TOPICAL REVIEW

Nanosynthesis by atmospheric arc discharges excited with pulsed-DC power: a review

To cite this article: Carles Corbella et al 2022 Nanotechnology 33 342001

View the article online for updates and enhancements.

You may also like

- Investigation and control of dc arc jet instabilities to obtain a self-sustained pulsed laminar arc jet
- J Krowka, V Rat and J F Coudert
- Metal plating removal from insulator substrate using pulsed arc discharge
 K Imasaka, S Gnapowski and H Akiyama
- Pulsed anodic arc discharge for the synthesis of carbon nanomaterials
 Carles Corbella, Sabine Portal, Denis B Zolotukhin et al.

IOP ebooks™

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

IOP Publishing Nanotechnology

Nanotechnology 33 (2022) 342001 (20pp)

https://doi.org/10.1088/1361-6528/ac6bad

Topical Review

Nanosynthesis by atmospheric arc discharges excited with pulsed-DC power: a review

Carles Corbella¹, Sabine Portal¹, Madhusudhan N Kundrapu² and Michael Keidar¹

E-mail: ccorberoc@gwu.edu

Received 13 January 2022, revised 14 April 2022 Accepted for publication 29 April 2022 Published 31 May 2022

Abstract

Plasma technology is actively used for nanoparticle synthesis and modification. All plasma techniques share the ambition of providing high quality, nanostructured materials with full control over their crystalline state and functional properties. Pulsed-DC physical/chemical vapour deposition, high power impulse magnetron sputtering, and pulsed cathodic arc are consolidated low-temperature plasma processes for the synthesis of high-quality nanocomposite films in vacuum environment. However, atmospheric arc discharge stands out thanks to the high throughput, wide variety, and excellent quality of obtained stand-alone nanomaterials, mainly core-shell nanoparticles, transition metal dichalcogenide monolayers, and carbon-based nanostructures, like graphene and carbon nanotubes. Unique capabilities of this arc technique are due to its flexibility and wide range of plasma parameters achievable by modulation of the frequency, duty cycle, and amplitude of pulse waveform. The many possibilities offered by pulsed arc discharges applied on synthesis of low-dimensional materials are reviewed here. Periodical variations in temperature and density of the pulsing arc plasma enable nanosynthesis with a more rational use of the supplied power. Parameters such as plasma composition, consumed power, process stability, material properties, and economical aspects, are discussed. Finally, a brief outlook towards future tendencies of nanomaterial preparation is proposed. Atmospheric pulsed arcs constitute promising, clean processes providing ecological and sustainable development in the production of nanomaterials both in industry and research laboratories.

Keywords: anodic arc discharge, nanomaterials, plasma technology, pulsed power

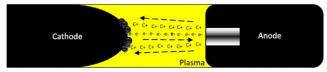
(Some figures may appear in colour only in the online journal)

1. Introduction

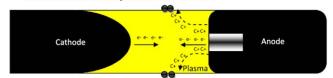
Plasmas are ionized gases, which show intense exchange of matter and energy with neighbouring surfaces. The controlled flux of incident plasma species enables growth of films and nanoparticles (Lieberman and Lichtenberg 2005, Baranov *et al* 2017). Arc discharge is a very interesting plasma regime

basically characterized by high currents, up to several kA, sustained at low voltage values, of the order of tens of volts. Such plasmas are suitable for many applications in both vacuum and atmospheric pressure ranges, like discharge lamps, welding, and material processing (Boxman *et al* 1995, Keidar and Beilis 2018). Arcs in particular show features very exciting for further research, like the interplay between local

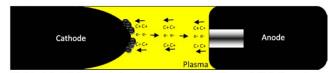
¹ Department of Mechanical and Aerospace Engineering, George Washington University, 800 22nd Street, Northwest, Washington, DC 20052, United States of America


²Tech-X Corporation, 5621 Arapahoe Ave. Suite A, Boulder, CO 80303, United States of America

hot and cold plasma regions, and instabilities in the form of spots at either cathode or anode surfaces (Jüttner 2001).


After the discovery of carbon fullerenes by Kroto et al (1985), Iijima pioneered the synthesis of carbon nanotubes by means of atmospheric arc technique (Iijima 1991). Since then, milestones like the arc production of fundamental nanomaterials such as boron nitride nanotubes (BNNT) (Chopra et al 1995) and molybdenum disulphide nanoparticles (Chhowalla and Amaratunga 2000) have boosted the progress of plasma nanotechnology. This research field has become ubiquitous due to its multidisciplinary character, for instance in optoelectronic applications (Li and Zhu 2015, Lin et al 2016, Yang et al 2019, Kumar et al 2022), smart materials (Golberg et al 2007, Levchenko et al 2018), medicine, (Zhang et al 2017, Bazaka et al 2019) and nanomaterials modelling (Momeni et al 2020). In parallel, there is an urgent need to improve the quality and synthesis reproducibility of low-dimensional materials. Indeed, serious concerns and scepticism have been raised regarding the quality of the showcased materials (Kauling et al 2018, Bøggild 2018). In this regard, traditional techniques must be improved and new recipes should be developed to meet the stringent demands that only pure samples of nanomaterials can fulfil.

Plasma constitutes an excellent scenario to synthesize and/or modify nanomaterials with tailored properties. The wide range of plasma parameters provide adequate knobs to tune the physical and chemical properties of the processed nanostructures, thereby enabling the synthesis of top-quality and ultra-pure nanomaterials showing the desired performance. The extraordinary service that plasma technology has been offering to processing of nanoparticles and nanomaterials is reviewed in a number of excellent articles (Cheng *et al* 2010, Boufendi *et al* 2011, Han *et al* 2018, Vasudevan *et al* 2019, Zietz *et al* 2020, Vandenabeele and Lucas 2020).


Pulsed plasmas suppose an even better framework due to the additional parameters required to program a periodically excited discharge. An immediate effect is the tuning of the physical mechanisms governing a discharge, like ionization rates and diffusion processes (Anders 2004). Thus, a more accurate control of the discharge is achieved by setting the adequate pulse parameters of the feeding signal. In contrast to DC power and AC power, pulsed-DC power confers a more flexible scenario in the working conditions at the plasmamaterial interface (figure 1) (Arora and Sharma 2014). In fact, given a specific signal waveform, plasma parameters can be controlled by adjusting peak values of voltage and current, pulse duration and frequency. Concerning the topic reviewed here, pulsed arc discharges is a research field with a huge potential in nanomaterial production. While significant steps have been made in maturing and upscaling film deposition by cold, low-pressure pulsed plasmas (Wertheimer et al 1996, Heggemann et al 2007, Bräuer et al 2010, Corbella 2014, Bobzin et al 2017), relatively little effort is shown on nanosynthesis by pulsed arcs held near atmospheric pressure, either in gas phase (Corbella et al 2019c) or in liquid phase (Kim et al 2021). It is not surprising that pulsed arc nanosynthesis is attracting more and more interest within the

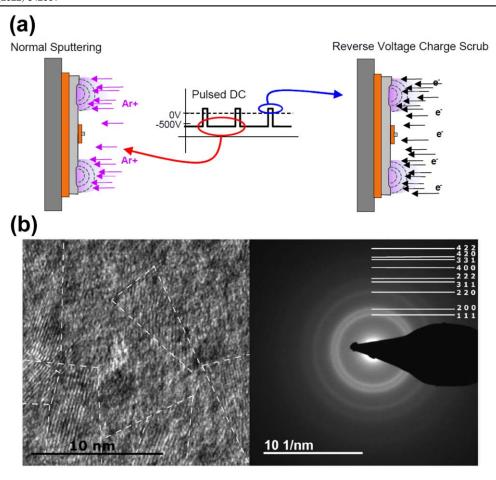
(a) DC Arc Discharge: Continuous movement of ions and electrons in the plasma between the electrodes. Continuous Deposition obtained at Cathode

(b) AC Are Discharge: The polarity of the electrodes changes after every cycle. Thus electrons are discharged from both side and results in C+ ions from anode flying away from the plasma. The deposition is obtained the reactor chamber walls. Lesser deposition obtained compared to DC and Pulsed Discharge.

(c) Pulsed Arc Discharge: Accelerated electrons are discharged from cathode in short pulses after a time interval ranging from micro to milliseconds. The deposition occurs at cathode.

Figure 1. Schematic representation of species transport between a hollow anode and cathode in anodic arc discharge in (a) DC, (b) AC, and (c) pulsed-DC modes aimed to grow carbon nanostructures. Deposition on chamber walls is also feasible in scenario (a) due to significant growth rate of particles that are transported in the radial direction. The cavity of the anode is filled with catalyst powder to promote carbon nanotube growth. Reprinted from (Arora and Sharma 2014), Copyright © 2014 Elsevier B.V. All rights reserved.

materials science community after the versatility and flexibility offered by this technique.


The present review starts by briefly comparing pulsed plasma techniques oriented to surface and in-volume nanosynthesis. Following a short summary about nanotechnology applications of glow and arc discharges in pulsed form, the state of the art and main challenges in atmospheric arc nanosynthesis are discussed. After these introductory sections, up-to-date research focused on pulsed arc methods to produce nanosized materials is analysed. The article concludes with a summary and outlook listing future milestones of this promising tool to create new nanomaterials.

2. Pulsed plasmas and nanotechnology

This section provides insight into the main plasma methods used in nanotechnology for the fabrication of nanostructured materials, either in thin film form or as stand-alone nanomaterials. The objective here is to chart the area of plasma applications, specifically using pulsed energy, in terms of deposition parameters and industrial needs.

2.1. Surface nanosynthesis by non-thermal plasma—glow discharges and vacuum arcs

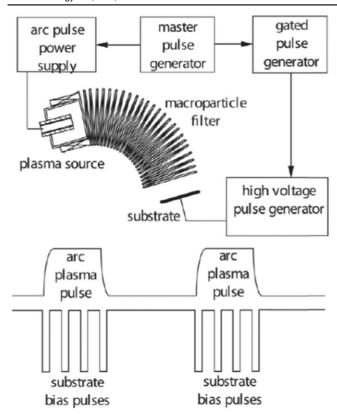

As opposed to the arc regime, glow discharges are characterized by plasmas excited at high voltages and relatively low currents (Lieberman and Lichtenberg 2005). Pulsed glow discharge in vacuum is a well-developed, mature technology.

Figure 2. (a) Correspondence between waveform phases and species bombardment in pulsed-DC magnetron sputtering. Reprinted from Sproul *et al* (2005), Copyright © 2005 Elsevier B.V. All rights reserved. (b) High-resolution transmission electron microscopy (HRTEM) image (left) and selected area electron diffraction (SAED) pattern (right) of a (Ti,Zr)C:H/a-C:H nanocomposite film deposited by reactive HiPIMS. Target arcing and poisoning due to reactive gas are prevented with pulsed plasma techniques. Reprinted from Poltorak *et al* (2020), © 2020 Published by Elsevier B.V.

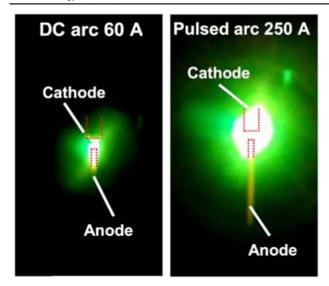
In low-pressure plasma applications, the control over ion energy and ion bombardment onto processed surfaces (sputtering, deposition, or modification) plays a central role due to the reduced collision frequency among plasma species (Andujar et al 2003, Gahan et al 2012). The key point in optimizing pulsed plasmas in coatings and etching applications relies in the addition of 'knobs' available to modulate plasma parameters, which in turn affect material properties. This topic was analysed in detail from the physics perspective by Anders (2004). The frequency of the supplied power in pulsed discharges should be tuned according to the characteristic plasma frequencies. This review deals with pulsed plasmas with excitation frequencies of the order of 100 kHz or lower. Such a frequency regime is below the interval of typical ion plasma frequencies (1-10 MHz), thereby enabling the response of ions to changes in the voltage waveform. This window corresponds to the pulsed-DC power used in magnetron sputtering and plasma-enhanced chemical vapour deposition (PECVD) techniques both in research and in industry (50–350 kHz, 500–1500 V peak, $0.1-1 \text{ A m}^{-2}$).

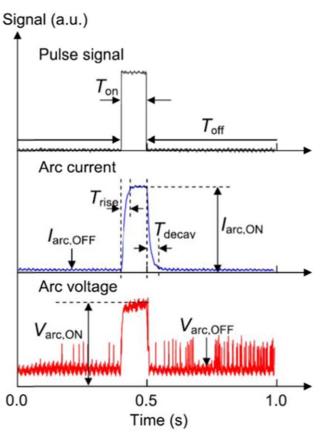
Structures within a pulsed-DC glow discharge, like sheaths and ionization layers, evolve periodically with time, out of steady state and with much higher amplitude than in radiofrequency or microwave discharges (Bradley and Welzel 2009, Gahan et al 2012). Moreover, pulse repetition frequency is decisive on the shape (width and extension) of the energy distribution of the ions impinging onto the biased surface (Baloniak et al 2010, Corbella et al 2011). Waveform of pulsed-DC voltage in glow discharges consist usually of quasi-rectangular profiles with controllable duty cycle (figure 2(a)). High values in current and voltage, sometimes showing a bipolar overshoot in the voltage waveform, have been motivated to suppress arcing and to increase electron density, electron temperature, and ion bombardment (Sproul et al 2005, Berg and Nyberg 2005). This deposition technique has been very popular in the growth of hard ceramic materials, such as diamond-like amorphous carbon (DLC) films. In DLC-based film growth, besides plasma composition, intense ion bombardment onto the growing film is critical in determining excellent mechanical and tribological properties (Michler et al 1998, Robertson 2002, Andujar et al 2003). The increased process stability owing to the absence of arcing comes from the periodical neutralization of charges built-up at the cathode surface after completing each pulse cycle

Figure 3. Sketch of a typical cathodic arc setup using a combination of pulsed arc bias and substrate bias to control the ion bombardment during film growth. Substrate biasing is a strategy used in plasma technology to deposit dense and hard films for protective coating applications. Reprinted from Anders (2014), Copyright © 2014 Elsevier B.V. Published by Elsevier B.V. All rights reserved.

(figure 2(a)). This feature confers ample margin for the flow rate of reactive gas without contamination/poisoning of a magnetron target. Deposition of metal-containing DLC films has been benefited from weaker poisoning of metal targets by reactive gas (Berg and Nyberg 2005). As a consequence, wide varieties of nanocomposite morphologies (granular, columnar, layered and dendritic) and of surface properties have been achieved (Corbella *et al* 2005). Nanocomposite structuring usually reports an increase in toughening and film adhesion to substrate (Pauleau and Thièry 2004, Zhang *et al* 2005).

Following the trend of using energetic pulsed plasmas to enhance the density and hardness of coatings, high-power impulse magnetron sputtering (HiPIMS) has been developed as an alternative to pulsed cathodic arc (Sarakinos *et al* 2010, Anders 2017, Brenning *et al* 2020). Both techniques show important similarities when it comes to the surface and physical properties of the deposited films (Anders 2014). HiPIMS technique (0.01–5 kHz, <1% duty cycle, ≈ 1 W cm⁻² average, ≈ 1 –100 kW cm⁻² peak, $n_e \approx 10^{19}$ m⁻³) is suitable to prepare metallic (Wu *et al* 2018) and ceramic (Evaristo *et al* 2020, Poltorak *et al* 2020) coatings with tailorable properties (figure 2(b)). Vacuum cathodic arc is also very useful to obtain hard multicomponent films (Monteiro *et al* 1999, Chaus *et al* 2014). An important issue in pulsed vacuum arc ($\approx 10^6$ kW cm⁻² in cathode spots, $n_e \approx 10^{18}$ – 10^{26} m⁻³) is the formation of particulates, which come from the explosive


ejection of target material and, unfortunately, degrade coating smoothness. Arc filtering is the common solution to suppress particulate mixing in the deposition flux incident on substrates (Anders 1997, Robertson 2002). The very high ionization degrees in HiPIMS and vacuum arc make the manipulation of ion fluxes feasible with the correct configuration of external electric and magnetic fields (figure 3). A side effect of almost full ionized plasmas is the conformal coating of micro/nanostructured surfaces (Sarakinos *et al* 2010).


Carbon nanotubes (Garcia-Cespedes et al 2007) and graphene layers (Vijayaraghayan et al 2016) have been obtained by pulsed-DC chemical and physical vapour deposition, respectively. However, as in continuous DC plasma synthesis, the growth process requires substrate conditioning by increasing its temperature and depositing catalytic seeds at surface level. Nanocrystalline particles with low size dispersion have been generated in volume by dusty RFplasmas both in continuous wave and in pulsed modulation. Acetylene (Berndt et al 2009) and silane (Boufendi and Bouchoule 1994) have been used for carbon and silicon nanoparticle formation, respectively. Pulsing the RF discharges contributed to control the nanocrystal size, and to activate-reactivate the growth near a critical frequency. Metallic nanoparticles were also generated by means of a highly ionized pulsed plasma recipe (Pilch et al 2013). However, the high plasma densities and temperatures suitable for the in-volume, high-yield synthesis of extended 1D and 2D nanostructures require the thermal ablation of solid anodes by arc plasma, i.e. atmospheric anodic arc discharges.

2.2. In-volume production by thermal plasma—atmospheric arcs

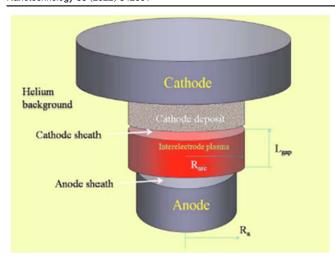
Anodic arc discharge consists of thermal erosion of anode material due to the incident electron current and the high gas temperature achieved, usually over 5000 K. Optical emission from arc plasmas actually consists of characteristic spectral lines superposed to a continuum thermal background (Williamson and DeJoseph 2003, Corbella et al 2021). Conditions near thermodynamic equilibrium are locally achieved in the core of the arc discharge, i.e. all species show similar temperatures. Hence, a flux of ablated species expands from the arc column and may coagulate and aggregate in nanomaterial form in the colder vicinity of the anode (non-equilibrium plasma). In-volume nucleation and synthesis are possible here because, in contrast to vacuum conditions, mean free path of plasma species is much smaller than characteristic reactor size. Finally, nanoparticles, formed from highly collisional processes, are transported through the arc chamber atmosphere to the walls preferentially by convection (Kundrapu and Keidar 2012, Shashurin and Keidar 2015, Keidar and Beilis 2018). Another nanosynthesis method based on thermal plasma is constituted by RF-driven inductive plasma torches, which is a well established plasma technology for the industrial production of nanopowder and nanostructured particles showing high purity and sphericity (Guo et al 2010, Mostaghimi and Boulos 2015).

The particular case of nanosynthesis by pulsed atmospheric arc has not been much explored as in low-pressure

Figure 4. Top: Images of DC arc (60 A) and active phase of pulsed arc (2 Hz, 10% duty cycle, 250 A peak current) between graphite electrodes. The red dotted lines indicate the positions of the electrode edges. Bottom: periodical waveforms of set 1 Hz-pulse signals (10% duty cycle), arc current ($I_{\rm arc,ON} \approx 250$ A), and arc voltage ($V_{\rm arc,ON} \approx 50$ V). Reprinted from Corbella *et al* (2020a), with the permission of AIP Publishing.

pulsed discharges and needs more research. Atmospheric arc discharges deserve more attention due to their huge capabilities and relatively simple experimental setups (Sugai *et al* 1999b). Cleaner than wet chemistry reactions, none or less vacuum equipment is required in such arc processes, which

can be deployed even in open air (Parkansky *et al* 2004, Fang *et al* 2012). Moreover, atmospheric arc technique shows a remarkable flexibility, as demonstrated in the review by Kim *et al* about arc discharges guided in the form of hot jets aimed to nanosynthesis (Kim and Kim 2019). Research on pulsed anodic arc discharge has been recently reactivated to support atmospheric arc synthesis of different nanomaterials (figure 4) (Corbella *et al* 2019c, Corbella *et al* 2019b). As discussed below, arcs undergoing periodical interruption and reignition show clear advantages in front of DC arcs concerning energy investment and nanostructure formation. This technique is basically motivated by the need of improving control over (1) discharge parameters and stability, and (2) nanoparticle size and structure. A more detailed analysis on pulsed arc nanosynthesis is discussed in the following sections.

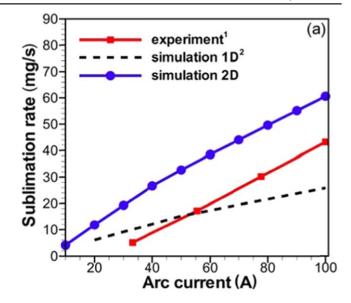

3. Anodic arc nanosynthesis: a short overview

After having introduced the plasma methods more commonly employed in nanotechnology, here the focus is shifted to the present status in the fabrication of nanomaterials by means of atmospheric arc discharge from anode ablation process. The objectives of this section include outlining the different efforts in modelling, experimental progresses in atmospheric arc nanosynthesis, and the main issues that must be overcome.

3.1. Evolution of arc discharge modelling

Growth of nanoparticles in atmospheric arc plasmas starts from simultaneous sublimation of anode material and of catalyst powder. Carbon nanoparticle growth constitutes the most studied case. After combination of carbon and catalyst atoms and their ions within the vapor, nanoparticles are formed and deposited onto the cathode and chamber walls in an isobaric process. Hence, highly crystalline carbon nanostructures grown on catalyst seeds can be collected on a dedicated substrate (Keidar and Beilis 2018). Recent efforts have addressed the theory of nanoparticle nucleation stage in a cooling gas (Tacu et al 2020). Length and diameter of single wall carbon nanotubes (SWCNT) is shown to be controlled by catalyst diameter and plasma density that, in turn, is controlled by a magnetic field. In fact, it was demonstrated that an external magnetic field has a strong effect on length of a SWCNT (Keidar et al 2008). Numerical simulation techniques have been crucial to better understand the influence of experimental parameters on the nanoparticle growth kinetics (Kundrapu and Keidar 2012). The following subsections outline the basic approaches developed on nanoparticle growth modelling using 0D, 1D, and 2D models.

3.1.1. OD (global) and 1D models. Some of the main physical phenomena relevant to nanoparticle synthesis in arc discharge can be described by constructing a global (integral) model of discharge plasma and electrodes as shown schematically in figure 5 (Keidar and Beilis 2009). The main features of the model are coupling between the interelectrode plasma and


Figure 5. Schematic representation of the discharge plasma and electrodes considered for the global model of anodic arc discharge. Reprinted from Keidar and Beilis (2009), with the permission of AIP Publishing.

electrodes, current continuity at the electrodes, thermal regime of the electrodes, and the anode erosion rate.

During the arcing period, carbon species (or any other precursors) are supplied by anode erosion, which is determined by the anode temperature. In turn, anode temperature is affected by the heat flux from the interelectrode plasma, which is controlled by the pressure of the ablated species. On the other hand, the experiment indicates that erosion of the cathode is negligible during the arcing (Waldorff et al 2004). Ablated species expand and interact with background gas at or near atmospheric pressure condition. The dynamic boundary of the arc (the arc radius) is therefore determined by the interaction of carbon vapor with the helium background. Continuity of the current at the cathode implies that part of the current can be conducted by electrons emitted from the cathode, so that the total arc current at the cathode consists of ion and electron current. To that end, balance of energy at the cathode is determined by heat flux from the interelectrode plasma and by the heat losses due to radiation and heat conduction. Anode erosion typically calculated based on Langmuir (Langmuir 1913).

It is important to note that the cathode is in direct contact with arc plasma only during the initial stage of the discharge. During the continuous arcing, after about 30 s, part of the anode material is deposited on the cathode and forms a cathode deposit. This deposit material shows a porous carbon structure with properties that depend on the arc parameters (Keidar and Waas 2004, Lv *et al* 2005). Thus, during the continuous arcing, the cathode deposit is in contact with arc plasma, thereby protecting the cathode from erosion. Therefore, pulsed arcs will probably exhibit different behaviour in part due to absence of significant cathode deposition.

Interestingly, a non-monotonic dependence of arc discharge parameters on the arc current was experimentally observed. Such dependence can only be reproduced by this model by considering arc radius increase with arc current.

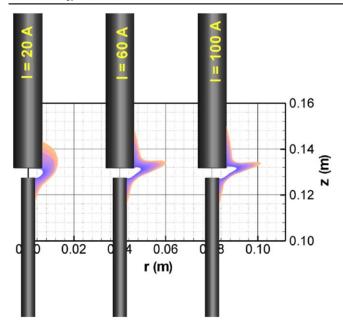


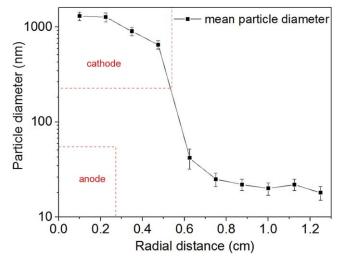
Figure 6. Sublimation characteristics corresponding to 2D simulation results, 1D/global simulations (Keidar and Beilis 2009), and experiments (Shashurin *et al* 2008). Helium background is maintained at around 500 Torr. Reprinted from Kundrapu and Keidar (2012), with the permission of AIP Publishing.

Thus, more detailed multi-dimensional model is required for more accurate arc discharge simulation (Momeni *et al* 2020). Mansour and Hara have developed a 1D fluid model to explain the regimes of low and high ablation rates (Mansour and Hara 2019). Correlations between the discharge ablation mode and anode radius and current are discussed without considering the constraint of local thermodynamic equilibrium. As a consequence, radiative heat flux might play a relevant role in the plasma properties.

3.1.2. 2D models. A 2D model numerical simulation of carbon arc discharge was carried by Kundrapu and Keidar using a computational fluid dynamics (CFD) model for cylindrical coordinates (Kundrapu and Keidar 2012). Electrode heating and sublimation rate were coupled with flow expansion to evaluate the instantaneous mass rate of ablation self-consistently. Two-dimensional electric field is considered to simulate the arc. Conservative form of Navier-Stokes equations with electromagnetic source and energy equations are solved using SIMPLER algorithm (Patankar 1980). For a given arc current and electrode gap, the self-consistently obtained data such as density distribution of individual species, temperature distribution, and electric potential serve as inputs for the nanoparticle growth model. Species diffusion is solved separately for C, Ni, and Y, and ions, to obtain the respective mass fractions inside the fluid domain. The iterative calculation of density distribution is repeated until convergence is achieved at any time step. This procedure is repeated at all time steps to obtain the transient

Sublimation rates are obtained for current varying from 10 to 100 A, and are compared with those from experiments (Shashurin *et al* 2008) and one-dimensional/global model (Keidar and Beilis 2009). The comparison is shown in

Figure 7. Regions of nanoparticle growth computed at different arc current values according to the numerical simulations of the 2D model by Kundrapu and Keidar. The size of the growth region decreases as arc current increases. Reprinted from Kundrapu and Keidar (2012), with the permission of AIP Publishing.


figure 6. The present 2D model predicts slightly higher sublimation rate compared to the experiments while maintaining the similar trend of variation. Though the 1D model showed better agreement for current I < 60 A, it could not capture the trend. The higher ablation rate is due to Langmuir evaporation model that considers vapor expands into vacuum. Finally, figure 7 shows the resulting nanoparticle growth zones after this 2D model.

The 2D model solves transient equations with an instantaneous solver for potential field. By varying the pulse currents corresponding to the given voltage signal, the model could be extended to simulate pulsed arcs.

Chen *et al* considered a mechanism of anode spot formation (Chen *et al* 2020). It was concluded that the spot formation is not related to plasma instability, as commonly believed in case of constricted discharge columns, but rather occurs due to the highly nonlinear nature of heat balance in the anode. Simulation results also show that the arc can reach local chemical equilibrium (LCE) state in the column region while the local thermal equilibrium (LTE) state is not typically achieved for experimental conditions. The model shows the relevance of accounting for different temperatures, one for the electrons and another one for the gas, in the modelling of short carbon arcs. Such a model constitutes a valuable update to the standard picture of anodic arc ablation physics, and it should be considered for an upgrade to the pulsed arc scheme.

3.2. Accomplishments and challenges

Arc discharge near atmospheric pressure is useful to investigate the growth of nano- and microscopic objects from a

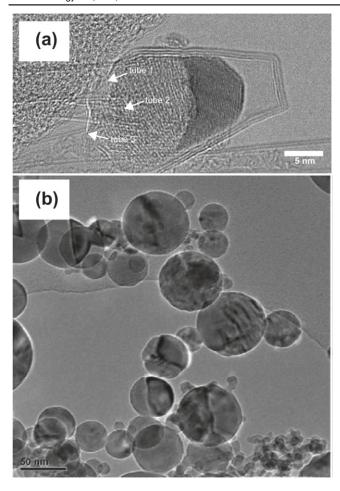


Figure 8. Plot showing carbon particle diameter calculated from LII measurements at different radial positions from the interelectrode axis. Reprinted from Yatom *et al* (2017a), © 2017 Elsevier Ltd. All rights reserved.

fundamental approach. In fact, the control of basic variables, like discharge voltage and electrode geometries, makes this technique very adequate to gain understanding on nanosynthesis physics and to transfer deposition recipes from pilot reactors to industrial plants.

After the milestone of CNT fabrication by arc method (Iijima 1991), nanosynthesis field evolved rapidly and a better control on nanoparticle production has been achieved thanks to modelling tools and plasma diagnostics. For instance, laser diagnostics have been intensively used to map the main growth zones of carbon nanoparticles, which constitute the core of nanomaterials like fullerenes, nanotubes and graphene (Vekselman et al 2017, Yatom et al 2018). Yatom et al found mean particle sizes on the arc region spanning from around 1 μ m down to 20 nm along a radial distance of 1 cm, as calculated from laser-induced incandescence diagnostics (LII) (figure 8) (Yatom et al 2017a). Further studies using timeresolved LII provided 2D mappings of nanocarbon growth regions near the arc zone, which matched roughly with profiles computed in earlier works (figure 7) (Yatom et al 2018, Kundrapu and Keidar 2012). Fast electrostatic probes were very helpful to explore correlations between discharge parameters and the formation of arc spots (Shashurin et al 2011). On the other hand, growth models of CNTs (Keidar and Waas 2004) suggested the input of magnetic forces in the arc regions to enhance and stabilize CNT formation (Anazawa et al 2002, Volotskova et al 2010). Influence of magnetic fields on nanotube growth and gas temperature was studied by optical emission spectroscopy focused on different arc regions (Li et al 2012). AC gliding arc plasma, a transition arc technique widely used for gas treatment, was recently employed to generate carbon nanostructures via precursor dissociation and electrode exfoliation (Tu and Whitehead 2014, Ma et al 2021).

Nanomaterials with compositions other than carbonbased have also constituted a focus of active research. BNNT were originally synthesized by arc-ablating a pressed rod of

Figure 9. (a) HRTEM image of boron nitride nanotubes (BNNTs) obtained from DC arc discharge of a boron-rich anode in nitrogen atmosphere. Three BNNTs are grown from a boron nanoparticle expelled from the anode. Reproduced from Yeh *et al* (2017). CC BY 4.0. (b) TEM image of TiO₂ nanoparticles synthesized by means of DC arc discharge of a Ti anode in air atmosphere at 300 Torr. Reproduced from Fang *et al* (2012), Copyright © 2011 Elsevier B.V. All rights reserved.

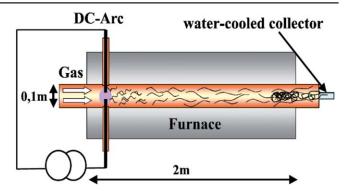
h-BN inserted into a hollow tungsten anode (Chopra et al 1995). More recently, such boron nanostructures were produced by DC-arcing on a boron anode facing a Cu cathode in a reactive atmosphere of nitrogen. Metal inserts were used on the boron ingot to increase its electrical conductivity. The HRTEM image in figure 9(a) shows a few BNNTs apparently seeded on a precursor boron nanoparticle (Yeh et al 2017). The subject of early stages of BNNT growth has been addressed by ab initio simulations combined with experiments (Santra et al 2018). Significant progress on modelling of BNNT formation is provided by integrated kinetic and thermodynamic approaches (Barsukov et al 2021). Actually, strong component in plasma chemistry must be considered when addressing B/N₂ gas mixtures. Fullerenes of MoS₂ showing core-shell structure (2-3 layers, 5-15 nm) were synthesized under water from arcs using Mo hollow anodes with packed MoS₂ powder. (Sano et al 2003, Alexandrou et al 2003) TiO₂ nanoparticles, which are widely used to modify surface and optical properties, have been obtained by eroding a Ti anode in air atmosphere at 300 Torr (Fang et al 2012). The TiO_2 nanostructures are predominantly spherical and crystalline particles. (figure 9(b)). Wide size distributions (from nm to μ m) of magnetite powders with high tunnelling magnetoresistance were deposited from arc of Fe rod in a partial oxygen atmosphere (Prakash *et al* 2016). The unintentional production of different iron oxide phases modified the magnetic properties of the samples.

The above advances outline the forefront in arc performance to create nanomaterials. However, despite the versatility of atmospheric arc technique, several issues which can affect process control and repeatability have been detected. Above all, instability in arc discharges is a common issue that must be thoroughly addressed to ensure the production of high-quality nanomaterials. This and other aspects that follow have been remarked and should be considered to prepare well-defined arc discharge experiments near atmospheric pressure:

- Stability: Main concern is related to uncontrolled interaction between arc glow and electrodes (Liang et al 2017). Instabilities in carbon discharges, detectable as oscillations in arc voltage and optical emission, have been related to the particular geometries of ablating anode (Gershman and Raitses 2016, Yatom et al 2017b). Even submerged arcs show instable behaviour. (Sano et al 2003, Bhattacharya et al 2019, Hernandez-Tabares et al 2021). Changes in anode tip geometry in continuous DC arcs are a known problem and are correlated with instability formation (Ushio 1988). Thus, a better control on tip shape could contribute to arc stabilization.
- *Purity:* Anodic carbon arcs deliver nanomaterials mixed with larger particulates (He *et al* 2007). Soot production needs to be suppressed or minimized if one strives for maximal purity of arc products. Such improvement is possible by determining the dominant material produced at different arc stages (Sugai *et al* 2000). Formation of atomic species, nanoparticles and aggregates need to be tracked during whole arc process (Corbella *et al* 2019c).
- Compound nanomaterials: Precursor fidelity is an important concern related to synthesis of alloy nanoparticles. Chemical compositions of product and precursor materials do not necessarily match. In consequence, strategies to control the stoichiometry of product nanomaterials, which are beyond adding reactive gases (Prakash et al 2016, Yeh et al 2017) and working in liquid media (Kim et al 2021), are in high demand nowadays.
- Process flexibility: A better control over nanomaterial size and structure can be achieved by additional discharge parameters. Pulsed arcs can upgrade DC processes by adding arc repetition rate, pulse width and peak power values (Sugai et al 2000, Corbella et al 2020a). Moreover, the freedom of pulsing an arc discharge enables estimation of basic plasma parameters by simple electric measurements (Corbella et al 2019a). Accurate positioning of the arc synthesis region is not straightforward. In fact, nanoparticle motion is restricted to convection flow lines (Kundrapu and Keidar 2012). Thus, a strategy to

steer deposition location is needed (Parkansky *et al* 2004).

- Environmental compatibility: When are nanosynthesis takes place in liquids, are processes must be performed with lower thermal loads (Sano et al 2003). Here, all aggregation phases are engaged: a plasma is developed within a liquid matrix to generate solid particles surrounded by gas phase (Kim et al 2021). This scenario demands steady balance among all phases to avoid excessive formation of high-pressure bubbles. Pulsed are discharges are an elegant route to attain stable plasmas in liquid (Omurzak et al 2007).
- *Economy:* Development of arc processes involving rational power consumption is priority, especially in view of upscaling for industrial implementation. Pulsed anodic arcs constitute a route to minimize energy investment in nanosynthesis (Corbella *et al* 2020b). Re-triggering after electrode separation requires very high voltages (1 kV) for gas breakdown. (Sugai *et al* 2000) Much lower voltages (20–40 V) can be involved via intermittent contacting of anode and cathode, (Imasaka *et al* 2006) and by designing voltage waveforms that keep the arc discharge latent during inactive pulse period (Corbella *et al* 2019c).


The above list of limitations justifies scenarios where pulsed power implementation would be advantageous for programming advanced recipes of arc discharges aimed to nanoproducts with optimal properties. The following section discusses up-to-date strategies utilized to deposit nanomaterials using pulsed arc power.

4. Implementing pulsed power in arc discharges for nanosynthesis

This section intends to classify the diverse approaches made in pulsed arc production by addressing the challenges listed above. Therefore, the discussion has been articulated from the perspective of four main points: (1) understanding growth mechanisms and improving quality of carbon nanostructures, (2) positioning arc source for localized deposition of nanomaterials, (3) increasing material choice and minimizing power consumption by pulsed arcs in liquid phase, and (4) improving synthesis parameters for more stable and efficient production by modelling and advanced diagnostics.

4.1. Fine-tuning the structure of carbon nanomaterials

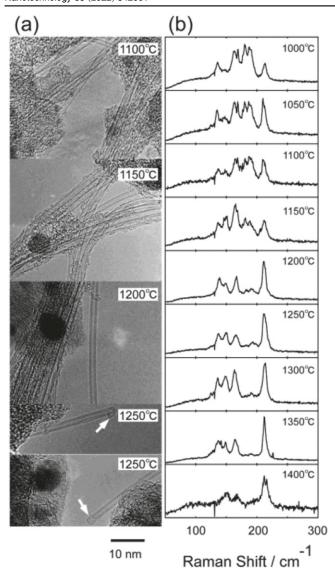

Sugai et al produced fullerenes (Sugai et al 1999b) and single-walled carbon nanotubes (SWCNT) (Sugai et al 1999a) by means of high-temperature arc discharge. The experimental setup consisted of a reaction vessel inside a furnace, in which two facing graphite electrodes and a cooled-down substrate holder were installed. Ni/Co composite graphite electrode was used to grow SWCNT. The deposition chamber design is relatively simple and, given its flexibility of manipulation, it has inspired other groups (figure 10)

Figure 10. Typical configuration in high-temperature pulsed arc nanosynthesis with water trap collector. A high voltage stage (ca. 1 kV) of ignition is followed by low voltage (ca. 50 V) steady arc stage. The anode consists of graphite with additions of transition metal oxide for catalysis purposes. Reproduced from Roch *et al* (2007), John Wiley & Sons. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

(Roch *et al* 2007). Hence, the generated species in the arc underwent annealing conditions (1000 °C in 500 Torr He, Ar, or Kr) while transported through the vessel to the substrate. Pulsed high voltages of 1.1 kV were used for arc ignition in the electrode gap. Pulse frequencies between 3 and 300 Hz with 1% duty cycle were performed. The concentration of the obtained C_{60} increased with the pulse duration from 50 μ s to 3 ms. Interestingly, when using catalyst-doped graphite electrode, SWCNT production showed similar trend with pulse width as well, but it inhibited fullerene growth.

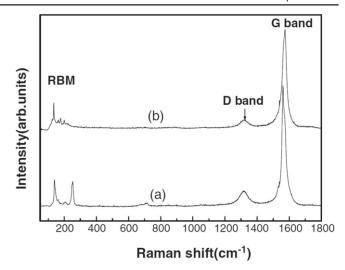
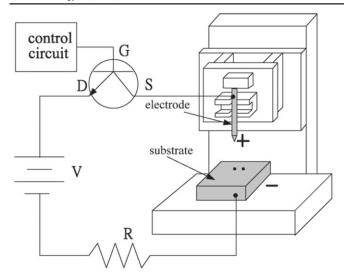

Experiments with the furnace reactor design from figure 10 had been performed previously to study formation mechanism of nanocarbons. The trials revealed a competitive process between fullerene and SWCNT synthesis (Sugai et al 2000). The participation of catalysts and the discharge duration determined the dominant nanoparticle deposited onto the substrate. Catalyst was introduced by using metal-doped (Ni/ Co and Ni/Y) composite graphite electrodes. By extending the pulsed width up to almost 1 s, Sugai et al found that the pulsed arc regime transitioned to a steady arc regime at a pulse duration of 3 ms. The exploration of long pulse times was feasible by combining the igniting high voltages (1.1 kV) with lower voltage operation for the steady DC arc (40 V). The production of SWCNT became dominant in stronger annealing conditions partially due to major graphite fragmentation. In addition, Sugai et al found that 1200 °C was a critical temperature for the synthesis of double-walled CNT (DWCNT) (Sugai et al 2003) figure 11 shows TEM images and Raman spectra of the produced samples. Raman peaks 214 and 136 cm⁻¹, corresponding to specific inner and outer DWCNT diameters, are enhanced at higher temperatures. The mixture of different nanotubes was purified by oxidation in air, and the resulting samples presented inner and outer diameters, very well defined by TEM analysis, compatible with the sizes of DWCNT. This technique enabled the production of high-quality carbon nanomaterials suitable for nano-electronic devices thanks to the controllable transport properties (Shimada et al 2004) and an optimized synthesis and

Figure 11. (a) TEM images and (b) corresponding Raman spectra of carbon nanotubes synthesized by pulsed arc discharge using a furnace reactor at different temperatures. The formation of DWCNT is activated beyond 1200 °C. This statement is supported by the doubly capped structures observed at the end of the nanotubes (indicated with arrows). Reprinted with permission from Sugai *et al* (2003). Copyright © 2003, American Chemical Society.

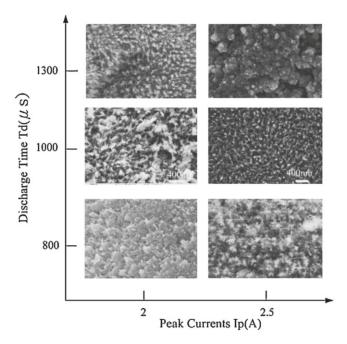
post-treatment method able to provide DWCNT with purity of at least 95% (Yoshida *et al* 2008).

By using the furnace setup above, Roch *et al* (2007) discussed the advantages presented by the pulsed arc production of SWCNT and compared results with laser vaporization. The investigation showed similar size distributions and yield productions in both pulsed arc and laser ablation techniques, thereby suggesting similar growth mechanisms of carbon nanomaterials. Li *et al* (2008) proved with this reactor configuration that, after a pre-heating of catalyst in vacuum, high-quality SWCNT could be synthesized in air at reduced pressure. Figure 12 compares the Raman spectra of samples deposited in air and He atmospheres. The marked presence of two peaks in radial breathing modes (RBM) region indicates a

Figure 12. Raman spectra of SWCNT prepared by pulsed carbon arc in (a) air and (b) He atmospheres. Radial breathing modes (RBM), indicative of CNTs, are more pronounced when arcing in air. Reprinted from Li *et al* (2008), Copyright © 2008 Elsevier Ltd. All rights reserved.


more uniform diameter distribution in the case of air environment.

Muhl et al (2003) produced carbon films by energizing with pulsed high-current two separated rods, working as arc electrodes, near a substrate. After showing that this method proved efficient to deposit sp²-rich amorphous carbon films, the setup was used to produce carbon and carbon-encapsulated metal nanoparticles by tuning conveniently the arc discharge pressure (Muhl et al 2005). The experiments were performed using 40 ms-pulses with peak currents of around 1000 A in atmospheres of air, He, and Ar at pressures from 0.05 up to 500 Torr. In another sophisticated instrument, Kia et al conducted arc discharge growth of multi-walled carbon nanotubes (MWCNT) and carbon nano-onions by applying a special configuration of axial electric field and orthogonal magnetic field on an arc plasma generated between a needle anode and a bowl-shaped cathode (Kia and Bonabi 2012). Pulse frequencies from 50 to 400 Hz and a pulse width of $0.3~\mu s$ were used to control the grown nanostructures.


4.2. Nanofabrication with spatial resolution

Arc deposition systems need to be upgraded to enable local nanofabrication in specific positions after the synthesis parameters have been optimized and the nanostructured materials show competitive physical-chemical properties. Although very high writing resolutions like in nanolithography or scanning probe microscopy cannot be achieved by arc discharges, micro-resolved positioning is feasible with adequate electromechanical system (figure 13) (Tsai *et al* 2009).

Parkansky et al (1998) constructed a setup based on a local discharge positioning system using an oscillatory anode that scanned the substrate area in open air. This instrument was originally conceived for deposition of WC-based hard alloy coatings. It was also used to study energy balance in anodic arc erosion of metals (Parkansky et al 1993).

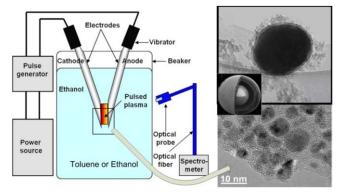
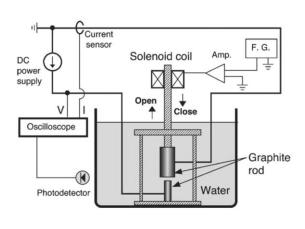


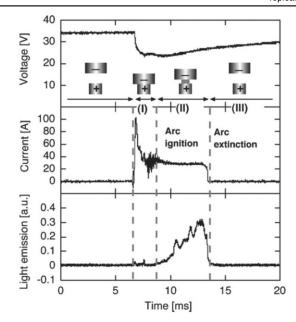
Figure 13. Sketch of a micro electro-discharge system aimed to produce carbon nanotubes by single pulse arc discharge in air. Reprinted from Tsai *et al* (2009), Copyright © 2008 Elsevier B.V. All rights reserved.

Figure 14. TEM images showing the morphology of carbon nanostructures obtained at different discharge times and peak currents in the pulsed arc experiments in air. Needle-like structures start appearing at 2 A after 1000 μ s of discharge time. Reprinted from Tsai *et al* (2009), Copyright © 2008 Elsevier B.V. All rights reserved.

Subsequently, the application scope was expanded to carbon nanotube growth. Thin graphite bars were used as cathode, while movable substrate holders (graphite, Ni, or Cu surfaces) acted as anode. MWCNTs up to 3 μ m in length were deposited at selected positions using single-pulse arcs in open air at current amplitudes 7–100 A (Parkansky *et al* 2004). Pulse width was comprised between 0.2 and 26 μ s for the emitted single or few pulsed arcs (100 Hz). The substrate, which was not intentionally heated, was moved in steps of

Figure 15. Sketch illustrating the pulsed plasma in liquid method together with TEM micrographs showing the Fe nanoparticles fabricated with this technique. Reproduced from Omurzak *et al* (2018). © IOP Publishing Ltd. CC BY 3.0.


0.01 mm between successive arc pulses. Low or high voltage arcs were applied when working in intermittent contact or non-contact modes, respectively, leaving affected areas of a few hundred nm². This technique is very promising for the fabrication of nano-electronic devices and biological probes. Similar pulsed arc treatments were also used to texture steel surfaces for tribological applications (Moshkovith *et al* 2007).


Tsai *et al* (2008) developed the oscillatory electrode concept by constructing an electromechanical discharge machine, in which single discharges in open air yielded samples of carbon nanotubes in an accurate and reproducible process. Both sample holder and graphite rod, which were set $1-2~\mu m$ apart, could be displaced to enable programmed depositions of nanotube arrays. Nanotubes were formed at a minimal current threshold of 2 A and 1 s of pulse length (figure 14) (Tsai *et al* 2009). More energetic pulses, either by higher current or longer pulses, yielded oxidized nanotubes due to the operation under ambient conditions. Thus, adequate discharge parameters were maintained near the threshold values to prevent sample oxidation.

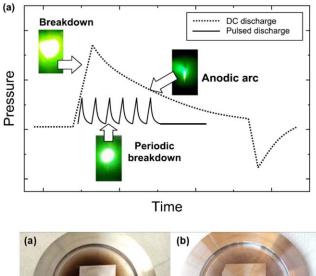
4.3. Nanoparticle growth by plasma in liquid phase

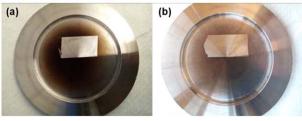
Liquid phase arc plasmas are not strictly considered as atmospheric arcs, but their versatility justifies a short overview on this topic. Namely, liquid phase plasma processes address three issues: (1) develop cost-effective processes because use of gases and vacuum equipment are avoided; (2) high thermal loads can be prevented by surrounding liquid, and (3) chemical precursors can be provided in solution form (Kim *et al* (2021)). A prominent downside is the limitation to operate at average powers low enough to prevent from complete liquid evaporation and to limit quenching zone of evaporated anode (Sano *et al* 2003). Pulsed arc plasmas are ideal for nanofabrication in liquids since an intermittent power input prevents from major heating of the deposition vessel and related problems, like arc instabilities due to rapid changes in electrode gap and anode tip.

Parkansky *et al* (2004) adapted their pulsed arc system to be operated in ethanol for the synthesis of micro- and nanoparticles. Their composition was determined by carbon from

Figure 16. Left: scheme of an intermittent arc discharge experiment with the electrodes submerged in water to synthesize carbon nanostructures. Right: typical waveforms measured in arc voltage, arc current and light emission during pulsed arc discharge in water. Reprinted from Imasaka *et al* (2006), Copyright © 2005 Elsevier B.V. All rights reserved.

the ethanol solution and selecting adequate electrode material, whereas sizes could be tuned by means of discharge parameters (Parkansky et al 2005). Hence, W, Ni, and C nanoonions could be obtained (<20 nm), and core-shell Me@C particles were also fabricated ($<25 \mu m$). Omurzak et al designed an arc discharge cell lodging two contacting electrodes connected each one to a vibrator element. In this configuration, intermittent discharges were produced by supplying an AC signal (several 100 V and around 10 A at Hz-kHz range) to the electrode system, whose contact point was periodically readjusted in each cycle (figure 15) (Omurzak et al 2007). A plethora of multi-component metallic nanoparticles, some with core-shell structure, have been synthesized by combining different electrode materials, surfactant, and liquid composition. Examples of deposited nanoparticles, some presenting magnetic properties and aimed to biomedical applications: high-purity C₆₀, TiO and Cu; (Omurzak et al 2007) pure tetragonal ZrO₂; (Chen et al 2011) Co@C, Ni@C, and Fe@C; (Abdullaeva et al 2012) $CoC_x@C$, (Chen et al 2013) and pure α -Fe (Kelgenbaeva et al 2014).


Pootawang et al (2012) synthesized bimetallic Ag/Pt nanoparticles by applying pulsed arcs between metallic electrodes (gap: 0.5 mm) in a NaCl solution. High voltage pulses of 0.5 kV at 15 kHz of frequency and 3 μ s duration were applied at different discharge times. A transition to nanocomposite structure was found after a discharge time of 30 s. Intermittent arc discharges in water were reported by Imasaka et al to produce carbon nano-onions and nanotubes (figure 16) (Imasaka et al 2006). A similar deposition method was employed by Takekoshi et al to produce metal-encapsulated carbon nanotubes (Takekoshi et al 2012). Imasaka et al applied arc currents of 30 A and arc voltages of 35 V to oscillating graphite electrodes submerged in water. Low


voltage values were sufficient to generate the arcs thanks to the intermittent attaching-detaching conditions of the electrodes. The chopping of the supplied DC power by this periodical movement enabled the production of a pulsed arc discharge. Electrode motion was held at frequencies between 15 and 20 Hz for a few hours, and it resulted in the formation of carbon nanoparticles (nano-onions: 15–20 nm; MWCNT: 100–500 nm of length) and waveforms of discharge current and voltage shown in figure 16.

4.4. Nanosynthesis efficiency and stability

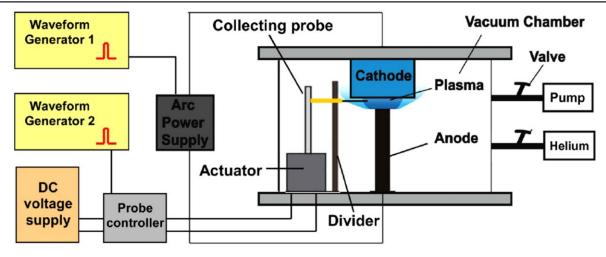
Stability of anodic arc discharge is crucial to secure the control and reproducibility of nanomaterial deposition processes. The nature of arc attachment to the electrodes determines process stability to a great extent (Liang *et al* 2017). Murooka *et al* explored short pulsed arc discharges as a resource to limit the migration of arc spots. In their setup, two aligned graphite electrodes (gap: 1–3 mm) were fed with 20 kHz pulses for a few seconds in Ar atmosphere at 250–500 Torr. The discharge current in the small cylindrical vessel was limited to 2 A. As a result, carbon nanoproducts were mostly assembled in the central part of the cathode surface, indicating a better control over arc spot motion (Murooka *et al* 2000, Murooka *et al* 2001).

Corbella *et al* investigated the arc discharge performance between vertically aligned graphite electrodes at 300 Torr in He. The discharge was sustained by either DC (35–65 V, 60–150 A) or pulsed power (50 V peak, 180–250 A peak), the latter operated at 1–5 Hz and 10% duty cycle (Corbella *et al* 2019c). Figure 4 shows typical discharge waveforms. A global model was used to interpret temporal evolution of gas pressure in the arc chamber (figure 17). Briefly, DC arc discharge underwent a 1 s-phase of pressure increase due to breakdown anode ablation, which was followed by a long

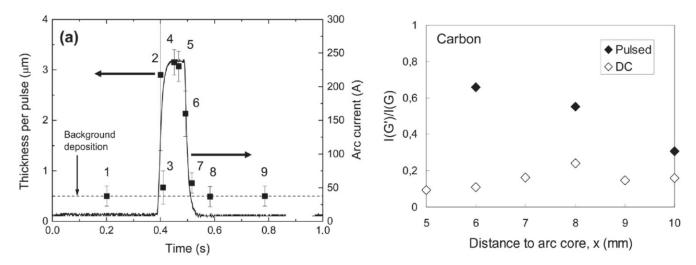
Figure 17. Top: temporal evolution model of gas pressure during DC (dotted line) and pulsed (solid line) arc discharges between graphite electrodes. Typical images of glowing arc on the ablating anode are inserted. Bottom: photos comparing blank flange surface after exposure to arc atmosphere excited with DC (left) and pulsed (right) energies. Pulsed arc discharge minimizes dust formation. Reproduced from (Corbella *et al* 2019c). © IOP Publishing Ltd. All rights reserved.

phase of monotonic pressure decrease attributed to formation of dust and macroparticles. In contrast, pulsed arc regime consisted of periodical breakdown-like phases, which never reached the dusty stage characteristic of continuous DC discharge. Pulsed carbon arc discharges show average ablation rates ($\approx 1~{\rm mg~s^{-1}}$) and powers ($\approx 1~{\rm kW}$) competitive with values typical of DC discharges. Also, pulsed discharge operation provided more stable processes basically due to arc anchoring to the inter-electrode region.

Pulsed anodic arc discharges consist of short ON (active) and long OFF (inactive) phases. The nanoproducts deposited on the cathode surface were a mixture of carbon nanotubes and graphene nanoplatelet layers (Fang et al 2016, Fang et al 2019, Corbella et al 2019c). Electrical and optical diagnostics confirmed that the arc discharge was never extinguished during the OFF phase, but it kept striking in a weaker, constricted mode, until the start of next ON cycle (Corbella et al 2019a. To prevent arc extinction, the arc discharge voltage must float always at a minimal threshold value (20-30 V) determined by the voltage drops of the plasma sheaths. In order to study the growth mechanisms of carbon nanomaterials, growth rate during 1 Hz pulsed arc was tracked in spatial and temporal resolution using a fast movable probe (figure 18) (Corbella et al 2020c). The oscillating motion of the probe was set at the same frequency as the pulsed signal's one with a time delay. The selected delay in probe oscillation enabled collecting material from the arc region at different discharge phases with 10 ms of time exposure.


The deposition rate measured at the probe tip (5 mm from arc core) together with the corresponding arc current waveform are depicted in figure 19. Material growth is only associated with the ON phase (100 ms), whereas the deposited material during the OFF phase (900 ms) is negligible. Raman spectroscopy and SEM analysis showed that the collected material during ON times was rich in carbon nanostructures, and that arc at OFF times left traces of amorphous carbon (Corbella et al 2020c). Furthermore, Raman spectra of the deposited nanomaterial tracked along the probe shows that the ratio between G' and G carbon bands decays significantly slower along the probe than the DC-associated ratio (figure 19). Since the G'/G intensity ratio is a measure of graphene nano-platelet concentration (Graf et al 2007, Ferrari and Basko 2013), it is concluded that carbon nanostructures reach longer distances than homologous DC processes (Corbella et al 2020b).

Similar experiments were conducted to study the pulsed arc synthesis of MoS_2 nanomaterials in He atmosphere in order to avoid use of sulphur reagent (Corbella *et al* 2019b). A graphite hollow anode densely packed with MoS_2 powder was ablated by means of 2 Hz-pulses having around 300 A of peak current. The evaporated material was deposited on a collecting probe placed in the vicinity of the electrode gap. The Raman spectra of the middle probe region shows two characteristic MoS_2 bands, $E_{2g}^1 \approx 385 \text{ cm}^{-1}$ and $A_{1g} \approx 410 \text{ cm}^{-1}$, whose separation is consistent with the formation of a few layers (3 to 5) of MoS_2 (Lee *et al* 2010, Mukherjee *et al* 2015). Flakes of around 1 nm in thickness were measured by AFM imaging, which supports the presence of elementary MoS_2 layers.


5. Summary and outlook

The present topical review constitutes an up-to-date report on the status of nanomaterial synthesis performed by pulsed anodic arcs in gas and liquid phases. The advantages provided by pulsed arcs and other concurrent plasma methods for nanomaterial synthesis have been discussed. Table 1 shows the main characteristics and limitations of the different pulsed plasma techniques used to deposit nanostructured materials. The advantages of operating high-pressure arc discharges in pulsed mode have led to many achievements, from addressing instability issues through improving arc control. Such milestones are classified in this article according to the intended research goal or application, namely: nanostructure tuning, local deposition, liquid phase plasma synthesis, and arc stabilization.

The main aspects addressed by pulsed arc methods for nanomaterial synthesis are summarized in table 2. First, formation mechanisms of carbon nanotubes and fullerenes in high-temperature environment have been unravelled by pulsing carbon arcs at different pulse widths. The dominant processes leading to one or another kind of nanoparticles were identified by tracking structure and morphologies of carbon deposits produced using pulse lengths from several

Figure 18. Scheme of the experimental setup of arc deposition equipped with the fast-collecting probe for time- and spatially resolved growth analyses. Reprinted from Corbella *et al* (2020c), with the permission of AIP Publishing.

Figure 19. Left: tracking of carbon species deposition rate onto the fast probe along one pulse cycle (solid line: arc current waveform). Reprinted from Corbella *et al* (2020c), with the permission of AIP Publishing. Right: intensity ratio of the Raman G' and G peaks for fast probe experiments in DC mode, (Fang *et al* 2016) and pulsed mode (Corbella *et al* 2020b). The reach of carbon nanomaterials is longer in the case of pulsed arc operation. Reprinted from Corbella *et al* (2020b), with the permission of AIP Publishing.

microseconds to the second range. In second place, controlled confinement of single arc pulses enabled deposition of carbon nanomaterials in specific locations of a flat substrate. CNTs occupying zones of a few hundred nanometres could be generated with a spatial resolution of several micrometres. Therefore, local surface modification and nanofabrication have been possible via pulsed arcs in air atmosphere. Third, particles with different compositions (metallic and ceramic), structures (uniform and core-shell) and sizes (few nanometres to micrometres) have been synthesized by intermittent arc plasmas in liquid phase. Such a technique permits to overcome limitations imposed by gas phase operation and enriches the scope of material fabrication. Finally, anodic arc discharges of carbon using pulsed power at low frequencies (1–5 Hz) have proven suitable for nanomaterial production in very stable conditions. Such arc technique generates carbon nanostructures with effective rates comparable to standard steady arc. A concept of circuit model that mimics anodic arcs constituted a valid approach to estimate plasma parameters. Also, a non-reactive route of MoS₂ few-layer synthesis by pulsed arc using powder precursor has been tested.

Despite the successful implementation of pulsed arc sources for nanosynthesis, full impact of this method on nanoscience and nanotechnology has not been delivered yet. First, the dynamics of particle growth in periodically changing plasma conditions must be explored. An approach would consist of tracking nanoparticle generation using *in situ* diagnostics like LII to provide particle sizes as a function of time. Secondly, pulsed arc plasmas at atmospheric pressure are very promising in the field of plasma-materials applications. The relative simplicity of pulsed arc process makes this technique adequate for the preparation of further nanomaterials with special optical and electronic properties, like transition-metal dichalcogenide monolayers, and, by programming a sequential deposition routine, possibly new van der Waals heterostructures for quantum materials applications. A step

Plasma source	Plasma type	Pulse parameters	Plasma highlights	Deposition highlights	Limitations	References
Pulsed-DC	Glow discharge	50–350 kHz	• Low pressure	• Tuneable film properties	Nanomaterials need conditioned substrates	Michler et al (1998)
	• Non-thermal	5–50% duty	 Adaptable to PECVD and sputtering 	• Nanocomposites		Cespedes et al (2007)
		200–1000 V	, 0			Vijayaraghavan <i>et al</i> (2016)
HiPIMS	 Glow discharge 	0.01-5 kHz	 Low pressure 	 Conformal and dense films 	 Target overheating 	Kouznetsov et al (1999)
	 Non-thermal 	<1% duty	 Strong ionization 	 Nanocomposites 	No nanomaterials	Sarakinos et al (2010)
		200-1000 V	 Adaptable to PECVD 			Anders (2017)
			-			Brenning et al (2020)
Pulsed cathodic arc	• Arc discharge	1–10 Hz	• Low pressure	 Ultrahard and ultra- thin films 	• Particulates: filtering required	Boxman <i>et al</i> (1995)
	 Non-thermal 	<10% duty	 Full ionization 	 Nanocomposites 	No nanomaterials	Robertson (2002)
		10-30 V		•		Anders (2014)
Pulsed anodic arc	 Arc discharge 	1-500 Hz	 Atmospheric pressure 	High throughput	 Heat-resistant substrate 	Sugai <i>et al</i> (2003)
	 Local thermal equilibrium 	1–20% duty	 Gradients in density and temperature 	Crystal quality	• Arc instabilities	Parkansky et al (2004)
	-	30-50 V	-	• Stand-alone nanostructures		Omurzak et al (2007)
						Corbella et al (2019c)

Table 2. Main contributions to nanomaterial synthesis by pulsed-DC arcs held at atmospheric pressure.

Motivation	Approach	Contributions	Challenges	References
Nanomaterial tailoring	High-temperature pulsed arcs	Control of growth mechanisms and nanomaterial properties Single- and double-walled CNT	Lower gas temperatures	Sugai et al (1999a), Sugai et al (2003), Muhl et al (2005), Roch et al (2007)
Localized growth	Micro electro-discharge system	• CNT grown on ≈100 nm² areas with 0.01 mm separation	Higher spatial resolution	Parkansky et al (2004), Tsai et al (2009)
Environmental flexibility	Plasma in liquid phase	Multicomponent nanoparticles	More stable liquid medium	Imasaka <i>et al</i> (2006), Omurzak <i>et al</i> (2007), Abdullaeva <i>et al</i> (2012), Kim <i>et al</i> (2021)
		• Core-shell structures (metal@C), fullerenes, and MWCNT		
Efficiency and stability	Pulse configuration and diagnostics	Modelling of anodic arc discharge	Higher material purity	Murooka <i>et al</i> (2001), Corbella <i>et al</i> (2019b), Corbella <i>et al</i> (2020a)
		• Deposition of MoS ₂ layers		

further could consist of optimizing growth process of nanomaterials by taking advantage of the natural self-organization faculty of plasmas, described as a spontaneous transition from a homogeneous stable state to a regular pattern in a spatially extended system. The coherent structures generated by plasma self-organization tend to modulate plasma chemistry and composition, including reactive species, electric field, and charged particles. Hence, by adopting *in situ* monitoring techniques, arc technological parameters, like discharge power and pulse frequency, could be conveniently adjusted to render nanosynthesis more efficient.

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Fusion Energy Sciences program (Award No. DESC0015767) and by the National Science Foundation (NSF) (Grant No. 1747760).

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Carles Corbella https://orcid.org/0000-0002-6201-0680

References

- Abdullaeva Z, Omurzak E, Iwamoto C, Ganapathy H S, Sulaimankulova S, Liliang C and Mashimo T 2012 Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid *Carbon* **50** 1776–85
- Alexandrou I, Sano N, Burrows A, Meyer R R, Wang H, Kirkland A I, Kiely C J and Amaratunga G A J 2003 Structural investigation of MoS₂ core–shell nanoparticles formed by an arc discharge in water *Nanotechnology* **14** 913–7
- Anazawa K, Shimotani K, Manabe C, Watanabe H and Shimizu M 2002 High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field *Appl. Phys. Lett.* **81** 739–41
- Anders A 1997 Metal plasma immersion ion implantation and deposition: a review Surf. Coat. Technol. 93 158–67
- Anders A 2004 Fundamentals of pulsed plasmas for materials processing *Surf. Coat. Technol.* **183** 301–11
- Anders A 2014 A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS) *Surf. Coat. Technol.* **257** 308–25
- Anders A 2017 Tutorial: reactive high power impulse magnetron sputtering (R-HiPIMS) *J. Appl. Phys.* **121** 171101
- Andújar J L, Vives M, Corbella C and Bertran E 2003 Growth of hydrogenated amorphous carbon films in pulsed d.c. methane discharges *Diamond and Related Materials* 12 94–104
- Arora N and Sharma N N 2014 Arc discharge synthesis of carbon nanotubes: comprehensive review *Diam. Relat. Mater.* **50** 135–50

- Baloniak T, Reuter R and von Keudell A 2010 Fundamental aspects of substrate biasing: ion velocity distributions and nonlinear effects *J. Phys. D: Appl. Phys.* **43** 335201
- Baranov O, Bazaka K, Kersten H, Keidar M, Cvelbar U, Xu S and Levchenko I 2017 Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis *Appl. Phys. Rev.* 4 041302
- Barsukov Y, Dwivedi O, Kaganovich I, Jubin S, Khrabry A and Ethier S 2021 Boron nitride nanotube precursor formation during high-temperature synthesis: kinetic and thermodynamic modelling *Nanotechnology* **32** 475604
- Bazaka K, Levchenko I, Lim J W M, Baranov O, Corbella C, Xu S and Keidar M 2019 MoS₂-based nanostructures: synthesis and applications in medicine *J. Phys. D: Appl. Phys.* **52** 183001
- Berg S and Nyberg T 2005 Fundamental understanding and modeling of reactive sputtering processes *Thin Solid Films* **476** 215–30
- Berndt J, Kovacevic E, Stevanovic I and Boufendi L 2009 Controlled dust formation in pulsed rf plasmas *J. Appl. Phys.* **106** 063309
- Bhattacharya S, Tiwari N, Mishra A, Mitra S, Dey G K and Ghorui S 2019 Underwater electrical discharges: temperature, density and basic instability features with different anode materials *Plasma Chem. Plasma Process.* **39** 1019–48
- Bobzin K, Brögelmann T, Kruppe N C, Engels M, von Keudell A, Hecimovic A, Ludwig A, Grochla D and Banko L 2017 Fundamental study of an industrial reactive HPPMS (Cr,Al)N process *J. Appl. Phys.* **122** 015302
- Boufendi L and Bouchoule A 1994 Particle nucleation and growth in a low-pressure argon-silane discharge *Plasma Sources Sci. Technol.* **3** 262–7
- Boufendi L, Jouanny M C, Kovacevic E, Berndt J and Mikikian M 2011 Dusty plasma for nanotechnology *J. Phys. D: Appl. Phys.* 44 174035
- Boxman R L et al (ed) 1995 Handbook of Vacuum Arc Science and Technology (Park Ridge, NJ: Noyes Publications)
- Bradley J W and Welzel T 2009 Physics and phenomena in pulsed magnetrons: an overview J. Phys. D: Appl. Phys. 42 093001
- Bräuer G, Szyszka B, Vergöhl M and Bandorf R 2010 Magnetron sputtering—milestones of 30 years *Vacuum* 84 1354–9
- Brenning N, Butler A, Hajihoseini H, Rudolph M, Raadu M A, Gudmundsson J T, Minea T and Lundin D 2020 Optimization of HiPIMS discharges: the selection of pulse power, pulse length, gas pressure, and magnetic field strength *J. Vac. Sci. Technol.* A **38** 033008
- Bøggild P 2018 The war on fake graphene *Nature* **562** 502–3
- Chaus A S, Fedosenko T N, Rogachev A V and Čaplovič L 2014 Surface, microstructure and optical properties of copper-doped diamond-like carbon coatings deposited in pulsed cathodic arc plasma *Diam. Relat. Mater.* 42 64–70
- Chen J, Khrabry A, Kaganovich I D, Khodak A, Vekselman V and Li H-P 2020 Validated two-dimensional modeling of short carbon arcs: Anode and cathode spots *Phys. Plasmas* 27 083511
- Chen L *et al* 2013 Synthesis of novel CoC_x@C nanoparticles *Nanotechnology* **24** 045602
- Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C and Yoshiasa A 2011 Pure tetragonal ZrO₂ nanoparticles synthesized by pulsed plasma in liquid *J. Phys. Chem.* C 115 9370–5
- Cheng Q, Xu S and Ostrikov K K 2010 Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas *Acta Mater.* **58** 560–9
- Chhowalla M and Amaratunga G A J 2000 Thin films of fullerenelike MoS₂ nanoparticles with ultra-low friction and wear Nature 407 164-7

- Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G and Zettl A 1995 Boron Nitride Nanotubes *Science* **269** 966–7
- Corbella C 2014 Upscaling plasma deposition: the influence of technological parameters Surf. Coat. Technol. 242 237–45
- Corbella C, Oncins G, Gomez M A, Polo M C, Pascual E, Garcia-Cespedes J, Andujar J L and Bertran E 2005 Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering *Diam. Relat. Mater.* 14 1103–7
- Corbella C, Portal S and Keidar M 2021 Arc plasma ablation of quartz crystals *Plasma Res. Express* 3 025004
- Corbella C, Portal S, Kundrapu M N and Keidar M 2019a Reverse battery model for anodic arc discharges near atmospheric pressure J. Phys. D: Appl. Phys. 52 485201
- Corbella C, Portal S, Kundrapu M N and Keidar M 2020a Anodic arc discharge: why pulsed? *Phys. Plasmas* 27 054501
- Corbella C, Portal S, Kundrapu M N and Keidar M 2020b Energy considerations regarding pulsed arc production of nanomaterials J. Appl. Phys. 128 033303
- Corbella C, Portal S, Rao J, Kundrapu M N and Keidar M 2020c Tracking nanoparticle growth in pulsed carbon arc discharge J. Appl. Phys. 127 243301
- Corbella C, Portal S, Saadi M A S R, Solares S D, Kundrapu M N and Keidar M 2019b Few-layer flakes of Molybdenum Disulphide produced by anodic arc discharge in pulsed mode *Plasma Res. Express* 1 045009
- Corbella C, Portal S, Zolotukhin D B, Martinez L, Lin L, Kundrapu M N and Keidar M 2019c Pulsed anodic arc discharge for the synthesis of carbon nanomaterials *Plasma* Sources Sci. Technol. 28 045016
- Corbella C, Rubio-Roy M, Bertran E, Portal S, Pascual E, Polo M C and Andujar J L 2011 Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode *Plasma Sources Sci. Technol.* **20** 015006
- Evaristo M, Fernandes F and Cavaleiro A 2020 Room and high temperature tribological behaviour of W-DLC coatings produced by DCMS and hybrid DCMS-HiPIMS configuration *Coatings* 10 319
- Fang F, Kennedy J, Manikandan E, Futter J and Markwitz A 2012 Morphology and characterization of TiO₂ nanoparticles synthesized by arc discharge *Chem. Phys. Lett.* 521 86–90
- Fang X, Corbella C, Zolotukhin D B and Keidar M 2019 Plasmaenabled healing of graphene nano-platelets layer *Front. Chem. Sci. Eng.* 13 350–9
- Fang X, Shashurin A, Teel G and Keidar M 2016 Determining synthesis region of the single wall carbon nanotubes in arc plasma volume *Carbon* 107 273–80
- Ferrari A C and Basko D M 2013 Raman spectroscopy as a versatile tool for studying the properties of graphene *Nat. Nanotechnol.* **8** 235–46
- Gahan D, Daniels S, Hayden C, Scullin P, O'Sullivan D, Pei Y T and Hopkins M B 2012 Ion energy distribution measurements in rf and pulsed dc plasma discharges *Plasma Sources Sci. Technol.* 21 024004
- Garcia-Cespedes J, Rubio-Roy M, Polo M C, Pascual E, Andujar J L and Bertran E 2007 Carbon nanotubes grown by asymmetric bipolar pulsed-DC PECVD *Diam. Relat. Mater.* 16 1131–5
- Gershman S and Raitses Y 2016 Unstable behavior of anodic arc discharge for synthesis of nanomaterials J. Phys. D: Appl. Phys. 49 345201
- Golberg D, Bai X D, Mitome M, Tang C C, Zhi C Y and Bando Y 2007 Structural peculiarities of in situ deformation of a multiwalled BN nanotube inside a high-resolution analytical transmission electron microscope *Acta Mater.* **55** 1293–8
- Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Spatially resolved Raman spectroscopy of single- and few-layer graphene *Nano Lett.* 7 238–42

- Guo J, Fan X, Dolbec R, Xue S, Jurewicz J and Boulos M 2010 Development of nanopowder synthesis using induction plasma *Plasma Sci. Technol.* 12 188–99
- Han Z J, Murdock A T, Seo D H and Bendavid A 2018 Recent progress in plasma-assisted synthesis and modification of 2D materials 2D Mater. 5 032002
- He D, Zhao T, Liu Y, Zhu J, Yu G and Ge L 2007 The effect of electric current on the synthesis of single-walled carbon nanotubes by temperature controlled arc discharge *Diam. Relat Mater* 16 1722–6
- Heggemann D, Hossain M M, Körner E and Balazs D J 2007 Macroscopic description of plasma polymerization *Plasma Process. Polym.* 4 229–38
- Hernandez-Tabares L, Darias-Gonzalez J G, Chao-Mujica F J, Ledo-Pereda L M, Antuch M, Carrillo-Barroso, Chong-Quero J E, Reguera E and Desdin-Garcia L F 2021 Stabilization methods in the submerged arc discharge synthesis of carbon nanostructures *J. Nanomater.* **6550809** 1–12
- Iijima S 1991 Helical microtubules of graphitic carbon *Nature* **354** 56–8
- Imasaka K, Kanatake Y, Ohshiro Y, Suehiro J and Hara M 2006 Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water *Thin Solid Films* **506-507** 250-4
- Jüttner B 2001 Cathode spots of electric arcs *J. Phys. D: Appl. Phys.* **34** R103–123
- Kauling A P, Seefeldt A T, Pisoni D P, Pradeep R C, Bentini R,
 Oliveira R V B, Novoselov K S, Castro and Neto A H 2018
 The worldwide graphene flake production Adv. Mater. 30
 1803784
- Keidar M and Beilis I I 2009 Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes *J. Appl. Phys.* **106** 103304
- Keidar M and Beilis I I 2018 *Plasma Engineering* 2nd edn (London: Elsevier) (https://doi.org/10.1016/C2017-0-00107-6)
- Keidar M, Levchenko I, Arbel T, Alexander M, Waas A M and Ostrikov K 2008 Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge *Appl. Phys. Lett.* 92 043129
- Keidar M and Waas A M 2004 On the conditions of carbon nanotube growth in the arc discharge *Nanotechnology* 15 1571
- Kelgenbaeva Z, Omurzak E, Takebe S, Sulaimankulova S, Abdullaeva Z, Iwamoto C and Mashimo T 2014 Synthesis of pure iron nanoparticles at liquid-liquid interface using pulsed plasma J. Nanopart. Res. 16 2603
- Kia K K and Bonabi F 2012 Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design Rev. Sci. Instrum. 83 123907
- Kim K S and Kim T H 2019 Nanofabrication by thermal plasma jets: from nanoparticles to low-dimensional nanomaterials *J. Appl. Phys.* **125** 070901
- Kim S-C, Park Y-K and Jung S-C 2021 Recent applications of the liquid phase plasma process Korean J. Chem. Eng. 38 885–98
- Kouznetsov V, Macák K, Schneider J M, Helmersson U and Petrov I 1999 A novel pulsed magnetron sputter technique utilizing very high target power densities *Surf. Coat. Technol.* 122 290–3
- Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 C₆₀: Buckminsterfullerene *Nature* **318** 162–3
- Kumar A, Khan M A and Kumar M 2022 Recent advances in UV photodetectors based on 2D materials: a review *J. Phys. D: App. Phys.* 55 133002
- Kundrapu M and Keidar M 2012 Numerical simulation of carbon arc discharge for nanoparticle synthesis *Phys. Plasmas* **19** 073510
- Langmuir I 1913 The vapor pressure of metallic tungsten *Phys. Rev.* 2 329
- Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS₂ ACS. Nano. 4 2695–700

- Levchenko I, Xu S, Teel G, Mariotti D, Walker M L R and Keidar M 2018 Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials *Nat. Commun.* **9** 879
- Li J, Kundrapu M, Shashurin A and Keidar M 2012 Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions *J. Appl. Phys.* 112 024329
- Li X and Zhu H 2015 Two-dimensional MoS₂: properties, preparation, and applications J. Materiomics 1 33–44
- Li Z, liu P, Zhao B, Wang H and Zhang Y 2008 Improving the synthesis of single-walled carbon nanotubes by pulsed arc discharge in air by preheating the catalysts *Carbon* 46 1819–22
- Liang F, Tanaka M, Choi S and Watanabe T 2017 Formation of different arc-anode attachment modes and their effect on temperature fluctuation for carbon nanomaterial production in DC arc discharge *Carbon* 117 100–11
- Lieberman M A and Lichtenberg A J 2005 *Principles of Plasma Discharges and Materials Processing* 2nd edn (Hoboken, NJ: Wiley) (https://doi.org/10.1002/0471724254)
- Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 Defect engineering of twodimensional transition metal dichalcogenides 2D Mater. 3 022002
- Lv X, Du F, Ma Y, Wu Q and Chen Y 2005 Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds Carbon 43 2020–2
- Ma X, Li S, Chaudhary R, Hessel V and Gallucci F 2021 Carbon nanosheets synthesis in a gliding arc reactor: on the reaction routes and process parameters *Plasma Chem. Plasma Process*. 41 191–209
- Mansour A R and Hara K 2019 Multispecies plasma fluid simulation for carbon arc discharge *J. Phys. D: Appl. Phys.* **52** 105204
- Michler T, Grischke M, Traus I, Bewilogua K and Dimigen H 1998 DLC Films deposited by bipolar pulsed DC PACVD *Diam. Relat. Mater.* **7** 459–62
- Momeni K et al 2020 Multiscale computational understanding and growth of 2D materials: a review NPJ Comput. Mater. 6 22
- Monteiro O R, Delplancke-Ogletree M-P and Brown I G 1999 Tungsten-containing amorphous carbon films deposited by pulsed vacuum arc *Thin Solid Films* **342** 100–7
- Moshkovith A, Perfiliev V, Gindin D, Parkansky N, Boxman R and Rapoport L 2007 Surface texturing using pulsed air arc treatment *Wear* **263** 1467–9
- Mostaghimi J and Boulos M I 2015 Thermal plasma sources: how well are they adopted to process needs? *Plasma Chem. Plasma Process.* **35** 421–36
- Muhl S, Maya F, Rodil S, Camps E, Villagran M and Garcia A 2003 Studies of pulsed high-current arcs used to prepare carbon films *Thin Solid Films* **433** 50–6
- Muhl S, Maya F, Rodil S, Gonzalez G, Camps E, Escobar-Alarcon L and Espinosa-Pesqueira M 2005 Highcurrent pulsed arc preparation of carbon and metal-carbon nanoparticles J. Optoelectron. Adv. Mater. 7 231–6
- Mukherjee B, Tseng F, Gunlycke D, Amara K K, Eda G and Simsek E 2015 Complex electrical permittivity of the monolayer molybdenum disulphide (MoS₂) in near UV and visible *Opt. Mater. Express* **5** 447–55
- Murooka Y, Maede Y, Ozaki M and Hibino M 2000 Pulse-arc system for investigation of initial fullerene deposition *Microsc. Microanal.* 6 52–3
- Murooka Y, Maede Y, Ozaki M and Hibino M 2001 Self-assembling of hot carbon nanoparticles observed by short pulse-arc-discharge *Chem. Phys. Lett.* **341** 455–60
- Omurzak E, Abdullaeva Z, Satyvaldier A, Zhasnakunov Z, Kelgenbaeva Z, Adil Akai Tegin R, Syrgakbek kyzy D, Doolotkeldieva T, Bobusheva S and Mashimo T 2018 Synthesis of nanomaterials by the pulsed plasma in liquid and

- their bio-medical applications *IOP Conf. Series: Mater Sci. Eng.* **302** 012076
- Omurzak E, Jasnakunov J, Mairykova N, Abdykerimova A, Maatkasymova A, Sulaimankulova S, Matsuda M, Nishida M, Ihara H and Mashimo T 2007 Synthesis method of nanomaterials by pulsed plasma in liquid *J. Nanosci. Nanotechnol.* **7** 3157–9
- Parkansky N, Alterkop B, Boxman R L, Goldsmith S, Barkay Z and Lereah Y 2005 Pulsed discharge production of nano- and microparticles in ethanol and their characterization *Powder Technol.* **150** 36–41
- Parkansky N, Beilis I, Boxman R L and Goldsmith S 1993 Anode erosion during pulsed arcing *IEEE Trans. Plasma Sci.* 21 458–62
- Parkansky N, Beilis I I, Rapoport L, Boxman R L, Goldsmith S and Rosenberg Y 1998 Electrode erosion and coating properties in pulsed air arc deposition of WC-based hard alloys *Surf. Coat. Technol.* **105** 130–4
- Parkansky N, Boxman R L, Alterkop B, Zontag I, Lereah Y and Barkay Z 2004 Single-pulse arc production of carbon nanotubes in ambient air *J. Phys. D: Appl. Phys.* 37 2715–9
- Patankar S V 1980 *Numerical Heat Transfer and Fluid Flow* (Boca Raton, FL: Taylor & Francis) (https://doi.org/10.1201/9781482234213)
- Pauleau Y and Thièry F 2004 Deposition and characterization of nanostructured metal/carbon composite films *Surf. Coat. Technol.* **180-181** 313–22
- Pilch I, Söderström D, Brenning N and Helmersson U 2013 Sizecontrolled growth of nanoparticles in a highly ionized pulsed plasma Appl. Phys. Lett. 102 033108
- Poltorak C, Stüber M, Leiste H, Bergmaier A and Ulrich S 2020 Study of (Ti,Zr)C:H/a-C:H nanocomposite thin film formation by low temperature reactive high power impulse magnetron sputtering *Surf. Coat. Technol.* **398** 125958
- Pootawang P, Saito N, Takai O and Lee S-Y 2012 Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing *Nanotechnology* **23** 395602
- Prakash T, Williams G V M, Kennedy J and Rubanov S 2016 High spin-dependent tunnelling magnetoresistance in magnetite powders made by arc-discharge *J. Appl. Phys.* **120** 123905
- Robertson J 2002 Diamond-like amorphous carbon *Mater. Sci. Eng. R* 37 129–281
- Roch A, Jost O, Schultrich B and Beyer E 2007 High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique *Phys. Stat. Sol.* B **244** 3907–10
- Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga G A J, Naito M and Kanki T 2003 Fabrication of inorganic molybdenum disulphide fullerenes by arc in water *Chem. Phys. Lett.* **368** 331–7
- Santra B, Ko H-Y, Yeh Y-W, Martelli F, Kaganovich I, Raitses Y and Car R 2018 Root-growth of boron nitride nanotubes: experiments and *ab initio* simulations *Nanoscale* 10 22223–30
- Sarakinos K, Alami J and Konstantinidis S 2010 High power pulsed magnetron sputtering: a review on scientific and engineering state of the art Surf. Coat. Technol. 204 1661–84
- Shashurin A and Keidar M 2015 Synthesis of 2D materials in arc plasmas *J. Phys. D: Appl. Phys.* **48** 314007
- Shashurin A, Keidar M and Beilis I I 2008 Voltage-current characteristics of an anodic arc producing carbon nanotubes *J. Appl. Phys.* **104** 063311
- Shashurin A, Li J, Zhuang T, Keidar M and Beilis I I 2011 Application of electrostatic Langmuir probe to atmospheric arc plasmas producing nanostructures *Phys. Plasmas* 18 073505
- Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T and Shinohara H 2004 Double-wall carbon nanotube field-effect transistors: ambipolar transport characteristics *Appl. Phys. Lett.* **84** 2412

- Sproul W D, Christie D J and Carter D C 2005 Control of reactive sputtering processes *Thin Solid Films* **491** 1–17
- Sugai T, Omote H, Bandow S, Tanaka N and Shinohara H 1999a Production of single-wall nanotubes by high-temperature pulsed arc discharge: mechanisms of their production *Jpn. J. Appl. Phys.* **38** L477–9
- Sugai T, Omote H, Bandow S, Tanaka N and Shinohara H 2000 Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge *J. Chem. Phys.* 112 6000–5
- Sugai T, Omote H and Shinohara H 1999b Production of fullerenes by high-temperature pulsed arc discharge *Eur. Phys. J.* D 9 369–72
- Sugai T, Yoshida H, Shimada T, Okazaki T and Shinohara H 2003 New Synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge *Nano Lett.* 3 769–73
- Tacu M, Khrabry A and Kaganovich I D 2020 Convenient analytical formula for cluster mean diameter dispersion after nucleation burst *Phys. Rev.* E 102 022116
- Takekoshi K, Kizu T, Aikawa S and Nishikawa E 2012 One-step synthesis of metal-encapsulated carbon nanotubes by pulsed arc discharge in water *E-J Surf. Sci. Nanotechnol.* **10** 414–6
- Tsai Y Y, Su J S and Su C Y 2008 A novel method to produce carbon nanotubes using EDM process *Int. J. Mach. Tools Manuf.* 48 1653–7
- Tsai Y Y, Su J S, Su C Y and He W H 2009 Production of carbon nanotubes by single-pulse discharge in air *J. Mater. Process. Technol.* **209** 4413–6
- Tu X and Whitehead J C 2014 Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Cogeneration of syngas and carbon nanomaterials *Int. J. Hydrog. Energy* **39** 9658–69
- Ushio M 1988 Arc discharge and electrode phenomena *Pure Appl. Chem.* **60** 809–14
- Vandenabeele C R and Lucas S 2020 Technological challenges and progress in nanomaterials plasma surface modification A review *Mater. Sci. Eng.* R 139 100521
- Vasudevan A, Shvalya V, Zidanšek A and Cvelbar U 2019 Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: a mini review *Front Chem. Sci. Eng.* 13 427–43
- Vekselman V, Feurer M, Huang T, Stratton B and Raitses Y 2017 Complex structure of the carbon arc discharge for synthesis of nanotubes *Plasma Sources Sci. Technol.* 26 065019
- Vijayaraghavan R K, Gaman C, Jose B, McCoy A P, Cafolla T, McNally P J and Daniels S 2016 Pulsed-plasma physical vapor deposition approach toward the facile synthesis of multilayer and monolayer graphene for anticoagulation applications ACS Appl. Mater. Interfaces 8 4878–86

- Volotskova O, Fagan J A, Huh J Y, Phelan F R Jr, Shashurin A and Keidar M 2010 Tailored distribution of single-wall carbon nanotubes from Arc plasma synthesis using magnetic fields ACS Nano. 4 5187–92
- Waldorff E I, Waas A M, Friedmann P P and Keidar M 2004 Characterization of carbon nanotubes produced by arc discharge: effect of the background pressure *J. Appl. Phys.* **95** 2749–54
- Wertheimer M R, Thomas H R, Perri M J, Klemberg-Sapieha J E and Martinu L 1996 Plasmas and polymers: from laboratory to large scale commercialization *Pure Appl. Chem.* **68** 1047–53
- Williamson J M and DeJoseph C A Jr 2003 Determination of gas temperature in an open-air atmospheric pressure plasma torch from resolved plasma emission *J. Appl. Phys.* **93** 1893
- Wu B, Haehnlein I, Shchelkanov I, McLain J, Patel D, Uhlig J, Jurczyk B, Leng Y and Ruzic D N 2018 Cu films prepared by bipolar pulsed high power impulse magnetron sputtering Vacuum 150 216–21
- Yang Z, Tian J, Yin Z, Cui C, Qian W and Wei F 2019 Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review *Carbon* 141 467–80
- Yatom S, Bak J, Khrabryi A and Raitses Y 2017a Detection of nanoparticles in carbon arc discharge with laser-induced incandescence *Carbon* 117 154–62
- Yatom S, Khrabry A, Mitrani J, Khodak A, Kaganovich I, Vekselman V, Stratton B and Raitses Y 2018 Synthesis of nanoparticles in carbon arc: measurements and modeling MRS Commun. 8 842–9
- Yatom S, Selinsky R S, Koel B E and Raitses Y 2017b 'Synthesison' and 'synthesis-off' modes of carbon arc operation during synthesis of carbon nanotubes *Carbon* 125 336–43
- Yeh Y-W, Raitses Y, Koel B E and Yao N 2017 Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge Sci. Rep. 7 3075
- Yoshida H, Sugai T and Shinohara H 2008 Fabrication, purification, and characterization of double-wall carbon nanotubes via pulsed arc discharge *J. Phys. Chem.* C 112 19908–15
- Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T and Tao J 2017 Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application *Mater. Sci. Eng.* C 77 1363–75
- Zhang S, Sun D, Fu Y and Du H 2005 Toughening of hard nanostructural thin films: a critical review *Surf. Coat. Technol.* **198** 2–8
- Zietz O, Olson S, Coyne B, Liu Y and Jiao J 2020 Characterization and manipulation of carbon precursor species during plasma enhanced chemical vapor deposition of graphene *Nanomaterials* 10 2235