersheds was represented by
the 1:100 000 scale National Hydrography Dataset ver. 2
(‘NHDv2’; McKay et al. 2012). All NHDv2 stream seg-
ments within each of the 153 selected subwatersheds (see
above) were queried then appended with physical habitat
characteristics from the original NHDv2 attribute tables
and the StreamCat database (Hill et al. 2016). StreamCat
variables represent local habitat conditions, including both
natural and anthropogenic variables (e.g. land cover, urban
land use, and geologic data), and are distributed at both
catchment (i.e. the landscape that is immediately adjacent
to a given stream segment, exclusive of landscapes further
upstream) and watershed scales (i.e. the entire, cumulative
landscape that is upstream of and contributing flow to a given
segment; Hill et al. 2016). From StreamCat and NHDv2,
we selected a suite of catchment-scale physical habitat met-
rics to represent instream fish habitat. For example, mean
clevation indicates a subwatershed’s longitudinal position
within the stream continuum, which is strongly associated
with channel morphology and substrate, as well as the ratio
between autochthonous and allochthonous food resources
(Vannote et al. 1980, Schlosser 1991). Catchment-scale
metrics were selected from StreamCat, rather than water-
shed-scale, to better emphasize local conditions. For each of
these physical habitat metrics, we calculated subwatershed
means, medians, maximums, and coefficients of variation
(CV), based upon the entire population of stream segments
within a given subwatershed. Subwatershed summary sta-
tistics for each physical habitat metric were then appended
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Table 1. Descriptions of the predictor variables used in the analysis
following elimination of collinear variables. The statistic used to
summarize each variable at the subwatershed scale (coefficient of
variation [CV], mean [MN], median [MD], or proportion [%TRT]) is
shown in parentheses, with units (if applicable). For hydrologic
variables, the flow regime component represented by the predictor
variable is shown in italics.

Variable code Description
Hydrology
AprCV April stream flow (CV; magnitude)
AprMD April stream flow (MD; ft® s™'; magnitude)
BsflwCV Baseflow index (CV; magnitude)
DtMnMD Julian date of annual minimum flow (MD; timing)
HFIwCntCV ~ Number of flows above the 75th percentile
(CV; frequency)
HFlwDurCV  Duration of flows periods above the 75th
percentile (CV; duration)
RevCV Number of transitions between rising and falling

flow rates (CV; rate of change)
Physical habitat

AreaMN Catchment surface area (MN; km?)

DmDnsMN  Density of dams per catchment area (MN;
dams km)

DmStrMN Volume of dams per catchment surface area
(MN; m? km™)

ElevCV Catchment elevation (CV)

ElevMN Catchment elevation (MN; m)

RnffCV Catchment runoff (CV)

RnffMN Catchment runoff (MN; mm)

Functional traits

FecMN Fecundity per female per spawning season (MN)

IncboTmMN  Incubation time from embryo fertilization to
hatch (MN; hours)

SeasLenMN  Length of spawning season (MN; months)

Loc Locomotion mode (metric indicating morphology
and locomotion)

LocAccl Accelerators: ambush predators with large caudal
fins (%TRT)

LocAng Anguilliform: swimmers with eel-like bodies
(%TRT)

LocCrp Creepers: bottom rovers with subterminal mouths
(%TRT)

LocCrsr Cruisers: active swimmers with streamlined body
forms (%TRT)

LocHgr Huggers: benthic fishes adapted to cling to
substratum (%TRT)

LocMnvr  Maneuverers: laterally compressed body forms

(%TRT)

to a subwatershed X habitat variable matrix and collinear
variables ( | r| >0.7) were removed (Table 1).

Fish and functional trait data

Fish occurrence records were obtained from the IchthyMaps
database (Frimpong et al. 2015) for each of the 153 subwa-
tersheds. IchthyMaps is a compilation of contemporary fish
records (collected between 1950—-1990) that were assembled
from point distribution maps in regional fish atlases and
government agency surveys, then geo-referenced to their
respective digital stream segments in the NHDv2. Within
the study region, IchthyMaps provided a total of 32 463



fish occurrence records, distributed among 224 species. Of
these, 559 were American eel records. Most American eel
occurrence records were compiled from the text ‘Freshwater
fishes of Virginia' and were originally collected cither with
backpack electrofishing or seine netting surveys, between
1968-1986 (Jenkins and Burkhead 1993). Notably, these
occurrence records should consist primarily of individuals at
the yellow eel stage, rather than leptocephalus, glass eel, or
silver eel stages; yellow eels are the most abundant life stage
in freshwater, inland streams, where they become relatively
sedentary and easy to capture with electrofishing equipment
(Goodwin and Angermeier 2003). Therefore, we were rea-
sonably certain that the American eel occurrences in our
study represented permanent, resident habitat for American
eels and were not unduly biased by inclusion of non-resident
migratory life stages.

To account for potential sampling bias in the aggregated
IchthyMaps data (i.e. under-sampled subwatersheds), we
screened subwatersheds that contained low numbers of
fish samples following McGarvey et al. (2017). Briefly, we
calculated sample density as the total number of IchthyMaps
observations (i.e. total number of occurrence records,
regardless of species’ identities) within a given subwatershed,
divided by the total length of all stream segments within
that subwatershed. This helped to detect subwatersheds that
were vulnerable to under-sampling bias. Subwatersheds with
fish sample densities below the 10th percentile (i.e. < 3.0
occurrences per km of stream channel; median fish sample
density=11.3, CV=1.3) were removed (n=16) from the
dataset.

Fish species’ functional traits were then used to quantify
biotic influences within each of the remaining subwater-
sheds (n=137). We first compiled all IchthyMaps records
within each subwatershed and converted the species list
into a master species’ presence matrix (subwatershed X spe-
cies). Next, we collected functional trait data for each species
(n=139) through an extensive literature review, inclusive
of the four data sources reported in Mims et al. (2010): 1)
regional fish atlases (i.e. “The fishes of...” texts); 2) primary
and secondary literature publications; 3) the online FishBase
(<www.fishbase.org>) and FishTraits (<www.fishtraits.
info>) databases; and 4) keyword internet searches. For
species’ traits with multiple published values, we retained
observations that were reported from localities that were clos-
est to our study area. For instance, functional trait descrip-
tions from the ‘Freshwater fishes of Virginia'® (Jenkins and
Burkhead 1993) were prioritized over other sources for many
of our trait values. Functional trait data were then compiled
into a species X trait matrix and categorical variables were
re-coded as binary dummy variables.

Finally, functional trait summaries were calculated for each
subwatershed and used as proxies for species’ potential inter-
actions. For example, differences in fecundity or timing of
spawning may facilitate coexistence among species with simi-
lar habitat requirements (Meador and Brown 2015). Mean,
median, and maximum values were calculated for numeric
traits while proportions were calculated for categorical traits.

Importantly, we omitted American eel traits from the subwa-
tershed trait summaries because our objective was to detect
interspecific trait influences on contemporary American eel
occurrences; we sought only to determine which traits of co-
occurring species may affect American eel habitat selection,
not to define trait profiles for complete assemblages or to
assess intraspecific effects. Trait summaries were compiled in
a subwatershed X trait matrix and collinear traits ( | r| >0.7)
were removed (Table 1).

Comparing sample and background distributions

Potential effects of the abiotic and biotic variables on
American eel habitat selection were assessed with a null model
approach. Specifically, we compared abiotic and biotic condi-
tions at subwatersheds occupied by American eels with condi-
tions observed in a random subset of subwatersheds, sampled
from the complete population of subwatersheds throughout
the landscape. This general approach to identifying variables
with nonrandom effects on a species’ distribution is useful
when presence-only, rather than presence—absence, data are
available (Hirzel et al. 2002). One particularly well-known
application of this method is Maximum Entropy (MaxEnt;
Phillips et al. 2006) species distribution modeling. MaxEnt
compares a ‘sample’ distribution, representing conditions at
sites of known occurrence, with a random ‘background’ sam-
ple that characterizes conditions throughout the potential
range (Elich et al. 2011). A strong effect of a given variable
on the focal species’ distribution is indicated by sample and
background distributions that exhibit modest or minimal
overlap (i.e. conditions at known occurrence sites are non-
random with respect to the entire landscape; see Fig. 1 in
Merow et al. 2013).

We used the entire landscape of 137 subwatersheds as
the background distribution for our analysis. We separated
this background into a ‘sample’ population of subwatersheds
with known American eel occurrences (n=24) and an ‘avail-
able’ population that was within the geographic range of the
American eel, but where its occurrence had not been docu-
mented and was therefore unknown (n=113; Fig. 2, step 1).

Next, we implemented a random permutation algorithm
to assess similarities between the sample and background
distributions for each hydrologic, physical habitat, and func-
tional trait variable. Permutations were used instead of direct,
static comparisons of the complete sample and background
distributions for each variable because we did not wish to
overfit our results, leading to low transferability (Thomas and
Bovee 1993, Chatfield 1995). In each of the 1000 permuta-
tions, we randomly selected (without replacement) 12 of the
24 sample units and 60 of the 137 background units (Fig. 2,
step 2). These permuted sample sizes preserved the original,
approximate ratio of sample-to-available units (~1:5) and
ensured that our results would not be biased by unbalanced
representation of the sample vs. available units in any given
permutation. We then compared the randomized sample and
background distributions (in each permutation) for each of
the predictor variables with a 2-step process (Fig. 2, step 3).
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Figure 2. Workflow diagram of the procedure to compute permuted sample-background overlap (SBO) and Mann—Whitney U-statistics
for each of the predictor variables included in this study. Major steps in the process are identified with numbers and explained in the

Material and methods (main text).

First, we quantified sample-background overlap (SBO) as the
literal area of overlap (i.e. superimposed probability distribu-
tion functions) between continuous sample and background
distributions, with potential values ranging from 1 (perfect
overlap) to 0 (no overlap). SBO values close to 1 suggest that
sample and background units are both random samples from
the complete landscape (i.e. sample values for the predictor
variable do not differ with respect to the background values,
H,). Alternatively, SBO values much smaller than 1 imply
that sample units are nonrandom with respect to the land-
scape (i.e. the sample values encompass a relatively small sub-
set of the complete range of background values, indicative of
a selective process, H,; Hirzel et al. 2002).

In each permutation, SBO was calculated for every predic-
tor variable with Eq. 4 in Mouillot et al. (2005); their Eq. 4
was conceived as a metric of overlap in the trait densities of
two co-occurring species, using kernel density functions (see
also Mason et al. 2008, 2011). Our application of this metic
was, however, different in one key regard; the original authors
interpreted a high degree of overlap among kernel functions
as evidence of potential competition, but we sought to iden-
tify variables with minimal overlap as evidence of a strong,
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non-random influence on American eel distribution. Because
many of the variables considered here were non-normal and/
or contained zero values (e.g. dam density), we applied a In
(x+1) transformation to all continuous variables. All kernel
density estimates were calculated with the ‘density’ function
in the package ‘stats’ (Gaussian kernels and default band-
width and n settings) in R.

In the second step, nonparametric Mann—Whitney
U-statistics were used to determine whether permuted sample
values were consistently higher or lower than permuted back-
ground values for each of the predictor variables. Two-sided
statistics were used because we did not expect a priori that
American eel sample values would be consistently higher or
lower than background values for most of the predictor vari-
ables; we sought only to document whether the sample and
background distributions were consistently different. In each
permutation, we calculated and recorded the U-statistic from
a 2-sided Mann—Whitney test for each variable, using the
‘wilcox.test’ function in R. U-statistic values were then inter-
preted relative to the magnitude of deviation from an equal
ranking of sample and background values (i.e. U=360).
U-statistics closer to zero indicated that sample distribution



values were consistently ranked higher or were larger than
background values, whereas U-statistics approaching the
maximum (i.e. U=720) indicated that sample values were
consistently ranked lower or were smaller than background
values for a given variable.

As a final step, we used a multivariate SBO approach to
assess the collective effect of each of the three classes of variables
on American eel distribution throughout the study rivers. For
each class of predictor variable, nonmetric multidimensional
scaling (nMDS) was used to build a 2-dimensional ordination
of the sample and background data. Ninety-five percent con-
fidence ellipses, or ‘hypervolumes’ (Blonder et al. 2014), were
interpolated for the sample points and background points in
each ordination plot. The regions defined by the background
ellipses indicated the expected hypervolume for a random
sample of the complete landscape. We then visually assessed
the degree of overlap between sample and background hyper-
volumes to determine whether American eel occurrences were
nonrandom with respect to the background hypervolume for
each of the three predictor variable classes. We did not, how-
ever, use permutations to perform repeated comparisons of
the sample and background hypervolumes. Instead, we used
the complete sample and background data (n=24 and 137,
respectively) to perform a single multivariate SBO analysis
for each of the three classes of predictor variables. For each
predictor class, we calculated a Gower dissimilarity matrix
(Gower 1971) that included all variables within the class (i.e.
three independent subwatershed X subwatershed dissimilar-
ity matrices), the used the dissimilarity matrices to perform
nMDS. Gower dissimilarities were calculated with the ‘FD’
package (Laliberte et al. 2014), nMDS was performed with
the ‘vegan’ package (Oksanen et al. 2017), and confidence
ellipses were plotted with ‘ggplot2” (Wickham 2009) in R.

Data deposition

The raw data and code for analyses are available from
Figshare Digital Repository: <https://doi.org/10.6084/
m9.figshare.5481205.v4> (Woods and McGarvey 2017).

Results
Permuted statistics for individual predictor variables

Of the three predictor variable classes, hydrologic variables
generally exhibited the highest SBO values (median
SBO=0.83, CV=0.06; Fig. 3a), suggesting that contempo-
rary occurrences of the American eel are not strongly associ-
ated with specific hydrologic conditions. Only bsflwCV had
low permuted SBO values (< 0.75; Fig. 3a) and U-statistics
that strongly deviated from the line of equality (U=360),
with sample values consistently larger than background values
(Fig. 3b). In comparison, physical habitat variables appeared
to have greater influence on the contemporary American eel
distribution (median SBO=0.76, CV=0.16; Fig. 3a). In
the physical habitat class, low permuted SBO values were

observed for dmDnsMN and elevMN (Fig. 3a). U-statistics
showed that sample values were consistently larger than back-
ground values for dmDnsMN, but the opposite trend was
observed for elevMN (Fig. 3b). Overall, the functional trait
data class had the lowest SBO values (median SBO=0.69,
CV=0.32), with particularly low permutation values for
fecMN, incbTm, locCrst, locMnvr, and seasLen (Fig. 3a).
Functional trait U-statistics showed sample distribution
values of fecMN, locMnvr, and seasLen were higher than
background, whereas incbTm and locCrsr background values
exceeded sample values (Fig. 3b).

Multivariate hypervolumes

Consistent with permutation results for individual variables,
comparisons of the multivariate sample and background
hypervolumes for the three data classes indicated that
functional traits may have the overall strongest influence on
American eel occurrence. Sample and background hyper-
volumes exhibited extensive overlap for hydrologic vari-
ables (Fig. 4a). Overlap between sample and background
hypervolumes was intermediate for physical habitat vari-
ables (Fig. 4b). Hypervolume overlap was smallest for the
functional trait data class, with approximately 50% overlap
observed between the sample and background hypervolumes

(Fig. 4c¢).

Discussion

Abiotic and biotic influence on American
eel distribution

Within six Mid-Atlantic rivers, we compared abiotic and
biotic conditions at confirmed American eel presence sites
(the sample distribution) with a representative sample of
conditions across the entire landscape (the background
distribution). In general, results indicated that the sample
distribution was more closely associated with dam density
and the functional traits of co-occurring fishes than the
other predictor variables included in our analysis. These
results suggest that future research and conservation of
inland American eel populations within the study region
may benefit from a refined focus on the effects of habitat
fragmentation and potential interactions with co-occurring
fishes.

Dam density had one of the strongest influences on
American eel distribution, suggesting that fishes in the study
region have highly fragmented ranges. This result seemed
intuitive because it is well-known that dams, which prevent
migratory American eels from reaching upstream tributaries
(Wiley et al. 2004, Machut et al. 2007), can have a stronger
influence on American eel distribution than other abiotic fac-
tors (Hitt and Roberts 2012). However, the directional effect
of dam density was surprising: rather than associating with
low dam densities, the sample distribution suggested that
American eels may be associated with relatively high dam
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Figure 3. Boxplots (25th, 50th, and 75th quartiles) showing permutation results as sample-background overlap (SBO; panel a) and Mann—
Whitney U-statistic (panel b) values. Boxplot colors denote the three classes of predictor variables: hydrologic (white, black outline), physi-
cal habitat (grey hatched, black outline), and functional traits (black, white outline). In panel (b), the horizontal line at U= 360 represents
rank equivalence between sample and background distribution values. Below the rank equivalence line, sample distribution values are, on
average, larger than background values for the variable in question. Above the rank equivalence line, sample distribution values are smaller

than background values for the variable in question.

densities. This counterintuitive result may be explained by
a tendency for American eels to aggregate near dams. Prior
studies have shown that American eel densities increase near
dams and suggested that this may result from large congre-
gations of American eels that gather downstream of impass-
able barriers (Machut et al. 2007). We mapped our American
eel presence records against georeferenced dam locations and
found that the sample distribution may have included mul-
tiple sites that were downstream of an impassible dam (these
sites would have high dam density values) and therefore
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represented the upstream limits of potential American eel
migration (Supplementary material Appendix 1 Fig. A2).
If so, the strong association between American eel presence
and high dam density may be an artifact of higher probabil-
ity of capture at these sites, rather than a preferential selec-
tion of subwatersheds with high dam densities per se. This
observation is particularly concerning, given that heightened
American cel densities below dams may amplify density-
dependent processes and negatively impact these populations
(Machut et al. 2007).
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Figure 4. Nonmetric multidimensional scaling (nMDS) ordination
plots for the hydrologic (a), physical habitat (b), and functional trait
(c) data classes. Hypervolumes are shown as 95% confidence ellipses
for sample (light grey) and background (dark grey) data. Points rep-
resent individual subwatersheds from the sample distribution (light
grey triangles) and the background distribution (dark grey circles).

We found that hydrology may play a minimal role in regu-
lating inland American eel distribution in the study region,
but we caution that our results may only be interpreted with
respect to the particular American eel life stages that were
represented in the IchthyMaps database. For instance, if the
occurrence records included silver eel observations, we would
expect a strong hydrologic signal because seaward migra-
tion of silver eels is strongly influenced by river discharge
(Jansen et al. 2007). We did find that the CV of baseflow
index showed an effect on American eel distribution and
this variable seemed to suggest that the sample distribution
may be associated with habitat characterized by variable or
unpredictable flows. These results are surprising because
migratory fishes might be expected to associate with specific,
predictable flow conditions (Bunn and Arthington 2002).
One possible reason American eels may select streams with
variable flow is that this species’ ability to sustain prolonged
exposure to air may give American eels a competitive advan-
tage in these habitats.

In general, we acknowledge that our abiotic results
may not be characteristic of American eel habitat selection
throughout its inland range. Habitat-mediated, regional vari-
ation in life history characteristics has been documented for
the American eel (Oliveira 1999) and it is likely that other
regional subpopulations will respond differently to hydrol-
ogy and physical habitat. Nevertheless, our results are con-
sistent with previous studies that failed to identify strong
associations between American eel populations and abiotic
variables (Smogor et al. 1995, Wiley et al. 2004).

Of the three predictor variable classes, the functional traits
of co-occurring fishes were the most effective in differenti-
ating sample and background distributions, suggesting that
inland distribution of the American eel in our study region
may be a function of biotic influences. To better understand
the effects that individual traits may have on American eel
occurrence, we group the trait variables into two categories:
reproductive behavior and locomotion. Reproductive trait
results indicate that the sample distribution contains fishes
that have relatively short incubation times, high fecundi-
ties, and/or long spawning seasons. Thus, the American eel
seems to associate with heterospecifics that have high repro-
ductive capacities. This could be advantageous to American
eels because fishes with high reproductive capacities produce
an abundance of ichthyoplankton, which in turn provides a
rich food resource to predatory American eels (Helfman and
Winkelman 1991).

Locomotion traits suggest that American eels associate
with species that exhibit ‘maneuvering’ locomotion (slug-
gish swimmers with laterally compressed body forms typi-
fied by sunfishes), but not with ‘cruising’ (active swimmers
with streamlined bodies typified by salmonids) species. This
may indicate a preference for local assemblages of hetero-
specifics in which interspecific competition is minimized
and prey availability is maximized. American eels may avoid
streamlined, cruising species that are more effective preda-
tors than slower anguilliform eels (Sinha and Jones 1967).
Alternatively, American eels may favor coexistence with
maneuvering species because these fishes are less adept
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competitors and easier prey. Coexistence with water column-
dwelling, maneuvering species may also reduce interspecific
competition through vertical habitat partitioning, as eels
are primarily benthic during their freshwater residency

(Ross 1986).

Functional traits as proxies for biotic interactions

Pairwise species approaches have traditionally been used to
study biotic interactions, with methods ranging from basic
null models to more recent developments in network anal-
ysis. However, these approaches can be computationally
impractical because the number of species pairs that may
potentially interact grows quickly as the number of locally
co-occurring species increases (Morales-Castilla et al. 2015).
In the present context, information on 138 pairwise associa-
tions would be needed to fully account for all direct biotic
interactions between the American eel and co-occurring
heterospecifics.

As an alternative, we used a general, null model approach
to infer the effects of biotic interactions from community
functional trait data. This is just one example of a broader
effort to use functional traits to generalize processes that are
logistically difficult to quantify on a species X species basis
(McGill et al. 2006). For instance, body size may be used
to estimate dispersal ability in metacommunity frameworks
(De Bie et al. 2012), multidimensional trait classifications
can be used to link species to their ecosystem functions
(Winemiller et al. 2015), and knowledge of trait perfor-
mance in relation to the environment may be used to predict
community responses to abiotic filtering (Webb et al. 2010).

In the present example, two specific benefits of a gener-
alized, traits-based approach to studying biotic interactions
are evident. First, as noted above, the community trait analy-
ses were more computationally feasible and less data-limited
than a biotic filtering analysis that relied upon large numbers
of pairwise species contrasts would have been. Without using
the trait data, it is not clear that we could have compared
abiotic and biotic factors at a common spatial scale. Second,
because we did not focus explicitly on taxonomic identity,
our results may be compared to other freshwater eels, such
as the European eel A. anguilla or New Zealand longfin eel
A. dieffenbachia. These fishes exhibit similar life histories to
the American eel (Haro et al. 2000) but must coexist with
very different fish assemblages throughout their freshwater
life stages. Thus, by focusing on the functional relationships
that eels have with conspecifics, rather than the taxonomic
identities of co-occurring fishes, it may be possible to dis-
tinguish biotic influences that are germane to all freshwater
eels from influences that are unique to a given species or
population.

Caveats and opportunities

This study suggests that biotic predictor variables may be key
determinants of American eel occurrence within Mid-Atlantic
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rivers. But for several reasons, we urge caution when inter-
preting the results. First, although the final set of predictor
variables included in our analysis was selected to represent a
broad range of abiotic and biotic influences, it is unlikely that
we incorporated all relevant factors. For example, water pol-
lution is known to have direct lethal effects, as well as indirect
behavioral effects, on the American eel (Haro et al. 2000).
However, due to data limitations, we were unable to incorpo-
rate robust indicators of pollution in our analysis. Similarly,
we were unable to incorporate recent or legacy effects of
fishing harvest in our study. This is important because the
American eel has historically been exposed to variable yet
continuous fishing pressure throughout its Atlantic Coast
range (Chaput et al. 2014, ASMFC 2017). We therefore sug-
gest that new information on anthropogenic stressors, as well
as other natural influences, might enhance future research on
the American eel and potentially alter our conclusions.

Second, our analyses are subject to a constraint that nec-
essarily arises from the use of combined survey data across
large spatial extents. In large-scale studies where the use of
aggregate occurrence data from multiple sources (such as
IchthyMaps) is necessary, it may be difficult or impossible
to retroactively distinguish among species’ life stages, or to
determine resident versus migrant status. Strong inference
(sensu Platt 1964) regarding biotic interactions is therefore
beyond the scope of these data (Elton 1946). This point is
certainly relevant for the American eel, with a life history that
includes five distinct developmental stages, each of which uti-
lizes different combinations of habitat and trophic resources.
For example, if the IchthyMaps data were inclusive of large
numbers of glass eel observations, we might expect that local
environmental conditions (e.g. water temperature and tur-
bidity; Harrison et al. 2014), rather than biotic interactions,
would drive selection of estuarine habitat for this non-feed-
ing, migratory life stage. Previously, we explained that yel-
low eels should comprise the majority of the IchthyMaps
records for the American eel and why uncertainty regarding
life stage should not have a strong influence on our results
(see ‘Fish and functional trait data’ above). We also note that
many freshwater fishes experience ontogenetic shifts in feed-
ing behavior or habitat use (Mittelbach and Persson 1998)
that are not well-represented by coarse-scale occurrence data.
Therefore, the data limitations discussed here are germane to
a large number of species.

Third, we recognize that the inferred biotic effects (i.e.
functional traits with low permuted SBO values and high
magnitude U-statistics) could be artifacts of abiotic filtering
processes that regulate species’ presences and, by extension,
perceived functional trait patterns. For instance, our observa-
tion that the American eel is highly associated with maneu-
vering (locomotion mode) heterospecifics could be an artifact
or secondary effect of dams having a strong influence on the
presence of maneuvering fishes. In our particular case, we do
not believe that the biotic filtering results are spurious. Using
linear regression, we found no evidence that that the pro-
portion of maneuvering fishes was a function of dam density



(F,,,,=1.19, p=0.278). Nevertheless, we caution that when
using functional traits to infer biotic interactions, post-hoc
tests to confirm that a given functional trait result is not an
artifact of covariance with another abiotic variable will often
be necessary, either for discrete pairs of variables (e.g. linear
regression) or entire networks of variables (e.g. structural
equation modeling).

These caveats are all noteworthy and underscore the fact
that our results do not ‘prove’ that American eel occurrence is
regulated by biotic interactions with conspecifics, rather than
abiotic factors. Field trials and direct observational informa-
tion would be necessary to show this conclusively. But we
contend that the inherent limitations of our environmental
and species’ occurrence data are not a fundamental problem.
Large-scale studies of species’ distributions often make use
of data from disparate sources, without precise information
on species’ life stages or the degree of spatial or temporal
matching between species occurrence and environmental
data. Instances where fine-scale species’ occurrence and envi-
ronmental data were synchronously collected, over large spa-
tial extents, are rare (but see Al-Chokhachy et al. 2013 for a
notable example). Yet much has been learned about the fac-
tors that govern species” distributions, using relatively coarse
occurrence and environmental data (Elith and Leathwick
2009). We cannot say with certainty that the IchthyMaps
American eel samples are representative of individuals at the
sedentary yellow cel stage (or another life stage), but this
would be a general concern with any species that is highly
vagile through part of its life history. We do know that, unlike
most primary freshwater fishes that may hatch and take up
residence in the same habitats without first navigating a
suite of diverse abiotic conditions and local species assem-
blages, catadromous eels must invest considerable energetic
resources to reach their resident freshwater habitats. Thus, it
is logical to assume that the American eel is a good candidate
for tests of abiotic and biotic influences on freshwater species
distributions.

Finally, we emphasize that our analyses were conducted
entirely with freely available data. We downloaded all hydro-
logic, physical habitat, and fish occurrence data from pub-
lic archives. Only the functional trait data required manual
assembly and proofing, and this information is now archived
with the code needed to reproduce our analyses (see ‘Data
deposition’ above). By using these existing resources or
appending them with new variables (hundreds of additional
attributes can be freely accessed from StreamCat or other
sources, then cross-referenced to our study sites using the
NHDv2 ‘COMID’ field), our study could be expanded to
assess the effects of other environmental factors on American
eel occurrence. For instance, historical air temperature and
precipitation records from WorldClim (<www.worldclim.
org>) could be appended to our data and used to better
understand how the American eel may respond to future
climate change in freshwater ecosystems. Alternatively,
similar analyses could search for abiotic and biotic effects
on other freshwater fishes within the Mid-Atlantic region.

Distinguishing abiotic from biotic influences remains a cen-
tral challenge in ecology, but by leveraging these tremendous
data resources in novel ways, significant and rapid progress is
possible.
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