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Abstract: KCNE3 is a potassium channel accessory transmembrane protein that regulates the
function of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important
role in the recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small
intestine, colon, and in the human heart. Despite its biological significance, there is little infor-
mation on the structural dynamics of KCNE3 in native-like membrane environments. Molecular
dynamics (MD) simulations are a widely used as a tool to study the conformational dynamics and
interactions of proteins with lipid membranes. In this study, we have utilized all-atom molecular
dynamics simulations to characterize the molecular motions and the interactions of KCNE3 in a
bilayer composed of: a mixture of POPC and POPG lipids (3:1), POPC alone, and DMPC alone. Our
MD simulation results suggested that the transmembrane domain (TMD) of KCNE3 is less flexible
and more stable when compared to the N- and C-termini of KCNE3 in all three membrane envi-
ronments. The conformational flexibility of N- and C- termini varies across these three lipid envi-
ronments. The MD simulation results further suggested that the TMD of KCNE3 spans the mem-
brane width having residue A69 close to the center of the lipid bilayers and residues S57 and S82
close to the lipid bilayer membrane surfaces. These results are consistent with previous biophysical
studies of KCNE3. The outcomes of these MD simulations will help design biophysical experi-
ments and complement the experimental data obtained on KCNE3 to obtain a more detailed un-
derstanding of its structural dynamics in the native membrane environment.

Keywords: KCNE3, structural dynamics, lipid bilayers, molecular dynamics simulation, mem-
brane mimetic

1. Introduction

KCNES3 is a potassium channel accessory transmembrane protein belonging to the
KCNE family that regulates the function of various voltage-gated potassium channels
such as KCNQ1 and KCNQ4 (1-4). KCNE3 has been expressed in the small intestine,
colon, and human heart (5-7). Previous studies have shown that in the presence of
KCNE3, KCNQI’s voltage sensitivity shows a linear current-voltage (I-V) relationship
that gives rise to a potassium ion conductivity in non-excitable cells as polarized epithe-
lial cells of the colon, small intestine, and airways (3, 8, 9). Its malfunction has been
proven to contribute to health disorders such as cardiac arrhythmia, long QT syndrome,
tinnitus, cystic fibrosis, and Meniere’s disease (3, 5, 10-15). For such a biologically signif-
icant membrane protein, little information is known about the structural and dynamic
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properties of KCNE3 in native like membrane environment, where interactions between
lipids and proteins help stabilize the structure of the protein and influence protein func-
tion within the membrane. Previous NMR studies of KCNE3 in detergent micelles and
isotropic bicelles by the Sanders lab have shown KCNE3'’s structure consists of an extra-
cellular N-terminus surface associated amphipathic helix connected by a loop to an alpha
helical transmembrane domain (16). A disordered C-terminus is connected to the
transmembrane domain by a short juxta membrane helix (16). Recent studies by Sun et al.
using cryo-electron microscopy (Cryo-EM) showed that KCNE3 tucks its single mem-
brane spanning helix against KCNQI at a point that appears to keep the voltage sensor in
its depolarized confirmation (8). However, it is not fully understood how these various
sections behave structurally and dynamically in various membrane bilayer environ-
ments.

Molecular dynamics (MD) simulations serve as a structure biology tool to comple-
ment experimental studies in order to study the stability and structural dynamic proper-
ties of membrane proteins at an atomic level (17-21). Here, we use all-atom MD simula-
tions in the course of 105 ns to study stability and structural dynamic properties of
KCNE3 in bilayers composed of POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)/POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)) (3:1), POPC
alone, and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) only. The POPC/POPG
mixtures, POPC alone and DMPC are widely used lipid systems to mimic biological
membrane bilayers for biophysical studies (16, 17). Previous MD simulation studies on
similar membrane proteins and other protein systems have suggested that the simulation
times of 10-100 ns can provide reliable analysis of protein-detergent and protein-lipid
interactions (17, 22-24). We have analyzed MD simulation trajectory data to obtain sev-
eral structural dynamics related parameters such as backbone root mean square devia-
tion (RMSD), root mean square fluctuation (RMSF), lipid bilayer membrane width,
Z-distances, total protein-lipid interaction energy, TMD helical tilt angle, and a heat map
of the correlation between parameters, results that yield insight into the stability, molec-
ular motion and interaction of KCNES3 in different phospholipid bilayer membranes.

2. Methods
2. I Molecular Dynamics modeling of wild-type KCNES3 in Lipid Bilayers

Nanoscale molecular dynamics (NAMD) (25) version 2.14 with the CHARMMS36
force field was employed to perform molecular dynamics simulations on a full length
KCNE3 (PDB ID: 2M9Z, the original pdb file is available in the Supporting Information of
the ref. 16) in lipid bilayers composed of POPC/POPG (3:1), POPC alone, and DMPC
alone (26-28). The simulation set up and input files were generated by using
CHARMM-GUI (http://www.charmm-gui.org) (29). The visual molecular dynamics
software (VMD) Xplor version 1.13 (30, 31) was used for MD trajectory data analysis. The
bilayer, composed of a pre-equilibrated lipid molecules with a ~12,010.5 A2 surface, was
built using membrane builder protocol under CHARMM-GUI (29, 32). The total charge of
KCNE3 was 2.0 in the simulation. The positively charged amino acid residues were pro-
tonated and negatively charged amino acids were deprotonated. The histidine (HIS)
residues were protonated to the neutral form (HSD). The protein was inserted into the
membrane and the system was solvated into a TIP3 water box and ionized to add bulk
water above and below the membrane and to neutralize the system with KCl using the
membrane builder protocol (29, 32). The final assembled system comprised waters,
phospholipids, ions and the protein (a total of ~ 174,071 atoms). Six equilibration steps of
equilibration of the system were performed for 50ps-200ps, 2fs timesteps with NAMD
using the input files generated by CHARMM-GUI before running production run fol-
lowing the instructions provided in the membrane builder protocol (29, 32). The mini-
mization equilibration inputs utilized collective variable restraints to slowly release the
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97 system to facilitate stable simulation. Starting from this equilibrated system, NAMD
98 simulations were carried out to ~ 105 ns using Langevin dynamics for the three mem-
99 brane environments (18). Electrostatic interactions were computed using the Parti-
100 cle-Mesh Ewald algorithm with a 12 A cutoff distance (33) and Van der Waals interac-
101 tions were computed with a 12 A cutoff distance and a switching function to reduce the
102 potential energy function smoothly to zero between 10-12 A. Periodic-boundary condi-
103 tions were used and constant temperature (303 K) and pressure (1 atm) were maintained.
104 Equations of motion were integrated with a timestep of 2 fs and trajectory data were
105 recorded in 20 ps increments (18).

106 2.2 Analysis of the MD simulation data

107 The structures in the MD trajectory data were aligned with respect to the first
108 structure for each membrane bilayer environment before further analysis. The stability
109 and structural dynamic behavior of KCNE3 was obtained from the aligned trajectory
110 data by calculating root mean square deviation (RMSD) of all atoms of the backbone, root
111 mean square fluctuation (RMSF), lipid bilayer membrane width, Z-distances, total pro-
112 tein-lipid interaction energy, and TMD helical tilt angle using the scripts available in the
113 VMD software package (30). The heatmaps for the correlation between different simula-
114 tion parameters were graphed using Matlab (https://www.mathworks.com). The images
115 were prepared using the Igor Pro graphics program (https://www.wavemetrics.com). All
116 molecular dynamics simulations were run on the Miami Redhawk cluster computing fa-
117 cility at Miami University.

118 3. Results and Discussions

119 The stability and structural dynamic properties of KCNE3 in different phospholipid
120 bilayer environments were investigated using NAMD molecular dynamics simulation
121 trajectory data. A wild-type KCNE3 protein was incorporated into three different lipid
122 bilayer environments including POPC/POPG (3:1), POPC alone, and DMPC alone to
123 study how structural and dynamic properties of KCNE3 behave in different lipid bilayer
124 environments. In this study, we utilized individual lipids and a mixture, where POPC
125 and POPG are monounsaturated lipids and DMPC is saturated lipid. These lipids are
126 widely used in studying membrane protein/peptides. POPG lipids contain a negative
127 charge and hence the mixture of POPC and POPG at the molar ratio of 3 to 1 may provide
128 more favorable condition to stabilize the TMD of KCNE3 buried into lipid bilayers while
129 spanning the width of the bilayer membrane (34, 35). Figure 1 shows the chemical
130 structure of lipids, the NMR structure of KCNE3 incorporated into POPC/POPG and
131 solvated into water and the amino acid sequence of the wild-type KCNE3 with distribu-

132 tion of charged amino acids by color codes (16).
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(C)

Wild-type KCNE3 amino acid sequence:

IMETTNGTET *(WYESLHAVLKALNATLHSNLLF'CRPGPGLGPDNQ

STEERRASLPGRDDN 57[SYMYI LFVMFLFAVTVGSLILGYTRS|**RKV

DKRS *4DPYHVY| *’KNRVSMI

Figure 1. (A) Chemical structure of phospholipids used for the NAMD molecular dynamics simu-
lations. (B) An illustrative example of the cartoon representation of the NMR structure of KCNE3
(PDB ID: 2M9Z) incorporated into POPC/POPG lipid bilayers and solvated into water box (16).
Amino acid sites 1-56 represent N-terminus, amino acid sites 57-82 represent TMD and sites 83-103
represent C-terminus. The amino acid sites 57 and 82 are colored yellow.(C) Amino acid sequence
of the wild-type KCNE3 with distribution of charges. Positive charges (Red), negative charges
(Blue), and Histidine (Green) are color coded. The highlighted red box represents the
transmembrane domain and blue boxes represent N- and C-terminal helices.

Molecular motion of KCNE3 in different phospholipid bilayer environments

An all-atom molecular dynamics simulation on wild-type KCNE3 in three different lipid bi-
layer environments was carried out over the course of 105 ns. Figure 2 shows the snapshots of the
representative MD simulation output trajectory data of KCNE3 incorporated into all three lipid
bilayer systems (POPC/POPG, POPC alone, and DMPC alone) for 16 ns, 40 ns, 80 ns and 105 ns.
The interaction of C- and N-termini of KCNE3 with lipid bilayer surface is flexible and dynamic for
all three lipid compositions. Interestingly, the initial few amino acid sites of N-terminal of KCNE3
showed a short beta sheet structure for the DMPC lipid system.
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(A) POPC/POPG

£

16ns 40 ns 80ns 105ns ¢,

(B) POPC
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16 ns 40 ns

(C) DMPC !

& 43

a2 o
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Figure 2. Snapshots of the representative MD simulation trajectory data of KCNE3 at 16 ns, 40 ns,
80 ns, and 105 ns for POPC/POPG (A), POPC alone (B), and DMPC alone (C) lipid bilayers. The
hydrogen atom and water are omitted to make visualization simple and clear.

In order to analyze the conformational stability and molecular motion of the wild-type
KCNE3 in membrane environments, a backbone root mean square deviation (RMSD) was calcu-
lated from the trajectory data and plotted as a function of simulation time for different segments of
the protein including transmembrane domain (TMD), C-terminus, N-terminus, C-terminal helix,
and N-terminal helix for POPC/POPG (3:1), POPC alone, and DMPC lipid bilayers as shown in
Figure 3. We omitted analysis of the first 15 ns of each trajectory of the production run to avoid
the equilibration time of the system. The RMSD measures the mean position of the amino acid
residues in the structure of the subsequent simulation frames and compares them to the initial
structure (22). The RMSD is important in identifying regions of the proteins that has higher flexi-
bility as well as regions that are stabilized. The initial trajectories for all simulations in the
POPC/POPG and POPC alone systems are similar. The RMSD profile pattern for POPC/POPG
(Figure 3A) shows that the RMSD values for the TMD of KCNE3 are lower than that of N-terminus
and N-terminal helix until 49 ns and then increases to have similar values by 105 ns. The RMSD
values for C-terminal and C-terminal helix are lower than the that of the TMD, N-terminus and
N-terminal helix and varying within the whole simulation range. Similarly, the RMSD profile pat-
tern for POPC (Figure 3B) shows that the RMSD values for the TMD of KCNE3 are very close to
that of N-terminus and N-terminal helix during the whole simulation range. The RMSD values for
the C-terminal helix are relatively lower than the TMD, N-terminus and N-terminal helix and
C-terminus with fluctuating values. The RMSD values for the C-terminus are also close to these
values but highly fluctuating within the whole simulation range. Similarly, the RMSD profile pat-
tern for DMPC (Figure 3C) shows that the RMSD values for the TMD, N-terminus, N-terminal he-
lix, C-terminal helix, and C-terminus are closely varying to each other with the RMSD values for
the C-terminus is also highly flexible within the whole simulation range. KCNE3 appears to be



Membranes 2022, 12, x FOR PEER REVIEW 6 of 21

179 more stable in DMPC than in POPC/POPG or POPC alone, as the RMSD profiles for each segment
180 are suppressed by comparison. In the POPC/POPG and POPC alone systems, it is observed that the
181 N-terminus and N-terminal helix have the highest RMSDs of all the segments of KCNE3. These
182 data suggest that these regions of the protein have conformationally higher backbone fluctuations
183 in the KCNE3 structure. This is expected as the N-terminus contains a larger number of amino acid
184 residues compared to the C-terminus and the TMD (16). In the POPC/POPG and POPC alone
185 systems, the RMSD values of the TMD starts out higher than that of the C-terminus and C-terminal
186 helix. However, it is seen that the C-terminus and C-terminal helix have more varied fluctuations
187 as compared to the TMD, suggesting that the C-terminus is more mobile and unstable as compared
188 to the TMD. The overall fluctuations of the C-terminus are however lower than that of the
189 N-terminus. The relatively smaller fluctuations observed for the TMD throughout the simulation
190 suggests that it is the most stable segment of the protein and with the greatest stability of all seg-
191 ments studied. In the DMPC membrane mimetic system, the TMD is observed to have similar
192 backbone fluctuations as in the POPC/POPG and POPC alone systems. However, the C-terminus
193 segment starts out with the higher RMSD than that of the N-terminus in contrast to the other two
194 POPC/POPG and POPC alone systems. Similarly, higher backbone fluctuations for N- and
195 C-termini reveal a similar level of conformational instability in the DMPC bilayer system. The av-
196 erage RMSD values for different segments of the KCNE3 are also calculated for all three lipid sys-
197 tems from the data in Figure 3 and shown in Tablel. The average RMSD values varies between 10.4
198 A-23.5 A for POPC/POPG, 103 A to 17.4 A for POPC alone, and 9.5 A-15 A for DMPC. The av-
199 erage RMSD value for the TMD in DMPC is the least value for TMD of the all three lipid systems
200 studied. The C-terminal helix has the lowest average RMSD value when compared to different
201 segments of the protein in all three corresponding lipid systems. The standard deviation calculated
202 on the average RMSD data show higher values for the outside regions of the protein compared to
203 the TMD in all three corresponding lipid system. The RMSD data for different regions of KCNE3 in
204 different lipid bilayer environments suggest that the backbone flexibility for different segments of
205 KCNES3 is different in POPC/POPG, POPC alone, and DMPC bilayer membranes. Our overall
206 RMSD data suggest that the regions of the KCNE3 that is outside the membrane or interact with the

207 surface are more flexible and DMPC lipid system plays more stabilizing role.
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— TMD
—— N-terminal helix
—— N-terminus
(A) —— C-terminal helix
_| POPC/POPG —— C-terminus

Simulation time (ns)

DMPC

20 40 60 80 100
Simulation time (ns)
208
209 Figure 3. Root mean square deviation (RMSD) as a function of simulation time for different seg-
210 ments of KCNE3 in POPC/POPG (A), POPC alone (B), and DMPC (C).
211 Table 1. Average RMSD calculated from the RMSDs shown in Figure 3. The error represents
212 standard deviation.

Average RMSD (A)
POPC/POPG POPC DMPC
TMD 14.7 +3.5 14.2+3.1 9.7£1.6
N-terminal helix 18.6+3.5 15.9£3.3 11.3+4.4
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N-terminus 23.5£3.8 17.4+3.1 13.3+4.0
C-terminal helix 10.4+4.0 10.3+2.5 9.5+1.6
C-terminus 11.3+2.6 14.0+3.9 15+2.8

213
214 The RMSD data only provide the average behavior of the motion of the different seg-
215 ments of the protein while interacting with lipid bilayer membrane. We also wanted to
216 understand how the flexibility of the particular regions assessed above contributed to the
217 overall fluctuations that disturb the KCNE3’s stability. The residue-wise fluctuation of
218 different segments of bilayer-integrated KCNE3 while incorporated into lipid bilayers
219 were quantitatively determined by the root mean square fluctuation (RMSF) as a function
220 of simulation time as shown in Figure 4. While the RMSD indicates positional differences
221 of entire structures over the course of the simulation, the RMSF calculates how much a
222 residue fluctuates during the simulation (22). Consequently, it helps determine the flexi-
223 bility of individual residues. Figure 4 shows the RMSF for KCNE3 residues in the three
224 bilayer conditions. The profile for KCNE3 is similar for all three bilayer compositions.
225 Overall, residues 1-9 (unstructured region) and ~25-35 (around the terminal of
226 N-terminal helix) of the N-terminus and residues ~96-103 (unstructured region) of the
227 C-terminus have the largest RMSF, suggesting they are the most flexible.

—— POPC/POPG

— POPC

—— DMPC

20 N-terminus C-terminus
Residue Position

228
229 Figure 4. Plot of the root mean square fluctuation (RMSF) of KCNE3 as a function of simulation
230 time for three different lipid compositions: POPC/POPG (Red), POPC (Blue), and DMPC (Black).
231 These results agree with the RMSD calculations that highlighted the highest fluctuations
232 in the C- and N- termini. The RMSF of N-terminal residues 11-24 (helical region) and the
233 TMD section from residue 57-82 are lower and indicate stability. The smallest RMSF
234 fluctuations of the TMD region occur in DMPC, which is in agreement with our obser-
235 vations regarding the RMSD of this region. The previous NMR data-restrained molecular
236 dynamics simulation on KCNE3 in DMPC lipid bilayers suggested the dynamic interac-
237 tion of N- and C-termini helices with membrane surface (16). These helices contain am-
238 phipathic amino acid sequence that do not deeply bury into the lipid bilayers and hence
239 these helices can dynamically interact with surfaces. The fluctuation of different seg-

240 ments of KCNE3 as suggested by the RMSF plot is consistent with the RMSD data and
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earlier NMR studies (16). Our RMSF data suggest the N- and C-termini are more flexible
with higher RMSD values in all three lipid compositions.

—— POPC/POPG
— POPC
(A) —— DMPC (B)
< 38- S
e =
5 36 { A'Wh 2
= B
o _ (=)
E 34 >
8 =
32 o
5 5
= 30- S
| I I I I I o | | |
0 20 40 60 80 100 32 36 40
Simulation time (ns) Membrane Width (A)

Figure 5. Membrane bilayer width incorporating KCNE3 protein as a function of simulation time
(A) and membrane width probability distribution for POPC/POPG (Red), POPC (Blue), and DMPC
(Black) bilayers.

We wanted to better understand the formation of the lipid bilayer in the presence of
reconstituted KCNE3, since we observed a suppressed RMSD for the KCNE3 TMD re-
gion with DMPC, in comparison to POPC/POPG and POPC alone. Both tails of DMPC
only have 14 carbons, while POPC and POPG have 16 and 18. We measured the width of
the membrane bilayer as a function of the simulation time for all three membrane mimic
environments (POPC/POPG, POPC alone, and DMPC) to determine whether DMPC was
forming compacted bilayers that stabilized the KCNE3 TMD. The membrane width was
calculated by measuring the distance between the center of mass of the phosphorus of the
upper and lower lipid head groups. The membrane width is shown as a time series in
Figure 5a, while the probability distribution of the timeseries data is represented in Fig-
ure 5b. The membrane width of DMPC is the lowest, as expected based on the length of
hydrocarbon chains. The membrane width distribution plot (Figure 5B) shows the
membrane width peak is centered around 37A for POPC/POPG, 35A for POPC and 31A
for DMPC. The membrane width for POPC/POPG lipid bilayers is thicker than that of
POPC lipid bilayers, despite having the same number of carbon atoms in the acyl chains.

Next, we wanted to understand the protein topology with respect to the lipid bilayer
membrane, since we observed that each bilayer had a different membrane width. The
membrane thickness is oriented about the Z-axis with the center of mass of the
membrane bilayer located at Z=0. We calculated the distance from the Z-axis (Z-distance)
of different segments of KCNE3 from the center of the mass of the lipid bilayers in all
three different lipid membrane environments (POPC/POPG, POPC alone and DMPC).
Previous NMR studies in micelles and isotropic bicelles suggested that amino acid
residue sites 57 to 82 belong to the TMD of the KCNE3 that spans the membrane bilayer
width (16). The Z-distances of the center of mass of the N-terminal helix, residues S57,
A69 and S82, and the C-terminal helix from the center of mass of the lipid bilayers were
calculated from the MD trajectory data. These Z-distance data can provide us with the
information on how much various residues and different segments in the protein
structure moved away from the center of the lipid bilayers when incorporated into

different membrane environments. Figure 6 shows the plot of Z-distance as a function of
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276 simulation time for center of mass of different segments (N- and C-termini helices), and
277 sites S57, A69, and S82 of TMD of KCNES3 in three different lipid bilayer environments
278 (POPC/POPG, POPC alone, and DMPC). Figure 6A indicates that the TMD termini sites
279 S57 and S82 are close to the surface of the lipid bilayer and span the width of the
280 membrane for POPC/POPG lipid bilayers. Figure 6A shows that the amino acid residue
281 site A69 lies close to the center of the lipid bilayers for POPC/POPG as indicated by the
282 Z-distance around zero. The Z-distance for N- and C-termini helices vary outside the
283 membrane width range. Similar trend of Z-distance pattern profile was observed for
284 POPC alone and DMPC lipid bilayer environments. However, the Z-distance ranges for
285 the TMD termini residues S57 and S82 for DMPC is lower than that for POPC/POPG and
286 POPC alone. This is expected as the DMPC bilayer width is lower than that of the
287 POPC/POPG and POPC alone(Figure 5). The behavior of Z-distance pattern profile for
288 these lipid bilayer environments are consistent with the membrane width profile shown

289 in Figure 5.
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291 Figure 6. The plot of Z-axis distance (Z-distance) as a function of simulation times for KCNE3 in-
292 corporated into POPC/POPG (A), POPC (B), and DMPC (C) lipid bilayers. Shaded regions repre-

293 sent the average width of the corresponding lipid bilayers calculated from Figure 5.
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Figure 7. Internal energy of KCNES3 in lipid bilayer membranes as a function of simulation time
(left panel) and corresponding histogram (right panel) for total internal energy (A), electrostatic
energy (B) and van der Waals energy (C). The x-axis of the histogram plot represents probability
distribution. The bin of 85 was used to obtain histogram.

In order to understand the stability of the interaction of the KCNE3 reconstituted
into lipid bilayer membrane environments, we calculated the internal energy of KCNE3
and plotted this energy as a function of simulation time for all three membrane bilayer
environments and corresponding histograms for total internal energy, electrostatic en-
ergy contribution and van der Waals energy contribution as shown in Figure 7. Figure 7A
shows similar total energy profiles for all three systems. When the data is represented as
a probability distribution (right panel), the total internal energy of the KCNE3 is the
lowest, with more favorable values in the POPC/POPG lipid bilayers. The total internal
energy of KCNE3 increases for POPC bilayers and is the least favorable in DMPC. Figure
7B shows the similar internal energy trends and histogram profiles for electrostatic en-
ergy contribution when compared to the total energy profile for all three systems. Figure
7C shows a lower van der Waals contribution to the total internal energy when compared
to the electrostatic energy contribution. The probability distribution (Figure 7C, right
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314 panel) shows the van der Waals energy of KCNE3 has a slightly lower value in
315 POPC/POPG lipid bilayers when compared to the POPC alone and DMPC alone systems
316 both having similar van der Waals energy contributions. The electrostatic interactions are
317 the dominant contribution to the total energy for all three lipid environments. The trend
318 of the total internal energy in all three lipid environments suggests that the overall pro-
319 tein structure is more stable in POPC/POPG bilayer membrane compared to the cases of
320 POPC and DMPC. Our hypothesis is that when the KCNE3 is unable to interact with the
321 lipids, it relies on internal interactions to stabilize the structure.

322 To test this hypothesis, we computed the interaction energy of different segments of
323 the KCNE3 with the lipid bilayer membrane as shown in Figure 8. In all three lipid en-
324 vironments, the interaction energy of the TMD section with the lipid is lower than that of
325 C-terminus, C-terminal helix, and N-terminal helix with the lipid. The interaction energy
326 of the N-terminus is close to interaction energy of the TMD but fluctuates throughout the
327 whole simulation time. While the interactions of the N- and C- termini appear to be
328 strong and exhibit large fluctuations, the N- and C-termini helices weakly interact with
329 the lipid. Inspection of the trajectory data suggests these helices are closely interacting
330 with the membrane surface during the simulation time where interaction energy attains
331 lowest values. The average interaction energies for each section of KCNE3 during the
332 whole simulation trajectories were calculated for all three lipid systems from the interac-
333 tion energy data (Figure 8) as shown in Table 2. The average interaction energy for the
334 TMD of KCNE3 has a similar value (within the error) for all three lipid systems. Simi-
335 larly, other segments of the protein have similar average interaction energy (within the
336 error) in all three corresponding lipid systems. However, the standard deviation values
337 are larger for the N- and C-termini in all three lipid systems. These data suggest that the

338 interactions of the N-and C-termini of KCNE3 with the membrane surface are dynamic.
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Figure 8. Interaction energy of different segments of KCNE3 with lipid bilayer membranes as a
function of simulation time for POPC/POPG (A), POPC (B), and DMPC (C) lipid bilayers.
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342 These interaction energy data suggest that the N-terminus interacts most strongly with
343 the membrane surface but the interaction is dynamic and unstable, as the standard devi-
344 ation in the average energy calculation is very high for this segment of the protein. While
345 the interaction energy of TMD is higher than that of the N-terminus, the stability of the
346 TMD structure might be coming from the internal energy of the protein and also its
347 transient contact with water (16).

348 Table 2. Average interaction energy calculated from the interaction energy shown in Figure 8. The
349 error represents standard deviation.

Average Interaction Energy (KCal/Mol)

POPC/POPG POPC DMPC
TMD -313.7442.3 -316.6£37.5 -317.5+42.2
N-terminal helix -5.6£10.9 -8.0+14.8 -5.4£9.4
N-terminus -465.3+85.3 -371.8+105.3 -401.3+£86.8
C-terminal helix -4.9+£8.8 -11.6+20.2 -7.5%¢13.7
C-terminus -162.5+64.5 -184.7+63.7 -200.6+68.5
350
351 To better understand the conformational stability and the interaction of the
352 transmembrane domain (TMD) of KCNE3 with membrane bilayers, we calculated the
353 helical tilt of the TMD within the bilayer. In our previous results, we saw that the mem-
354 brane thickness was dependent upon the lipid environment, though there were minute
355 differences in the z-distances of the terminal residues of the TMD helix. We wanted to
356 establish whether the deformation of the helix occurred in order to accommodate the
357 structure within the bilayer. We have plotted the probability density of the
358 transmembrane (TM) helical tilt of KCNE3 with the membrane normal and the
359 Z-distance of the TMD of KCNE3 from the center of the mass of lipid bilayers for all three
360 different membrane environments (POPC/POPG, POPC alone, and DMPC) as shown in
361 Figure 9. The initial Z-distance mostly fluctuated around 0 A. When KCNES3 is embedded
362 in the POPC/POPG lipid bilayer, two conformations of the TMD helix are observed; the
363 dominant population is centered around a Z-distance of - 3A and a helical tilt of 45° while
364 the second less populated conformation is at a Z-distance of 2A and a helical tilt of 75°.
365 In the case of POPC alone, similar conformations are observed, though the populations
366 are more diffuse with sampling of many intermediate states between the two dominant
367 conformations in Figure 9 in a combination of POPC/POPG. By comparison, only one
368 dominant conformation exists in the DMPC lipid, which is unique to DMPC and not
369 observed in the other two lipid environments. The highest probability is centered around
370 a Z-distance of 3.5A, while the helical tilt fluctuates between 45° and 70°. These data
371 suggest that there is a strong correlation between TM helical tilt angle and Z-distance for
372 POPC/POPG bilayers and DMPC bilayers, and a weak correlation was observed for
373 POPC bilayers. Interestingly, the dominant probability density for the DMPC membrane
374 appears for the Z-distance of the TMD of around 4A from the center of the mass of the
375 bilayers and TM helical angle of around 45°-70°. This suggests that the TMD helix tilts in
376 order to remain embedded within the lipid bilayers. However, in DMPC the TMD helix is
377 more stationary at the Z-distance and samples less tilt angles, suggesting that it is more
378 stable in this lipid system. In contrast, when the TMD helix is in POPC/POPG and POPC
379 alone the tilting behavior of the TMD helix results in changes in Z-position, suggesting
380 higher the TMD helix is more mobile within these lipids. These probability distribution

381 patterns are also consistent with the membrane width data shown in Figure 5.
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383 Figure 9. Probability density plot of transmembrane (TM) helical tilt angle against the Z-distance of
384 TMD of KCNE3 in different lipid bilayer membranes. The yellow color indicates the highest
385 probability and blue color represents the lowest probability.

386 We wanted to further understand the conformational stability and interaction of
387 different segments of KCNE3 with membrane bilayers. We plotted the correlation be-
388 tween the total interaction energy of different segments of KCNE3 (N-terminus,
389 N-terminal helix, TMD, C-terminal helix and C-terminus) and the corresponding
390 Z-distances from the center of the mass of the membrane bilayers in Figure 10. Figure
391 10A shows the probability distribution for the N-terminus. Similar trends are observed
392 for POPC/POPG and DMPC, with one dominant population that varies between
393 Z-distances of 35-50 A and interacts strongly with the lipids with energies ranging from
394 -550 to -750 kcal/mol. Interestingly, the probability distribution for POPC alone is more
395 dispersed and involves much lower interaction energies. Inspection of the visualization
396 of the trajectory data suggests that the interaction of the N-terminus with the POPC
397 membrane surface is dynamic and very unstable, with a wide spreading of its portion
398 above the surface with occasionally anchoring to it. For the N-terminal helix of KCNE3
399 (Figure 10B), the probability distributions are similar for all three lipid environments.
400 However, an additional disperse density with higher interactions and Z-distances closer
401 to the head groups is observed for POPC/POPG. The inspection of the visualization of the
402 trajectory data suggest that N-terminal helix also interact dynamically with the
403 POPC/POPG membrane surface and develops a bending in the helix during the interac-
404 tion during certain periods of simulation times. Similar trend of a dominant population
405 for the TMD helix is observed for all three systems (Figure 10C). However, an additional
406 dispersed density with higher interactions with same Z-distance has been observed in
407 POPC. The probability density for the TMD helix also shows higher interactions in
408 DMPC. For the C-terminal helix (Figure 10D) and the C-terminus (Figure 10E), similar
409 populations are observed in all three lipid systems with a slightly weaker interactions
410 observed in the POPC/POPG system. Together, these data suggest that the TMD of
411 KCNES3 is stably interacting with all three lipid systems with DMPC conferring the
412 greatest stability. While the N-terminus of POPC/POPG is interacting strongly, it is more
413 dynamic and less stable. The interaction trend of C-terminus is similar in POPC alone
414 and DMPC. The week interaction of C-terminus in POPC/POPG suggesting that the
415 unanchored regions of the either termini are stabilized by the interactions with water.
416 The probability density pattern for different segments observed in these three environ-
417 ments are consistent with our RMSD, RMSF, membrane width, Z-distances, and total

418 interaction energy data (Figure 3-7).
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Figure 10. Probability density plot of total interaction energy of different segments of KCNE3 with
lipid bilayers against corresponding Z-distances from the center of mass of the lipid bilayers for
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424 different lipid bilayer membranes. The yellow color indicates the highest probability and blue color
425 represents the lowest probability.

426 NMR studies by the Sanders lab on KCNE3 in LMPC (lyso-myristoylphosphatidyl
427 choline) micelles and DMPG (dimyristoylphosphatidylglycerol)/
428 DHPC(dihexanoylphosphatidylcholine) isotropic bicelles have suggested that KCNE3
429 adopts a single a-helical transmembrane domain (57-81). This is connected to a flexible
430 loop with N-terminal surface associated amphipathic helix (10-30) and a short
431 juxtamembrane helix (90 to 95) and a disordered C-terminus (96 to 103) (16). The previ-
432 ous double electron electron resonance (DEER) electron paramagnetic resonance (EPR)
433 data on KCNE3 in POPC/POPG bilayered vesicles suggested that the TMD helix of
434 KCNE3 adopts a moderate curvature with residues T71, 574, and G78 facing the con-
435 cave side of the curvature (16). The TMD of KCNES3 is crucial to its function and the
436 curvature is important for binding to the activated-state channel (16). A recent
437 cryo-electron microscopic (Cryo-EM) spectroscopic study on the KCNE3-KCNQ1 com-
438 plex in detergent micelles suggested that there is a deviation on the structure of KCNE3
439 interacting with KCNQI relative to the KCNE3 NMR structure model in isotropic bicelles
440 with a root mean square deviation (RMSD) of 7.6 A between the two structures (8). Our
441 all-atom molecular dynamics simulation data for 105 ns obtained on KCNE3 in
442 POPC/POPG, POPC alone and DMPC bilayers reported in this study suggested that the
443 center of mass of the KCNE3 TMD is slightly moved up and remained more stable in
444 DMPC when compared to POPC/POPG and POPC alone while N- and C-termini are
445 more conformationally flexible and interacting differently in all three environments. The
446 N- and C-termini helices are also dynamically interacting with the solvent or may be
447 partially interacting with the membrane surface. The MD simulation results further
448 suggested that the TMD of KCNE3 spans the membrane bilayer width with the amino
449 acid residue A69 situated close to the center of lipid bilayers and the residues S52 and S82
450 are close to the surface of the membrane bilayer. The total internal energy of KCNE3
451 suggested that the POPC/POPG lipid bilayer membrane provide more stable simulation
452 and protein-membrane interaction. Our molecular dynamics simulation data are con-
453 sistent with earlier experimental biophysical studies on KCNES3 (8, 16, 36). Extending the
454 MD simulation time longer than 105 ns may provide additional insight on the structural
455 dynamic properties of KCNE3 while interacting with different mimetic systems.

456 4. Conclusions

457 All atom molecular dynamics simulations for 105 ns was performed on KCNE3 re-
458 constituted into POPC/POPG, POPC alone and DMPC alone bilayer membrane envi-
459 ronments to study the structural dynamic properties of KCNE3. The MD simulation re-
460 sults suggested that the TMD of the KCNES3 is less conformationally flexible and more
461 stable when compared to the N- and C-termini in all three membrane environments. The
462 N- and C-termini of KCNE3 are conformationally more flexible and dynamic in all these
463 three lipid environments. The MD simulation results further suggested that the TMD of
464 KCNE3 spans the membrane width having residue A69 being close to the center of the
465 lipid bilayers and residues S57 and 582 being close to the apposing lipid bilayer mem-
466 brane surfaces. These MD simulation results complement the experimental biophysical
467 studies of KCNES3 in lipid bilayer membranes to illuminate its structural dynamic prop-
468 erties in more detail.
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MD, molecular dynamics;

RMSD, root mean square deviation;

RMSF, root mean square fluctuation;

LMPC, lyso-myristoylphosphatidyl choline;

DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine;
DHPC, dihexanoylphosphatidylcholine;

DMPG, dimyristoylphosphatidylglycerol;

POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine;
POPG, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt);
TMD, Transmembrane Domain;

EPR electron paramagnetic resonance;

DEER, double electron-electron resonance.
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