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Figure 1: The original image-to-image translation method (left) generates an image with clear geometry change to close the
geometric gap between two domains, but the generated image can no longer maintain the correspondence with the geometric-
related ground truth (i.e. syntheticmask) as seen in the overlay. In contrast, ourmethod utilizes an additionalmask to generate
both the high-fidelity image and aligned geometry represented as an output mask (right).

ABSTRACT
Recently, image-to-image translation (I2I) has met with great suc-
cess in computer vision, but few works have paid attention to the
geometric changes that occur during translation. The geometric
changes are necessary to reduce the geometric gap between do-
mains at the cost of breaking correspondence between translated
images and original ground truth. We propose a novel geometry-
aware semi-supervised method to preserve this correspondence
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while still allowing geometric changes. The proposed method takes
a synthetic image-mask pair as input and produces a corresponding
real pair. We also utilize an objective function to ensure consistent
geometric movement of the image andmask through the translation.
Extensive experiments illustrate that our method yields a 11.23%
higher mean Intersection-Over-Union than the current methods on
the downstream eye segmentation task. The generated image has
a 15.9% decrease in Frechet Inception Distance indicating higher
image quality.

CCS CONCEPTS
•Computingmethodologies→ Image processing; Semi-supervised
learning settings; Neural networks; Tracking.

KEYWORDS
eye segmentation, eye tracking, syn2real, image-to-image transla-
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1 INTRODUCTION
Eye segmentation, distinguishing the main parts of the eye includ-
ing the pupil, iris, and sclera, attracts considerable interest due
to its fundamental role in eye tracking and raises an opportunity
to investigate different types of eye movements. With the explo-
sion of deep learning, the field of eye tracking has increasingly
adopted deep learning based methods. However, due to its require-
ment for large amounts of training data, datasets collection has
become amajor challenge. This is particularly true in the scenario of
Virtual/Augmented Reality, given the difficulty in equipment man-
ufacturing [Ashtari et al. 2020]. The available datasets for VR/AR
applications are collected using specific devices with fixed sensor
configurations and the rapidly evolving design cycle for these de-
vices limits the use of existing datasets. Data diversity is also not
guaranteed due to financial, time, and geographical constraints. In
addition, data annotation is time-consuming and labor-intensive,
especially for pixel-level tasks (e.g. eye segmentation). One solution
normally employed is to render synthetic datasets with powerful
graphics engines. However, the domain gap between the synthetic
and real data prevents the model trained on synthetic data to gen-
eralize well to real data.

To solve this problem, image-to-image translation [Fuhl et al.
2019; Huang et al. 2018; Isola et al. 2017; Lee et al. 2018; Liu et al.
2017; Zhu et al. 2017] can map from a synthetic domain to a real
domain to enhance the fidelity of synthetic data. Unpaired image-
to-image translation [Kim et al. 2017; Liu et al. 2017; Yi et al. 2017;
Zhu et al. 2017] without requiring paired images as input simpli-
fies the data acquisition process and is adopted in several applica-
tions [Alotaibi 2020; Pang et al. 2021]. However, one overlooked
issue is that the object geometry in the image may change during
the translation due to the natural distinction of geometric distri-
bution in two domains. Taking the eye image as an example, the
pupil size in the real domain may be statistically smaller than the
one in the synthetic domain. The synthetic-to-real translation net-
work then tends to match the smaller real pupil size. This problem
is especially severe for geometric-related downstream tasks, such
as eye segmentation and iris/pupil detection, since the geometric
change pollutes the ground truth provided by the synthetic data,
and thus reduces the task accuracy. Several recent works [Fu et al.
2019; Li et al. 2018; Xie et al. 2020] aimed to remedy this problem by
proposing a soft gradient-sensitive objective for keeping the geo-
metric boundaries during the translation [Li et al. 2018] or a content
consistency loss punishing any geometry disparity by computing
the L2 norm of two attention maps[Xie et al. 2020]. However, they
strictly prevented the geometry of the image from changing during
the translation, so the generated geometric distribution conforms
to the synthetic domain, not the real domain. This gap that still
remains in geometric distribution may lead to artifacts in the gener-
ated images and decreased accuracy when applying the generated
datasets to subsequent tasks.

The motivation of our proposed work is to perform image-to-
image translation such that the translated image data distribution is
identical to the distribution of real data while maintaining the con-
sistency between the generated image and mask. Specifically, in the
eye segmentation task, we allow the eye geometry to change dur-
ing the translation while preserving the geometric correspondence
between the image and mask as shown in Figure 1. To this end,
we propose GeoMaskGAN, a novel geometric-aware generative
adversarial network [Goodfellow et al. 2014] based method that
accepts a synthetic image and its corresponding semantic mask
as input, and generates a pair of real image and mask. A triple-
level adversarial loss is applied to preserve the fidelity of generated
distribution, while a gradient loss is utilized to keep the correspon-
dence between the generated image and its semantic label. We
develop a semi-supervised algorithm using a limited amount of
real masks to significantly boost the performance of our proposed
I2I translation. Extensive qualitative and quantitative experiments
demonstrate that our method achieves a 11.23% higher mIOU than
the state-of-the-art in segmentation task and a 15.9% lower Frechet
Inception Distance (FID) indicating better quality of generated im-
ages. We also conduct ablation studies to validate the effectiveness
of different loss terms, discriminators, and the number of training
masks.

2 METHOD
Our image-to-image translation method, GeoMaskGAN, has two
main goals. First, the generated image distribution should be as
close as possible to the real distribution, especially the distribution
of geometric properties of the real data. Second, the geometric
changes that happened to the translated images can be reflected in
the translated semantic labels, which allows for using translated
image-mask pairs as ground truth data for downstream tasks, such
as semantic segmentation. To achieve these two goals at the same
time, we generate an image with its underlying semantic label and
ensure they both have a consistent geometric movement during the
translation. Note, we do not require the generated image to perfectly
preserve the geometry in the synthetic image like SG-GAN, which
violates the first goal.

2.1 Problem formulation
Let x {R,S } represent a random variable drawn from the distribution
X {R,S } of images in the real dataset and the synthetic dataset re-
spectively. Let д{R,S } represent the hidden geometry of the image
x {R,S } and its corresponding maskm{R,S } .д{R,S } is a random vari-
able drawn from the geometric distribution G {R,S } representing
key eye geometric features such as the size and shape of the iris,
pupil, and sclera.

The previous geometry-consistent image-to-image translation
problem focused on solving for a functional mapping f : xS ∼

XS → xR ∼ XR , without considering translating the geometric
properties of the image, i.e., дR ∼ GS , дR ≁ GR . In contrast, we are
interested in solving the image-to-image translation problem where
the image from the synthetic domain that is translated into the real
domain can be constrained to match the geometric distribution
in the real domain. In other words, we aim to solve a functional
mapping: f : xS ∼ XS → xR ∼ XR ;дR ∼ GR .
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In contrast to unsupervised learning, we deploy a semi-supervised
learning method to boost the performance using only a small
amount of mask annotations in the real domain. In this case, we
have a synthetic datasetXS = {xSi ,m

S
i }

nS
i=1 withn

S synthetic image-
mask pairs and a real dataset with a small amount of image-mask
pairs XR = {xRi ,m

R
i }

nR
i=1 but a large amount of unlabeled images

XU = {xUi }n
U

i=1 (n
U ≫ nR ).

2.2 Network architecture
Figure 2 illustrates the network architecture of our method based
on CycleGAN. Different than CycleGAN, our input and output
of generators are image-mask pairs instead of images. We also
design a triple-level discriminator to take advantage of both la-
beled and unlabeled data, DI in the image level, DP in the image-
mask pair level, and DSem in the semantic level. DI encourages
generated images to be more consistent with the distribution of
real images by distinguishing between a real image xR sampled
from both XR and XU and a generated fake image x̂R . DP im-
plicitly considers more intra-pair information by distinguishing
between a real pair {xR ,mR } sampled from XR and a translated
pair {x̂R ,m̂R } = T S→R (xS ,mS ). The semantic discriminator DSem
is inspired by the semantic discriminator proposed in SG-GAN,
which focuses on semantic specific information and reduces the
interference between classes during the translation. Our results
illustrate that the usage of additional unlabeled data and our triple-
level discriminator can boost the generated image quality and the
eye segmentation performance.

2.3 Loss functions
To synthesize image/semantic mask distribution with high fidelity
while tracking the geometric change, we introduce an objective that
consists of four loss terms: a gradient loss, which encourages the geo-
metric match between generated images and generated masks; an
adversarial loss, which aims to align the image distribution between
the real and synthetic domain; a style loss, which helps generator to
output segmentation mask with less noise, and a cycle consistency
loss, which further reduces the space of possible mapping functions
by making the reconstructed images the same as the original input
images. To simplify, we only express loss functions applied to the
real domain below, but in the training phase, loss functions are used
in both synthetic and real domains.

Grad loss. Inspired by [Li et al. 2018], we consider preserving the
geometric similarity between the generated images and masks by
computing their gradients. We compute gradients by convolving
images with derivative kernels only on mask semantic boundaries.
We express the objective as:

LRдrad = E[| |(abs(S ∗ x̂R ) − abs(S ∗ m̂R )) ⊙ sдn(S ∗ m̂R )| |1] (1)

where {x̂R ,m̂R } = T S→R (xS ,mS ), sдn is the sign function, S is
a derivative filter, ∗ is convolution operation. In the experiments,
we choose Sobel filters [Kanopoulos et al. 1988] for generating
sharper boundaries. Different from [Li et al. 2018], we represent
the semantic mask as a grayscale image and carefully assign the
color for each class, reducing the impact of the difference in color
intensity on image and mask.

Adversarial loss. Based on the triple-level discriminator we in-
troduced in Section 2.2, we apply adversarial losses [Goodfellow
et al. 2014] to all three discriminators. The adversarial loss applied
to the real domain is,

LRadv = E(loд(D
R
P (x

R ,mR ))) + E(loд(1 − DR
P (x̂

R ,m̂R )))

+ E(loд(DR
I (x

R ))) + E(loд(1 − DR
I (x̂

R ))

+ E(loд(DR
Sem (xR ,mR ))) + E(loд(1 − DR

Sem (x̂R ,m̂R )))

(2)

Cycle consistency loss. We also apply the cycle consistency loss
proposed in CycleGAN to stabilize the training based on the as-
sumption that if we translate images from one domain to the other
and back again we should arrive at the image in the first domain.
The cycle consistency loss is,

LRcyc = E[| |T
R→S (T S→R (xS ,mS )) − (xS ,mS )| |1] (3)

It is worth mentioning that although the cycle consistency loss
can roughly preserve the global geometric information during the
translation as mentioned in [Zhu et al. 2017], in our observation, the
detailed local geometry is hard to maintain, especially in datasets
without huge variance but with significantly different geometric
distributions in two domains. In our case, the cycle consistency loss
preserves the approximate position of the eyes in the image, but
the pupil size and eyelid shape can still move easily. Experiments
show that combining the cycle consistency loss with other losses
can achieve a much better result.

Style loss. One issue we observed in our experiments is that
the generated masks sometimes contain a lot of square-shaped
texture artifacts. To ameliorate this problem, we deploy a style loss
commonly used in style transfer [Gatys et al. 2015] to ensure that
the basic texture of input synthetic masks and the generated masks
are similar. For specific details please refer to [Gatys et al. 2015].

Full Objective. The total loss function could be represented in
equation 4, each loss term L = LR + LS .

L = λдradLдrad + λcycLcyc + λadvLadv + λstyleLstyle (4)

where λдrad , λcyc , λadv , and λstyle are the hyper-parameters
used to control the relative importance of the loss terms. The final
targets can be represented as:

T ∗ = argmin
T

max
D

L (5)

where T = {T S→R ,TR→S }, D = {DR
I ,D

S
I ,D

R
P ,D

S
P ,D

R
Sem ,D

S
Sem }.

3 EXPERIMENTS
We validate the effectiveness of our GeoMaskGAN by training an
I2I network to translate the synthetic eye data in RIT-Eyes [Nair
et al. 2020] to the real eye data in OpenEDS2019 [Garbin et al. 2019].
We apply the translated results to an eye segmentation task to
further validate the geometry-awareness ability of our method. We
compare our method against several state-of-the-art works both
qualitatively and quantitatively as well as perform ablation studies
on the loss objectives, triple-level discriminator, and the number of
ground truth masks used in the semi-supervised training.
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Figure 2: The network architecture of our method. First, we input a synthetic image xS with its corresponding maskmS into
the generator T S→R and generate a realistic pair {x̂R , m̂R }, which is then fed into an inverse generator TR→S to obtain a recon-
structed pair. We utilize a triple-level discriminator to distinguish the real (R) and generated (F) data from image level (DI ),
image-mask pair level (DP ), and semantic level (DSem ). Note the figure only describes the network of the forward loop from
synthetic to real, the backward loop from real to synthetic is similar.

Table 1: Eye segmentation performance for different meth-
ods evaluated on OpenEDS2019 test set.

Method Image FID ↓ Mask FID ↓

CycleGAN 101.9 -
SG-GAN 162.3 -
GcGAN 111.4 -

GeoMaskGAN-200 (Ours) 86.0 122.0
GeoMaskGAN-100 (Ours) 103.2 123.8
GeoMaskGAN-50 (Ours) 94.3 143.7

3.1 Experiments settings
Datasets. We choose OpenEDS2019 as our real dataset and S-

openeds in RIT-Eyes as our synthetic dataset. OpenEDS2019 is an
eye segmentation dataset of 12759 images with annotations at a
resolution of 640×400, 8916 of them for training, 2403 for validation,
and 1440 for testing. RIT-Eyes is a synthetic eye image generation
platform, S-openeds in RIT-Eyes simulates the hardware configu-
ration of OpenEDS, where 20 subjects with 41324 images are used
for training and the remaining 4 subjects with 10330 images for
validation. Both datasets contain four classes: pupil, iris, sclera, and
background.

Evaluation metrics. We evaluate our method in terms of gener-
ated image and mask realism, and its utility to improve the per-
formance of the eye segmentation task. We adopt the perception-
based criterion Frechet Inception Distance (FID) [Heusel et al. 2017]
to evaluate the image and mask quality. In addition, we train an
eye segmentation network using the images generated by Geo-
MaskGAN and compute the segmentation accuracy on the test set of
OpenEDS2019 including class Intersection-Over-Union (classIOU),
mean Intersection-Over-Union (mIOU), and mean pixel accuracy.

Training details. We train our neural network on PyTorch [Paszke
et al. 2017]. Similar to CycleGAN, we adopt resnet50 [He et al. 2016]
and PatchGAN [Isola et al. 2017] as our generator and discriminator.

CycleGAN SG-GAN GcGAN GeoMaskGAN-
200 (Ours)Input

Image

Mask /
overlay

Figure 3: Comparison of qualitative results on image trans-
lation. The first column shows the input image and mask,
other columns represent output images using different
methods. The image-mask correspondence is visualized us-
ing the overlay of masks on images.

Our eye segmentation network is based on RIT-Net [Chaudhary
et al. 2019]. For both generator and discriminator, we use the Adam
solver [Kingma and Ba 2014] with a learning rate of 0.0002 and betas
of (0.5, 0.999). We first grayscale the input images and then resize
them to 256× 256. The loss weights are set to λдrad = λstyle = 0.1,
λcyc = λadv = 1.0.

3.2 Comparison of state-of-the-art
Qualitative evaluation. We qualitatively compare our method

with the state-of-the-art work CycleGAN [Zhu et al. 2017], SG-
GAN [Li et al. 2018], GcGAN [Fu et al. 2019] to better demonstrate
the superiority of our method. As shown in Figure 3, we first visu-
alize the eye image-to-image translation results. The first column
shows the input synthetic pair, while the other columns show the
images generated by different methods (top row) and the overlay
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CycleGAN SG-GAN GcGAN GeoMaskGAN-
50 (Ours)Ground truth Synthetic only GeoMaskGAN-

100 (Ours)
GeoMaskGAN-

200 (Ours)Input image

Ex
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1
Ex
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e 
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Figure 4: Qualitative results of eye segmentation. Each row represents one example of eye segmentation. The first and second
columndescribes input images and ground truth segmentationmasks, while other columns represent the segmentation results
trained on data generated by different image generation methods.

Table 2: Eye segmentation performance for different methods evaluated on OpenEDS2019 test set.

Method Bg IOU Pupil IOU Iris IOU Sclera IOU mIOU ↑ Pixel Accuracy ↑

Synthetic only 0.9110 0.8788 0.7385 0.2083 0.6838 0.7379
CycleGAN 0.9482 0.8957 0.8243 0.4768 0.7860 0.8268
SG-GAN 0.9219 0.8049 0.7663 0.2120 0.6760 0.7459
GcGAN 0.9106 0.1404 0.3498 0.2585 0.4150 0.5010

GeoMaskGAN-50 (ours) 0.9742 0.8070 0.8085 0.7050 0.8234 0.8708
GeoMaskGAN-100 (ours) 0.9694 0.8434 0.8273 0.7233 0.8406 0.9131
GeoMaskGAN-200 (ours) 0.9845 0.9038 0.9041 0.8017 0.8983 0.9357

of masks on images to describe the geometric consistency (bottom
row). As CycleGAN, SG-GAN, and GcGAN output images only, we
use the synthetic mask to compute the overlay. Our method can
generate aligned image-mask pairs without dropping the image
quality, while the images generated by CycleGAN and GcGAN have
an untracked geometric movement. Although SG-GAN produces
images in alignment with the synthetic masks, the geometry distri-
bution of generated eye images deviates from the real eye geometric
distribution. To further evaluate the effectiveness of the method on
downstream tasks, we train a top-tier eye segmentation network
RIT-Net [Chaudhary et al. 2019]. For our GeoMaskGAN, we train
RIT-Net using the generated image-mask pairs. For methods that
only generate images, we train RIT-Net using the generated im-
ages and original synthetic masks. The segmentation results on
the OpenEDS2019 test set are shown in Figure 4, each row repre-
senting one example. Our method generates segmentation masks
with higher accuracy and cleaner boundary, outperforming the
state-of-the-art works, especially in sclera segmentation.

Quantitative evaluation. Table 1 describes the quality of images
and masks generated by different methods in terms of FID. Our

GeoMaskGAN using only 200 ground truth masks (GeoMaskGAN-
200) achieves a 15.6% lower image FID than the state-of-the-art
methods, indicating the higher image fidelity. Table 2 demonstrates
the eye segmentation performance of different methods evaluated
on the OpenEDS2019 test set. Our method also yields a 11.23% and
10.89% increase on mIOU and pixel accuracy, separately. We also
observe that the sclera IOU is largely improved by our method,
which indicates a big gap between the synthetic and real sclera.
This finding casts a new light on the potential of our method to
be used in guiding the generation of synthetic datasets. Another
finding is that GcGAN even has a worse performance than training
using only synthetic data (synthetic only), which shows that within
a certain range the consistency between images and masks plays a
more important role than image fidelity.

3.3 Ablation studies
We first conduct ablation studies on the gradient loss. In Table 3,
we observe a significant decrease of mask FID from 155.2 to 122.0
after adding the grad loss, which indicates its ability to improve
the mask fidelity, which can also be seen in the second and third
column of Figure 5. The segmentation results with gradient loss
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Input image DP DP + DSem DP + DSem + DI 

Generated
Mask

Overlay

Figure 5: Qualitative results of ablation studies on different weights of the gradient loss and different combinations of our
triple-level discriminator.

Table 3: Ablation studies on the grad loss term, evaluated by
the image quality and segmentation accuracy.

Condition Image FID ↓ Mask FID ↓ mIOU ↑

λдrad = 0 84.8 155.2 0.8958
λдrad = 0.1 86.0 122.0 0.8983
λдrad = 0.5 98.5 124.2 0.8614

Table 4: Ablation studies on the triple-level discriminator,
evaluated by the image quality and segmentation accuracy.

Condition Image FID ↓ Mask FID ↓ mIOU ↑

DP 114.4 130.5 0.7938
DP + DSem 108.5 90.9 0.8483

DP + DSem + DI 86.0 122.0 0.8983

also produce a slightly better mIOU. We speculate this insignificant
boost is because the pair discriminator DP also provides geometric
consistency capability. Moreover, setting a large weight of grad loss
may result in a decrease in image quality. As shown in Figure 5, the
boundary of images with λдrad = 0.5 becomes more blurry than
λдrad = 0.1.

Table 4 also describes the results of using different discriminator
combinations. After adding the semantic discriminator DSem , all
the image FID, mask FID, and mIOU have a significant improve-
ment which provides evidence that DSem can help in generating

higher fidelity images by focusing more on the semantic informa-
tion rather than the global texture. The image discriminator DI is
able to improve the image quality with additional unlabeled im-
ages, achieving a 32.3% lower image FID. The best performance is
produced using our complete triple-level discriminator.

We also conduct experiments on evaluating the results of training
with a different number of real masks (50, 100, 200). Table 1 and 2
show that only 50 labeled images can already achieve a higher
mIOU and lower FID than current works. More labeled images keep
improving the image quality and the segmentation results as shown
in Figure 4 in terms of less noise on masks and cleaner boundaries.

4 CONCLUSION
We presented a semi-supervised eye image-to-image translation
method that simultaneously generates images and masks with high
fidelity while maintaining the geometric consistency between them.
We introduced a neural network architecture that takes the pair of
synthetic images and masks as input and generates a corresponding
realistic image-mask pair. We improved the geometric correspon-
dence between the generated image and mask using a gradient
loss and a triple-level discriminator. The generated pair datasets
allowed us to produce accurately labeled data as ground truth for
downstream tasks such as eye segmentation. The qualitative and
quantitative experiments showed that our method outperformed
the state-of-the-art approaches in terms of both image-mask corre-
spondence and image quality. Although our method can achieve
compelling results, it still suffers from certainweaknesses. For exam-
ple, some artifacts can be seen in the generated images in extreme
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lighting conditions and with small eye-openings. Future research
will explore more techniques used in semi-supervised learning,
such as self-training and entropy minimization as possible solu-
tions to resolve these artifacts. We hope our work can shed light
on the importance of geometric movement during image-to-image
translation and its impact on geometry-related downstream tasks,
especially eye segmentation.
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