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Abstract

Motivation: Estimating causal queries, such as changes in protein abundance in response to a perturbation, is a fun-
damental task in the analysis of biomolecular pathways. The estimation requires experimental measurements on
the pathway components. However, in practice many pathway components are left unobserved (latent) because
they are either unknown, or difficult to measure. Latent variable models (LVMs) are well-suited for such estimation.
Unfortunately, LVM-based estimation of causal queries can be inaccurate when parameters of the latent variables
are not uniquely identified, or when the number of latent variables is misspecified. This has limited the use of LVMs
for causal inference in biomolecular pathways.

Results: In this article, we propose a general and practical approach for LVM-based estimation of causal queries. We
prove that, despite the challenges above, LVM-based estimators of causal queries are accurate if the queries are
identifiable according to Pearl’s do-calculus and describe an algorithm for its estimation. We illustrate the breadth
and the practical utility of this approach for estimating causal queries in four synthetic and two experimental case
studies, where structures of biomolecular pathways challenge the existing methods for causal query estimation.
Availability and implementation: The code and the data documenting all the case studies are available at https:/

github.com/srtaheri/LVMwithDoCalculus.

Contact: mohammadtaheri.s@northeastern.edu or o.vitek@northeastern.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomolecular pathways are governed by complex patterns of con-
trols such as signaling, gene regulation and metabolic reactions.
Biomolecular pathways are often represented as graphs, where
nodes are signaling proteins, genes, transcripts or metabolites, and
directed edges are causal regulatory relationships. The graph-based
representations are useful for simulating experimental perturba-
tions, and answering, iz silico, causal queries of the form “When we
perturb X, what is the effect on its descendent Y?’. However, the es-
timation of causal queries requires more than a qualitative topology
of the graph. It also requires experimental measurements on the
nodes of the graph, in order to quantitatively characterize the causal
relationships (Pearl, 2009).

Unfortunately, no measurement modality can currently capture
all the molecular components of a pathway. The incomplete data
arise in at least two general, ubiquitous scenarios. The first occurs
when components of a biomolecular pathway are not fully known.
For example, there may be empirical evidence for the regulation of
an enzyme, but the identity of the molecule or protein that regulates
the enzyme may be unknown (Cannon et al., 2021). The second
scenario occurs when, due to limitations of the measurement
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techniques, some pathway components are unobserved. For ex-
ample, antibodies for a protein may not be available. Alternatively,
while RNA abundances may be characterized, levels of the corre-
sponding protein or the state of its post-translational modifications
may be unknown (McNaughton et al., 2021).

Latent variable models (LVMs) are particularly useful for repre-
senting biological pathways with partially known topology or missing
measurements of pathway components (Durbin ez al., 1998; Ernst
et al., 2007; Kondofersky et al., 2015; Shojaie and Michailidis, 2009;
St John et al., 2019). LVMs are probabilistic models of a joint distribu-
tion on a set of observed and unobserved variables. A broad class of
LVMs has a directed acyclic graphical (DAG) structure. LVM-based
estimation of a causal query proceeds by removing edges in the DAG
that point to the target of intervention. Trained on observational data
once, an LVM can estimate multiple causal queries corresponding to
multiple mutilated versions of the original DAG.

There currently exists some controversy as to whether LVM-
based estimation of causal queries is accurate. One argument against
this approach is that the parameters of the LVM may not be unique-
ly identified from the observed data (Shpitser ez al., 2014). Another
argument is that the number of latent variables may be misspecified
(Shpitser et al., 2012). As a result, currently accepted approaches to
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LVM-based causal query estimation are limited to LVMs with speci-
alized structural properties, such as the existence of proxy variables
(Kuroki and Pearl, 2014; Louizos et al., 2017), or the presence of
multiple causes (Wang and Blei, 2019). The latter approach, al-
though scalable to a large number of variables, is not correct in gen-
eral and requires strong parametric assumptions (D’Amour, 2019).
Since biomolecular pathways have complex and diverse topology,
are frequently large-scale, and have many (possibly unknown) latent
variables, the controversy has so far limited the use of LVM for
causal inference in this context.

In this article, we argue that LVM-based estimators of causal
queries are in fact accurate when the queries are identifiable according
to Pearls do-calculus, and describe a simple and practical algorithm for
its estimation. We show that the estimated probability distribution
associated with the causal query converges to the true distribution, and
that the estimate of its expected value is consistent. This holds even
when the parameters of the model are not uniquely identified, or when
the true number of the latent variables is unknown.

We showcase the breadth of applicability, and the practical util-
ity of LVM-based estimation of identifiable causal queries in four
synthetic and two experimental case studies of biomolecular path-
ways. The case studies demonstrate the accuracy of the estimated
causal effects, even when some pathway components are not
experimentally quantified or unknown, and when the parametric
assumptions only approximately represent the true data generating
process. The case studies also demonstrate that the proposed ap-
proach expands the use of causal inference to pathways where the
existing alternative approaches do not apply, and enables the
estimation of multiple causal queries from a single trained model.

2 Background

2.1 Notation

Let V={Vy,..., V;} be a set of observed random variables, and U =
{U1,...,UL} be a set of latent variables. Let v; be an instance of Vj,
and v = {v1,...,v;} an instance of V. Let P(vy,...,v;) be the joint
probability distribution of the event V = v, and let P(V; = v;|V; = v;)
be the conditional probability distribution for the event V ; = v; given
V ;= v;. Denote P(U) the prior distribution over all the latent variables,
and P(U\{v,-}fi]) the posterior distribution over all latent variables U
given N observations of V. In this article, we simplify the notation for
the marginalized joint distribution [ P(U,V)du as P(V). Let G be a
DAG with nodes V U U, where Pa(V;) denotes the parents of a node V;
in G. The joint distribution between variables VU U in DAG G is for-
mulated as, P(U, V) = HLI P(Vj|Pa(V))) [T, P(U)|Pa(U))).

2.2 Latent variable models

A latent variable model (LVM) is a probability distribution over two
sets of variables V, U, where V are observed at the learning time,
and U are not observed. LVMs are generative, in the sense that they
allow us to sample from the joint distribution of all the variables.

A causal LVM M is an LVM with DAG structure where Pa(V;)
are interpreted as direct causes of V;. In Bayesian framework, par-
ameter vector 0 of the causal LVM are assigned prior probability
distributions, and are absorbed into the set of latent variables
denoted by 0 C U.

Given a causal LVM with a DAG G, observed variables V, and la-
tent variables U (Evans, 2016) compactly represents LVMs with many
latent variables by an LVM with a single latent variable between each
pair of observed variables, according to the following rules:

1. Remove latent variables with no children.
Remove a latent variable U with observable parents by connect-
ing all the parents of U to its children.

3. If U, W are latent variables with children(W) C children(U),
then remove W.

Figure 1a illustrates a causal LVM with many latent variables,
and Figure 1b, a causal LVM obtained from (a) by applying the sim-
plification. Figure 1c is an acyclic directed mixed graph (ADMG)

(b) (c)

Fig. 1. (a) An LVM with four observed (white) and five latent (dark grey) varia-
bles. (b) A different LVM with 1 latent variable. (c) An ADMG representing both
(a) and (b)

(Richardson et al., 2017) representing both Figure 1a and b. It
shows the existence of latent variables between X; and X, by a
dashed bi-directed edge.

Inference algorithms (Bishop, 2006) sample from the posterior dis-
tribution P(U|{v;}Y,) of latent variables in the ADMG, including the
parameters 0, given N observations of V. In particular, exact algo-
rithms such as Hamiltonian Monte Carlo (HMC) (Girolami and
Calderhead, 2011) guarantee asymptotically exact samples but are
computationally expensive (Robert and Casella, 2013). Approximate
probabilistic inference algorithms such as variational inference (Blei
et al., 2017) trade off accuracy for speed by searching with gradient
descent a parameterized family of functions that approximate the tar-
get distribution. A trained causal LVM M is an LVM where posterior
distributions of the parameters are learned with an inference algorithm.
Many packages such as PyStan (Van Hoey et al., 2013) or pyro
(Bingham et al., 2019) in Python, or RStan (2020) in R take as input
an LVM and output a trained LVM.

2.3 Causal query identification

Frequently, we are interested in an intervention on a set of target
variables X C V which fixes a set of variables X to constant values
x' (denoted do(X = x'), shortened to do(x’)), and makes it inde-
pendent of its causes (Eberhardt and Scheines, 2007; Spirtes et al.,
2000). Graph mutilation in a causal LVM simulates an intervention.
It severs the edges incoming to the target nodes and fixes each node
X € X to its intervention value x’ € x' (Koller and Friedman, 2009),
producing a graph that we denote Gg. Denote Pc_(v) the probabil-
ity distribution encoded by Gx. Denote My the causal LVM with
structure G (the subscript X in this notation distinguishes the inter-
vened model from the original model). Denote P_(v) the probabil-
ity distribution, and E_[v] the expected value of the variables v in
the intervened model Ms.

A causal query Qx with respect to a causal LVM M is a prob-
abilistic query that conditions a set of outcomes Y C V X on a set of
interventions, such as  Ox =Pu_(Y|do(x')) or Ox=
E . [Yldo(x')]. To denote the distribution of the outcome variable
obtained from a mutilated model that was trained on pre-
interventional data, we use counterfactual subscript notation
YdO(x’) ~ P(Ydo(x’)|{xi7yi}f'il)'

A causal query Ox is identifiable with respect to P(V) and an
ADMG A, if all LVMs that project onto A and agree on P(v) also
agree on the value of Qx (Shpitser and Pearl, 2008). A causal query
is identifiable if it satisfies the back-door or the front-door criteria
(Pearl, 2009). The back-door and the front-door criteria rely on the
following concepts of graphical modeling. In a DAG G, there is a
path between V; and Vj, if there is a sequence of edges connecting V;
to V;. A variable is a collider when both edges adjacent to the vari-
able on the path point into it. A path is blocked if we observe the
value of a non-collider on that path or we do not observe the value
of a collider.

The back-door criterion (Pearl, 2009) holds for X, Y € V in
ADMG A if there is no path from X to Y consisting of bi-directed
edges, and there exists a set Z C V {X, Y} such that no node is a des-
cendant of X, and Z blocks every path between X and Y that contains
an arrow into X (Pearl, 2009). If a set of variables Z satisfies the
back-door criterion relative to (X, Y), then the causal effect of X on Y
is identifiable and is given by P(Y|do(x')) = > P(Y|x’,2)P(2). The
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Algorithm 1 Estimation of an identifiable causal query

Input M , a causal LVM trained on observational data
with an exact inference algorithm
x' C v, target values of the intervention
Y C V, effects of the intervention
Ox = Pz (Y|do(x)) or En [Y|do(x')] query
Param S, # of samples from the posterior distribution
L, # of samples for each variable
OmmnPM(Yuqf»orﬁMQYuqxn

X

1: Check identifiability of Ox
2: if Ox is not identifiable then
3:  break

4: else

5: SetX=x

6: Create /\?lg, the mutilated model
7: forsin 1: S do

8 %mﬂe&wPMJMHJﬁQ

9: for W in topological-sort({U U V}) do

10: Sample w; ~ P (W[Pa(W);0;) L times

11: end for *

12: Collect y, C w;

13:  end for

14: Return density({ys}f:1) or %Zf:l Y
15: end if

front-door criterion (Pearl, 2009) holds when there is an unobserved
confounder, but there exists a mediator between cause and effect that
is shielded from confounding (Pearl, 1993, 1995, 2009). If a set of vari-
ables Z satisfies the front-door criterion relative to (X,Y), and if
P(x,z) > 0, then the causal effect of X on Y is identifiable and is given
by the formula, P(Y|do(x")) = 3, P(z]x") >, P(Y|x,2)P(x). For ex-
ample, neither the back-door nor the front-door criterion hold in
Figure 2a, but the front-door criterion holds in Figure 2b. The back-
door and front-door criteria are sufficient but not necessary for causal
identifiability.

The do-calculus is comprised of three rules for symbolically
manipulating interventional and observational joint distributions.
Let X, Y, Z and W be disjoint sets of variables in the joint distribu-
tion entailed by ADMG G. Let Gy denote the graph produced by
mutilating G such that all incoming edges to X are removed.
Similarly, G, is the graph created when G is mutilated by removing
all outgoing edges from Z. The three rules of do-calculus are as
follows:

1: P(Y|do(x),z, w) = P(Y|do(x), w) if (YALZ|X, W)Gx
2: P(Y|do(x,z),w) = P(Y|do(x),z,w) if (YALZ|X,W)Gxz
3: P(Y|do(x,z),w) = P(Y|do(x), w) if (YJLZ\X,W)GEW

Here, Z(W) is the subset of nodes in Z that are not ancestors of
any node in W. The do-calculus rules are complete (Huang and
Valtorta, 2006; Shpitser and Pearl, 2006), meaning if a causal query
is identifiable, then it can be derived using these three rules.

A causal query containing a do() operator is identifiable in a
given ADMG if the do-calculus transforms it into an equivalent do-
free estimand. The do-calculus estimands are non-parametric, in the
sense that they do not impose constraints on P(x). Any causal query
in an ADMG identifiable by the do-calculus is also identifiable in
every causal LVM that projects onto that ADMG (Richardson et al.,
2017).

Several sound and complete algorithms take as input an ADMG
and a causal query and determine whether the query is identifiable
according to the do-calculus (Richardson et al., 2017; Shpitser and
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Fig. 2. The estimates of a non-identifiable causal query P, (Y|do(x')) fail to con-
verge to the true distribution as number of data points used to train the LVM
increases (left column). The estimates of an identifiable causal query converges to
the true distribution (right column). (a) An LVM where P (Y|do(x')) is not non-
parametrically identified. Boxes indicate sets of variables with the same structure.
Circular white/gray nodes are observed/latent variables. 0 are model parameters.
Each parameter such as 0}, has a prior distribution, e.g., 0}, ~ P(q(yU ), where qu, isa
hyperparameter. (b) As in (a), but in this case P (Y|do(x')) is non-parametrically
identified. (c, e) relate to (a). Thick curve estimates the true distribution
Pz (Y|do(x'); 0), with 0 used to generate interventional data. After training the
LVM on N=10 100 observational data points, each thin curve estimates
PM; (Yo {x,,y,},’il ,0) for each sampled 0. The curves do not approach the true
distribution as number of data points increases. (d, f) relate to (b). The curves con-
verge to the true distribution as the number of data points increases

Pearl, 2008). These algorithms have polynomial time complexity
(Galles and Pearl, 2013).

2.4 Causal query estimation
For queries of a form of Pa._(Y|do(x')), a desirable property of the
estimator is the convergence of the estimated probability distribu-
tion to the true probability distribution. For queries of a form of
En [Y|do(x')], a desirable property of the estimator is consistency.
An estimator of Ey_[Y|do(x)] is conmsistent if, as the number of
data points used to estimate the query tends to infinity, the sequence
of the estimates converges in probability to its expected value.
Several non-LVM approaches for estimating causal queries with
these desirable properties exist such as semi-parametric primal IPW
(PIPW), dual IPW (DIPW), nested IPW and augmented nested IPW
(Bhattacharya et al., 2020). They are all implemented and well-
documented in Ananke (Bhattacharya et al., 2020). Unfortunately,
these approaches derive a separate statistical estimand for each
causal query anew (Pearl, 2019). In addition, they are limited to
causal queries with one cause and one effect, and the cause must be
binary-valued. This has limited, the scope of their applicability in
systems biology where one is often interested in the simultaneous ef-
fect of multiple cause on one or multiple effects and the variables are
not always discrete. Other approaches such as (WERM-ID) (Jung
et al., 2020) and double/debiased machine learning (DML) (Jung
et al., 2021) proposed estimators for any identifiable query but are
inadequate in large data regimes where it is computationally
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expensive to train a new estimator for each query of interest. The
implementations for these approaches are unavailable for the public.

In this article, we advocate for the explicit use of LVMs for
causal query estimation in presence of latent variables when causal
queries contain multiple-causes, non-discrete cause(s) or multiple
effects, as these are common in biology. We demonstrate that if the
graph topology of an LVM correctly reflects the true underlying
causal structure of the observed variables, and if the causal query of
interest is identifiable according to Pearl’s do-calculus, then LVM-
based estimators have the desired properties.

3 Methods

3.1 Contribution of this work

In this article, we propose a simple and practical algorithm
(Algorithm 1) for LVM-based causal query estimation. The algo-
rithm takes as inputs a causal query of interest in the form of the dis-
tribution over the effect Y given an intervention on the cause X, i.e.,
Yio(x) ~ Prm (Y|do(x')), or in the form of the expected value of this
distribution, i.e., Ex_[Y|do(x')], target values of the intervention,
effects of the intervention, and an LVM with known DAG or
ADMG structure that is trained on observational data. The output
of the algorithm is the estimate of the causal query of interest, i.e.,
PA”A; (Y|do(x')) or EMY [Y|do(x)].

The algorithm first determines whether the causal query of inter-
est is identifiable according to Pearl’s do-calculus (line 1). If the
query is identifiable, Algorithm 1 proceeds with its estimation. We
take a Bayesian viewpoint (Lattimore and Rohde, 2019a, b), and
follow the abduction, action, prediction paradigm (Pearl, 2009).
Abduction estimates the posterior distribution over the latent varia-
bles (including the model parameters) given the training data. A
trained LVM, including these posterior distributions, is an input to
Algorithm 1. Action fixes the values of the intervened variables (line
5) and breaks the relationship of the intervened variables to their
parents (line 6). Prediction samples the parameters from their pos-
terior distributions (line 8) and then samples from each variable
given its parents (line 10) until we are ready to estimate the causal
query (line 14). Thus, the estimator can be thought of as a posterior
predictive statistic over the marginal of the parameters.

The algorithm takes as input a trained LVM. In particular, it can
take a trained LVM with continuous distributions, and multiple
causes and effects, where non-parametric or current parametric
approaches are limited. While training an LVM is NP-complete (and
in practice depends on the specific LVM and on the choice of infer-
ence algorithm), it amortizes most of the computational work into
this single training step. Given a single trained model, it can estimate
an arbitrary number of queries.

3.2 Convergence and consistency of the estimator in
Algorithm 1 in correctly specified LVMs

Motivating examples. We illustrate the practical application of
Algorithm 1 in the special case of the LVM in Figure 2a. It repre-
sents a situation where, e.g., a protein product of gene X affects
gene Y, while both are under regulation of the same transcription
factor(s) and/or enhancer(s). The causal query P (Y|do(x')) is not
identifiable, and we show empirically that its LVM-based estimator
is biased (Fig. 2c and e).

Extending the causal LVM with a mediator Z in Figure 2b makes
the query identifiable according to the front-door criterion. This pat-
tern occurs frequently in transcriptional cascades which involve
multiple steps, or signaling pathways in which Y is not a direct sub-
strate of X. We show empirically that the estimate of Py (Y|do(x"))
converges to the true distribution (Fig. 2d and f).

Empirical example 1: Figure 2a Assume a model M: U := 0;;; X :=
Ulyy + 0y; Y == X0y + Ulyy + 0y where 0y ~ N(py,dy),0y ~
N(ty,d%),0y ~ N(uy,0y) and a non-identifiable causal query of
P (Y|do(x')). We generated observational data with N=10, 100
samples from the likelihood with a randomly chosen vector of true

values of 0. The true Par_(Y|do(x'); 0) was estimated with Algorithm
1, where line 8 as substituted by the true values of 6 (black curves in
Fig. 2c and e).

To learn a model M from this training data, we assumed a
Gaussian prior on the parameters: uy, iy, iy, oy, d, ay, Oyx ~
N(0,1) and 0y, 0y ~ N(0,10), and trained the model with HMC.
Thin lines in Figure 2c and e estimate P,  (Y|do(x), {xi, v}, 0)
for each sampled 6 (line 10). As N increases, the distributions be-
came less diverse, but did not approach the ground truth.

Empirical example 2: Figure 2b Expanding the previous example
with a mediator Z, we assume a model U := 0y, X := UlOyx + 0Ox,
Z :=X0xz + 0z, Y := Z0zy + UOyy + 0y where, 0y ~ N(uy,ov),
Ox ~ N(ux,0x),0y ~ N(uy,0v),0z ~ N(uz,0z).

With this expansion, the causal query Py (Y|do(x)) becomes
identifiable. Repeating the same analysis, Figure 2d and f show that,
as N increased, the distributions converged to the ground truth. The
analytical proof of this empirical result for multivariate U and X can
be found in Supplementary Materials.

The following Lemma 1 proves the empirical results for any arbi-
trary distribution.

Lemma 1 Consider the LVM in Figure 2b with a DAG G. X, Z, and Y
are observed and U are latent. The front-door adjustment estimand of
the query P(Y|do(x')) is equivalent to the estimand of that query in the
mutilated LVM.

Proof. Consider a mutilated version of G, Gg, where all the incoming
edges to X are removed. A causal query P(Y|do(x')) transforms P(.) into
a distribution Pg(.), and P(Y|do(x")) = Pg(Y|x'). Hence,

P(Y|do(x)) = Py (Y|X) = [, Pg(Y,u,z|x)dudz

= jz( J"UPY(Y|u,z,x’)PY(u|z,x’)du)Pg(z\x’)dz
= [.Px(Y|2)Pxg(2¥)dz
— [.P(Y|do(z))P(z|x')dz

(1)

_ J <LP(Y|z, X)P(x)dx) P(aIx)dz 2)

Equation (1) holds because in Gy, Y is independent from X
given Z. Since Pg(z|x') is unaffected by the mutilation of G,
Pg(2]x") = Pg(z|x'). Equation (2) follows from the back-door path
between Y and Z in G. The expression on the right-hand side of (2)
is the estimand for P(Y|do(x)) derived from the do-calculus front-
door adjustment formula. O

The following theorem proves that in general, for any LVM top-
ology, any set of parametric distributions, and any identifiable
causal query, Algorithm 1 accurately estimates causal queries in an
LVM that correctly reflects the true underlying causal structure.

Theorem 1 Consider a causal LVM M, which includes the true likeli-
hood that generated the observational data. Consider a causal query
Ox = Py (Y|do(x')) or Ox = Ewm [Y|do(x')], identifiable according to
the do-calculus with respect to M. When estimating the causal query as

in Algorithm 1, the estimate PM (Y|do(X")) converges to the true distri-

X
bution, and the estimator EAM} [Y|do(x')] is consistent.

Proof. When the ground truth parameters 0 are known, samples
from the likelihood vs ~ P(V|Pa(V),0) for all V € V converge to the
true joint observational distribution []y .y P(V|Pa(V),0) as
N — oo. N is the number of data points.

In practice, parameters of the LVM are trained on observational
data. If the parameters are not identifiable during training, their pos-
terior distribution 0, ~ P(9|{V,-}fi1) is not guaranteed to converge to
the true value. Nonetheless, samples from the observed variables
vy ~ P(V|Pa(V),0,), V€V, converge to the same true joint
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observational distribution []y.y P(V|Pa(V),0). For identifiable
causal queries, all parametrizations that agree on the joint observa-
tional distribution agree on the queries (Shpitser and Pearl, 2008).
Therefore, since under stability conditions exact inference algo-
rithms provide guarantees of asymptotically exact samples, the pos-
terior predictive distribution P(Ydo(x/)|{v,-}fil) converges to the true
distribution, and its expected value E[Ydo(x/)\{v,-}fil] is consistent
(Gelman et al., 2014; Robert and Casella, 2013). a

3.3 Convergence and consistency of the estimator in
Algorithm 1 in presence of miss-specified number of

latent variables

The following corollary proves that queries of the form of
Em (Yldo(x)) or P (Y|do(x)) can be accurately estimated even
when the true number of latent variables is unknown.

Corollary 1 Consider a causal LVM M, which includes the true likeli-
hood that generated the observational data. Consider a class of LVMs M
that projects on the same ADMG as M. Consider a causal query Ox =
P (Y|do(x')) or Ox = En[Y|do(x')], identifiable according to the
do-calculus with respect to M. When estimating the causal query as in
Algorithm 1, the estimate IaM} (Y|do(x")) converges to the true distribu-
tion, and the estimate EM} [Y[do(X)] is consistent.

Proof. Let 0/ be the parameters of M’ € M. Following the same
logic as in proof of Theorem, the samples v, ~ P(V]
Pa(V),0,), V €V, converge to the same true joint observational dis-
tribution [[y.y P(V|Pa(V),0) as for the correctly specified model
M. Therefore, the posterior predictive distribution converges to the
true distribution, and its expected value is consistent. O

This result is useful in practical applications, as choosing an in-
stance from the right set of LVMs is less challenging than choosing
the exactly right LVM. Therefore, given several candidate LVMs
projecting on the same ADMG, we can rely on Occam’s Razor
(Balasubramanian, 1997; Rasmussen and Ghahramani, 2001) and
favor the LVM with the simplest DAG structure.

4 Case studies

4.1 Overview

We illustrated the breadth and the practical utility of the proposed
LVM-based estimation of identifiable causal queries in four synthetic
and two experimental studies of biomolecular pathways, with topol-
ogies that challenge the existing methods for causal query estima-
tion. We considered both the LVMs with the correct topology, and
the LVMs with the correct topology for the observed variables but
with a misspecified number of the latent variables. Posterior distribu-
tions of the parameters were inferred with HMC in Stan (2018).

The synthetic case studies illustrated the consistency of the causal
queries of the form Ox = Eu_[Y|do(X = x')] (in the following, we
omit the subscript My, and state the value of x'). The case studies
incorporated a mix of probability distributions and a mix of inform-
ative and non-informative priors. Case Studies 1, 2 and 4 simulated
observational data from parametric distributions with randomly
selected values of parameters 0. Case Study 3 generated data using
stochastic differential equations. The interventional datasets were
obtained by sampling from the distribution with the true 6 and the
fixed targets of the interventions. To evaluate the performance of
the proposed approach, the true values of QOx were obtained by
averaging 10 000 samples from the interventional datasets.

The experimental case studies illustrated the accuracy of the
causal queries of a different form, namely Ox = Pu. (Y|
do(X =x')). The experimental data were downloaded from
Precision RNA-seq Expression Compendium for Independent Signal
Exploration (PRECISE, Sastry et al., 2019). They contained 278
RNA-seq normalized expression profiles of Escherichia coli K-12
MG1655 and BW25113 across 154 unique experimental conditions.
This manuscript focuses on pathways for which both observational

and interventional data were available. To evaluate the performance
of the proposed approach, experimentally observed instances from
P(Y|do(X = x)) were plotted against the estimated distributions.

Each case study was run on a single standard virtual machine on
Google Cloud Platform with 2 vCPUs and 8 GB memory. Several
virtual machine instances were used to run the case studies in paral-
lel. The case studies took between 1.5 min and 1.8 h.

4.2 Synthetic Case Study 1: the multi-cause feed-

forward transcriptional regulatory network motif

The system in Figure 3a is an example of a common feed-forward
network motif in E.coli and many other prokaryotes (Alon, 2019).
The network was obtained by querying the EcoCyc database
(Keseler et al., 2021) to discover which front door motifs with one
or more confounders and one or more causes exist in E.coli. A total
of 1945 different cases were found. For this case study, we randomly
selected one case. Despite being ubiquitous, the case study is chal-
lenging because it has multiple causes.

Query of interest Qx = E|cas2|do(X = 0)], where X = {dsrA,
gadX, fis}. In this query ,the back-door criterion does not hold but
the front-door criterion holds.

Data of the latent variables followed a Normal distribution, and
the remaining variables a Bernoulli distribution with logit
parameterization.

LVM with correct topology assumed the correct data generation
process with non-informative A(0,10) priors over all the
parameters.

LVM with misspecified number of latent variables wrongly
assumed only one latent variable.

4.3 Synthetic Case Study 2: the Napkin motif

The system in Figure 4b is called the second Napkin problem in
Pearl and Mackenzie (2018). The network was obtained by querying
the EcoCyc database (Keseler er al., 2021) to discover all napkin
motifs with two or more confounders in E.coli. 911 different cases
were found. For this case study we randomly selected one case.

Causal query of interest Qy,, = E[topAl|do(lrp = 1)]. The system
requires a non-trivial application of the do-calculus, because we can-
not block the back-door path from lrp to topA (hns is a collider and
gadE is an ancestor of a collider), and because the front-door criter-
ion does not hold (there is no mediator between Irp and topA)
(Helske et al., 2021; Hughes et al., 1998; Jung et al., 2020; Pearl
and Mackenzie, 2018).

Data of hns was modeled with a gamma distribution (representa-
tive of expression measurements with a fluorescent reporter). The
expression of all the other genes dsr, fis, gadE and topA were mod-
eled with Gaussian distributions (representative of measurements or
relative expression, such as with RT-PCR). Irp followed a Bernoulli
distribution with logit parametrization.

LVM with correct LVM with misspecified True value
topology

number of latent variables ™ of E[Y|do(x)]

(b) Multi-cause motif
0.4

<03
%
So02
>
< 0.1

0.0

60 100 200 300
N, # of datapoints used
to train the model

Case study 1 : Multi-cause motif “E[cas2ldo(dsrA, gadX, fis)]

Fig. 3. Synthetic Case Study 1. Red nodes are targets of the intervention, orange
nodes are the effect. gray nodes are latent. (a) The multi-cause feed-forward tran-
scriptional regulatory network motif. (b) Sampling distribution of O, =
El[cas2|do(dsrA, gadX, fis = 0)] over 20 observational datasets
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Case study 2 : Napkin motif E [topA|do(lrp=0)]

Fig. 4. Synthetic Case Study 2. DAG labeled as in Figure 3. (a) The Napkin network
motif. (b) Sampling distribution of O, = E[topAl|do(lrp = 0)] over 20 observational
datasets
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Case study 3 : Signaling model E[Erk|do(SOS=70)]

Fig. 5. Synthetic Case Study 3. DAG labeled as in Figure 3. (a) The signaling model.
Nodes are proteins, pointed/flat-headed edges are relationships of typge increaselde-
crease. (b) Sampling distribution of O = E[Erk|do(SOS = 70)] over 20 observa-
tional datasets

LVM with correct topology assumed the correct data generation
process with non-informative N'(0,10) priors over all the
parameters.

LVM with misspecified number of latent variables wrongly
assumed two latent variables between hns and ropA.

4.4 Synthetic Case Study 3: the signaling model

The system in Figure 5a is a well-studied insulin-like growth factor
signaling system regulating growth and energy metabolism of a cell
(Zucker et al., 2021). IGF and EGF are latent.

Causal query of interest Qsos = E[Erk|do(SOS = 70)]. Similar
to Case Study 2, Osos does not satisfy the back-door or the front-
door criteria.

Data mimicked the experimental process of collecting observa-
tional and interventional data. Since dynamics of this system are
well characterized in form of stochastic differential equations (SDE)
(Bianconi et al., 2012), we generated observational data by simulat-
ing from the SDE. We set the initial amount of each protein mol-
ecule to 100, and generated subsequent observations via the
Gillespie algorithm (Gillespie, 1977) in the smfsb (Wilkinson, 2018)
R package. Replicates were generated by randomly initializing EGF
and IGF. Interventional data were generated similarly, while fixing
SOS=70.

LVM with correct topology Unlike in the previous case studies,
the variables were not modeled following the data generation pro-
cess, but only approximated it. The exogenous variables were mod-
eled with a Gaussian distribution. The rest of the variables were
modeled by representing the biomolecular reactions with a Hill
function, as common in the biological practice (Alon, 2019), and

were approximated with a sigmoid function as follows,

N(m, ax). For a node X with q parents, Pa(X) was a

q X 1 vector of measurements on the parent nodes, 87 was a 1 x g
vector of unknown parameters, and 0y was an unknown scalar par-
ameter. The non-informative A/(0, 10) priors of the parameters 0 in
the sigmoid had a constraint of being positive for the relationships
of type increase and negative for relationships of type decrease.

LVM with misspecified number of latent variables only included
EGF as latent, and omitted IGF.

4.5 Synthetic Case Study 4: the SARS-CoV-2 model

The system in Figure 6a models activation of Cytokine Release
Syndrome (Cytokine Storm), known to cause tissue damage in
severely ill SARSCoV-2 patients (Ulhaq and Soraya, 2020). The
simultaneous activation of the NF-xB and IL6-STAT3 activates IL6-
AMP, which in turn activates Cytokine Storm (Hirano and
Murakami, 2020). The system showcases the ability of a causal
LVM to estimate multiple causal queries after a single instance of
training.

The network was extracted from COVID-19 Open Research
Dataset (CORD-19) (13) document corpus using the Integrated
Dynamical Reasoner and Assembler (INDRA) (Gyori et al., 2017)
workflow (Zucker et al., 2021), and by quering and expressing the
corresponding causal statements in the Biological Expression
Language (BEL) (Slater, 2014) using PyBEL (Hoyt et al., 2018).
Presence of latent variables was determined by querying pairs of
entities in the network for common causes in the corpus.

Causal queries of interest examine the ability of two different
drugs to prevent Cytokine Storm. Tocilizumab (Toci) is an immuno-
suppressive drug that targets sIL6R« and blocks the IL6 signal trans-
duction pathway (Zhang et al., 2020). The first causal query
examined the effect of Toci by setting its target sSIL6Ro =20 (low
value), i.e., Qsrers = E[Cytokine|do(sIL6Rx) = 20)]. The query is
identifiable using the backdoor criterion. The drug Gefitinib (Gefi)
blocks EGFR. The second causal query examined the effect of Gefi,
i.e., Qrcrr = E[Cytokine|do(EGFR) = 20)]. The query is not iden-
tifiable via either the backdoor or the front-door criterion, but is
identified via the do-calculus.

Data of the latent variables had Gaussian distributions,
Cytokine storm had a Bernoulli distribution with logit parameteriza-
tion, and the remaining variables were simulated with a Hill
function as in Case Study 3.

LVM with the correct topology assumed the correct data gener-
ation process where it contained two latent variables between
(SARS-CoV-2 and Angiotensin II), (ADAM17 and sIL6Rx) and
(PRR and NF-xB), and one latent variable for each remaining dotted
edge. A mixture of Non-informative N (0,10) and informative
priors N'(E[0], 1) where E[0] were between 20 and 45 was used.

LVM with misspecified number of latent variables wrongly
assumed only one latent variable for each dotted edge.

4.6 Experimental Case Study 5: the single-cause feed-

forward transcriptional regulatory network motif

The system in Figure 7a is a common feed-forward network motif in
the transcriptional regulatory network of E.coli, where the effect
variable is not a direct effect of the cause variable. The network was
obtained by querying the EcoCyc database (Keseler et al., 2021)
with the Pathway-tools lisp api (Karp ez al., 2021) for all 3-hop
ancestors of all 2-hop descendants of the genes with available ex-
perimental interventional data. 5800 such cases were found. We
randomly selected the pathway in Figure 7a. This system is similar
to Case Study 1, but with a single cause and a single latent variable.

Causal query of interest Qsoxs = P(ybiT|do(soxS = 0)).
Although Irp is latent, the mediator rob made the query identifiable
according to the front-door criterion.

Experimental data contained 278 RNA-seq normalized expres-
sion profiles of E.coli K-12 MG1655 and BW25113 across 154
unique experimental conditions. Interventional data corresponded
to the query of interest, i.e., soxS = 0. We used this data to evaluate
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Fig. 6. Synthetic Case Study 4. DAG labeled as in Figure 3. (a) The SARS-CoV-2 model. Dotted edges indicate presence of latent variables. sSIL6Rx and EGFR are targets of
intervention, Cytokine Storm is the effect. (b) Sampling distribution of O, = E[Cytokine|do(sIL6Ro =20)] over 20 observational datasets. (c) As in (b), for

O, = E[Cytokine|do(EGFR = 20)]
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Fig. 7. Experimental Case Study 5. (a) The transcriptional regulatory network with
the single-cause feed-forward motif. (b) The causal query in form of a probability
distribution Qs = P(ybiT|do(soxS) = 0). The two (overlapping) horizontal
dashed lines indicate two observed values of ybiT|soxS = 0 in the interventional
experiments

the performance of the proposed approach. The observational and
interventional data was obtained from the PRECISE database
(Sastry et al., 2019).

LVM with correct topology specified Gaussian distributions with
non-informative priors N(0, 10).

LVM with misspecified number of latent variables wrongly
assumed two latent variables.

4.7 Experimental Case Study 6: the napkin motif
The system in Figure 4.7 is the same system as in case study 2. The
network was obtained by querying the EcoCyc database (Keseler
et al., 2021) with the Pathway-tools lisp api (Karp et al., 2021) for
all 3-hop ancestors of all 2-hop descendants of the genes with avail-
able experimental interventional data. 5500 such cases were found.
We randomly selected the pathway in Figure 8a.

Causal query of interest Qy,, = P(grcAldo(fur = 0)).

Experimental data were as in Case Study 5. Interventional data
corresponded to the query of interest, i.e. fur =0. We used this data
to evaluate the performance of the proposed approach.

LVM with correct topology assumed a Gaussian distribution
over all the variables with non-informative priors N(0, 10).

LVM with misspecified number of latent variables wrongly
assumed two latent variables between crp and grcA.

5 Results

In the synthetic case studies with correct LVM topologies, the esti-
mates E[Y|do(X = x')] were consistent Figures 3b, 4b, 5b and 6b

LVM with LVM with misspecified ___observed value of Y|do(x)
\_‘Ucorrect [ﬂ number of latent in interventional data
topology  variables ¢+ mean

20

—
Lo

grcA | do(fur)
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¢

60 100 200 250
N, # of data points used
to train the model

e

Fig. 8. Experimental Case Study 6. (a) The transcriptional regulatory network with
the Napkin motif. (b) The causal query in form of a probability distribution
Qﬁ‘, = P(grcAldo(fur = 0)). The two (overlapping) horizontal dashed lines indicate
two observed values of grcA|fur = 0 in the interventional experiments

and ¢ show sampling distributions of 20 E[Y|do(X = x')], summar-
ized from 20 repetitions of generating observational data with N
replicates and estimating the causal query (orange boxes). Although
the expected values and the variances of the sampling distributions
depended on the data and on the system, all the estimates
approached the true value with reduced variability as N increased.
This was the case despite the diverse topologies of the networks, and
despite the diverse distributional assumptions.

In the synthetic case studies with LVM with misspecified number
of latent variables, the estimates E[Y|do(X = x')] were consistent.
Figures 3b, 4b, 5b, and 6b and ¢ show sampling distributions of 20
E[Y|do(X = x')], summarized from 20 repetitions of generating ob-
servational data and estimating the causal query with LVMs specify-
ing a wrong number of latent variables (blue boxes). While these
sampling distributions had more bias and variance than the distribu-
tions from the correctly specified LVMs for small N, they
approached the true values with reduced variation as N increased.

In the experimental case studies, the estimates P(Y|do(X = x'))
accurately represented the observed interventional data. Figures 7b
and 8b display the estimated query specified in a different form,
namely posterior interventional distributions P(Y|do(X = x')), as
function of the number of observations used to train the LVM. The
horizontal lines correspond to two experimental interventional
measurements. As the values were very similar, the lines overlap.
Despite real-life experimental artifacts, such as dynamic range com-
pression and measurement errors that affected the observational
data, and despite the approximate nature of the modeling assump-
tions, the estimated distributions covered the values observed from
the experimental interventional data.
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In both synthetic and experimental case studies, the estimates
were accurate despite the approximate nature of the parametric
assumptions. A common criticism of LVMs is the requirement of
parametric distributional assumptions. Despite the criticism, in Case
Study 3 the estimate E[Y|do(X = x’)] was consistent, and in Case
Studies 5 and 6 the estimates P(Y|do(X = x')) were accurate, even
though the LVMs imperfectly approximated the unknown data gen-
erating distributions.

The proposed approach expanded the current use of LVMs for
estimating causal queries. All the case studies showed the accuracy
of LVM-based estimation in situations where LVM-based estimators
have so far not been traditionally applied, i.e., pathways without
proxy variables (Kuroki and Pearl, 2014; Louizos et al., 2017), or
with multiple causes (Wang and Blei, 2019).

Non-LVM-based approaches could not be applied to any case
study in this manuscript. An alternative to LVM-based estimators are
non-parametric or semi-parametric estimators. Unfortunately, we
could not apply any of these methods to the case studies in this manu-
script, as their implementations were either not publicly available
(Jung et al., 2020) or could not handle continuous or multi-cause
queries (Bhattacharya et al., 2020). However, in biomolecular systems
multiple causes and effects are common, and the variables are not
always discrete. All the case studies in this manuscript had either
multiple causes or a continuous cause. They demonstrated the utility
and the accuracy of LVM-based estimation in these situations.

Synthetic case studies 1, 2 and experimental case studies 5, and 6
represented commonly occurring patterns in biomolecular pathways.
To demonstrate the ubiquity of the feed-forward motif presented in
case studies 1 and 5, we queried the EcoCyc database (Keseler et al.,
2021) for all E.coli front-door motifs with one or more confounders
and one or more causes, and found over 1000 such motifs. To demon-
strate the ubiquity of the motif in case studies 2 and 6, we queried
the EcoCyc database for all E.coli Napkin motifs with two or more
confounders, and found over 1000 such motifs.

To further illustrate the ubiquity of network motifs that satisfy
the front-door criterion of studies 1 and 5 in other organisms, we
queried the repository INDRA (Gyori et al., 2017) for all such
motifs in humans. We applied strict quality filters to ensure each
causal relationship was supported by at least 5 publications. We
found 90 such instances. Reference Mangan and Alon (2003)
provides additional examples of the feed-forward motif in yeast.
Overall, the case studies illustrate the ability of the proposed
approach to quantitatively answer potentially large numbers of
important biological questions, limited only by qualitative prior
knowledge of the organism’s regulatory network and the availability
of experimental data.

In synthetic case study 3, LVM-based estimators estimated mul-
tiple queries from a single trained model. After training the LVM
once, the proposed approach enabled the estimation of two distinct
causal queries. This is particularly valuable for probabilistic reason-
ing systems, e.g., in systems biology or medical diagnosis, where
large-scale models are expensive to train and maintain. This is not
possible with non-LVM-based estimators, which require us to derive
a new statistical estimand for each causal query anew.

6 Discussion

A major criticism of traditional pathway modeling is its inability to ac-
count for external influences on pathway components. This is particu-
larly relevant to causal inference, as ignoring the effect of unobserved
confounding can undermine the inaccuracy of the results. In this article,
we advocate for the explicit use of LVMs, and for applying Pearl’s do-
calculus to determine whether the causal effect can be identified.

We proposed training the LVMs with exact inference algorithms
as they guarantee asymptotically exact samples. These algorithms
are computationally expensive. However, trained on observational
data once, an LVM can estimate multiple causal queries correspond-
ing to multiple mutilated versions of the original DAG. After train-
ing, the estimation of causal query is instantaneous. This indicates
that with enough experimental replicates and computational resour-
ces the proposed approach can be scaled to larger networks.

We showed that LVM-based estimation of identifiable causal
queries is successful in situations that challenge other statistical esti-
mators, e.g., in presence of interventions on continuous variables,
and queries with multiple causes and effects. The estimation is ro-
bust to latent variable misspecification, and to parametric approxi-
mations of complex processes of data generation. As all these
situations are very common, the proposed approach expands the
feasibility and scope of causal inference in biomolecular pathways.
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