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Species’ distributions are influenced by abiotic and biotic factors but direct compari-
son of their relative importance is difficult, particularly when working with complex, 
multi-species datasets. Here, we compare the relative effects of hydrology, physical 
habitat, and co-occurring fish functional traits on the contemporary (1950–1990) 
distribution of the American eel Anguilla rostrata in six Mid-Atlantic (USA) rivers. 
To do so, we implement a null model approach that compares conditions at sites 
of known American eel presence to a random sample of sites throughout a broader 
landscape, allowing us to identify variables that may have the strongest influences on 
American eel distribution. Results suggest that, within this subset of the American 
eel’s geographic range, the functional characteristics of locally co-occurring fishes and 
habitat fragmentation by dams may have the strongest influences on American eel 
distribution, compared to other predictor variables included in the analysis. Given 
the widespread distribution and complex biology of this species, we caution that our 
results may not apply to all American eel subpopulations or life stages. Nonetheless, 
the observed importance of co-occurring fish functional traits may inform American 
eel conservation and, more generally, provide a means to incorporate biotic influences 
in research on species’ distributions.
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Introduction

Characterizing the effects of biotic and abiotic influences on species’ distributions 
and community structure is a long-standing challenge in ecology (Hutchinson 1957, 
Chase and Leibold 2003). To make this endeavor more tractable, abiotic and biotic 
effects have often been conceptualized as distinct levels in a series of nested, hierarchal 
filters that sort regional species pools into local communities (Poff 1997, Jackson et al. 
2001). Notably, abiotic effects tend to comprise the higher, large-scale levels of the 
hierarchal filter model, while biotic influences comprise the lower, local-scale levels.  
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In this way, species from a regional pool must navigate a series 
of relatively coarse-scale filters, such as physiological thermal 
constraints, before they can potentially take up residence at 
a particular locality. Then, to become a successful colonist, a 
species must navigate the final local-scale filter: coexistence 
within the previously established community of resident 
species. 

Perhaps due to the inherent complexity of characterizing 
biotic interactions within natural communities, evidence for 
the role of abiotic filtering in nature has accumulated more 
quickly than for biotic filtering, particularly at landscape or 
regional scales (Lawton 1999, Morales-Castilla et al. 2015). 
But with global change and other large-scale perturbations 
rearranging species’ distributions and creating novel com-
munities, ecologists are now earnestly working to enhance 
understanding of biotic influences (Parmesan and Yohe 2003, 
Gallardo and Aldridge 2013). For instance, improved meth-
ods to incorporate biotic interactions in species distribution 
models are an active area of inquiry (Guisan and Thuiller 
2005, Wisz  et  al. 2013). Yet despite this progress, two key 
developments remain that would greatly benefit basic and 
applied research on biotic filtering: 1) improved methods to 
efficiently and systematically characterize biotic influences 
within complex multi-species communities; and 2) analytical 
tools and/or databases that can be used to assess the relative 
importance of abiotic and biotic factors at common spatial 
scales.

Methods to characterize biotic interactions are often based 
upon records of pairwise species’ co-occurrences (Connor 
and Simberloff 1979, Gotelli and McCabe 2002). For 
example, species distribution models seeking to incorpo-
rate biotic influences on the distribution of a focal species 
have made use of heterospecific occurrence records, abun-
dances, and co-occurrence-based indices as biotic predictor 
variables (Leathwick and Austin 2001, Meier  et  al. 2011). 
Unfortunately, inferences based on co-occurrence data may 
be compromised by the fact that multiple processes can 
sometimes lead to the same co-occurrence patterns (Peres-
Neto 2004, Cazelles  et  al. 2016). Direct observational 
evidence of pairwise interactions (positive, negative, or oth-
erwise) can overcome these limitations, but such empirical 
data are difficult to obtain and only available for a relatively 
small number of species pairs (Bascompte and Jordano 2007, 
Connor  et  al. 2013). Furthermore, biotic influences may 
manifest as direct or indirect associations between many spe-
cies that are not well-described by pairwise scenarios (Wooton 
1994). Methods to efficiently characterize biotic interactions 
within complex, multi-species datasets (the ‘biotic milieu’ of 
McGill  et  al. 2006) are therefore needed (Tylianakis  et  al. 
2008, Gallien et al. 2017).

The second development – direct comparisons of the rela-
tive importance of abiotic and biotic factors – is necessary 
because differing scales are often used to characterize abiotic 
and biotic influences (Wiens 2011, Staniczenko et al. 2017), 
which makes direct comparison difficult. Abiotic factors are 
commonly represented by coarse-scale environmental sur-
veys or standardized data from a geographic information 

system, while biotic interactions are evaluated at finer scales, 
often through experimental studies (Jackson  et  al. 2001, 
Ovaskainen et al. 2017). Also hindering direct comparisons 
are the assumptions and logistical hurdles that must be navi-
gated when scaling up from fine-scale biotic data (e.g. point 
observations) to the larger scales at which abiotic data are most 
often available (Araújo and Luoto 2007, Funk et al. 2016). 
As noted above, a hierarchal filtering framework that a priori 
assumes abiotic habitat filtering is dominant at coarser scales 
while biotic influences are paramount at finer scales is often 
used to integrate abiotic and biotic data in a single, regional 
analysis (Pearson and Dawson 2003, Boulangeat et al. 2012). 
But large-scale species distribution and co-occurrence pat-
terns may arise from habitat filtering, biotic interactions, 
or a combination of both processes (HilleRisLambers et al. 
2012, Cadotte and Tucker 2017). Thus, direct comparisons 
of abiotic and biotic influences at common scales may help 
to resolve this issue.

In this study, we compare abiotic and biotic influences 
on the distribution of a focal freshwater fish species, using 
multiple data sources that have been carefully aligned to a 
common spatial scale. Specifically, we use a combination 
of hydrologic and physical habitat data to quantify abiotic 
conditions, then use fish functional trait data to characterize 
the effects of multi-species biotic influences. Functional trait 
analyses emphasize species’ physiological, morphological, 
and behavioral characteristics, rather than their taxonomic 
identities (McGill  et  al. 2006, Frimpong and Angermeier 
2010). They are ideal for assessing biotic influences in multi-
species datasets because traits often regulate biotic interac-
tions (e.g. resource competition among species with similar 
feeding behaviors; MacArthur and Levins 1967). Functional 
trait data can also be aggregated into assemblage- or com-
munity-level summaries of biotic influences (Carmona et al. 
2016), then contrasted with abiotic variables. Finally, at very 
large regional to global scales where extensive turnover in 
species composition is likely, functional traits may facilitate 
direct comparison because similar or analogous trait pro-
files are often shared among taxonomically distinct biotas 
(Mims et al. 2010).

As an empirical context, we focus on the contemporary 
(records collected between 1950–1990) distribution of the 
American eel Anguilla rostrata in six Mid-Atlantic (USA) 
rivers. Freshwater eels (family: Anguillidae) occur in rivers 
around the world and have complex biological and life his-
tory characteristics that make them particularly suitable for a 
comparison of abiotic and biotic effects. Eels are catadromous 
(ocean spawning) fishes with tremendous migratory capabili-
ties and are not believed to undergo a juvenile imprinting 
process (Gagnaire  et  al. 2012). This suggests that freshwa-
ter habitat selection by upstream migrating elvers (juvenile 
eels) is a ‘real-time’ function of an individual’s perception 
of local habitat conditions and/or other locally occurring 
organisms, rather than a programmed or inherited response. 
Furthermore, while American eel spawning events have yet to 
be empirically observed, genetic evidence suggests this species 
is panmictic: adults spawn only once and do so within large 
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aggregations of conspecifics (Wirth and Bernatchez 2003). 
This ‘all eggs in one basket’ strategy minimizes the probabil-
ity that selective forces will promote diversification in local 
habitat use among distinct populations or lineages (Oliveira 
1999). Anguillids are also notable for their widespread distri-
butions and generalist habitat tendencies. For instance, the 
North and South American distribution of the American eel 
ranges from Canada to Venezuela, with American eels known 
to inhabit most freshwater habitats within this range (Jenkins 
and Burkhead 1993).

Unfortunately, the American eel is, like most other 
freshwater eel species, in a state of decline (Dekker 2003). 
Key threats include commercial fishing, habitat fragmen-
tation and turbine entrainment at dams, and invasive 
species (Chaput  et  al. 2014). Stocking and translocation 
of juvenile eels in upstream habitats has helped mitigate 
European eel declines (Moriarty and Dekker 1997). But 
these methods have less often been used with American 
eel populations; the first large-scale stocking program 
in North America was implemented in Canada in 2005 
(Pratt and Threader 2011). Conservation of the American 
eel may ultimately require a better understanding of the 
factors that influence its distribution, particularly during 
the freshwater, inland stages of its life cycle (Smogor et al. 
1995). We therefore believe that a large-scale comparison 
of abiotic and biotic factors that influence American eel 
occurrences within freshwater will benefit both basic ecol-
ogy and applied conservation. 

Using a combination of contemporary American eel 
occurrence records with data on local hydrology and physical 
habitat (abiotic influences), as well as functional trait data 
for local fish assemblages (biotic influences), our objectives 
are to: 1) use a combination of species’ occurrence and func-
tional trait data to quantify potential biotic influences within 
stream networks; and 2) perform a direct comparison of the 
relative effects of abiotic and biotic factors on the regional 
distribution of the American eel.

Material and methods

Study area and spatial framework

Our study area includes six of the major Mid-Atlantic (USA) 
river basins within the native range of the American eel 
(Jenkins and Burkhead 1993): the Potomac, Rappahannock, 
York, James, Chowan, and Roanoke rivers (Supplementary 
material Appendix 1 Fig. A1). To facilitate direct compari-
sons among variables, all hydrologic, physical habitat, and 
fish data were aggregated within ‘subwatersheds’ or 12-digit 
hydrologic units from the USGS (2012) Watershed Boundary 
Dataset. A total of 1407 subwatersheds exist within the six 
major river basins included in our study, with a mean surface 
area of 89.3 km2 (SD = 40.5 km2). They were chosen for this 
study because they maximized our ability to match American 
eel occurrence records with independent data on hydrology 
and physical habitat at local spatial scales.

Hydrologic data and subwatershed selection

Selection of subwatersheds to include in our analyses began 
with a survey of available hydrologic data, as these data 
were the most limiting of the three data classes (hydrologic, 
physical habitat, and biotic). Hydrologic metrics were 
calculated from daily discharge records, downloaded for all 
stream gauges located within the six study basins via the 
US Geological Survey’s Water Data for the Nation website 
(< https://waterdata.usgs.gov/nwis >). Within each subwa-
tershed that contained at least one stream gauge, we used 
three criteria to determine which gauge data would be 
used to represent local hydrology (Fig. 1). First, we queried 
gauges with a minimum of 20 yr of nearly continuous (peri-
odic instances of several days or weeks of missing data were 
acceptable) discharge records between the 1955–1985 water 
years (i.e. 1 October–30 September; n = 158 gauges with 
sufficient records). This ensured that our hydrologic metrics 
would be broadly representative of contemporary flow condi-
tions (Gan et al. 1991) and temporally consistent with the 
majority of the fish occurrence records (collected between 
1950–1990 in our study basins; see ‘Fish and functional 

Figure 1. Map illustrating the process used to select subwatersheds 
used in this study. Four hypothetical scenarios are shown for subwa-
tersheds that were: (a) not considered due to absence of an internal 
stream gauge (white, thin grey outline); (b) eliminated from further 
analysis due to inadequate flow data (e.g. internal gauge supplied 
flow data outside of water years 1960–1980; see text); (c) eliminated 
from further analysis due to inadequate fish sampling effort (≤ 10th 
percentile of sample densities; see text); and (d) retained for further 
analysis, with adequate fish and flow data (white with heavy black 
outline).
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trait data’ section below). Second, we identified subwa-
tersheds with more than one internal gauge (n = 5), deter-
mined which gauge was closest to the downstream terminus 
or ‘pour point’ of each subwatershed, then removed gauges 
that were further upstream. This process narrowed the pool 
of suitable hydrologic units with representative flow data to 
153 subwatersheds.

Hydrology in each of the remaining subwatersheds was 
then characterized with a subset of the indicators of hydro-
logic alteration (IHA) metrics (Richter et al. 1996). Sixteen 
IHA metrics were selected to represent the five primary flow 
regime components: magnitude, frequency, duration, tim-
ing, and rate of change (Olden and Poff 2003). For example, 
the median Julian date of annual minimum flow specifies 
the median day of the calendar year when streamflow is at 
an annual minimum, across all years of record. This index 
of the timing of extreme low flow events may be critical 
in regulating the occurrence of stream organisms that have 
low drought tolerances (Richter  et  al. 1996). IHA metrics 
were calculated with the ‘IHA’ package (Law 2013) in R 
(R Core Team), then appended to a subwatershed × IHA 
metrics matrix. From this matrix, we calculated Pearson’s cor-
relation coefficients and removed highly correlated metrics  
(│r│≥ 0.7), taking care to retain at least one variable from 
each flow regime component (Table 1).

Physical habitat data

Stream habitat within subwatersheds was represented by 
the 1:100  000 scale National Hydrography Dataset ver. 2 
(‘NHDv2’; McKay  et  al. 2012). All NHDv2 stream seg-
ments within each of the 153 selected subwatersheds (see 
above) were queried then appended with physical habitat 
characteristics from the original NHDv2 attribute tables 
and the StreamCat database (Hill  et  al. 2016). StreamCat 
variables represent local habitat conditions, including both 
natural and anthropogenic variables (e.g. land cover, urban 
land use, and geologic data), and are distributed at both 
catchment (i.e. the landscape that is immediately adjacent 
to a given stream segment, exclusive of landscapes further 
upstream) and watershed scales (i.e. the entire, cumulative 
landscape that is upstream of and contributing flow to a given 
segment; Hill  et  al. 2016). From StreamCat and NHDv2, 
we selected a suite of catchment-scale physical habitat met-
rics to represent instream fish habitat. For example, mean 
elevation indicates a subwatershed’s longitudinal position 
within the stream continuum, which is strongly associated 
with channel morphology and substrate, as well as the ratio 
between autochthonous and allochthonous food resources 
(Vannote  et  al. 1980, Schlosser 1991). Catchment-scale 
metrics were selected from StreamCat, rather than water-
shed-scale, to better emphasize local conditions. For each of 
these physical habitat metrics, we calculated subwatershed 
means, medians, maximums, and coefficients of variation 
(CV), based upon the entire population of stream segments 
within a given subwatershed. Subwatershed summary sta-
tistics for each physical habitat metric were then appended 

to a subwatershed × habitat variable matrix and collinear 
variables (│r│ ≥ 0.7) were removed (Table 1).

Fish and functional trait data

Fish occurrence records were obtained from the IchthyMaps 
database (Frimpong et al. 2015) for each of the 153 subwa-
tersheds. IchthyMaps is a compilation of contemporary fish 
records (collected between 1950–1990) that were assembled 
from point distribution maps in regional fish atlases and 
government agency surveys, then geo-referenced to their 
respective digital stream segments in the NHDv2. Within 
the study region, IchthyMaps provided a total of 32  463 

Table 1. Descriptions of the predictor variables used in the analysis 
following elimination of collinear variables. The statistic used to 
summarize each variable at the subwatershed scale (coefficient of 
variation [CV], mean [MN], median [MD], or proportion [%TRT]) is 
shown in parentheses, with units (if applicable). For hydrologic 
variables, the flow regime component represented by the predictor 
variable is shown in italics.

Variable code Description

Hydrology
AprCV April stream flow (CV; magnitude)
AprMD April stream flow (MD; ft3 s–1; magnitude)
BsflwCV Baseflow index (CV; magnitude)
DtMnMD Julian date of annual minimum flow (MD; timing)
HFlwCntCV Number of flows above the 75th percentile  

(CV; frequency)
HFlwDurCV Duration of flows periods above the 75th 

percentile (CV; duration)
RevCV Number of transitions between rising and falling 

flow rates (CV; rate of change)
Physical habitat

AreaMN Catchment surface area (MN; km2) 
DmDnsMN Density of dams per catchment area (MN;  

dams km–2) 
DmStrMN Volume of dams per catchment surface area 

(MN; m3 km–2) 
ElevCV Catchment elevation (CV)
ElevMN Catchment elevation (MN; m)
RnffCV Catchment runoff (CV)
RnffMN Catchment runoff (MN; mm)

Functional traits 
FecMN Fecundity per female per spawning season (MN)
IncbTmMN Incubation time from embryo fertilization to 

hatch (MN; hours)
SeasLenMN Length of spawning season (MN; months)
Loc Locomotion mode (metric indicating morphology 

and locomotion)
LocAccl Accelerators: ambush predators with large caudal 

fins (%TRT)
LocAng Anguilliform: swimmers with eel-like bodies 

(%TRT)
LocCrp Creepers: bottom rovers with subterminal mouths 

(%TRT)
LocCrsr Cruisers: active swimmers with streamlined body 

forms (%TRT)
LocHgr Huggers: benthic fishes adapted to cling to 

substratum (%TRT)
LocMnvr Maneuverers: laterally compressed body forms 

(%TRT)
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fish occurrence records, distributed among 224 species. Of 
these, 559 were American eel records. Most American eel 
occurrence records were compiled from the text ‘Freshwater 
fishes of Virginia’ and were originally collected either with 
backpack electrofishing or seine netting surveys, between 
1968–1986 (Jenkins and Burkhead 1993). Notably, these 
occurrence records should consist primarily of individuals at 
the yellow eel stage, rather than leptocephalus, glass eel, or 
silver eel stages; yellow eels are the most abundant life stage 
in freshwater, inland streams, where they become relatively 
sedentary and easy to capture with electrofishing equipment 
(Goodwin and Angermeier 2003). Therefore, we were rea-
sonably certain that the American eel occurrences in our 
study represented permanent, resident habitat for American 
eels and were not unduly biased by inclusion of non-resident 
migratory life stages. 

To account for potential sampling bias in the aggregated 
IchthyMaps data (i.e. under-sampled subwatersheds), we 
screened subwatersheds that contained low numbers of 
fish samples following McGarvey  et  al. (2017). Briefly, we 
calculated sample density as the total number of IchthyMaps 
observations (i.e. total number of occurrence records, 
regardless of species’ identities) within a given subwatershed, 
divided by the total length of all stream segments within 
that subwatershed. This helped to detect subwatersheds that 
were vulnerable to under-sampling bias. Subwatersheds with 
fish sample densities below the 10th percentile (i.e. ≤ 3.0 
occurrences per km of stream channel; median fish sample 
density = 11.3, CV = 1.3) were removed (n = 16) from the 
dataset.

Fish species’ functional traits were then used to quantify 
biotic influences within each of the remaining subwater-
sheds (n = 137). We first compiled all IchthyMaps records 
within each subwatershed and converted the species list 
into a master species’ presence matrix (subwatershed × spe-
cies). Next, we collected functional trait data for each species 
(n = 139) through an extensive literature review, inclusive 
of the four data sources reported in Mims et al. (2010): 1) 
regional fish atlases (i.e. ‘The fishes of…’ texts); 2) primary 
and secondary literature publications; 3) the online FishBase 
(< www.fishbase.org >) and FishTraits (< www.fishtraits.
info >) databases; and 4) keyword internet searches. For 
species’ traits with multiple published values, we retained 
observations that were reported from localities that were clos-
est to our study area. For instance, functional trait descrip-
tions from the ‘Freshwater fishes of Virginia’ (Jenkins and 
Burkhead 1993) were prioritized over other sources for many 
of our trait values. Functional trait data were then compiled 
into a species × trait matrix and categorical variables were  
re-coded as binary dummy variables.

Finally, functional trait summaries were calculated for each 
subwatershed and used as proxies for species’ potential inter-
actions. For example, differences in fecundity or timing of 
spawning may facilitate coexistence among species with simi-
lar habitat requirements (Meador and Brown 2015). Mean, 
median, and maximum values were calculated for numeric 
traits while proportions were calculated for categorical traits. 

Importantly, we omitted American eel traits from the subwa-
tershed trait summaries because our objective was to detect 
interspecific trait influences on contemporary American eel 
occurrences; we sought only to determine which traits of co-
occurring species may affect American eel habitat selection, 
not to define trait profiles for complete assemblages or to 
assess intraspecific effects. Trait summaries were compiled in 
a subwatershed × trait matrix and collinear traits (│r│ ≥ 0.7) 
were removed (Table 1). 

Comparing sample and background distributions

Potential effects of the abiotic and biotic variables on 
American eel habitat selection were assessed with a null model 
approach. Specifically, we compared abiotic and biotic condi-
tions at subwatersheds occupied by American eels with condi-
tions observed in a random subset of subwatersheds, sampled 
from the complete population of subwatersheds throughout 
the landscape. This general approach to identifying variables 
with nonrandom effects on a species’ distribution is useful 
when presence-only, rather than presence–absence, data are 
available (Hirzel  et  al. 2002). One particularly well-known 
application of this method is Maximum Entropy (MaxEnt; 
Phillips et al. 2006) species distribution modeling. MaxEnt 
compares a ‘sample’ distribution, representing conditions at 
sites of known occurrence, with a random ‘background’ sam-
ple that characterizes conditions throughout the potential 
range (Elith et al. 2011). A strong effect of a given variable 
on the focal species’ distribution is indicated by sample and 
background distributions that exhibit modest or minimal 
overlap (i.e. conditions at known occurrence sites are non-
random with respect to the entire landscape; see Fig. 1 in 
Merow et al. 2013).

We used the entire landscape of 137 subwatersheds as 
the background distribution for our analysis. We separated 
this background into a ‘sample’ population of subwatersheds 
with known American eel occurrences (n = 24) and an ‘avail-
able’ population that was within the geographic range of the 
American eel, but where its occurrence had not been docu-
mented and was therefore unknown (n = 113; Fig. 2, step 1).

Next, we implemented a random permutation algorithm 
to assess similarities between the sample and background 
distributions for each hydrologic, physical habitat, and func-
tional trait variable. Permutations were used instead of direct, 
static comparisons of the complete sample and background 
distributions for each variable because we did not wish to 
overfit our results, leading to low transferability (Thomas and 
Bovee 1993, Chatfield 1995). In each of the 1000 permuta-
tions, we randomly selected (without replacement) 12 of the 
24 sample units and 60 of the 137 background units (Fig. 2, 
step 2). These permuted sample sizes preserved the original, 
approximate ratio of sample-to-available units (~1:5) and 
ensured that our results would not be biased by unbalanced 
representation of the sample vs. available units in any given 
permutation. We then compared the randomized sample and 
background distributions (in each permutation) for each of 
the predictor variables with a 2-step process (Fig. 2, step 3). 
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First, we quantified sample-background overlap (SBO) as the 
literal area of overlap (i.e. superimposed probability distribu-
tion functions) between continuous sample and background 
distributions, with potential values ranging from 1 (perfect 
overlap) to 0 (no overlap). SBO values close to 1 suggest that 
sample and background units are both random samples from 
the complete landscape (i.e. sample values for the predictor 
variable do not differ with respect to the background values, 
Ho). Alternatively, SBO values much smaller than 1 imply 
that sample units are nonrandom with respect to the land-
scape (i.e. the sample values encompass a relatively small sub-
set of the complete range of background values, indicative of 
a selective process, HA; Hirzel et al. 2002).

In each permutation, SBO was calculated for every predic-
tor variable with Eq. 4 in Mouillot et al. (2005); their Eq. 4 
was conceived as a metric of overlap in the trait densities of 
two co-occurring species, using kernel density functions (see 
also Mason et al. 2008, 2011). Our application of this metic 
was, however, different in one key regard; the original authors 
interpreted a high degree of overlap among kernel functions 
as evidence of potential competition, but we sought to iden-
tify variables with minimal overlap as evidence of a strong, 

non-random influence on American eel distribution. Because 
many of the variables considered here were non-normal and/
or contained zero values (e.g. dam density), we applied a ln 
(x + 1) transformation to all continuous variables. All kernel 
density estimates were calculated with the ‘density’ function 
in the package ‘stats’ (Gaussian kernels and default band-
width and n settings) in R.

In the second step, nonparametric Mann–Whitney 
U-statistics were used to determine whether permuted sample 
values were consistently higher or lower than permuted back-
ground values for each of the predictor variables. Two-sided 
statistics were used because we did not expect a priori that 
American eel sample values would be consistently higher or 
lower than background values for most of the predictor vari-
ables; we sought only to document whether the sample and 
background distributions were consistently different. In each 
permutation, we calculated and recorded the U-statistic from 
a 2-sided Mann–Whitney test for each variable, using the 
‘wilcox.test’ function in R. U-statistic values were then inter-
preted relative to the magnitude of deviation from an equal 
ranking of sample and background values (i.e. U = 360). 
U-statistics closer to zero indicated that sample distribution 

Figure 2. Workflow diagram of the procedure to compute permuted sample-background overlap (SBO) and Mann–Whitney U-statistics 
for each of the predictor variables included in this study. Major steps in the process are identified with numbers and explained in the 
Material and methods (main text). 
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values were consistently ranked higher or were larger than 
background values, whereas U-statistics approaching the 
maximum (i.e. U = 720) indicated that sample values were 
consistently ranked lower or were smaller than background 
values for a given variable.

As a final step, we used a multivariate SBO approach to 
assess the collective effect of each of the three classes of variables 
on American eel distribution throughout the study rivers. For 
each class of predictor variable, nonmetric multidimensional 
scaling (nMDS) was used to build a 2-dimensional ordination 
of the sample and background data. Ninety-five percent con-
fidence ellipses, or ‘hypervolumes’ (Blonder et al. 2014), were 
interpolated for the sample points and background points in 
each ordination plot. The regions defined by the background 
ellipses indicated the expected hypervolume for a random 
sample of the complete landscape. We then visually assessed 
the degree of overlap between sample and background hyper-
volumes to determine whether American eel occurrences were 
nonrandom with respect to the background hypervolume for 
each of the three predictor variable classes. We did not, how-
ever, use permutations to perform repeated comparisons of 
the sample and background hypervolumes. Instead, we used 
the complete sample and background data (n = 24 and 137, 
respectively) to perform a single multivariate SBO analysis 
for each of the three classes of predictor variables. For each 
predictor class, we calculated a Gower dissimilarity matrix 
(Gower 1971) that included all variables within the class (i.e. 
three independent subwatershed × subwatershed dissimilar-
ity matrices), the used the dissimilarity matrices to perform 
nMDS. Gower dissimilarities were calculated with the ‘FD’ 
package (Laliberte et al. 2014), nMDS was performed with 
the ‘vegan’ package (Oksanen  et  al. 2017), and confidence 
ellipses were plotted with ‘ggplot2’ (Wickham 2009) in R.

Data deposition

The raw data and code for analyses are available from 
Figshare Digital Repository: < https://doi.org/10.6084/
m9.figshare.5481205.v4 > (Woods and McGarvey 2017).

Results

Permuted statistics for individual predictor variables

Of the three predictor variable classes, hydrologic variables 
generally exhibited the highest SBO values (median 
SBO = 0.83, CV = 0.06; Fig. 3a), suggesting that contempo-
rary occurrences of the American eel are not strongly associ-
ated with specific hydrologic conditions. Only bsflwCV had 
low permuted SBO values (< 0.75; Fig. 3a) and U-statistics 
that strongly deviated from the line of equality (U = 360), 
with sample values consistently larger than background values 
(Fig. 3b). In comparison, physical habitat variables appeared 
to have greater influence on the contemporary American eel 
distribution (median SBO = 0.76, CV = 0.16; Fig. 3a). In 
the physical habitat class, low permuted SBO values were 

observed for dmDnsMN and elevMN (Fig. 3a). U-statistics 
showed that sample values were consistently larger than back-
ground values for dmDnsMN, but the opposite trend was 
observed for elevMN (Fig. 3b). Overall, the functional trait 
data class had the lowest SBO values (median SBO = 0.69, 
CV = 0.32), with particularly low permutation values for 
fecMN, incbTm, locCrsr, locMnvr, and seasLen (Fig. 3a). 
Functional trait U-statistics showed sample distribution 
values of fecMN, locMnvr, and seasLen were higher than 
background, whereas incbTm and locCrsr background values 
exceeded sample values (Fig. 3b).

Multivariate hypervolumes

Consistent with permutation results for individual variables, 
comparisons of the multivariate sample and background 
hypervolumes for the three data classes indicated that 
functional traits may have the overall strongest influence on 
American eel occurrence. Sample and background hyper-
volumes exhibited extensive overlap for hydrologic vari-
ables (Fig. 4a). Overlap between sample and background 
hypervolumes was intermediate for physical habitat vari-
ables (Fig. 4b). Hypervolume overlap was smallest for the 
functional trait data class, with approximately 50% overlap 
observed between the sample and background hypervolumes 
(Fig. 4c). 

Discussion

Abiotic and biotic influence on American  
eel distribution

Within six Mid-Atlantic rivers, we compared abiotic and 
biotic conditions at confirmed American eel presence sites 
(the sample distribution) with a representative sample of 
conditions across the entire landscape (the background 
distribution). In general, results indicated that the sample 
distribution was more closely associated with dam density 
and the functional traits of co-occurring fishes than the 
other predictor variables included in our analysis. These 
results suggest that future research and conservation of 
inland American eel populations within the study region 
may benefit from a refined focus on the effects of habitat 
fragmentation and potential interactions with co-occurring 
fishes.

Dam density had one of the strongest influences on 
American eel distribution, suggesting that fishes in the study 
region have highly fragmented ranges. This result seemed 
intuitive because it is well-known that dams, which prevent 
migratory American eels from reaching upstream tributaries 
(Wiley et al. 2004, Machut et al. 2007), can have a stronger 
influence on American eel distribution than other abiotic fac-
tors (Hitt and Roberts 2012). However, the directional effect 
of dam density was surprising: rather than associating with 
low dam densities, the sample distribution suggested that 
American eels may be associated with relatively high dam 
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densities. This counterintuitive result may be explained by 
a tendency for American eels to aggregate near dams. Prior 
studies have shown that American eel densities increase near 
dams and suggested that this may result from large congre-
gations of American eels that gather downstream of impass-
able barriers (Machut et al. 2007). We mapped our American 
eel presence records against georeferenced dam locations and 
found that the sample distribution may have included mul-
tiple sites that were downstream of an impassible dam (these 
sites would have high dam density values) and therefore 

represented the upstream limits of potential American eel 
migration (Supplementary material Appendix 1 Fig. A2). 
If so, the strong association between American eel presence 
and high dam density may be an artifact of higher probabil-
ity of capture at these sites, rather than a preferential selec-
tion of subwatersheds with high dam densities per se. This 
observation is particularly concerning, given that heightened 
American eel densities below dams may amplify density-
dependent processes and negatively impact these populations 
(Machut et al. 2007).

Figure 3. Boxplots (25th, 50th, and 75th quartiles) showing permutation results as sample-background overlap (SBO; panel a) and Mann–
Whitney U-statistic (panel b) values. Boxplot colors denote the three classes of predictor variables: hydrologic (white, black outline), physi-
cal habitat (grey hatched, black outline), and functional traits (black, white outline). In panel (b), the horizontal line at U = 360 represents 
rank equivalence between sample and background distribution values. Below the rank equivalence line, sample distribution values are, on 
average, larger than background values for the variable in question. Above the rank equivalence line, sample distribution values are smaller 
than background values for the variable in question.



2075

We found that hydrology may play a minimal role in regu-
lating inland American eel distribution in the study region, 
but we caution that our results may only be interpreted with 
respect to the particular American eel life stages that were 
represented in the IchthyMaps database. For instance, if the 
occurrence records included silver eel observations, we would 
expect a strong hydrologic signal because seaward migra-
tion of silver eels is strongly influenced by river discharge 
(Jansen  et  al. 2007). We did find that the CV of baseflow 
index showed an effect on American eel distribution and 
this variable seemed to suggest that the sample distribution 
may be associated with habitat characterized by variable or 
unpredictable flows. These results are surprising because 
migratory fishes might be expected to associate with specific, 
predictable flow conditions (Bunn and Arthington 2002). 
One possible reason American eels may select streams with 
variable flow is that this species’ ability to sustain prolonged 
exposure to air may give American eels a competitive advan-
tage in these habitats.

In general, we acknowledge that our abiotic results 
may not be characteristic of American eel habitat selection 
throughout its inland range. Habitat-mediated, regional vari-
ation in life history characteristics has been documented for 
the American eel (Oliveira 1999) and it is likely that other 
regional subpopulations will respond differently to hydrol-
ogy and physical habitat. Nevertheless, our results are con-
sistent with previous studies that failed to identify strong 
associations between American eel populations and abiotic 
variables (Smogor et al. 1995, Wiley et al. 2004).

Of the three predictor variable classes, the functional traits 
of co-occurring fishes were the most effective in differenti-
ating sample and background distributions, suggesting that 
inland distribution of the American eel in our study region 
may be a function of biotic influences. To better understand 
the effects that individual traits may have on American eel 
occurrence, we group the trait variables into two categories: 
reproductive behavior and locomotion. Reproductive trait 
results indicate that the sample distribution contains fishes 
that have relatively short incubation times, high fecundi-
ties, and/or long spawning seasons. Thus, the American eel 
seems to associate with heterospecifics that have high repro-
ductive capacities. This could be advantageous to American 
eels because fishes with high reproductive capacities produce 
an abundance of ichthyoplankton, which in turn provides a 
rich food resource to predatory American eels (Helfman and 
Winkelman 1991).

Locomotion traits suggest that American eels associate 
with species that exhibit ‘maneuvering’ locomotion (slug-
gish swimmers with laterally compressed body forms typi-
fied by sunfishes), but not with ‘cruising’ (active swimmers 
with streamlined bodies typified by salmonids) species. This 
may indicate a preference for local assemblages of hetero-
specifics in which interspecific competition is minimized 
and prey availability is maximized. American eels may avoid 
streamlined, cruising species that are more effective preda-
tors than slower anguilliform eels (Sinha and Jones 1967). 
Alternatively, American eels may favor coexistence with 
maneuvering species because these fishes are less adept 

Figure 4. Nonmetric multidimensional scaling (nMDS) ordination 
plots for the hydrologic (a), physical habitat (b), and functional trait 
(c) data classes. Hypervolumes are shown as 95% confidence ellipses 
for sample (light grey) and background (dark grey) data. Points rep-
resent individual subwatersheds from the sample distribution (light 
grey triangles) and the background distribution (dark grey circles).
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competitors and easier prey. Coexistence with water column-
dwelling, maneuvering species may also reduce interspecific 
competition through vertical habitat partitioning, as eels  
are primarily benthic during their freshwater residency  
(Ross 1986).

Functional traits as proxies for biotic interactions

Pairwise species approaches have traditionally been used to 
study biotic interactions, with methods ranging from basic 
null models to more recent developments in network anal-
ysis. However, these approaches can be computationally 
impractical because the number of species pairs that may 
potentially interact grows quickly as the number of locally 
co-occurring species increases (Morales-Castilla et al. 2015). 
In the present context, information on 138 pairwise associa-
tions would be needed to fully account for all direct biotic 
interactions between the American eel and co-occurring 
heterospecifics. 

As an alternative, we used a general, null model approach 
to infer the effects of biotic interactions from community 
functional trait data. This is just one example of a broader 
effort to use functional traits to generalize processes that are 
logistically difficult to quantify on a species × species basis 
(McGill  et  al. 2006). For instance, body size may be used 
to estimate dispersal ability in metacommunity frameworks 
(De Bie  et  al. 2012), multidimensional trait classifications 
can be used to link species to their ecosystem functions 
(Winemiller  et  al. 2015), and knowledge of trait perfor-
mance in relation to the environment may be used to predict 
community responses to abiotic filtering (Webb et al. 2010). 

In the present example, two specific benefits of a gener-
alized, traits-based approach to studying biotic interactions 
are evident. First, as noted above, the community trait analy-
ses were more computationally feasible and less data-limited 
than a biotic filtering analysis that relied upon large numbers 
of pairwise species contrasts would have been. Without using 
the trait data, it is not clear that we could have compared 
abiotic and biotic factors at a common spatial scale. Second, 
because we did not focus explicitly on taxonomic identity, 
our results may be compared to other freshwater eels, such 
as the European eel A. anguilla or New Zealand longfin eel  
A. dieffenbachia. These fishes exhibit similar life histories to 
the American eel (Haro et al. 2000) but must coexist with 
very different fish assemblages throughout their freshwater 
life stages. Thus, by focusing on the functional relationships 
that eels have with conspecifics, rather than the taxonomic 
identities of co-occurring fishes, it may be possible to dis-
tinguish biotic influences that are germane to all freshwater 
eels from influences that are unique to a given species or 
population. 

Caveats and opportunities

This study suggests that biotic predictor variables may be key 
determinants of American eel occurrence within Mid-Atlantic 

rivers. But for several reasons, we urge caution when inter-
preting the results. First, although the final set of predictor 
variables included in our analysis was selected to represent a 
broad range of abiotic and biotic influences, it is unlikely that 
we incorporated all relevant factors. For example, water pol-
lution is known to have direct lethal effects, as well as indirect 
behavioral effects, on the American eel (Haro  et  al. 2000). 
However, due to data limitations, we were unable to incorpo-
rate robust indicators of pollution in our analysis. Similarly, 
we were unable to incorporate recent or legacy effects of 
fishing harvest in our study. This is important because the 
American eel has historically been exposed to variable yet 
continuous fishing pressure throughout its Atlantic Coast 
range (Chaput et al. 2014, ASMFC 2017). We therefore sug-
gest that new information on anthropogenic stressors, as well 
as other natural influences, might enhance future research on 
the American eel and potentially alter our conclusions.

Second, our analyses are subject to a constraint that nec-
essarily arises from the use of combined survey data across 
large spatial extents. In large-scale studies where the use of 
aggregate occurrence data from multiple sources (such as 
IchthyMaps) is necessary, it may be difficult or impossible 
to retroactively distinguish among species’ life stages, or to 
determine resident versus migrant status. Strong inference 
(sensu Platt 1964) regarding biotic interactions is therefore 
beyond the scope of these data (Elton 1946). This point is 
certainly relevant for the American eel, with a life history that 
includes five distinct developmental stages, each of which uti-
lizes different combinations of habitat and trophic resources. 
For example, if the IchthyMaps data were inclusive of large 
numbers of glass eel observations, we might expect that local 
environmental conditions (e.g. water temperature and tur-
bidity; Harrison et al. 2014), rather than biotic interactions, 
would drive selection of estuarine habitat for this non-feed-
ing, migratory life stage. Previously, we explained that yel-
low eels should comprise the majority of the IchthyMaps 
records for the American eel and why uncertainty regarding 
life stage should not have a strong influence on our results 
(see ‘Fish and functional trait data’ above). We also note that 
many freshwater fishes experience ontogenetic shifts in feed-
ing behavior or habitat use (Mittelbach and Persson 1998) 
that are not well-represented by coarse-scale occurrence data. 
Therefore, the data limitations discussed here are germane to 
a large number of species.

Third, we recognize that the inferred biotic effects (i.e. 
functional traits with low permuted SBO values and high 
magnitude U-statistics) could be artifacts of abiotic filtering 
processes that regulate species’ presences and, by extension, 
perceived functional trait patterns. For instance, our observa-
tion that the American eel is highly associated with maneu-
vering (locomotion mode) heterospecifics could be an artifact 
or secondary effect of dams having a strong influence on the 
presence of maneuvering fishes. In our particular case, we do 
not believe that the biotic filtering results are spurious. Using 
linear regression, we found no evidence that that the pro-
portion of maneuvering fishes was a function of dam density 
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(F1,111 = 1.19, p = 0.278). Nevertheless, we caution that when 
using functional traits to infer biotic interactions, post-hoc 
tests to confirm that a given functional trait result is not an 
artifact of covariance with another abiotic variable will often 
be necessary, either for discrete pairs of variables (e.g. linear 
regression) or entire networks of variables (e.g. structural 
equation modeling).

These caveats are all noteworthy and underscore the fact 
that our results do not ‘prove’ that American eel occurrence is 
regulated by biotic interactions with conspecifics, rather than 
abiotic factors. Field trials and direct observational informa-
tion would be necessary to show this conclusively. But we 
contend that the inherent limitations of our environmental 
and species’ occurrence data are not a fundamental problem. 
Large-scale studies of species’ distributions often make use 
of data from disparate sources, without precise information 
on species’ life stages or the degree of spatial or temporal 
matching between species occurrence and environmental 
data. Instances where fine-scale species’ occurrence and envi-
ronmental data were synchronously collected, over large spa-
tial extents, are rare (but see Al-Chokhachy et al. 2013 for a 
notable example). Yet much has been learned about the fac-
tors that govern species’ distributions, using relatively coarse 
occurrence and environmental data (Elith and Leathwick 
2009). We cannot say with certainty that the IchthyMaps 
American eel samples are representative of individuals at the 
sedentary yellow eel stage (or another life stage), but this 
would be a general concern with any species that is highly 
vagile through part of its life history. We do know that, unlike 
most primary freshwater fishes that may hatch and take up 
residence in the same habitats without first navigating a 
suite of diverse abiotic conditions and local species assem-
blages, catadromous eels must invest considerable energetic 
resources to reach their resident freshwater habitats. Thus, it 
is logical to assume that the American eel is a good candidate 
for tests of abiotic and biotic influences on freshwater species 
distributions.

Finally, we emphasize that our analyses were conducted 
entirely with freely available data. We downloaded all hydro-
logic, physical habitat, and fish occurrence data from pub-
lic archives. Only the functional trait data required manual 
assembly and proofing, and this information is now archived 
with the code needed to reproduce our analyses (see ‘Data 
deposition’ above). By using these existing resources or 
appending them with new variables (hundreds of additional 
attributes can be freely accessed from StreamCat or other 
sources, then cross-referenced to our study sites using the 
NHDv2 ‘COMID’ field), our study could be expanded to 
assess the effects of other environmental factors on American 
eel occurrence. For instance, historical air temperature and 
precipitation records from WorldClim (< www.worldclim.
org >) could be appended to our data and used to better 
understand how the American eel may respond to future 
climate change in freshwater ecosystems. Alternatively, 
similar analyses could search for abiotic and biotic effects 
on other freshwater fishes within the Mid-Atlantic region. 

Distinguishing abiotic from biotic influences remains a cen-
tral challenge in ecology, but by leveraging these tremendous 
data resources in novel ways, significant and rapid progress is 
possible.
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