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ABSTRACT
The problem of simultaneous column and row subset selection
is addressed in this paper. The column space and row space
of a matrix are spanned by its left and right singular vec-
tors, respectively. However, the singular vectors are not within
actual columns/rows of the matrix. In this paper, an iterative
approach is proposed to capture the most structural information
of columns/rows via selecting a subset of actual columns/rows.
This algorithm is referred to as two-way spectrum pursuit
(TWSP) which provides us with an efficient solution for the
CUR matrix decomposition. TWSP is applicable in a wide range
of applications since it enjoys a linear complexity w.r.t. number
of original columns/rows. We demonstrated the application of
TWSP for joint channel and sensor selection in cognitive radio
networks and efficient supervised data reduction.

Index Terms— Column and rows subset selection, CUR
matrix decomposition, spectrum pursuit

1. INTRODUCTION
Matrix factorization provides a concise representation of data.
Despite desirable uniqueness conditions and computational sim-
plicity of the well-known singular value decomposition (SVD),
it comes with some fundamental shortcomings. The intrinsic
structure of data is not inherited to the singular components.
Moreover, SVD implies orthogonality on the components which
is irrelevant to the underlying structure of the original data.
This enforced structure makes the bases, a.k.a. singular vectors,
hard to interpret [8]. On the other hand, it is shown that
borrowing basic vectors from the actual samples of a dataset
provides a robust representation, which can be employed in
interesting applications where sampling is their key factor [19].
This problem is studied under the literature of column subset
selection problem (CSSP) [5], [2] and CUR decomposition [15],
[3]. A general problem for CSSP and CUR can be written in the
following form:

(Sc, Sr) = argmin
Sc,Sr

‖X − πr
Sr (π

c
Sc(X))‖2F , (1)

where, X∈RN×M is the data matrix containing M data points
of dimension N . Here, πc

Sc(.) and πr
Sr (.) indicate column

. ∗ equal contribution. This material is supported by the National Science
Foundation under Grant No. ECCS-1810256 and CCF-1718195.

space projection and row space projection, respectively. More
specifically, these operators project all columns (rows) to a
low-dimensional subspace spanned by selected columns (rows)
of matrix X indexed by the set Sc (Sr). The chronological
order in applying πc

Sc(.) and πr
Sr (.) does not affect the problem

since these operators are linear. Moreover, substituting πr
Sr with

the identity projection simplifies the problem to CSSP. Fig. 1
illustrates the structure of the CUR matrix decomposition as a
self-representative approach.

A versatile metric for evaluating the performance of a data
subset selection algorithm can be defined by the approxima-
tion error resulted from the projection of the entire data to
the span of selected rows/columns. How close to the optimal
selection an algorithm can reach, is determined by comparing
its approximation error to the best low-rank approximation error
specified by the spectral decomposition. Recently, a fast and
accurate algorithm for solving CSSP has been proposed which
is called spectrum pursuit (SP) [11]. Inspired by SP, we propose
a new algorithm to address the more general case of the CUR
matrix decomposition. The main contributions of our paper are
summarized as follows:

• A novel algorithm for CUR decomposition, referred to as
two-way spectrum pursuit (TWSP), is proposed. TWSP
provides an efficient solution for CUR decomposition.

• TWSP enjoys a linear complexity w.r.t. the number of
columns and the number of rows of a matrix.

• TWSP is a parameter-free algorithm that only requires the
number of desired columns and rows for selection. Thus,
TWSP does not require any parameter fine-tuning.

• The TWSP algorithm is put to the test and investigated in a
set of synthetic and real experiments.

• The role of the core matrix U in CUR decomposition
is illustrated which shows the connection between selected
columns and rows. Based on analysis of U , an interesting
application for joint sensor/channel selection for spectrum
sensing in cognitive radio networks is presented.

In this paper, the mth column of matrix X and the nth row of
matrix X are denoted by X(:,m) and X(n, :) respectively.

The rest of paper is organized as follows. Sec. 2 studies the
problem of column subset selection as the conventional one-
way selection scheme. In Sec. 3, our main work is presented for
joint column and row subset selection. Experimental results are
exhibited in Sec. 4 and Sec. 5 concludes the paper.
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Fig. 1: Two columns and three rows of matrix X are selected and organized in the matrices C and R, respectively. The outer product of each pair of a
selected column and a selected row constructs a rank-1 matrix, i.e., cirT

j . The contribution amount of each pair is reflected in variable uij . The core matrix
U is the collection of all uij ’s. The goal is to minimize ‖X − X̂‖F , where X̂ = CUR.

2. COLUMN SUBSET SELECTION PROBLEM

Selecting the most diverse subset of data in an optimal sense has
been studied vastly [5], [13], [12]. However, these methods do
not guarantee that the unselected columns are well represented
by the selected ones. Further, outliers are selected with a high
probability using such algorithms due to their diversity [11].
A more effective approach is selecting some representatives
which are able to approximate the rest of data accurately [7]
as defined as a special case of (1). This is an NP-hard problem
[17] and there are several efforts for solving this problem [1],
[5], [16], [20]. There are computationally expensive approaches
based on convex relaxation [7], [6] that are not computationally
feasible for large datasets since their complexity is of order
O(M3), where M is the number of original columns. Recently,
we proposed a new algorithm for solving CSSP with a linear
complexity, which is called Spectrum Pursuit (SP) [11]. The
SP algorithm finds K columns of X such that their span is
close to that of the best rank-K approximation of X . SP is an
iterative approach where at each iteration one sample selection is
optimized such that the ensemble of selected samples describes
the whole dataset more accurately. SP finds representatives such
that the column space is spanned accurately via consecutive
rank-1 approximations as theoretically analyzed in [10]. In the
present paper, we extend the SP algorithm for a joint selection
of columns and rows such that their outer product can represent
the whole matrix accurately. A naive approach is applying the
SP algorithm on the matrix of interest to select a subset of
columns and then applying SP on its transpose in order to find
a subset of rows. However, this approach is not efficient and we
will compare it with our proposed approach which is optimized
through a joint representation of selected columns and rows.

3. TWO-WAY SPECTRUM PURSUIT

The introduced joint column/row subset selection in (1) can be
written as a CUR decomposition in the following form in which
factor matrices must be drawn from actual columns/rows of the
original matrix as

(C,U ,R) = argmin
C,U,R

‖X −CUR‖2F , (2)

s.t. ck ∈ Xc and rk ∈ Xr.

In this problem, Xc and Xr indicate the set of normalized
columns and rows of matrix X , respectively. Here, ck and rTk

denote the kth column and the kth row of C and R, respec-
tively. In other words, Xc = {X(:,m)/‖X(:,m)‖2;∀m} for
all columns and Xr = {X(n, :)/‖X(n, :)‖2;∀n} for all rows.
Please note that replacing constraints in (2) with orthogonality
constraint on ck’s and on rk’s results in the truncated singular
value decomposition (SVD) with K most significant compo-
nents. In this case, C and R contain the first K left singular
vectors and the first K right singular vectors of X , respectively.
Moreover, the core matrix will be diagonal and the entries
will be singular values with diagonal entries as singular values.
However, the underlying constraints in (2) turn the problem into
a joint subset of row and column selection problem instead of
matrix low-rank approximation problem.

To solve this complicated problem, we split it into two
consecutive problems for optimization on the kth selected
column/row. Our optimization approach is alternative, i.e., a
random subset of columns and rows are picked. Then, one
column or row is considered to be replaced with a more efficient
one at each iteration. Since scaling a vector does not change its
span, without loss of generality we assume that the column or
the row subject of the optimization lie on the unit sphere. At
each iteration, a rank-1 component is optimized characterized
by cgT or hrT given by

argmin
c, W , g

‖X −CkWR︸ ︷︷ ︸
Ec

−cgT ‖2F s.t. ‖c‖2 = 1 (3a)

argmin
h, Y , r

‖X −CY Rk︸ ︷︷ ︸
Er

−hrT ‖2F s.t. ‖r‖2 = 1 (3b)

R and C are the CUR components to include the se-
lected rows and columns, respectively. These are initialized
randomly as presented in Alg. 1. The selected samples re-
place the initialization through the iterations governed by Eqs.
(3a),(3b),(4a),(4b) to be presented as follows. Matrix Ck is the
set of selected columns except the kth one and Rk is the set
of selected rows except the kth row. The first subproblem can
be solved easily w.r.t. c using singular value decomposition. In
other words, cgT and hrT are the best rank-1 approximations
of the residual Ec and Er, respectively. The obtained c/r is
the best column/row that can be added to the pool of selected
columns/rows. However, the obtained vector is not available in
the given dataset as a column or row since it is a singular vector
which is a function of all columns/rows. The following step
re-imposes the underlying constraints at each iteration,
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Sc
k = argmax

m
|xT

mc|, ∀xm ∈ Xc, (4a)

Sr
k = argmax

n
|xT

nr|, ∀xn ∈ Xr. (4b)

Here, Sck indicates a singleton that contains the kth selected
column and Srk corresponds to the kth selected row. At each iter-
ation, one column or one row is the subject of optimization. The
impact of the latest estimation for that column/row on the repre-
sentation is neglected. Then, an optimized replacement is found.
At each iteration of TWSP, sub-problems in (3) are solved and
their solutions are matched to the accessible column samples
and row samples through matching equations in (4). The new
selected column or row is stored in Sck or Srk, respectively. At
each iteration we need to compute only the first singular vector
and there are fast methods to do so [4]. The pair of (3a) and (4a)
optimizes and matches a column. Similarly, performing (3b)
and (4b) provide us with an optimized row. However, we do not
update both of them per each iteration. In fact, which update
(column or row) is more effective in each iteration in order
to minimize the main cost function should be determined. To
this aim, first, we choose a random previously selected column
and a random previously selected row. Then, we find the best
possible replacement column and the best possible replacement
row. Accordingly, we choose whichever that minimizes the cost
function more. The best modified column-wise subset is denoted
by S̃c and S̃r denotes the best row-wise modified subset. Alg.
1 indicates the steps of the TWSP algorithm. Here, † refers to
the Moore–Penrose pseudo-inverse operator. Iterations can be
terminated either once CUR decomposition error is saturated or
when a maximum number of iterations is reached.

The proposed TWSP provides the selected columns and
selected rows in order to form matrix C and R in CUR
decomposition. The core matrix U can be estimated as:

U = C†XR†. (5)

This matrix is a two-way compressed replica of the whole
dataset and it contains valuable information in practice as will
be discussed in Sec. 4.2. In general, the number of selected
columns may differ from the desired number of rows. Here, K1

refers to the number of columns and K2 points to the number
of rows. It is worthwhile to mention that the complexity order
of TWSP is bottle-necked by computational burden for two
pseudo-inverses and two singular vectors computation. Thus,
the complexity can be expressed as O(NK2

1+MK2
2+MN)

per iteration and the algorithm needs O(K1 +K2) iterations
(the number of samples we desire to select). Moreover, operator
rnd(K) refers to a random positive integer number less than or
equal to K. In the next section, we evaluate the performance of
our proposed algorithm.

The CSSP and CUR decomposition problems are NP-hard,
i.e., a combinatorial search is required to find the best columns
and rows. The proposed TWSP algorithm minimizes the main
cost function (1) in practice. However, there is no theoretical
guarantee for the convergence of the proposed TWSP Alg. 1.

This algorithm is composed of two phases relating to the
columns and the rows, respectively. Per each phase of the TWSP
algorithm (we focus on the columns phase w.l.o.g), one column
is chosen to have the largest correlation with the minimizer of
the Eq. (3a). To facilitate the method with the ability to escape
from local minima caused from the greediness in the selection
procedure, TWSP is equipped with the option for revising the
selection by repeating the procedure for certain times. In order to
improve the convergence behavior of TWSP, we evade updating
both columns and rows in each iteration. Rather, we prioritize
updating a row or a column depending on which exhibits a
smaller projection error, i.e., which one is a better minimizer
for the cost function per each iteration. The implementation
steps of TWSP are summarized in Alg. 1. As seen in Alg. 1,
the method alleviates the greediness associated with consecutive
selection by removing a previously selected column or row and
optimizing it with better replacement. W and Y are the core
tensors corresponding to the CUR decomposition in Alg. 1.

4. EXPERIMENTAL RESULTS
In order to evaluate TWSP on machine-learning tasks in terms
of CUR decomposition accuracy, we apply the proposed TWSP
on synthetic data as well as three real applications.

4.1. CUR Decomposition on Synthetic Data
In order to evaluate the general performance of TWSP, we
compared it with the state-of-the-art methods for selecting
columns and rows. In this regards, we created a 1000 × 2000
synthetic dataset. The dataset is generated by a rank-30 matrix
contaminated with random noise. In Fig. 2, we have illustrated
the CUR decomposition error for selecting a subset of rows and
columns in the range of 2 to 20 for several selection algorithms.
A more accurate algorithm for solving CUR decomposition
results in a bigger blue region in Fig. 2. The reconstruction
error of CUR is normalized by ‖X‖2F . We employ SP as
the state-of-the-art algorithm for column subset selection [11].
We perform SP on the data matrix X and its transpose to,
respectively, select a subset of columns and rows independently.
Then, employing (5) results in a CUR decomposition. We refer
to the algorithm in [15] as adaptive CUR. TWSP exhibits the
best performance in this experiment. The convergence behavior
of TWSP for this experiment is shown in Fig. 3 for selecting
20 columns and 20 rows. The final solution of the TWSP
algorithm depends on the initial selected columns and selected
rows. However, regardless of the initial condition, the TWSP
algorithm minimizes the cost function of CUR decomposition.
TWSP prioritizes in selection of columns or rows such that the
largest decrease in the projection error is obtained. It is the main
feature to obtain convergence in practice.

4.2. Joint Sensor Selection and Channel Assignment
The output products of CUR decomposition are not limited to a
subset of columns and rows. In some applications, interestingly,
matrix U is the most important output of a CUR decomposition.
Entry (i, j) in U indicates how important the contribution of
the ith column and the j th row is to reconstruct the whole
matrix X . This interesting property is utilized for the problem
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Fig. 2: (a)-(d) Performance comparison in terms of the normalized error of CUR decomposition.
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Fig. 3: The convergence behavior of the proposed algorithm w.r.t. the
initial condition of selected subset. The initial cost function is corresponding
to the initial set which is drawn randomly. The blue curves indicate the
optimization path alongside iterations of the TWSP algorithm. Here, 100
different realizations are studied.

of joint sensor selection and channel assignment in a cognitive
radio network. To this aim the exact setup in [21] is considered
with 900 grid points and 32 frequency channels. The received
power magnitudes are organized in a 900×32 matrix. The only
difference here is that the uniform sampling pattern of sensing
is replaced by the selection based on the CUR decomposition.
Our proposed TWSP algorithm provides a fast and accurate
solution for CUR decomposition. We select between 20 and 80
locations for spectrum sensing and all 32 channels. Each row
of matrix U corresponds to a selected location and it has 32
entries. We are to assign F channels for each selected sensor. In
other words, each location does not sense the whole spectrum
and only F frequency channels are assigned to each sensor. The
top-F entries in each row with the highest absolute value show
the most important channels for the corresponding locations to
be sensed.
Fig. 4 shows the cartography error of spectrum sensing for the
conventional random selection as introduced in [21] and our
proposed optimized joint sensors and channels selection. For
each sampled locations F = 8 channels out of 32 channels
are sensed. The sampled spectrum map is interpolated using the
Thin plate splines method [18] for both sampling methods. In
addition to visual superiority in reconstruction of the spectrum
map, channel assignment based on TWSP provides a better
quantitative error as observed in Fig. 4

4.3. Supervised Sampling
The proposed TWSP algorithm is an unsupervised data selection
algorithm. In supervised settings, labels can infuse information
to perform a more viable joint selection. A naive approach is to
select representatives from each class independently. However,

Algorithm 1 Two way spectrum pursuit (TWSP)

Require: X∈RN×M, K1 and K2.
Output: Sc and Sr .

Initialization:
Sc ←A random subset of {1, . . . ,M} with |Sc| = K1

Sr ←A random subset of {1, . . . , N} with |Sr| = K2

{Sc
k}Kk=11←Partition Sc into K1 subsets.

{Sr
k}Kk=12←Partition Sr into K2 subsets

i = rnd(K1) and j = rnd(K2)
C ← columns of X indexed by set Sc

R← rows of X indexed by set Sr

while a stopping criterion is not met

Sc
i
= Sc\Sc

i

Ci ← remove column i in matrix C

W = C†iXR†

Ec = X −CiWR (Null space projection)
c = find the first left singular vector of Ec (3a)
Sc
i ←− the most correlated column of Ec with c (4a)

S̃c ←−
⋃K1

i′=1 S
c
i′

C = X(:, S̃c)

ec = min
U
‖X −CUR‖F

Sr
j
= Sr\Sr

j

Rj ← remove row j in matrix R
Y = C†XR†j
Er = X −CY Rj (Null space projection)
r = find the first right singular vector of Er (3b)
Sr
j ←− the most correlated row of Er with r (4b)

S̃r ←−
⋃K2

j′=1 S
r
j′

R = X(S̃r, :)

er = min
U
‖X −CUR‖F

IF ec < er

Sc ←− S̃c

i = rnd(K1)
else

Sr ←− S̃r

j = rnd(K2)

considering classes jointly is more effective for data reduction.
Assume two data classes are given as X1 ∈ RN×M1 and
X2 ∈ RN×M2 . The goal is to select K1 samples from class
1 and K2 samples from class 2. To this aim, we obtain the cross
correlation of two classes (as a kernel representation). Matrix
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Fig. 4: (top) The original spectrum map and its comparison with the
interpolated map using random sampling, adaptive CUR, Near Optimal,
and our proposed method (TWSP). (bottom) The interpolation error versus
the number of sensed locations is depicted.

X = XT
2 X1, which has M1 columns and M2 rows, is fed to

TWSP to select K1 columns and K2 rows jointly.
As an initial experiment, supervised sampling is performed

on Kaggle cats and dogs dataset. The features are obtained by a
trained Resnet-18 deep learning model as explained in [9]. Three
mutually exclusive data subsets for training, validation, and test-
ing are partitioned randomly from 2000 images of each class.
The classification accuracy of 97.5% is achieved from a fine-
tuned Resnet-18 using the whole training set containing 1000
samples for each class. Afterwards, samples are selected by
applying TWSP on the kernel feature matrix and the Resnet-18
is fine-tuned by using the sampled data. The model’s accuracy is
compared on the testing set with other sampling methods. Fig.
5 shows the performance of selection algorithms for different
numbers of representatives per class. Using only two samples
from each class, a classification accuracy of 82.3% can be
achieved which is more than 15% improvement compared to
random selection and more than 5% improvement compared to
other competitors.

2 3 4 5 6 7 8 9 10

70

75

80

85

90

95

100

Fig. 5: The classification accuracy of a fine-tuned Resnet-18 network using
a few selected data per each class.

We have conducted further experiments to study the ef-
fectiveness of the proposed algorithm in the multi-class image
classification problem. For this study, we use the Resnet-34 deep
learning model pre-trained on CIFAR10 and trained on a subset
of ImageNet Dataset comprising of 10 classes. The classes used

for this experiment are Tench, Goldfish, Great white shark,
Tiger shark, Hammerhead, Electric ray, Stingray, Cock, Hen,
and Ostrich. The original training data consists of 1300 images
of each class, and the idea is to use TWSP to select the data
samples such that K samples of each class are used for training.
After training Resnet-34 for 10 classes of CIFAR10, the feature
vectors of all the training images are extracted such that a
1300X512 matrix is obtained for each class. Since TWPS is
applicable for the two-class problem, we employ the one-versus-
all approach. In other words, a separate cross correlation matrix
is generated for each class such that X1 has the dimensions
512X1300 and X2 has the dimensions 512X11700 where X1

represents the feature vector of the class for which samples
will be selected while X2 represents the feature vectors of the
remaining 9 classes. Hence, the number of cross correlation
matrices is equal to the number of the classes. Then, K1 rows
and K2 columns are selected separately by applying TWSP on
each cross correlation matrix.

This step of generating correlation matrices is different from
binary classification where only one correlation matrix was
formed. Pre-trained Resnet-34 on CIFAR10 has been refined
again by using the sampled data from the ImageNet dataset.
The model’s accuracy is subsequently compared on the test
set with other sampling methods in Fig. 6. As it can be seen,
our proposed TWSP algorithm shows a superior performance
compared to the state-of-the-art methods in sampling.
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Fig. 6: Test accuracy for 10 classes of CIFAR10 dataset.

4.4. Informative Users/Contents Detection
Another problem gaining a lot of interest by streaming service
providers is choosing a set of users to decisively reflect their
feedbacks about different products. Therefore, it is crucial for
such companies to find a subset of users and media products,
reviews of which contain information about other users’ un-
known behavior. Each user has a limited scope of interest.
For example, a user preferring romance and action genres is
of a specific personality, able to represent a cluster of users
accurately. Moreover, such reviews are more valuable for their
areas of interest, not for all genres. Moreover, there exist movies
well representing their genres.

As a result, there exists a demand for a reliable algorithm
to simultaneously choose the most informative subset of users
and movies. Such a subset is desirable for streaming companies
to the extent that they are willing to give the users incentives
to leave comprehensive reviews for certain products. In this re-
gards, we have evaluated our algorithm on Netflix Prize dataset
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Fig. 7: Comparison of the normalized prediction error with state-of-the-art
algorithms obtained by CUR decomposition for simultaneous movies and
users subset selection from Netflix dataset.

containing 17, 770 movies and 480, 189 users. We have reduced
the dataset to 990 movies and 4, 727 users by considering only
movies and users with most reviews. Then, we completed the
dataset by Lin et al. method to have a ground truth [14]. We
select a subset of rows and columns (users and media) from
the completed dataset. Fig. 7 reveals that TWSP shows the best
performance in terms of predicting scores for all users/movies
based on a few selected users/movies.

5. CONCLUSION
Two-way spectrum pursuit is proposed as an accurate and
efficient algorithm for solving CUR decomposition. TWSP can
be employed for joint selection of columns and rows such that
their outer products is able to reconstruct the whole matrix
as accurately as possible. Some applications of the proposed
algorithm are presented to show the efficacy of the proposed
method. However, they are not limited to the mentioned ap-
plications. Moreover, the proposed algorithm can be extended
to n-way spectrum pursuit for efficient tensor subset selection.
The efficacy in joint selection on different datasets with TWSP
is shown against other methods.
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