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Abstract

We introduce a notion of round-robin secure sampling that captures
several protocols in the literature, such as the “powers-of-tau” setup pro-
tocol for pairing-based polynomial commitments and zk-SNARKs, and
certain verifiable mixnets.

Due to their round-robin structure, protocols of this class inherently
require n sequential broadcast rounds, where n is the number of partici-
pants.

We describe how to compile them generically into protocols that re-
quire only O(

√
n) broadcast rounds. Our compiled protocols guarantee

output delivery against any dishonest majority. This stands in contrast to
prior techniques, which require Ω(n) sequential broadcasts in most cases
(and sometimes many more). Our compiled protocols permit a certain
amount of adversarial bias in the output, as all sampling protocols with
guaranteed output must, due to Cleve’s impossibility result (STOC’86).
We show that in the context of the aforementioned applications, this bias
is harmless.

∗A preliminary version [CDKs22] of this work appeared in EUROCRYPT 2022.
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1 Introduction

In many settings it is desirable for a secure multiparty computation (MPC) pro-
tocol to guarantee output delivery, meaning that regardless of the actions taken
by an adversary, all honest parties always learn their outputs from the compu-
tation. This property is needed, for example, in any use of secure computation
that creates a critical public output, such as securely sampling the setup parame-
ters needed for a blockchain system, etc. The recently-introduced powers-of-tau
protocol [BGM17, GKM+18, KMSV21] does precisely this, and achieves guar-
anteed output delivery against n−1 corruptions, though it allows the adversary
to bias the output. Motivated by this construction, this work presents a founda-
tional study of sampling protocols that share the same abstract core properties
as the powers-of-tau protocol. Concretely, we ask what resources are required
for such protocols to guarantee output delivery, and in particular, how many
rounds are required? We begin by describing existing methods for guaranteeing
output delivery in MPC.

The seminal result of Cleve [Cle86] showed that unless a majority of par-
ties are assumed to be honest, certain functions cannot be computed even with
fairness (meaning that if the adversary learns the output then so do all honest
parties). In the two-party setting, a series of works culminated with a full char-
acterization of all finite-domain Boolean functions that can be computed with
guaranteed output delivery [GHKL08, ALR13, Mak14, Ash14, ABMO15]. Our
understanding is limited in the multiparty setting: only a handful of functions
are known to be securely computable with guaranteed output delivery (e.g., the
Boolean-OR and majority functions) [GK09, CL17, Dac20]. In fact, for n > 3,
only Boolean OR is known to achieve guaranteed output delivery against n− 1
corruptions without bias.

The Boolean-OR protocol of Gordon and Katz [GK09] inherently requires a
linear number of broadcast rounds relative to the party count. It extends the
folklore “player-elimination technique” (originally used in the honest-majority
setting [GMW87, Gol04]) to the dishonest-majority case by utilizing specific
properties of the Boolean-OR function. In a nutshell, the n parties iteratively
run a related secure computation protocol with identifiable abort [IOZ14, CL17],
meaning that if the protocol aborts without output, it is possible to identify at
least one dishonest party. Since the abort may be conditioned on learning the
putative output, this paradigm only works if the putative output is simulatable,
which is the case for Boolean OR. If the protocol aborts, the dishonest party
is identified and expelled, and the remaining parties restart the computation
with a default input for the cheater (0 in case of Boolean OR). Because n − 1
dishonest parties can force this process to repeat n− 1 times, the overall round
complexity must be Ω(n).1

1Surprisingly, if a constant fraction of the parties are assumed to be honest, this linear
round complexity can be reduced to any super-constant function; e.g., O(log∗ n) [CHOR22].
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The 1/p relaxation. A closer look at Cleve’s attack [Cle86] reveals that any
r-round coin-tossing protocol that completes with a common output bit is ex-
posed to an inverse-polynomial bias of Ω(1/r); it is a natural line of inquiry to
attempt to achieve as tight a bias in the output as possible. Unfortunately, as
far as we know, this approach creates a dependence of the round complexity
on the number of parties that is typically much worse than linear. The first
r-round, (n− 1)-secure coin-tossing protocols assumed only one-way functions,
but had a relatively large bias of O(n/

√
r) [ABC+85, Cle86].2 Optimal bias

of O(1/r) was achieved for two parties [MNS16] and for three parties (up to
polylog factors) [HT17], assuming oblivious transfer (OT). The state of the art
for coin-tossing is the work of Buchbinder et al. [BHLT17] where the bias is
Õ
(︁
n3 · 2n/r0.5+1/(2n−1−2)

)︁
, which improves upon prior works [ABC+85, Cle86]

for n = O(log log r), i.e., when the number of rounds is doubly exponential in n
(e.g., for a constant number of parties the bias translates to O(1/r1/2+Θ(1))).3

Towards generalizing the coin-tossing results, Gordon and Katz [GK12] re-
laxed the standard MPC security definition to capture bias via 1/p-secure com-
putation, where the protocol is secure with all but inverse-polynomial probabil-
ity, as opposed to all but negligible.4 They showed feasibility for any randomized
two-party functionality with a polynomial-sized range and impossibility for cer-
tain functionalities with super-polynomial-sized domains and ranges. Beimel
et al. [BLOO11] extended 1/p-secure computation to the multiparty setting
and presented protocols realizing certain functionalities with polynomial-sized
ranges. However, their protocols again have round counts doubly exponential
in n and only support a constant number of parties. Specifically, if the size of
the range of a function is g(λ), then the round complexity for computing that
function with 1/p-security is (p(λ) · g(λ))2O(n)

.
In sum, the 1/p-relaxation requires many more rounds and is limited to

functionalities with a polynomial-sized range. Many useful tasks, such as the
sampling of cryptographic keys (which must be drawn from a range of super-
polynomial size) cannot be achieved via this technique.

Biased-Sampling of Cryptographic Keys. Fortunately, some applications
of MPC that require guaranteed output delivery can indeed tolerate quite large
bias. A long line of works in the literature consider the problem of random sam-
pling of cryptographic objects in which each party contributes its own public
share in such a way that combining the public shares yields the public output,
but even the joint view of n − 1 secret shares remains useless. Protocols that
follow this pattern give a rushing adversary the ability to see the public con-

2For a constant fraction of honest parties, the bias was improved to O(1/
√
r − n) [BOO15]

and later to O(1/
√︁

r − log∗ n) [CHOR22].
3Optimal bias can be achieved for a constant number of parties if t < 2n/3 parties are

corrupted [BOO15] (or if t < 3n/4, up to polylog factors [AO16]). Again, those protocols
require a doubly exponential round complexity in n.

4Formally, there exists a polynomial p such that every attack on the “real-world” execution
of the protocol can be simulated in the “ideal-world” computation such that the output of both
computations cannot be distinguished in polynomial-time with more than 1/p(λ) probability.
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tribution of the honest parties first, and only later choose the secrets of the
corrupted parties. This approach permits the adversary to inflict a statistically
large bias on the distribution of the public output (for example, forcing the
output to always end in 0). However, the effect of this bias on the correspond-
ing secret is hidden from the adversary due to the hardness of the underlying
cryptographic primitive.

For some simple cryptographic objects (e.g., collectively sampling x · G 5),
there are single-round sampling protocols, known as Non-Interactive Distributed
Key Generation (NIDKG) schemes [Sta96, FS01]. Interestingly, a classic con-
struction for (interactive) distributed key generation by Pedersen [Ped91] in
the honest-majority setting was found by Gennaro et al. [GJKR99] to uninten-
tionally permit adversarial bias, which the same authors later proved can be
tolerated in a number of applications [GJKR03].

For more complex cryptographic objects, the contributions of the parties
cannot come in parallel. A few protocols are known in which the parties must
each contribute only once, but they must contribute sequentially. We refer
to these as round-robin protocols. Among them are the “powers-of-tau” pro-
tocol [BGM17, GKM+18, KMSV21] and variants of Abe’s verifiable mixnets
[Abe99, BKRS18], about which we will have more to say below. The round-
robin approach inherently requires Ω(n) broadcast rounds.

For some cryptographic objects, the state-of-the-art sampling protocols do
not guarantee output, but achieve security with identifiable abort. Multiparty
RSA modulus generation [BF01, HMR+19, FLOP18, CCD+20, CHI+21] is a
key example. Applying the player-elimination technique in this setting gives
the adversary rejection-sampling capabilities, since the adversary can repeat-
edly learn the outcome of an iteration of the original protocol and then decide
whether to reject it by actively cheating with a party (who is identified and
eliminated), or accept it by playing honestly. An adversary that controls n− 1
parties can reject n− 1 candidate outputs before it must accept one. This may
be different than inducing a plain bias, since the adversary can affect the dis-
tribution of the honest parties’ contributions, but in this work we show that for
certain tasks the two are the same. Regardless, the broadcast-round complexity
of this approach is, again, inherently Ω(n).

To summarize, with the exception of NIDKG protocols a few specific tasks,
all known techniques in the study of guaranteed output delivery with bias inher-
ently require Ω(n) broadcast rounds (and sometimes even Ω(22

n

)). It was our
initial intuition that Ω(n) rounds were a barrier. Our main result is overcoming
this intuitive barrier for an interesting class of functionalities.

1.1 Our Contributions

Our main contribution is to develop a new technique for constructing secure
computation protocols that guarantee output delivery with bias using O(

√
n)

5Where G is a generator of a group of order q written in additive notation, and x is a
shared secret from Zq .
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broadcast rounds while tolerating an arbitrary number of corruptions. Prior
state-of-the-art protocols for the same tasks require n broadcast rounds. More-
over, our work stands in contrast to the folklore belief that realizing such func-
tionalities with guaranteed output delivery inherently requires Ω(n) rounds.

Our technique applies to the sampling of certain cryptographic objects for
which there exist round-robin sampling protocols, with a few additional proper-
ties. This class is nontrivial: it includes both the powers-of-tau and verifiable-
mixnet constructions mentioned previously. The combination of scalability in
n with security against n− 1 corruptions is particularly important as it allows
for better distribution of trust (given that there need only be a single honest
party) than is possible with Ω(n)-round protocols. Indeed, well-known real-
world ceremonies for constructing the powers-of-tau-based setup parameters for
zk-SNARK protocols involved just a few participants [BCG+15] and later one
hundred participants [BGM17]. Our aim is to develop methods that allow thou-
sands to millions of participants to engage in such protocols, which naturally
requires a sublinear round complexity.

Though our techniques are model-agnostic, we formulate all of our results in
the UC model. Specifically, we construct a compiler for round-robin protocols,
and formally incorporate the adversary’s bias into our ideal functionalities, as
opposed to achieving only 1/p-security [GK12].

The Basic Idea. The transformation underlying our compiler uses the
“player-simulation technique” that goes back to Bracha [Bra87] and is widely
used in the Byzantine agreement and MPC literature (e.g., [HM00, IPS08]) as
well as the “player-elimination framework” [GMW87, Gol04]. We partition the
set of n players into

√
n subsets of size

√
n each, and then construct a protocol

that proceeds in at most O(
√
n) phases, with O(1) rounds per phase. The key

invariant of our technique is that in each phase, either one subset is able to
make progress towards an output (and are thus able to halt), or if no subset
succeeds, then at least one player from each active subset can be identified as
cheating and removed from the next phase.

Applying our technique requires two key properties of the original protocol
which we group under the moniker “strongly player-replaceable round-robin.”
We do not know precisely what kinds of functions can be computed by such
protocols, but the literature already contains several examples. This issue is
not new, as prior works in the literature must also resort to describing function
classes by the “presence of an embedded XOR” [GHKL08] or the “size of domain
or range” [BLOO11]. In our case, the restriction is defined by the existence of
an algorithm with certain properties that can be used to compute the function.

Motivating Protocol: Powers of Tau. Before we give a more detailed
explanation of our technique, it will be useful to recall a simplified version of
the powers-of-tau protocol of Bowe, Gabizon, and Miers [BGM17]. Throughout,
we assume synchronous communication, and a malicious adversary that can
statically corrupt an arbitrary subset of the parties. The powers-of-tau protocol
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was designed for generating setup parameters for Groth’s zk-SNARK [Gro16].
Given an elliptic-curve group G generated by the point G, our simplified version
will output {τ ·G, τ2 ·G, . . . , τd ·G}, where d is public and τ is secret.

The protocol’s invariant is to maintain as an intermediate result a vector of
the same form as the output. In each round, the previous round’s vector is reran-
domized by a different party. For example, if the intermediate result of the first
round is a vector {τ1 ·G, τ21 ·G, . . . , τd1 ·G}, then in round two the second party
samples τ2 uniformly and broadcasts {τ1 · τ2 ·G, τ21 · τ22 ·G, . . . , τd1 · τd2 ·G},
which it can compute by exponentiating each element of the previous vector. It
also broadcasts a zero-knowledge proof that it knows the discrete logarithm of
each element with respect to the corresponding element of the previous vector,
and that the elements are related in the correct way.

It is not hard to see that a malicious party can bias the output, as Cleve’s
impossibility requires, and variants of this protocol have attempted to reduce
the bias by forcing parties to speak twice [BCG+15, BGG18], using “random
beacons” as an external source of entropy [BGM17], or considering restricted
forms of algebraic adversaries [FKL18, KMSV21] in the random-oracle model.

Round-Robin Sampling Protocols. The powers-of-tau protocol has a sim-
ple structure shared by other (seemingly unrelated) protocols [Abe99, BKRS18],
which we now attempt to abstract. First, observe that it proceeds in a round-
robin fashion, where in every round a single party speaks over a broadcast chan-
nel, and the order in which the parties speak can be arbitrary. Furthermore,
the message that each party sends depends only on public information (such
as the transcript of the protocol so far, or public setup such as a common ran-
dom string) and freshly-tossed private random coins known only to the sending
party. The next-message function does not depend on private-coin setup such
as a PKI, or on previously-tossed coins. Strongly player-replaceable round-robin
protocols—the kind supported by our compiler—share these properties.

Next, we generalize this protocol-structure to arbitrary domains. We denote
the “public-values” domain by V (corresponding to Gd in our simplified exam-
ple) and the “secret-values” domain by W (corresponding to Zq). Consider an
update function f : V×W→ V (corresponding to the second party’s “rerandom-
ization” function, sans proofs) and denote by πRRSample(f, n, u) the correspond-
ing n-party round-robin protocol for some common public input value u ∈ V
(corresponding to, e.g., {G, . . . , G}). In addition to the basic powers-of-tau
protocol and its variants [BGM17, GKM+18, KMSV21], this abstraction cap-
tures an additional interesting protocol from the literature: verifiable mixnets
[BKRS18], where the parties hold a vector of ciphertexts and need to sample a
random permutation.

Generalizing to Pre-transformation Functionality. Having defined the
class of protocols, we specify a corresponding ideal functionality that these pro-
tocols realize in order to apply our compiler. This “pre-transformation func-
tionality” is rather simple and captures the inherent bias that can be induced
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by the adversary. Specifically, the functionality starts with the common public
input u, and then samples a uniform secret value w ∈ W and updates u with
w to yield a new public (intermediate) value v ..= f(u,w). The functionality
shows v to the adversary, and allows the adversary free choice of a bias value
x ∈ W with which it updates v to yield the final output y ..= f(v, x). For
the specific case of powers-of-tau, this corresponds to an honest party picking
a secret τ1 and broadcasting {τ1 ·G, τ21 ·G, . . . , τd1 ·G}, and then the adver-
sary choosing τ2 (conditioned on the honest party’s output) and broadcasting
{τ1 · τ2 ·G, τ21 · τ22 ·G, . . . , τd1 · τd2 ·G}.

For update function f : V × W → V and common public input u ∈ V,
we denote by FPreTrans(f, n, u) the n-party variant of the pre-transformation
functionality. Proving that the round-robin protocol realizes this functionality
boils down to realizing the a zero-knowledge proof that f has been correctly
applied. We prove the following theorem:

Theorem 1.1 (Pre-Transformation Security, Informal). Let n ∈ N, let f :
V ×W → V be an update function, and let u ∈ V. Under these conditions,
πRRSample(f, n, u) realizes FPreTrans(f, n, u) in the FNIZK-hybrid model within n
broadcast rounds.

Theorem 1.1 gives the first modular analysis in the simulation paradigm
of (a version of) the powers-of-tau protocol; this is opposed to other security
analyses (e.g., [BGM17, KMSV21]) that give a monolithic security proof and
explicitly avoid simulation-based techniques. On one hand, the modular ap-
proach allows the use of the powers-of-tau protocol to generate setup for other
compatible constructions that otherwise rely on a trusted party, such as poly-
nomial commitments [KZG10]. On the other hand, different instantiations of
FNIZK give different security guarantees for the protocol: a universally compos-
able (UC) NIZK in the CRS model yields a corresponding UC-secure protocol,
a random-oracle-based NIZK yields security in the random-oracle model, and a
knowledge-of-exponent-based NIZK yields stand-alone, non-black-box security
in the plain model.

Round-Reducing Compiler. Let us now return to our main conceptual
contribution: a compiler that reduces the round complexity of the round-robin
protocols described above from n broadcast rounds to O(

√
n).

Let f : V × W → V be an update function and u ∈ V a common
public input as before, and let m < n be integers (without loss of gener-
ality, consider n to be an exact multiple of m). Given an m-party protocol
πRRSample(f,m, u) executed in m rounds by parties Q1, . . . ,Qm (who speak se-
quentially), let gj be the next-message function of Qj . The compiled protocol
πCompiler(πRRSample(f,m, u), n, u,m) will be executed by n parties P1, . . . ,Pn.

The compiled protocol will organize its parties into m committees, and each
committee will execute an (n/m)-party MPC protocol in order to jointly eval-
uate the next-message functions of parties in the original protocol. For ease
of exposition, we will say that each committee in this new protocol acts as a
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virtual party in the original, which proceeds in virtual rounds. The MPC pro-
tocol must be secure with identifiable abort [IOZ14, CL17] against any number
of corruptions; that is, either all honest parties obtain their outputs or they all
identify at least one cheating party.

Furthermore, the MPC must provide public verifiability [BDO14, SV15] in
the sense that every party that is not in a particular committee must also learn
that committee’s output (or the identities of cheating parties), and be assured
that the output is well-formed (i.e., compatible with the transcript, for some set
of coins) even if the entire committee is corrupted. This is similar to the notions
of publicly identifiable abort [KZZ16] and restricted identifiable abort [CHOR22].

In the ith round, all of the committees will attempt to emulate the party
Qi of the original protocol, in parallel. If a party is identified as a cheater at
any point, it is excluded from the rest of the computation. At the conclusion of
all MPC protocols for the first round, one of two things must occur: either all
committees aborted, in which case at least m cheating parties are excluded, and
each committee re-executes the MPC protocol with the remaining parties, or
else at least one committee completed with an output. In the latter case, let j
be the minimal committee-index from those that generated output, and denote
the output of committee j by ai. Next, all committees (except for committee j,
which disbands) proceed as if the virtual party Qi had broadcasted ai in the
ith round, and continue in a similar way to emulate party Qi+1 in round i+ 1.
Note that at a certain point all remaining committees may be fully corrupted,
and cease sending messages. This corresponds to the remaining virtual parties
being corrupted and mute in the virtual protocol; in this case all of the remaining
committee members are identified as cheaters. The compiled protocol proceeds
in this way until the virtualized copy of πRRSample(f,m, u) is complete.

If the generic MPC protocol that underlies each virtual party requires con-
stant rounds, then the entire protocol completes in O(m+ n/m) rounds, and if
we set m =

√
n, we achieve a round complexity of O(

√
n), as desired. So long as

there is at least one honest party, one virtual party is guaranteed to produce an
output at some point during this time, which means that the compiled protocol
has the same output delivery guarantee as the original.

Post-Transformation Functionality. Although the compiled protocol
πCompiler(πRRSample(f,m, u), n, u,m) emulates the original πRRSample(f,m, u) in
some sense, it does not necessarily realize FPreTrans(f,m, u) as the original pro-
tocol does, because the adversary has additional rejection-sampling capabilities
that allow for additional bias. We therefore specify a second ideal function-
ality FPostTrans(f, n, u, r), where r is a bound on the number of rejections the
adversary is permitted; setting this bound to 0 coincides with FPreTrans(f, n, u).

As in FPreTrans(f, n, u), the functionality begins by sampling w ← W, com-
puting v = f(u,w) and sending v to the adversary, who can either accept or
reject. If the adversary accepts then it returns x ∈ W and the functionality
outputs y = f(v, x) to everyone; if the adversary rejects, then the functionality
samples another w ← W, computes v = f(u,w), and sends v to the adver-
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sary, who can again either accept or reject. The functionality and the adversary
proceed like this for up to r iterations, or until the adversary accepts some value.

Theorem 1.2 (Post-Transformation Security, Informal). Let m < n be in-
tegers and let f : V × W → V and u ∈ V be as above. Assume that
πRRSample(f,m, u) realizes FPreTrans(f,m, u) using a suitable NIZK protocol within
m broadcast rounds, and that the next-message functions of πRRSample(f,m, u)
can be securely computed with identifiable abort and public verifiability in
a constant-number of rounds. Let r = m + ⌈n/m⌉. Under these con-
ditions, πCompiler(πRRSample(f,m, u), n, u,m) realizes FPostTrans(f, n, u, r) within
O(r) broadcast rounds.

Although πCompiler(πRRSample(f,m, u), n, u,m) does not necessarily realize
FPreTrans(f,m, u) for every f , we show that it somewhat-unexpectedly does if
the update function f satisfies certain properties. Furthermore, we show that
these properties are met in the cases of powers-of-tau and mixnets.

Theorem 1.3 (Equivalence of Pre- and Post-Transformation Security, Infor-
mal). Let n, r ∈ N, let f : V×W→ V be a homomorphic update function, and
let u ∈ V be a common public input. If a protocol π realizes FPostTrans(f, n, u, r)
then π also realizes FPreTrans(f, n, u).

Powers of Tau and Polynomial Commitments. A polynomial-
commitment scheme enables one to commit to a polynomial of some bounded
degree d, and later open evaluations of the polynomial. The pairing-
based scheme of Kate et al. [KZG10] requires trusted setup of the form
{G, τ ·G, τ2 ·G, . . . , τd ·G} ∈ Gd+1, for some elliptic-curve group G. The
security of the scheme reduces to the d-strong Diffie-Hellman assumption
(d-SDH) [BB04]. We show that if the setup is not sampled by a trusted party,
but instead computed (with bias) by our protocol (either the round-robin or
compiled variation), there is essentially no security loss.

Theorem 1.4 (Generating Setup for SDH, Informal). If there exists a PPT
adversary that can break a d-SDH challenge generated by an instance of our
protocol in which it has corrupted n−1 parties, then there exists a PPT adversary
that can win the standard (unbiased) d-SDH game with the same probability.

zk-SNARKs with Updateable Setup. Several recent zero-knowledge Suc-
cinct Non-interactive Arguments of Knowledge (zk-SNARKs) have featured up-
datable trusted setup, and have security proofs that hold so long as at least
one honest party has participated in the update process [GKM+18, MBKM19,
GWC19, CHM+20]. Since their proofs already account for adversarial bias and
the form of their trusted setup derives from the setup of Kate et al. [KZG10],
our protocols can be employed for an asymptotic improvement upon the best
previously known update procedure.
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Verifiable Mixnets. A verifiable mixnet is a multiparty protocol by which a
group of parties can shuffle a set of encrypted inputs, with the guarantee that no
corrupt subset of the parties can learn the permutation that was applied or pre-
vent the output from being delivered, and the property that non-participating
observers can be convinced that the shuffle was computed correctly. Prior con-
structions, such as the work of Boyle et al. [BKRS18], involve random shuffling
and re-encryption in a round-robin fashion, and their security proofs already
consider bias of exactly the sort our protocol permits. Thus, it is natural to
apply our compiler, yielding the first verifiable mixnet that requires sublinear
broadcast rounds.

Concrete Efficiency. While our primary goal in this work is optimizing
round complexity, a round-efficient protocol is not useful in practice if it has
unfeasibly high (but polynomially bounded) communication or computation
complexity. As evidence of the practicality of our technique, we relax our round
complexity goal to O(

√
n log d), and give an additional, non-generic construc-

tion that specifically computes the powers-of-tau, along with an analysis of its
concrete costs.

1.2 Open Questions

Our work initiates the foundational study of “rejection-sampling protocols” with
guaranteed output delivery, and uncovers various open questions that we leave
for future research. For example, we do not know whether we can achieve sublin-
ear broadcast complexity for sampling functionalities that are not known to be
realized by round-robin protocols, or whether we can reduce the broadcast com-
plexity of any non-trivial sampling functionality other than distributed key gen-
eration to o(

√
n) under standard assumptions. Presenting a lower bound seems

like a challenging task, since indistinguishability obfuscation (iO) may suffice
for achieving a single-round protocol, based on techniques for non-interactive
multiparty key agreement [BZ14, KRS15]. However, even this is unclear to us.

2 Preliminaries

Notation. We use = for equality, ..= for assignment, ← for sampling from
a distribution, ≡ for distributional equivalence, ≈c for computational indistin-
guishability, and ≈s for statistical indistinguishability. In general, single-letter
variables are set in italic font, function names are set in sans-serif font, and
string literals are set in slab-serif font. We use V, W, X, and Y for unspeci-
fied domains, but we use G for a group, F for a field, Z for the integers, N for
the natural numbers, and Σd for the permutations over d elements. We use λ
to denote the computational security parameter.

Vectors and arrays are given in bold and indexed by subscripts; thus ai is the
ith element of the vector a, which is distinct from the scalar variable a. When
we wish to select a row or column from a multi-dimensional array, we place a ∗
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in the dimension along which we are not selecting. Thus b∗,j is the jth column
of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire matrix. We
use bracket notation to generate inclusive ranges, so [n] denotes the integers
from 1 to n and [5, 7] = {5, 6, 7}. On rare occasions, we may use one vector to
index another: if a ..= [2, 7] and b ..= {1, 3, 4}, then ab = {2, 4, 5}. We use |x|
to denote the bit-length of x, and |y| to denote the number of elements in the
vector y. We use Pi to indicate an actively participating party with index i;
in a typical context, there will be a fixed set of active participants denoted
P1, . . . ,Pn. A party that observes passively but remains silent is denoted V.

For convenience, we define a function GenSID, which takes any number of
arguments and deterministically derives a unique Session ID from them. For
example GenSID(sid, x, x) derives a Session ID from the variables sid and x, and
the string literal “x.”

Universal Composability, Synchrony, Broadcast, and Guaranteed
Output Delivery. We consider a malicious PPT adversary who can stati-
cally corrupt any subset of parties in a protocol, and require all of our construc-
tions to guarantee output delivery. Guaranteed output delivery is traditionally
defined in the stand-alone model (e.g., [CL17]) and cannot be captured in the
inherently asynchronous UC framework [Can01]. For concreteness, we will con-
sider the synchronous UC modeling of Katz et al. [KMTZ13], which captures
guaranteed termination in UC, but for clarity we will use standard UC notation.
We note that our techniques do not rely on any specific properties of the model,
and can be captured in any composable framework that supports synchrony,
e.g., those of Liu-Zhang and Maurer [LM20] or Baum et al. [BDD+21].

In terms of communication, we consider all messages to be sent over an au-
thenticated broadcast channel, sometimes denoted by FBC, and do not consider
any point-to-point communication. This is standard for robust MPC protocols
in the dishonest-majority setting. Our protocols proceed in rounds, where all
parties receive the messages sent in round i− 1 before anyone sends a message
for round i.

3 A Round-Reducing Compiler

The main result of our paper is a round-reducing compiler for round-robin sam-
pling protocols. To be specific, our compiler requires three conditions on any
protocol ρ that it takes as input: ρ must have a broadcast-only round-robin
structure, it must be strongly player-replaceable, and it must UC-realize a spe-
cific functionality FPreTrans(f, ·, ·) for some function f . We define each of these
conditions in turn, before describing the compiler itself in Section 3.1.

Definition 3.1 (Broadcast-Only Round-Robin Protocol). A protocol has a
broadcast-only round-robin structure if the parties in the protocol send exactly
one message each in a predetermined order, via an authenticated broadcast chan-
nel. We often refer to such protocols simply as round-robin protocols.
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Definition 3.2 (Strong Player-Replaceability). A protocol is strongly player-
replaceable if no party has any secret inputs or keeps any secret state. That is,
the next-message functions in a strongly player-replaceable protocol may take
as input only public values and a random tape.

Remark 3.3 (Strongly Player-Replaceable Round-Robin Protocols). If a pro-
tocol ρ(n, u) for n parties with some common input u ∈ V conforms to Defini-
tions 3.1 and 3.2, then it can be represented as a vector of functions g1, . . . ,gn+1

such that gi for i ∈ [n] is the next-message function of the ith party. g1 takes
u ∈ V and a vector of η uniform coins for some η ∈ N as input, and each
succeeding function gi for i ∈ [2, n] takes u concatenated with the outputs of all
previous functions in the sequence, plus η additional uniform coins. The last
function, gm+1, does not take any coins, and can be run locally by anyone to
extract the protocol’s output from its transcript. We refer to protocols that meet
these criteria as SPRRR protocols hereafter.

Note that Definition 3.2 is somewhat more restrictive than the (non-strong)
player-replaceability property defined by Chen and Micali [CM19]. Their defi-
nition forbids secret state but allows players to use some kinds of secret inputs
(in particular, secret signature keys) in the next-message function, so long as
every player is capable of computing the next message for any given round. We
forbid such secret inputs, giving parties only an ideal authenticated broadcast
channel by which to distinguish themselves from one another.

Finally, we define the biased sampling functionality that any input protocol
ρ is required to realize. This functionality is parameterized by a function f
which takes an input value from some space (denoted V) and a randomiza-
tion witness (from some space W) and produces an output value (again in V)
deterministically. The functionality models sampling with adversarial bias by
selecting a randomization witness w from W uniformly, rerandomizing the input
value using w, and then providing the resulting intermediate v to the adversary,
who can select a second (arbitrarily biased) randomization witness x from W to
apply to v using f , in order to produce the functionality’s output y. Note that
the only requirement on f is that it has the same input and output domains, so
that it can be applied repeatedly. It is not required to have any other properties
(such as, for example, one-wayness).

Functionality 3.4. FPreTrans(f, n, u). Biased Sampling

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn and with the ideal adversary S. It is also parameterized by an
update function f : V×W→ V and an arbitrary value u ∈ V.

Sampling: On receiving (sample, sid) from at least one Pi for i ∈ [n],

1. If a record of the form (unbiased, sid, ∗) exists in memory, then ignore
this message. Otherwise, continue with steps 2 and 3.

2. Sample w ←W and compute v ..= f(u,w).
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3. Store (unbiased, sid, v) in memory and send (unbiased, sid, v) to S.

Bias: On receiving (proceed, sid, x) from S, where x ∈W,

4. If the record (done, sid) exists in memory, or if the record
(unbiased, sid, v) does not exist in memory, then ignore this message.
Otherwise, continue with steps 5 and 6.

5. Compute y ..= f(v, x).

6. Store (done, sid) in memory and send (output, sid, y) to all parties.

Note that this functionality never allows an abort or adversarially delayed
output to occur, and thus it has guaranteed output delivery.6 Now that all
of the constraints on input protocols for our compiler are specified, and we
can introduce a second functionality, which will be UC-realized by the compiled
protocol, given a constraint-compliant input protocol. This second functionality
is similar to FPreTrans and likewise has guaranteed output delivery, but it takes
an additional parameter r, and allows the adversary to reject up to r potential
honest randomizations before it supplies its bias and the output is delivered.

Functionality 3.5. FPostTrans(f, n, u, r). Rejection Sampling

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn and with the ideal adversary S. It is also parameterized by an
update function f : V×W→ V, an arbitrary value u ∈ V, and a rejection
bound r ∈ N.

Sampling: On receiving (sample, sid) from at least one Pi for i ∈ [n],

1. If a record of the form (candidate, sid, ∗, ∗) exists in memory, then ig-
nore this message. Otherwise, continue with steps 2 and 3.

2. Sample w1 ←W and compute v1
..= f(u,w1).

3. Store (candidate, sid, 1,v1) in memory and send the same tuple to S.

Rejection: On receiving (reject, sid, i) from S, where i ∈ N,

4. If i > r, or if either of the records (done, sid) or (candidate, sid, i +
1,vi+1) exists in memory, or if the record (candidate, sid, i,vi) does
not exist in memory, then ignore this message. Otherwise, continue
with steps 5 and 6.

5. Sample wi+1 ←W and compute vi+1
..= f(u,wi+1).

6Formally, every party requests the output from the functionality, and the adversary can in-
struct the functionality to ignore a polynomially-bounded number of such requests [KMTZ13].
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6. Store (candidate, sid, i + 1,vi+1) in memory and send the same tuple
to S.

Bias: On receiving (accept, sid, i, x) from S, where i ∈ N and x ∈W,

7. If either of the records (done, sid) or (candidate, sid, i+1,vi+1) exists in
memory, or if the record (candidate, sid, i,vi) does not exist in memory,
then ignore the message. Otherwise, continue with steps 8 and 9.

8. Compute y ..= f(vi, x).

9. Store (done, sid) in memory and send (output, sid, y) to all parties.

Observe that for any f , any n ∈ N+, and any u ∈ V, the functionality
FPreTrans(f, n, u) is equivalent to FPostTrans(f, n, u, 0) (though some of the message
names differ). In fact, there are some functions f under which we can prove that
the ideal protocol involving FPostTrans(f, n, u, r) UC-realizes FPreTrans(f, n, u) for
any r ∈ N; we discuss this further in Section 4.

We note that instead of one function f : V ×W → V, both FPreTrans and
FPostTrans could easily have been parameterized by two different functions f1 :
V ×W → X and f2 : X × Y → V, where f1 is used for applying the honest
randomization from W, and f2 for applying the adversarial bias from Y. Under
this change, all of the proofs of theorems in Section 3 go through exactly as
written, with the appropriate substitutions. However, our protocols in Section 4
require f1 = f2, and we know of no other input protocol that UC-realizes
FPreTrans for distinct values of f1 and f2, so we choose to present a simplified
view with only one update function, f .

Finally, we must discuss the property of public verifiability. We model pub-
lic verifiability as an abstract modifier for other functionalities. The parties
interacting with any particular session of an unmodified functionality become
the active participants in the modified functionality, but there may be addi-
tional parties, known as observing verifiers, who may register to receive out-
puts (potentially unbeknownst to the active participants) but do not influence
the functionality in any other way. This corresponds to the protocol property
whereby a protocol instance can be verified as having been run correctly by
third parties who have access to only a transcript (obtained, for example, by
monitoring broadcasts). Strongly player-replaceable broadcast-only protocols
have this property naturally if they are secure against malicious corruptions:
without any stored secrets, private communication, or interaction, the active
parties have no additional verification power over anyone else.

Functionality 3.6. JF KPV. Public Verifiability for F

The functionality JF KPV is identical to the functionality F , except that
it interacts with an arbitrary number of additional observing verification
parties (all of them denoted by V, as distinct from the actively participating
parties P1, P2, etc.). Furthermore, if all actively participating parties are
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corrupt, then JF KPV receives its random coins from the adversary S.

Coin Retrieval: Whenever the code of F requires a random value to
be sampled from the domain X, then sample as F would if at least one
of the active participants is honest. If all active participants are corrupt,
then send (need-coin, sid,X) to S, and upon receiving (coin, sid, x) such
that x ∈ X in response, continue behaving as F , using x as the required
random value.

Observer Registration: Upon receiving (observe, sid) from V, remem-
ber the identity of V, and if any message with the same sid is sent to all
active participants in the future, then send it to V as well.

In the introduction, we have omitted discussion of public verifiability for
the sake of simplicity and clarity, but in fact, all known input protocols for
our compiler have this property (that is, they UC-realize JFPreTransKPV, which is
strictly stronger than FPreTrans). Furthermore, we will show that given an input
protocol that realizes JFPreTransKPV, the compiled protocol realizes JFPostTransKPV.

Note that when proving that a protocol realizes a functionality with public
verifiability, we do not typically need to reason about security against malicious
observing verifiers, since honest parties ignore any messages they send, and
therefore there can be nothing in their view that the adversary cannot already
obtain by monitoring the relevant broadcast channel directly.

3.1 The Compiler

We now turn our attention to the compiler itself. We direct the reader to
Section 1.1 for an intuitive view of the compiler, via virtual parties and virtual
rounds. With this intuitive transformation in mind, we now present a compiler
which formalizes it and addresses the unmentioned corner cases. The compiler
takes the form of a multiparty protocol πCompiler(ρ, n, u,m) that is parameterized
by a description of the original protocol ρ for m parties, and by the number of
real, active participants n, the public input u for the original protocol, and the
number of committees (i.e., virtual parties) m. Before describing πCompiler, we
must formalize the tool that each committee uses to emulate a virtual party.
We do this via a UC functionality for generic MPC with identifiable abort.

Functionality 3.7. FSFE-IA(f, n). SFE with Identifiable Abort [IOZ14]

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn and with the ideal adversary S. It is also parameterized by a
function, f : X1 × . . .× Xn → Y.
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SFE: On receiving (compute, sid,xi) where xi ∈ Xi from every party Pi

for i ∈ [n],

1. Compute y ..= f
(︂
{xi}i∈[n]

)︂
.

2. Send (candidate-output, sid, y) to S, and receive (stooge, sid, c) in re-
sponse.

3. If c is the index of a corrupt party, then send (abort, sid, c) to all parties.
Otherwise, send (output, sid, y) to all parties.

In order to ensure that every party can identify the cheaters in committees
that it is not a member of, we must apply J·KPV to FSFE-IA, which gives us publicly
verifiable identifiable abort. We discuss a method for realizing this functionality
in Section 3.2; see Lemma 3.15 for more details. We can now give a formal
description of our compiler.

Protocol 3.8. πCompiler(ρ, n, u,m). Round-reducing Compiler

This compiler is parameterized by ρ, which is a strongly player-replaceable
round-robin protocol with two parameters: the number of participants,
which may be hardcoded as m, and a common public input value from the
domain V. Let g1, . . . ,gm+1 be the vector of functions corresponding to
ρ as described in Remark 3.3, and let η be the number of coins that the
first m functions require. The compiler is also parameterized by the party
count n ∈ N+, the common public input u ∈ V, and the committee count
m ∈ N+ such that m ≤ n. In addition to the actively participating parties
Pℓ for ℓ ∈ [n], the protocol involves the ideal functionality JFSFE-IAKPV, and
it may involve one or more observing verifiers, denoted by V.

Sampling: Let a0 ..= u and letC1,∗,∗ be a deterministic partitioning of [n]
into m balanced subsets. That is, for i ∈ [m], let C1,i,∗ be a vector indexing
the parties in the ith committee. Upon receiving (sample, sid) from the
environment Z, each party repeats the following sequence of steps, starting
with k ..= 1 and j1

..= 1, incrementing k with each loop, and terminating
the loop when jk > m

1. For all i ∈ [m] (in parallel) each party Pℓ for ℓ ∈ Ck,i,∗
samples ωℓ ← {0, 1}η and sends (compute,GenSID(sid, k, i),ωℓ) to
JFSFE-IA(γjk

, |Ck,i,∗|)KPV, where γjk
is a function such that

γjk

(︂{︁
ωℓ

}︁
ℓ∈Ck,i,∗

)︂
↦→ gjk

(︂
a[0,jk],

⨁︂
ℓ∈Ck,i,∗

ωℓ

)︂

2. For all i ∈ [m] (in parallel) each party Pℓ for ℓ ∈ [n] \ Ck,i,∗ sends
(observe,GenSID(sid, k, i)) to JFSFE-IA(γjk

, |Ck,i,∗|)KPV (thereby taking
the role of verifier).
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3. For all i ∈ [m], all parties receive either (abort,GenSID(sid, k, i), ck,i)
or (output,GenSID(sid, k, i), âk,i) from JFSFE-IA(γjk

, |Ck,i,∗|)KPV. In the
latter case, let ck,i ..= ⊥.

4. If any outputs were produced in the previous step, then let ℓ be the
smallest integer such that (output,GenSID(sid, k, ℓ), âk,ℓ) was received.
Let jk+1

..= jk + 1 and let ajk+1
..= âk,ℓ and for every i ∈ [m] let

Ck+1,i,∗ ..=

{︄
Ck,i,∗ \ {ck,i} if i ̸= ℓ

∅ if i = ℓ

5. If no outputs were produced in Step 3, then let jk+1
..= jk and for every

i ∈ [m] let
Ck+1,i,∗ ..= Ck,i,∗ \ {ck,i}

Finally, each party outputs (output, sid,gm+1(am)) to the environment
when the loop terminates.

Verification: If there is an observing verifier V, then upon receiving
(observe, sid) from the environment Z, it repeats the following sequence
of steps, starting with k ..= 1 and j1

..= 1, incrementing k with each loop,
and terminating the loop when jk > m.

6. V sends (observe,GenSID(sid, k, i)) to JFSFE-IA(γjk
, |Ck,i,∗|)KPV for

all i ∈ [m], and receives either (abort,GenSID(sid, k, i), ck,i) or
(output,GenSID(sid, k, i), âk,i) in response.

7. V determines the value of jk+1 and Ck+1,∗,∗ per the method in Steps 4
and 5.

Finally, V outputs (output, sid,gm+1(am)) to the environment when the
loop terminates.

3.2 Proof of Security

In this section we provide security and efficiency proofs for our compiler. Our
main security theorem (Theorem 3.9) is split into two sub-cases: the case that
there is at least one honest active participant is addressed by Lemma 3.10, and
the case that there are no honest active participants (but there is one or more
honest observing verifiers) is addressed by Lemma 3.13. After this, we give a
folklore method for realizing JFSFE-IAKPV in Lemma 3.15, and use it to prove our
main efficiency result in Corollary 3.16.

Theorem 3.9. Let f : V × W → V be an update function, let u ∈ V,
let m ∈ N+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
JFPreTrans(f,m, u)KPV in the presence of a malicious adversary statically corrupt-
ing any number of actively participating parties. For every integer n ≥ m, it
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holds that πCompiler(ρ, n, u,m) UC-realizes JFPostTrans(f, n, u,m+n/m)KPV in the
presence of a malicious adversary statically corrupting any number of actively
participating parties in the JFSFE-IAKPV-hybrid model.

Proof. By conjunction of Lemmas 3.10 and 3.13. Since corruptions are static,
a single simulator can be constructed that follows the code of either SCompiler

(defined in the proof of Lemma 3.10) or SCompilerPV (defined in the proof of
Lemma 3.13), depending on the number of active participants corrupted by the
real-world adversary A.

Lemma 3.10. Let f : V × W → V be an update function, let u ∈ V, let
m ∈ N+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-realizes
JFPreTrans(f,m, u)KPV in the presence of a malicious adversary statically cor-
rupting up to m − 1 actively participating parties. For every integer n ≥ m,
it holds that πCompiler(ρ, n, u,m) UC-realizes JFPostTrans(f, n, u,m + n/m)KPV in
the presence of a malicious adversary statically corrupting up to n− 1 actively
participating parties in the JFSFE-IAKPV-hybrid model.

Note that the above lemma also holds if the J·KPV modifier is removed from
both functionalities. This is straightforward to see, given the proof of the lemma
as written, so we elide further detail. Regardless, because the proof of this
lemma is our most interesting and subtle proof, upon which our other results
rest, we will sketch it first, to give the reader an intuition, and then present the
formal version afterward.

Proof Sketch. In this sketch we give an overview of the simulation strategy fol-
lowed by the simulator SCompiler against a malicious adversary who corrupts up
to n − 1 parties, using the same terminology and simplified, informal protocol
description that we used to build an intuition about the compiler in Section 1.1.
Recall that with the ith protocol committee we associate an emulated “virtual”
party Qi, for the purposes of exposition. We are guaranteed by the premise of
Theorem 3.10, that there exists an ideal adversary Sρ,D that simulates a tran-
script of ρ for the dummy adversary D that corrupts up to m− 1 parties, while
engaging in an ideal interaction with functionality JFPreTrans(f,m, u)KPV on D’s
behalf. The compiled protocol πCompiler(ρ, n, u,m) represents a single instance
of the original protocol ρ, but in each virtual round there is an m-way fork
from which a single definitive outcome is selected (by the adversary) to form
the basis of the next virtual round. The main idea behind SCompiler is that the
forking tree can be pruned in each virtual round to include only the single path
along which the a real honest party’s contribution lies (or might lie, if no honest
contribution has yet become a definitive outcome), and then Sρ,D can be used
to translate between the protocol instances represented by these paths and the
functionality JFPostTrans(f,m, u,m)KPV.

At a high level, for each fresh candidate vi produced by
JFPostTrans(f,m, u,m)KPV, the simulator SCompiler will invoke an instance of
Sρ,D, feed it all the (definitive-output) messages produced by the protocol
thus far, and then feed it vi in order to generate a corresponding honest-party
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message that can be sent to the corrupted parties. It repeats this process until
the adversary accepts the honest party’s contribution in some virtual round
κ, whereafter the last instance of Sρ,D (which was created in round κ) is fed
the remaining protocol messages in order to extract the adversary’s bias y. Let
h ∈ [n] index an honest party, and let θ index the committee in to which it
belongs, (corresponding to Qθ). The outline for SCompiler is as follows (dropping
Session IDs for the sake of simplification):

1. Initialize j ..= 1, k ..= 1, a0 ..= u, κ ..= ⊥.

2. Obtain a candidate vk by sending either sample (only when k = 1) or
(reject, k − 1) to JFPostTransKPV, and receiving (candidate, k,vk) in re-
sponse.

3. Invoke Sρ,D on protocol transcript a∗ (each message being sent on behalf
of a different corrupt party, and then send it (unbiased,vk) on behalf of
JFPreTransKPV in order to obtain the tentative protocol message âk,θ of Qθ.

4. Send (candidate-output, âk,θ) on behalf of JFSFE-IAKPV to the corrupt
parties in the committee indexed by θ, and wait for the adversary to either
accept this output, or abort by blaming a corrupt committee-member.

5. Simultaneously, interact with the fully corrupt committees indexed by
[m]\{θ} on behalf of JFSFE-IAKPV to learn the values of âk,i for i ∈ [m]\{θ}.

6. If any virtual parties produced non-aborting output during this virtual
round, then let i′ ∈ [m] be the smallest number that indexes such a virtual
party. Let aj ..= âk,i′ (making the output of Qi′ definitive) and if i′ = θ
then set κ ..= j and skip to Step 8; otherwise, increment j and k and return
to Step 2, updating the committee partitioning to remove the committee
corresponding to Qi′ (and to remove any cheating real parties from the
other committees) as per the protocol.

7. If no virtual parties produced non-aborting output during this virtual
round, then increment k (but not j), update the committee partitioning
to remove the cheaters as per the protocol, and return to Step 2.

8. Once Qθ has produced a definitive output (in virtual round κ) and its
underlying committee has disbanded, continue interacting with the other
(fully corrupt) committees on behalf of JFSFE-IAKPV until they have all
either produced a definitive output (which is appended to a) or become
depleted of parties due to cheating. At this point, a∗ should comprise a
full transcript of protocol ρ. Some prefix of this transcript has already
been transmitted to the final instance of Sρ,D (which was spawned in
Step 2 during virtual round κ); send the remaining messages (those not
in the prefix) to the last instance of Sρ,D as well, and it should output
(proceed, x) along with its interface to JFPreTransKPV. Send (accept, κ, x)
to JFPostTransKPV and halt.
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The only non-syntactic aspect in which the above simulation differs from
the real protocol is as follows: whereas in the real protocol Qθ computes its
message âk,θ by running its honest code as per ρ (recall that this virtual party
is realized by an invocation of JFPreTransKPV by committee θ), in the simulation
this value is produced by Sρ,D in consultation with JFPostTransKPV. Observe, first,
that the reject interface of JFPostTransKPV functions identically to an individual
invocation of JFPreTransKPV and second that the transcript produced by Sρ,D
in its interaction with JFPreTransKPV is indistinguishable from a real execution
of ρ. From these two observations, we can conclude that the above simulation is
indistinguishable from a real execution of πCompiler to any efficient adversary.

With this simplified sketch of the proof completed, we now proceed to the
full, formal proof of Lemma 3.10.

Proof of Lemma 3.10. By the premise, ρ(m,u) realizes JFPreTrans(f,m, u)KPV;
that is,

∀A ∃Sρ,A s.t. ∀Z,{︁
REALρ(m,u),A,Z(λ, z)

}︁
λ,m∈N+,u∈V,z∈{0,1}∗

≈c

{︂
IDEALJFPreTrans(f,m,u)KPV,Sρ,A(m,u),Z(λ, z)

}︂
λ,m∈N+,u∈V,z∈{0,1}∗

(1)

It follows from Equation 1 that there must exist an ideal adversary Sρ,D for
the dummy adversary D. In this proof, we construct a new ideal adversary,
SCompiler, which requires black-box access to Sρ,D and to a real-world adversary
A, and then prove that

∀A ∀Z,{︁
REALπCompiler(ρ,n,u,m),A,Z(λ, z)

}︁
λ,n,m∈N+:n≥m,
u∈V,z∈{0,1}∗

≈c

{︃
IDEAL

JFPostTrans(f,n,u,m+n/m)KPV,S
Sρ,D,A
Compiler (ρ,f,n,u,m),Z

(λ, z)

}︃
λ,n,m∈N+:n≥m,
u∈V,z∈{0,1}∗

(2)

We begin by specifying SCompiler, after which our proof of Equation 2 proceeds
via a sequence of hybrid experiments of length m+ n/m+ 2.

Simulator 3.11. SSρ,D,A
Compiler(ρ, f, n, u,m). Against Dishonest Majority

This simulator is parameterized by a player-replaceable round-robin proto-
col ρ for m participants, and by the update function f : V×W→ V such
that ρ(m,u) UC-realizes JFPreTrans(f,m, u)KPV in the presence of a mali-
cious adversary corrupting up to m− 1 actively participating parties. This
simulator has black-box access to the simulator Sρ,D for the dummy adver-
sary D, and to the adversary A who is guaranteed to corrupt no more than
n− 1 active participants. n is the number of actively participating parties
in the protocol to be simulated, m ∈ [n] is the number of committees, and
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u ∈ V is a common public input.

Init: On initial activation for the session ID sid, SCompiler begins emulating
in its head an instance of the real-world experiment for πCompiler(ρ, n, u,m)
for the adversary A (to which SCompiler has black-box access). Let this em-
ulated experiment be referred to as subexpt0, and let the values of γ∗,
a∗, â∗,∗, and C∗,∗,∗ henceforth be defined relative to their values in this
sub-experiment. Furthermore, SCompiler plays the role of the ideal oracle
JFSFE-IAKPV in subexpt0. SCompiler forwards all messages from its own en-
vironment Z to A in subexpt0, and vice versa, and when A announces
that it wishes to corrupt a set of parties indexed by P∗ ⊂ [n], SCompiler cor-
rupts the corresponding parties in its own experiment. Upon learning P∗,
SCompiler arbitrarily chooses a single honest party index h ∈ [n] \P∗. Let θ
be the index of the committee that contains Ph.

Sampling:

• Upon receiving (compute,GenSID(sid, k, i),ωp) on behalf of
JFSFE-IA(γjk

, |Ck,i,∗|)KPV from a corrupt party Pp for p ∈ Ck,i,∗ ∩ P∗ in
subexpt0, if a record of the form (sample-accepted, sid, ∗) does not
exist in memory:

1. If k = 1, then on behalf of Pp, SCompiler sends (sample, sid) to
JFPostTrans(f, n, u, r)KPV if no such message has already been sent on
behalf of Pp.

2. If Ck,i,∗ ∩P∗ = Ck,i,∗ (that is, all active parties associated with this
instance of JFSFE-IAKPV are corrupt), then SCompiler follows the code of
JFSFE-IAKPV.

3. If Ck,i,∗∩P∗ ̸= Ck,i,∗ but i ̸= θ (that is, Ph is not associated with this
instance of JFSFE-IAKPV, but at least one other honest party is), and a
message of the form (compute,GenSID(sid, k, i), ∗) has previously been
received from every party Pp′ for p′ ∈ (Ck,i,∗∩P∗)\{p}, then SCompiler

waits (asynchronously) for the record (candidate, sid, k,vk) to appear
in its memory. When this happens, SCompiler emulates JFSFE-IAKPV by
following its code, and also emulates the honest parties indexed by
Ck,i,∗ \ P∗ in their interaction with JFSFE-IAKPV by following their
code.

4. If Ck,i,∗ ∩ P∗ ̸= Ck,i,∗ and i = θ (that is, Ph is associated
with this instance of JFSFE-IAKPV), and a message of the form
(compute,GenSID(sid, k, i), ∗) has previously been received from ev-
ery party Pp′ for p′ ∈ (Ck,i,∗ ∩ P∗) \ {p}, then SCompiler waits (asyn-
chronously) for the record (candidate, sid, k,vk) to appear in its
memory. When this happens, SCompiler begins emulating a new in-
stance of the ideal-world experiment for JFPreTrans(f,m, u)KPV with
ideal adversary Sρ,D (to which SCompiler has black-box access) and m
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parties, in which it plays the role of the environment, the ideal oracle
JFPreTransKPV, and all honest parties. Let this new emulated exper-
iment be referred to as subexptk. In its role as the environment
and using the interface of D, SCompiler corrupts the parties indexed
by [m] \ {jk} and sequentially instructs each Pp′ for p′ ∈ [jk−1] to
broadcast ap′ . Then, in its role as JFPreTransKPV, SCompiler waits for
a message (sample, sid) to be sent by Sρ,D on behalf of each Pp′ for
p′ ∈ [jk−1], whereupon it sends (unbiased, sid,vk) to Sρ,D on behalf
of JFPreTransKPV and waits for a response.

• On receiving (candidate, sid, k,vk) from JFPostTrans(f, n, u, r)KPV,
SCompiler stores this message in memory.

• Upon receiving a message âk via the interface of D from Sρ,D (in
its role representing the honest party) in subexptk, SCompiler finds
the value of i such that h ∈ Ck,i,∗ in subexpt0, and then sends
(candidate-output,GenSID(sid, k, i), âk) to A on behalf of JFSFE-IAKPV.
When A responds with (stooge,GenSID(sid, k, i), c), if c ∈ Ck,i,∗ ∩ P∗,
then SCompiler sends (abort,GenSID(sid, k, i), c) to the corrupt parties on
behalf of JFSFE-IAKPV in subexpt0. If c ̸∈ Ck,i,∗ ∩ P∗, then SCompiler

sends (output,GenSID(sid, k, i), âk) to the corrupt parties on behalf of
JFSFE-IAKPV in subexpt0.

• When the value of ak becomes finalized in subexpt0, if no record
of the form (sample-accepted, sid, ∗) exists in memory, and ak was
delivered as the output of an instance of JFSFE-IAKPV with session
ID GenSID(sid, k, i) for i such that h ̸∈ Ck,i,∗, then SCompiler sends
(reject, sid, k) to JFPostTransKPV. Otherwise, if no record of the
form (sample-accepted, sid, ∗) exists in memory, then SCompiler stores
(sample-accepted, sid, k) in memory.

Bias:

• Upon receiving (compute,GenSID(sid, k, i),ωp) on behalf of
JFSFE-IA(γjk

, |Ck,i,∗|)KPV from a corrupt party Pp for p ∈ Ck,i,∗ ∩ P∗ in
subexpt0, if a record of the form (sample-accepted, sid, ∗) exists in
memory:

1. If i = θ (that is, Ph is associated with this instance of JFSFE-IAKPV),
then SCompiler does nothing.

2. If i ̸= θ (that is, Ph is not associated with this instance of JFSFE-IAKPV),
then SCompiler follows the code of JFSFE-IAKPV and, if necessary, any
other honest parties that interact with JFSFE-IAKPV.

• When the value of ak becomes finalized in subexpt0, if a record of
the form (sample-accepted, sid, κ) exists in memory, then in subexptκ,
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SCompiler instructs Sρ,D via the interface of D to broadcast ak on behalf
of the corrupt Pk.

• Upon receiving (proceed, sid, x) on behalf of JFPreTransKPV from Sρ,D
in subexptκ, if the record (sample-accepted, sid, κ) does not exist
in memory, then SCompiler does nothing. Otherwise, SCompiler sends
(accept, sid, κ, x) to JFPostTrans(f, n, u, r)KPV.

Our sequence of hybrid experiments begins with the real-world experiment,
as specified in Equation 2. Specifically,

H0
..=

{︁
REALπCompiler(ρ,n,u,m),A,Z(λ, z)

}︁
λ,n,m∈N+:n≥m;u∈V,z∈{0,1}∗

Hybrid H1. This hybrid is identical to H0, except that Z now communicates
with a single, monolithic entity, S, which internally emulates an instance of the
real-world experiment for A (to which S has black-box access), in which S itself
plays the roles of all parties and oracles (excluding Z andA), following their code
exactly as specified in πCompiler(ρ, n, u,m), and forwarding all messages between
the emulated experiment’s environment and Z. Let this emulated experiment
be denoted by subexpt0; henceforth in this sequence of hybrid experiments, all
variables defined in the protocol πCompiler(ρ, n, u,m) are defined with respect to
the instance of πCompiler(ρ, n, u,m) emulated by S. When S learns from A the
value of P∗, S arbitrarily chooses h ∈ [n] \P∗ (this set is always nonempty, per
the premise) and sets θ to be the index of the committee that contains Ph, but it
does not (yet) use these variables. Because these changes are purely syntactical,
H0 = H1.

Hybrid Hk+1 ∀k ∈ [m+ n/m]. Hybrid Hk+1 is identical to Hk, except that S
now has black-box access to Sρ,D (if it didn’t previously), and if there is an ac-
tivation of the functionality JFSFE-IA(γjk

, |Ck,θ, ∗|)KPV in subexpt0 with session
ID GenSID(sid, k, θ), then instead of following the code of JFSFE-IAKPV, S begins
emulating a new instance of the ideal-world experiment for JFPreTrans(f,m, u)KPV
to Sρ,D (to which S has black-box access). Let this new emulated experiment
be referred to as subexptk. In subexptk, S plays the role of the environment,
the ideal oracle JFPreTransKPV, and all honest parties.

In its role as the environment for subexptk, and using the interface of D, S
corrupts parties indexed by [m]\{jk} and sequentially instructs each Pp for p ∈
[jk−1] to broadcast ap. Then, in its role as JFPreTransKPV, S waits for a message
(sample, sid) to be sent by Sρ,D on behalf of each Pp for p ∈ [jk−1], whereupon
it follows the code of JFPreTransKPV to produce a response for Sρ,D. Sρ,D then
replies with âk,θ via the interface of D (in its role representing the honest party),
and S then sends (candidate-output,GenSID(sid, k, θ), âk,θ) to A in subexpt0

on behalf of JFSFE-IAKPV. When A responds with (stooge,GenSID(sid, k, θ), c),
if c ∈ Ck,θ,∗ ∩ P∗, then S sends (abort,GenSID(sid, k, θ), c) to the corrupt
parties on behalf of JFSFE-IAKPV in subexpt0. If c ̸∈ Ck,θ,∗ ∩P∗, then S sends
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(output,GenSID(sid, k, θ), âk,θ) to the corrupt parties on behalf of JFSFE-IAKPV
in subexpt0.

When the value of ak becomes finalized in subexpt0, if ak was deliv-
ered as the output of an instance of JFSFE-IA(γjk

, |Ck,θ,∗|)KPV with session ID
GenSID(sid, k, θ) (i.e., ak = âk,θ), then for the remainder of subexpt0, when-
ever a value ap for p ∈ [jk + 1,m] becomes finalized, S uses the interface of D
to instruct Pp to broadcast ap in subexptk. After subexpt0 completes, Sρ,D
should send a message (proceed, sid, x) to JFPreTransKPV in subexptk, where-
upon S follows the code of JFPreTransKPV to produce an output y, which it sends
to Z as the output of the honest parties.

We will now show that if there exists a pair (A,Z) such that Z can distin-
guishHk+1 fromHk with advantage ϵ, then we can construct a new environment
ZReduction-k that uses (A,Z) in a black-box way and has the same advantage ϵ
in breaking the UC-Security of ρ (that is, in distinguishing the real-world ex-
periment for ρ from the ideal-world experiment for JFPreTransKPV).

Observe that in Hk+1, S internally uses calls to Sρ,D and the code of
JFPreTransKPV in order to emulate the instance of JFSFE-IA(γjk

, |Ck,θ,∗|)KPV with
session ID GenSID(sid, k, θ). On the other hand, in Hk, S follows the code of
JFSFE-IA(γjk

, |Ck,θ,∗|)KPV, and by implication generates the functionality’s out-
put via evaluation of γjk

, which is the honest party’s next-message function in
ρ. Thus we construct our reduction:

Algorithm 3.12. ZZ,A
Reduction-k. Distinguisher for ρ and JFPreTransKPV

This functionality expects to interact with the dummy adversary D in the
experiment given by Equation 1. It has additional black-box access to Z,A,
a distinguishing pair for the experiment given by Equation 2.

On initial activation, ZReduction-k begins emulating an experiment to Z
and A (to which it has black-box access). This experiment is identical to
Hk+1, except where it involves the functionality JFSFE-IA(γjk

, |Ck,θ,∗|)KPV
with session ID GenSID(sid, k, θ) in subexpt0: specifically, where S inHk+1

would interact with Sρ,D via the D interface in order to compute values to
output on behalf of JFSFE-IA(γjk

, |Ck,θ,∗|)KPV, ZReduction-k instead performs
the same interaction with the actual D (which has the same interface) in
its own, non-emulated experiment.

Notice that if ZReduction-k finds itself in an instance of the real-world exper-
iment for ρ, then the value output by JFSFE-IA(γjk

, |Ck,θ,∗|)KPV with session ID
GenSID(sid, k, θ) in ZReduction-k’s emulated subexpt0 will be computed by an
actual honest party running its next-message function gjk

; consequently, the
view of Z in the subexpt0 emulated by ZReduction-k is distributed identically to
its view in the subexpt0 emulated by S in Hk in this case.

Notice furthermore if ZReduction-k finds itself in an instance of the ideal-world
experiment for FPreTrans, then the value output by JFSFE-IA(γjk

, |Ck,θ,∗|)KPV with
GenSID(sid, k, θ) in ZReduction-k’s emulated subexpt0 will be computed by an
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instance of Sρ,D that interacts with FPreTrans; consequently, the view of Z in the
subexpt0 emulated by ZReduction-k is distributed identically to its view in the
subexpt0 emulated by S in Hk+1 in this case.

Thus, if there exists a pair (A,Z) such that Z can distinguish Hk+1 from
Hk with advantage ϵ, then with advantage ϵ we can also distinguish{︂

REALρ(n,u),D,ZZ,A
Reduction-k

(λ, z)
}︂
λ,n∈N+,u∈V,z∈{0,1}∗

from {︂
IDEALJFPreTrans(f,n,u)KPV,Sρ,D(n,u),ZZ,A

Reduction-k
(λ, z)

}︂
λ,n∈N+,u∈V,z∈{0,1}∗

for every ideal-adversary Sρ,D, and by Equation 1 (the premise of our theorem)
it follows that Hk+1 ≈c Hk.

Hybrid Hm+n/m+2. This hybrid is identical to Hm+n/m+1, except for the
following four changes:

1. S no longer communicates with Z on behalf of the honest parties. Instead,
we introduce the ideal oracle JFPostTransKPV, which communicates with S via
the ideal-adversary’s interface, and with Z via dummy honest parties.

2. In the context of subexpt1, when S receives a message (sample, sid) from
Sρ,D on behalf of JFPreTransKPV, rather than following the code of JFPreTransKPV,
S sends (sample, sid) to JFPostTransKPV in its own experiment (if no such mes-
sage has previously been sent), waits to receive (candidate, sid, 1,v1) in re-
sponse, and then sends (unbiased, sid,v1) to Sρ,D on behalf of JFPreTransKPV.

3. Whenever in the context of subexptk for some k ∈ [2,m+ n/m], S receives
a message (sample, sid) from Sρ,D on behalf of JFPreTransKPV, rather than
following the code of JFPreTransKPV, S sends (reject, sid, k−1) to JFPostTransKPV
in its own experiment (if no such message has previously been sent), waits to
receive (candidate, sid, k,vk) in response, and then sends (unbiased, sid,vk)
to Sρ,D on behalf of JFPreTransKPV.

4. Whenever in the context of subexptk for some k ∈ [m + n/m], S re-
ceives a message (proceed, sid, x) from Sρ,D on behalf of JFPreTransKPV,
and it is the case that ak was delivered as the output of an instance of
JFSFE-IA(γjk

, |Ck,i,∗|)KPV with session ID GenSID(sid, k, i) for i such that
h ̸∈ Ck,i,∗ in subexpt0, rather than following the code of JFPreTransKPV,
S sends (accept, sid, k, x) to JFPostTransKPV in its own experiment, and then
halts.

Notice that the behavior of S in Hm+n/m+2 is identical to the behavior
of SCompiler. Thus with the addition of the ideal oracle JFPostTransKPV and the
dummy honest party, we have

Hm+ n
m+2 =

{︃
IDEAL

JFPostTrans(f,n,u,m+ n
m )KPV,S

Sρ,D,A
Compiler (ρ,f,n,u,m),Z

(λ, z)

}︃
λ∈N+,
n,m∈N+:n≥m,
u∈V,z∈{0,1}∗
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and it remains to argue that Hm+n/m+2 cannot be efficiently distinguished
from Hm+n/m+1. To this end, observe that in Hm+n/m+1, S ran the code
of JFPreTransKPV, and thus sampled a uniform wk ← W and then computed
vk

..= f(u,wk) for each k ∈ [m + n/m] that had an associated experiment
subexptk. This is precisely the same calculation as is done by JFPostTransKPV
in Hm+n/m+2. Furthermore, the honest party’s output to Z in Hm+n/m+1

was calculated by S using the code of JFPreTransKPV as y ..= f(vκ, x), where
κ ∈ [m + n/m] is the largest value for which there is an associated subexptκ.
This is precisely the same calculation as is done by JFPostTransKPV in Hm+n/m+2.
It follows that Hm+n/m+2 = Hm+n/m+1.

This sequence of hybrids has consisted of two steps that are perfectly in-
distinguishable, and m+ n/m steps that are distinguishable with advantage no
greater than ϵ, where ϵ is the maximum advantage of any environment in the
game given by Equation 1. Thus we have that{︁

REALπCompiler(ρ,n,u,m),A,Z(λ, z)
}︁
λ,n,m∈N+:n≥m;u∈V,z∈{0,1}∗

is distinguishable from{︃
IDEAL

JFPostTrans(f1,n,u,m+n/m)KPV,S
Sρ,D,A
Compiler (ρ,f,n,u,m),Z

(λ, z)

}︃
λ,n,m∈N+:n≥m,
u∈V,z∈{0,1}∗

with probability no greater than ϵ · (m+ n/m), and Equation 2 holds.

We now prove that the compiled protocol UC-realizes the functionality even
if all active participants are corrupt.

Lemma 3.13. Let f : V × W → V be an update function, let u ∈ V,
let m ∈ N+, and let ρ be an SPRRR protocol such that ρ(m,u) UC-
realizes JFPreTrans(f,m, u)KPV in the presence of an honest observing verifier
and a malicious adversary statically corrupting all m actively participating par-
ties. For every integer n ≥ m, it holds that πCompiler(ρ, n, u,m) UC-realizes
JFPostTrans(f, n, u,m + n/m)KPV in the presence of an honest observing verifier
and a malicious adversary statically corrupting all n actively participating par-
ties in the JFSFE-IAKPV-hybrid model.

Proof. By the premise, Equation 1 holds. It follows that there must exist an
ideal adversary Sρ,D for the dummy adversary D. In this proof, we construct
a new ideal adversary, SCompilerPV, which requires black-box access to Sρ,D and
to a real-world adversary A that corrupts all actively participating parties, and
then prove that

∀A ∀Z,{︁
REALπCompiler(ρ,n,u,m),A,Z(λ, z)

}︁
λ,n,m∈N+:n≥m,
u∈V,z∈{0,1}∗

≈c

{︃
IDEAL

JFPostTrans(f,n,u,m+n/m)KPV,S
Sρ,D,A
CompilerPV(ρ,f,n,u,m),Z

(λ, z)

}︃
λ,n,m∈N+:n≥m,
u∈V,z∈{0,1}∗

(3)
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We begin by specifying SCompiler, after which our proof of Equation 3 proceeds
via a sequence of hybrid experiments. Unlike in our proof of Theorem 3.10,
all actively participating parties are corrupt in this case, and so there are no
“honest contributions” for SCompilerPV to communicate to A. Thus A can never
do anything that corresponds to rejection, and SCompilerPV need not ever send a
reject message to JFPostTransKPV.

Simulator 3.14. SSρ,D,A
CompilerPV(ρ, f1, f2, n, u,m). Against Full Corruption

This simulator is parameterized by a player-replaceable round-robin proto-
col ρ for m participants, and by the update function f : V×W→ V such
that ρ(m,u) UC-realizes JFPreTrans(f,m, u)KPV in the presence of a malicious
adversary corrupting all actively participating parties. This simulator has
black-box access to the simulator Sρ,D for the dummy adversary D, and to
the adversary A who is guaranteed to corrupt all active participants. n is
the number of actively participating parties in the protocol to be simulated,
m ∈ [n] is the number of committees, and u ∈ V is a common public input.

Init: On initial activation for the session ID sid, SCompilerPV begins
emulating in its head an instance of the real-world experiment for
πCompiler(ρ, n, u,m) for the adversary A (to which SCompilerPV has black-box
access). Let this emulated experiment be referred to as subexpt0, and let
the values of γ∗ and a∗ and C∗,∗,∗ henceforth be defined relative to their
values in this sub-experiment. Furthermore, SCompilerPV plays the role of
the ideal oracle JFSFE-IAKPV in subexpt0. SCompilerPV forwards all messages
from its own environment Z to A in subexpt0, and vice versa. SCompilerPV

corrupts all active participants.
Additionally, SCompilerPV begins emulating an instance of the ideal-world

experiment for JFPreTrans(f,m, u)KPV with ideal adversary Sρ,D (to which
SCompilerPV has black-box access) and m parties, in which it plays the role of
the environment and the ideal oracle JFPreTransKPV. Let this new emulated
experiment be referred to as subexpt1. In its role as the environment
and using the interface of D, SCompilerPV corrupts all active participants in
subexpt1.

Sampling and Bias:

• Upon receiving (compute,GenSID(sid, k, i),ωp) on behalf of
JFSFE-IA(γjk

, |Ck,i,∗|)KPV from a corrupt party Pp for p ∈ Ck,i,∗ ∩ P∗ in
subexpt0, if k = 1, then on behalf of Pp, SCompilerPV sends (sample, sid)
to JFPostTrans(f, n, u, r)KPV if no such message has already been sent on
behalf of Pp, and, regardless of the value of k, SCompilerPV follows the
code of JFSFE-IAKPV.

• When the value of ak becomes finalized in subexpt0, SCompilerPV instructs
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Sρ,D via the interface of D to broadcast ak on behalf of the corrupt Pk

in subexpt1.

• Upon receiving (need-coin, sid,W) from JFPostTrans(f, n, u, r)KPV,
SCompilerPV forwards the request to Sρ,D in subexpt1 on behalf of
JFPreTransKPV. On receiving a reply from Sρ,D, SCompilerPV forwards the
reply to JFPostTransKPV.

• On receiving (candidate, sid, 1,v1) from JFPostTransKPV, SCompilerPV sends
(unbiased, sid,v1) to Sρ,D in subexpt1 on behalf of JFPreTransKPV and
waits for a response.

• Upon receiving (proceed, sid, x) on behalf of JFPreTransKPV from Sρ,D in
subexpt1, if the SCompilerPV sends (accept, sid, 1, x) to JFPostTransKPV.

Our sequence of hybrid experiments begins with the real-world experiment,
as specified in Equation 3. Specifically,

H0
..=

{︁
REALπCompiler(ρ,n,u,m),A,Z(λ, z)

}︁
λ,n,m∈N+:n≥m;u∈V,z∈{0,1}∗

Hybrid H1. This hybrid is identical to H0, except that Z now communicates
with a single, monolithic entity, S, which internally emulates an instance of the
real-world experiment for A (to which S has black-box access), in which S itself
plays the roles of all oracles and the one or more honest verifying observers,
following their code exactly as specified in πCompiler(ρ, n, u,m), and forwarding
all messages between the emulated experiment’s environment and Z. Let this
emulated experiment be denoted by subexpt0; henceforth in this sequence of
hybrid experiments, all variables defined in the protocol πCompiler(ρ, n, u,m) are
defined with respect to the instance of πCompiler(ρ, n, u,m) emulated by S. Be-
cause these changes are purely syntactical, H0 = H1.

Hybrid H2. Hybrid H2 is identical to H1, except that S now has black-box
access to Sρ,D, and its behavior changes in the following ways:

1. Upon initialization, S begins emulating a new instance of the ideal-world
experiment for JFPreTrans(f,m, u)KPV to Sρ,D (to which S has black-box
access). Let this new emulated experiment be referred to as subexpt1.
In subexpt1, S plays the role of the environment, the ideal oracle
JFPreTransKPV, and one or more honest observing verifiers. In its role as
the environment for subexpt1, and using the interface of D, S instructs
Sρ,D to corrupt all actively participating parties, and then sequentially in-
structs each corrupt Pp for p ∈ [m] to broadcast ap whenever ap becomes
finalized in its own experiment.

2. Upon receiving an instruction (verify, sid) from Z on behalf of some
observing verifier V, S does not follow the code of V, but instead
sends (need-coin, sid,W) to Sρ,D on behalf of JFPreTransKPV. Upon re-
ceiving (coin, sid, w) in reply, S computes v ..= f(u,w) and sends
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(unbiased, sid, v) to Sρ,D on behalf of JFPreTransKPV, and then, on re-
ceiving (proceed, sid, x) in reply, S computes y ..= f(v, x) and sends
(output, sid, y) to Z on behalf of V. If Z activates further observing
verifiers, they receive identical responses.

A reduction analogous to the one specified by Algorithm 3.12 can be used
to invalidate Equation 1 with no loss in advantage given an Z and A that
can distinguish H2 from H1. Such a reduction uses its actual adversary D in
place of Sρ,D when calculating outputs to deliver on behalf of V, as opposed to
JFSFE-IAKPV as specified by Algorithm 3.12. Thus H1 ≈c H2.

Hybrid H3. This hybrid is identical to H2, except that S no longer communi-
cates with Z on behalf of V; instead V is instantiated as a dummy party that
communicates with JFPostTransKPV. Upon receiving a coin request for w ∈ W
from JFPostTransKPV, S forwards this request to Sρ,D, and then forwards v, x (in
an accept message), and y as well, instead of computing them itself.

Notice that since JFPostTransKPV computes v from (u,w) and y from (v, x)
in the same way that S did in H2, the distribution of outputs from V to Z is
identical between them, and the change from H2 to H3 is purely syntactical.
Note also that the behavior of S in H3 is identical to that of SCompilerPV. Thus

H2 = H3

=

{︃
IDEAL

JFPostTrans(f,n,u,m+n/m)KPV,S
Sρ,D,A
CompilerPV(ρ,f,n,u,m),Z

(λ, z)

}︃
λ,n,m∈N+:n≥m,
u∈V,z∈{0,1}∗

and by transitivity, Equation 3 holds.

Next, we explain how to achieve the required security notion of identifiable
abort with public verifiability using standard techniques.

Lemma 3.15 (Folklore: NIZK + OT + BC =⇒ JFSFE-IAKPV). The function-
ality JFSFE-IAKPV can be UC-realized in the (FNIZK,FBC)-hybrid model using a
constant number of sequential authenticated broadcasts and no other communi-
cation, assuming the existence of a protocol that UC-realizes FOT.

Proof Sketch. According to folklore, the following construction realizes publicly
verifiable constant-round secure function evaluation with identifiable abort. The
actively participating parties communicate exclusively over a single authenti-
cated broadcast channel, using instances of the OT protocol to realize private
channels between each pair (see [GKM+00]). Over this channel the parties run
an instance of a constant-round MPC protocol that is secure with abort against
n− 1 semi-malicious corruptions (i.e., secure when corrupted parties follow the
protocol but may choose their own randomness and may crash). Protocols sat-
isfying this criteria include the IPS protocol [IPS08], which is defined in the
OT-hybrid model, and the BMR protocol [BMR90], which additionally requires
one-way functions. Realizing the ideal OT functionality yields a protocol with
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no ideal oracles, which allows us to apply a protocol compiler to it. Specifically,
we apply an FNIZK-based formulation of the GMW [GMW87] compiler; such a
variant of GMW was previously described by Asherov et al. [AJL+12] and Co-
hen, shelat, and Wichs [CsW19]. This transformation yields a constant-round
protocol that achieves identifiable abort and public verifiability against n − 1
malicious corruptions. If all active participants in the transformed protocol are
maliciously corrupted, then any coins required can be chosen arbitrarily by the
adversary, but observing verifiers on the broadcast channel can still verify that
the output is in the image of the function the protocol ostensibly computed.

Corollary 3.16. If there exists a protocol that UC-realizes FOT and a strongly
player-replaceable round-robin protocol that UC-realizes JFPreTrans(f, n, u)KPV
using n sequential authenticated broadcasts and no other communication,
then there is a protocol in the (FNIZK,FBC)-hybrid model that UC-realizes
JFPostTrans(f, n, u,m+ n/m)KPV and uses O(m+ n/m) sequential authenticated
broadcasts and no other communication. Setting m =

√
n yields the efficiency

result promised by the title of this paper.

Proof. Observe that πCompiler(ρ, n, u,m) requires at most m+n/m sequential in-
vocations of the JFSFE-IAKPV functionality, and involves no other communication.
Thus the corollary follows from Theorem 3.9 and Lemma 3.15.

4 A Round-Robin Protocol

In this section we present a simple protocol that meets our requirements (and
therefore can be used with our compiler), which is parametric over a class of up-
date functions that is more restrictive than the compiler demands, but neverthe-
less broad enough to encompass several well-known sampling problems. After
presenting the protocol in Section 4.1 and proving that it meets our require-
ments in Section 4.2, we discuss how it can be parameterized to address three
different applications: sampling structured reference strings for polynomial com-
mitments in Section 4.3, sampling structured reference strings for zk-SNARKs
in Section 4.4, and constructing verifiable mixnets in Section 4.5. We begin by
defining the restricted class of update functions that our protocol supports.

Definition 4.1 (Homomorphic Update Function). A deterministic polynomial-
time algorithm f : V×W→ V is a Homomorphic Update Function if it satisfies:

1. Perfect Rerandomization: for every pair of values v1 ∈ V and w1 ∈ W,
{f(f(v1, w1), w2) : w2 ← W} ≡ {f(v1, w3) : w3 ← W}. If distributional
equivalence is replaced by statistical or computational indistinguishability,
then the property achieved is Statistical or Computational Rerandomization,
respectively.

2. Homomorphic Rerandomization: there exists an efficient operation ⋆ over W
such that for every v ∈ V, and every pair of values w1, w2 ∈W,

f(v, w1 ⋆ w2) = f(f(v, w1), w2).
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Furthermore, there exists an identity value 0W ∈W such that f(v, 0W) = v.

4.1 The Protocol

Our example is straightforward: each party (in sequence) calls the update func-
tion f on the previous intermediate output to generate the next intermediate
output. To achieve UC-security, the protocol must be simulatable even if f is
one-way. We specify that each party uses a UC-secure NIZK to prove that it
evaluated f correctly; this allows the simulator to extract the randomization
witness w for f even in the presence of a malicious adversary. Specifically, we
define a relation for correct evaluation for any update function f :

Rf = {((v1, v2), w) : v2 = f(v1, w)}

We also recall the standard UC NIZK functionality, originally formulated by
Groth et al.

Functionality 4.2. FR
NIZK(n). NIZK for Relation R [GOS12]

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn, and with an a-priori-unspecified number of verifiers, all des-
ignated by V, and with the ideal adversary S. It also has black-box access
to the decider for an NP-relation, R.

Proof: On receiving (prove, sid, ssid, x, w) from Pi for i ∈ [n], ifR(x,w) =
0 then ignore the message and do nothing. If R(x,w) = 1, then send
(prove), sid, x) to S, and, upon receiving (proof, sid, x, π) in reply, store
(sid, x, π) in memory and send (proof, sid, ssid, π) to Pi.

Verification: On receiving (verify, sid, ssid, x, π) from V, check whether
a record (sid, x, π) exists in memory. If it does not, then send
(verify), sid, x, π) to S, and, upon receiving (witness, sid, x, π, w) in reply,
check whetherR(x,w) = 1 and store (sid, x, π) in memory if so. Regardless,
if (sid, x, π) is now in memory, then send (accept, sid, ssid) to V; otherwise,
send (reject, sid, ssid).

For any particular f , there may exist an efficient bespoke proof system that
realizes FRf

NIZK. For example, if there is a sigma protocol for Rf , then FRf

NIZK

can (usually) be UC-realized by applying the Fischlin transform [Fis05] to that
sigma protocol. There are also a number of generic ways to UC-realize FRf

NIZK

for any polynomial-time function f [SCO+01, GOS12, CSW20]. Regardless, we
give our protocol description next.

Protocol 4.3. πRRSample(f, n, u). Round-robin Sampling

This protocol is parameterized by the number of actively participating par-
ties n ∈ N+, by a homomorphic update function f : V ×W → V (as per
Definition 4.1), and by a common public input u ∈ V. In addition to the
actively participating parties Pp for p ∈ [n], the protocol involves the ideal
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functionality FRf

NIZK, and it may involve one or more observing verifiers,
denoted by V.

Sampling: Let v0
..= u. Upon receiving (sample, sid) from the environ-

ment Z, each party Pi for i ∈ [n] repeats the following loop for j ∈ [n]:

1. If j = i, Pi samples wj ←W, computes vj
..= f(vj−1,wj) and submits

(prove, sid,GenSID(sid, j), (vj−1,vj),wj) to FRf

NIZK(n). Upon receiving
(proof, sid,GenSID(sid, j),πj) in response, Pi broadcasts (vj ,πj).

a

2. If j ̸= i, Pi waits to receive (v̂j ,πj) from Pj , whereupon it submits

(verify,GenSID(sid, j), (vj−1, v̂j),πj) to FRf

NIZK. If FRf

NIZK replies with

(accept, sid,GenSID(sid, j)), then Pi assigns vj
..= v̂j . If FRf

NIZK replies
with (reject, sid,GenSID(sid, j)) (or if no message is received from Pj),
then Pi assigns vj

..= vj−1.

Finally, when the loop terminates, all actively participating parties output
(output, sid,vn) to the environment.b

Verification: If there is an observing verifier V, then on receiving
(observe, sid) from the environment Z, it listens on the broadcast channel
and follows the instructions in Step 2 for all j ∈ [n]. At the end, it outputs
(output, sid,vn) to the environment.

aNote that when our compiler is applied to this protocol, aj = (vj ,πj).
bThis implies that the “output extraction” function gn+1 described in Remark 3.3

simply returns vn, given the protocol transcript.

4.2 Proof of Security

We include the (straightforward) proof of security for the above protocol for
completeness. After the security proof, we give a corollary concerning the ap-
plication of our compiler under various generic realizations of FNIZK, and then we
prove a theorem stating that for the class of functions covered by Definition 4.1,
the compiled protocol realizes the original functionality.

Theorem 4.4. Let f : V ×W → V be a homomorphic update function per
Definition 4.1. For any n ∈ N+ and u ∈ V, it holds that πRRSample(f, n, u) UC-
realizes JFPreTrans(f, n, u)KPV in the presence of a malicious adversary corrupting

any number of actively participating parties in the (FRf

NIZK,FBC)-hybrid model.

Proof. We begin by specifying a simulator SRRSample, after which we argue that

∀A ∀Z,{︁
REALπRRSample(f,n,u),A,Z(λ, z)

}︁
λ,n∈N+,u∈V,z∈{0,1}∗

≡
{︂
IDEALJFPreTrans(f,n,u)KPV,S

A
RRSample(f,n,u),Z

(λ, z)
}︂
λ,n∈N+,u∈V,z∈{0,1}∗

(4)
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Simulator 4.5. SARRSample(f, n, u). Against Any Static Corruption

This simulator is parameterized by the number of actively participating
parties n ∈ N+, by a homomorphic update function f : V×W→ V (as per
Definition 4.1), and by the common public input u ∈ V. This simulator
has black-box access to the adversary A who may statically corrupt any
number of active participants.

Init: On initial activation for the session ID sid, SRRSample begins emulating
in its head an instance of the real-world experiment for πRRSample(f, n, u)
for the adversary A (to which SRRSample has black-box access). Let this
emulated experiment be referred to as subexpt, and let the values of v∗,
v̂∗, w∗, and π∗ henceforth be defined relative to their values in this sub-
experiment. Furthermore, SRRSample plays the role of the ideal oracle F

Rf

NIZK

in subexpt, which it does by following the code of FNIZK unless otherwise
specified. SRRSample forwards all messages from its own environment Z
to A in subexpt, and vice versa, and when A announces that it wishes
to corrupt a set of parties indexed by P∗ ⊆ [n], SRRSample corrupts the
corresponding parties in its own experiment. Upon learning P∗, if P∗ ̸= [n],
then SRRSample arbitrarily chooses a single honest party index h ∈ [n] \P∗.

Sampling: For each round j ∈ [n] of the protocol being run in subexpt,
SRRSample takes one of the following strategies, as appropriate:

1. If P∗ ̸= [n] ∧ j = h, then SRRSample sends (sample, sid) to
JFPreTrans(f, n, u)KPV on behalf of Ph, and receives (unbiased, sid, v̂h)
in response. Next, on behalf of FNIZK, SRRSample sends
(prove, sid,GenSID(sid, h), (vh−1, v̂h)) to A in subexpt and re-
ceives (proof, sid,GenSID(sid, h),πh) in response. It finally broadcasts
(v̂h,πh) to the corrupt parties in subexpt on behalf of Ph. Thereafter,
if any corrupt party sends (verify, sid, ∗, (vh−1, v̂h),πh) to FNIZK,
SRRSample replies on behalf of FNIZK with an accept message. If h = n,
then SRRSample sends (proceed, sid, 0W) to JFPreTransKPV, where 0W is the
identity element for W.

2. If P∗ ̸= [n] ∧ j ̸= h, then SRRSample uses the code of Pj as specified in
πRRSample to compute the next message for subexpt, and broadcasts this
message to the corrupt parties in subexpt on behalf of Pj .

3. If j ∈ P∗ and j < n, then SRRSample does nothing other than record
the values (v̂j ,πj) transmitted and the value wj submitted to FNIZK in
subexpt.

4. If j ∈ P∗ and j = n, then SRRSample iterates over v∗, πj , and wj and
checks each corresponding set of values for consistency (as specified by
the protocol). Let w′

∗ be a copy of either w[h+1,n] (if P
∗ ̸= [n]) or w[n]

(if P∗ = [n]) from which any malformed rows have been removed. Let
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n′ = |w′| and ŵ1
..= w′

1. SRRSample computes ŵi
..= w′

i ⋆ ŵi−1 for all
i ∈ [n′], after which SRRSample sends (proceed, sid, ŵn′) to JFPreTransKPV.

Furthermore, if at any point SRRSample receives (need-coin, sid,W) from
JFPreTrans(f, n, u)KPV, SRRSample sends (coin, sid, 0W) in reply, where 0W is
the identity element for W.

We divide our argument into two cases: first, we address the case that the
adversary corrupts no more than n− 1 active parties. Observe that in both the
real and ideal worlds, excluding the simulator’s specially chosen party Ph, all
honest parties (either real or emulated) generate their messages via their pro-
tocol code; thus the distribution of these messages must be identical between
the two worlds. Now consider the distribution of the message transmitted by
Ph. In the ideal world, it is calculated by the functionality as the output of f
on a uniform value and common input u, whereas in the real world it is calcu-
lated by Ph as the output of f on a uniform value and most-recent intermediate
value vh−1. By the fact that vh−1 is proven to be the result of sequential
semi-malicious applications of f to u and the fact that f is rerandomizing (per
Definition 4.1), the distribution of Ph’s message in the ideal world must be indis-
tinguishable from its message in the real world (computationally, statistically, or
perfectly, depending on the flavor of the rerandomization property). We argue
by inspection that the behavior of FNIZK with respect to this message is also
identical. Finally consider the distribution of honest party outputs to the envi-
ronment. In the real world, these are computed as the result of multiple honest
and/or semi-malicious applications of f to vh. In the ideal world, FNIZK is used
to extract the randomness associated with the semi-malicious applications, the
randomness of the honest applications is generated locally by the simulator, and
then the applications are collapsed using the homomorphic property of f into
a single application which is evaluated by FPreTrans. Thus by the homomorphic
rerandomization property of f (Definition 4.1), the distribution of honest party
outputs is identical in the real and ideal worlds, and it follows that the two
worlds are perfectly indistinguishable if no more than n− 1 parties are corrupt.

Second, we address the case that the adversary corrupts all n active parties,
but there is an honest observing verifier. In the real world, the verifier’s output is
calculated as the result of a chain of semi-malicious applications of f to u. In the
ideal world, FNIZK extracts the randomness associated with these applications,
and as before, they are collapsed via the homomorphic property of f in order
to be evaluated by FPreTrans. The distributions of the output of the verifier are
identical in the real and ideal worlds. It follows from this and our first case that
Equation 4 holds.

Corollary 4.6. Let f : V×W→ V be a homomorphic update function per Def-
inition 4.1. For any u ∈ V and m,n ∈ N+ such that m ≤ n, there exists a pro-
tocol in the FCRS-hybrid model that UC-realizes JFPostTrans(f, n, u,m+ n/m)KPV
and that requires O(m + n/m) sequential broadcasts and no other communica-
tion, under any of the conditions enumerated in Remark 4.7.
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Remark 4.7. Conditions under which FRf

NIZK is known to be realizable for any
polynomial-time f in the FCRS-hybrid model:

1. enhanced trapdoor permutations exist.

2. homomorphic trapdoor functions exist and the decisional linear assumption
holds in a bilinear group.

3. the LWE assumption holds.

4. both the LPN and DDH assumptions hold.

Proof. Applying the UC theorem to πRRSample to realize FRf

NIZK via the protocols
of either De Santis et al. [SCO+01, CLOS02] (under the first condition), Groth et
al. [GOS12] (under the second condition), or Canetti et al. [CSW20] (under the
third or fourth) yields a round-robin protocol with no ideal oracle invocations
in the next-message function of the active parties (though an invocation of FCRS

is required ahead of time). Observe that the resulting protocol is also strongly
player-replaceable, since the only inputs provided by any party random values.
Since the next-message function can be represented as a circuit, our compiler
can be applied to it, and so the efficiency claim follows from Corollary 3.16.

Finally, we show that if f satisfies Definition 4.1, then the rejection-sampling
capabilities the adversary has in the compiled protocol do not confer any addi-
tional power.

Theorem 4.8. Let f : V ×W → V be a homomorphic update function per
Definition 4.1. For any value of r ∈ N, the ideal-world protocol involving
JFPostTrans(f, n, u, r)KPV perfectly UC-realizes JFPreTrans(f, n, u)KPV in the pres-
ence of a malicious adversary corrupting any number of active participants.

Proof Sketch. Rather than fully specifying a simulator, we briefly describe one
and argue for the security of the ideal-world experiment from the real-world
one. Note that in this proof we show that one ideal-world protocol UC-
emulates another. Consequently, the simulator must internally emulate an in-
stance of the ideal protocol for JFPostTrans(f, n, u, r)KPV in which it plays the
role of the functionality (and only the functionality) to the ideal-world adver-
sary for JFPostTransKPV. It forwards any sample or coin messages it receives to
JFPreTransKPV in its own experiment, and also forwards any need-coin messages
from JFPreTransKPV to the adversary in the emulated experiment on behalf of
JFPostTransKPV. On receiving the message (unbiased, sid, v) from JFPreTransKPV,
the simulator samples a value w1 ←W and uses it to calculate v1

..= f(v,w1),
which is a rerandomization of v. The simulator then sends (candidate, sid, 1,v1)
to the adversary in the emulated experiment. If v1 is rejected, then the simulator
rerandomizes v again by sampling w2 ←W and calculating v2

..= f(v,w2), and
then sends v2 as the next candidate, and so on, until the adversary in the emu-
lated experiment accepts a candidate. Let vk be the accepted candidate and wk

be the associated randomizing value in W. When the adversary in the emulated
experiment accepts this candidate, it sends a bias x to the simulator (in its role

34



as JFPostTransKPV), the simulator uses the homomorphic property of f to calculate
a single bias x′ ..= wk ⋆ x that combines the coins used to rerandomize the ac-
cepted candidate with the adversary’s bias, and delivers this combined bias x′ to
JFPreTransKPV. Thus in the ideal-world experiment involving JFPreTrans(f, n, u)KPV
and this simulator (given black-box access to an adversary), the distribution
of candidates presented to the adversary is {f(f(u,w),wi) : w,wi ← W}
and the output is calculated as y = f(f(u,w),wk ⋆ x) given the adversary’s
choice of k. On the other hand, in the ideal-world experiment involving
JFPostTrans(f, n, u, r)KPV and the same adversary the distribution of candidates
presented to the adversary is {f(u,wi) : wi ← W} and the output is calcu-
lated as y = f(f(u,wk), x) given the adversary’s choice of k. By the perfect-
rerandomization property of f , these two candidate distributions are identical,
and by the homomorphic-rerandomization property of f , the output distribu-
tions are as well. Thus JFPostTrans(f, n, u, r)KPV UC-realizes JFPreTrans(f, n, u)KPV,
regardless of the value of r.

4.3 Application: Powers of Tau and Polynomial Commit-
ments

In this section we specialize πRRSample to the case of sampling the powers of tau,
which was previously introduced in Section 1.1. Specifically, we define an update
function for the powers of tau in any prime-order group G with maximum degree
d ∈ N+ as follows:

V = Gd W = Z|G|

f : V×W→ V = PowTauG,d(V, τ) ↦→
{︁
τ i ·Vi

}︁
i∈[d]

It is easy to see that if G is a generator of G, then PowTauG,d({G}i∈[d], τ)
computes the powers of τ in G up to degree d. Proving that this function
satisfies Definition 4.1 will allow us to apply our results from Section 4.2.

Lemma 4.9. For any prime-order group G and any d ∈ N+, PowTauG,d is a
homomorphic update function with perfect rerandomization, per Definition 4.1.

Proof. It can be verified by inspection that the homomorphic-rerandomization
property of PowTauG,d holds if the operator ⋆ is taken to be multiplication
modulo the group order. That is, if q = |G|, then for any α, β ∈ Zq and any
V ∈ {G}i∈[d], we have PowTauG,d(PowTauG,d(V, α), β) = PowTauG,d(V, α · β
mod q). If we combine this fact with the fact that {PowTauG,d(V, τ) : τ ←
Zq} is uniformly distributed over the image of PowTauG,d(V, ·), then perfect
rerandomization follows as well.

As we have previously discussed, the powers of tau are useful primarily as a
structured reference string for other protocols. In light of this fact, it does not
make sense to construct a sampling protocol that itself requires a structured
reference string. This prevents us from realizing FRPowTauG,d

NIZK (n) via the construc-
tions of Groth et al. [GOS12], or Canetti et al. [CSW20]. Fortunately, the NIZK
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construction of De Santis et al. [SCO+01] requires only a uniform common ran-
dom string. Thus we achieve our main theoretical result with respect to the
powers of tau:

Corollary 4.10. For any prime-order group G and any d ∈ N+, n ∈ N+,
m ∈ [n], and V ∈ Gd, there exists a protocol in the FCRS-hybrid model (with a
uniform CRS distribution) that UC-realizes JFPreTrans(PowTauG,d, n,V)KPV and
that requires O(m + n/m) sequential broadcasts and no other communication,
under the assumption that enhanced trapdoor permutations exist.

Proof. By conjunction of Lemma 4.9 and Theorems 4.6 and 4.8 under the re-
striction that the CRS distribution be uniform.

The above corollary shows that if we set m ..=
√
n, then we can sample

well-formed powers-of-tau structured reference strings with guaranteed output
delivery against n− 1 malicious corruptions in O(

√
n) broadcast rounds. How-

ever, most schemes that use structured reference strings with this or similar
structures assume that the strings have been sampled (in a trusted way) with
uniform trapdoors. Our protocol does not achieve this, and indeed cannot
without violating Cleve’s lower bound [Cle86]. Instead, our protocol allows the
adversary to introduce some bias. In order to use a reference string sampled by
our protocol in any particular context, it must be proven (in a context-specific
way) that the bias does not give the adversary any advantage.

Although previous work has proven that the bias in the reference string
induced by protocols for distributed sampling can be tolerated by zk-
SNARKs [BGG18, KMSV21], such proofs have thus far been monolithic and
specific to the particular combination of a zk-SNARK and a sampling scheme
that they address. Moreover, because zk-SNARKs are proven secure in pow-
erful idealized models, prior distributed sampling protocols were analyzed in
those models as well. Unlike zk-SNARKs, which require knowledge assump-
tions, the security of the Kate et al. [KZG10] polynomial-commitment scheme
can be reduced to a concrete falsifiable assumption. This presents a clean,
standalone context in which to examine the impact of adversarial bias in the
trapdoor of a powers-of-tau reference string. We do not recall the details of
the polynomial-commitment construction,7 but note that its security follows
from the d-Strong Diffie-Hellman (or d-SDH) Assumption [KZG10, Theorem 1].
We show that replacing an ideal bias-free powers-of-tau reference string with a
reference string that is adversarially biased as permitted by our functionality
FPostTrans(PowTauG,d, n, {G}i∈[d], r) yields no advantage in breaking the d-SDH
assumption, regardless of the value of r, so long as no more than n− 1 parties
are corrupt. We begin by recalling the d-SDH assumption:

7Kate et al. actually present two related schemes. The first uses the powers of tau, exactly
as we have presented it, and the second requires the powers, plus the powers again with a
secret multiplicative offset (or, alternatively, relative to a second group generator). It is easy
to modify our construction to satisfy the second scheme, and so for clarity we focus on the
first, simpler one.
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Definition 4.11 (d-Strong Diffie-Hellman Assumption [BB04]). Let the
security parameter λ determine a group G of prime order q that is generated by
G. For every PPT adversary A,

Pr
[︂
(c,G/(τ + c)) = A

(︂{︁
τ i ·G

}︁
i∈[d]

)︂
: τ ← Zq

]︂
∈ negl(λ)

We wish to formulate a variant of the above assumption that permits the
same bias as FPostTrans(PowTauG,d, n, {G}i∈[d], r). In order to do this, we define
a sampling algorithm that uses the code of the functionality. We then give a
formal definition of the biased assumption, which we refer to as the (n, r)-Biased
d-Strong Diffie-Hellman (or (n, r, d)-SDH) assumption.

Algorithm 4.12. AdvSampleZFPostTrans(PowTauG,d,n,{G}i∈[d],r)
(1λ)

Let Z be a PPT adversarial algorithm that is compatible with the environ-
ment’s interface to an ideal-world UC experiment involving FPostTrans and
the dummy adversary D. Let Z be guaranteed to corrupt no more than
n− 1 parties, and let it output some state s on termination.

1. Using the code of FPostTrans, begin emulating an instance of the ideal-
world experiment for FPostTrans(PowTauG,d, n, {G}i∈[d], r), with Z as the
environment. Let Ph be the honest party guaranteed in this experiment
by the constraints on Z.

2. In the emulated experiment, on receiving (sample, sid) from Z on
behalf of Ph, forward this message to FPostTrans on behalf of Ph as
a dummy party would, and then wait to receive (output, sid, z ={︁
τ ·G, τ2 ·G, . . . , τd ·G

}︁
) for some τ ∈ Zq from FPostTrans in reply.

3. Extract τ from the internal state of FPostTrans, and wait for Z to termi-
nate with output s.

4. Output (s, τ)

Definition 4.13 ((n, r)-Biased d-Strong Diffie-Hellman Assumption).
Let the security parameter λ determine a group G of prime order q that is
generated by G. For every pair of PPT adversaries (Z,A),

Pr

⎡⎣A(︂
s,
{︁
τ i ·G

}︁
i∈[d]

)︂
= (c,G/(τ + c)) :

(s, τ)← AdvSampleZFPostTrans(PowTauG,d,n,{G}i∈[d],r)
(1λ)

⎤⎦ ∈ negl(λ)

Note that per Canetti [Can01], the dummy adversary D can be used to
emulate any other adversary. Thus if one were to use an n-party instance of
FPostTrans to generate the structured reference string for a protocol that uses the
polynomial commitments of Kate et al. [KZG10], the hardness assumption that
would underlie the security of the resulting scheme is (n, r, d)-SDH. We show
that for all parameters n, r, the (n, r, d)-SDH assumption is exactly as hard as
d-SDH.
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Theorem 4.14. For every n, r, d ∈ N+ and t-time adversary (Z,A) that suc-
ceeds with probability ε in the (n, r, d)-SDH experiment, there exists a t′-time
adversary B for the d-SDH experiment that succeeds with probability ε, where
t′ ≈ t.

Proof. We begin by constructing B:

Algorithm 4.15. B(Z,A)

1. Receive challenge A∗ = {τ i ·G}i∈[d] from the d-SDH challenger.

2. Emulate an instance of the (n, r, d)-SDH experiment to (Z,A), but in
the code of FPostTrans, act as though u = A∗ instead of u = {G}i∈[d].

3. Let wk ∈ Zq be the rejection-sampled randomization and x ∈ Zq the
bias selected by Z in its interaction with FPostTrans. Let y = {(wk · x)i ·
Ai}i∈[d] be the final sampled output.

4. Once Z outputs its state s, compute (c, C)← A(s, y)

5. Output (c/(wk · x),wk · x · C)

Observe that the output of FPostTrans is of the form

y =
{︁
(wk · x)i ·Ai

}︁
i∈[d]

=
{︁
(wk · x · τ)i ·G

}︁
i∈[d]

and that the views of (Z,A) induced by B is identical to their views in
the (n, r, d)-SDH experiment, due to the perfect-rerandomization property of
PowTau. It follows that the probability that A(s, y) outputs a valid solution
(c, C) to the (n, r, d)-SDH problem is exactly ε. That is, with probability ε,
C = G/(wk · x · τ + c). Thus it holds that wk · x · C = G/(τ + c/(wk · x)) and
(c/(wk ·x),wk · x ·C) constitutes a valid solution to the d-SDH challenger with
probability ε.

Note that the running time t′ of B is only marginally more than the com-
bined running time t of (Z,A), the overhead being due to the emulation of
FPostTrans(PowTauG,d, n, {G}i∈[d], r) and the adjustment in Step 5 of B.

4.4 Application: Sampling Updateable SRSes

In this section we discuss the specialization of our protocol to the applica-
tion of sampling updateable structured reference strings for zk-SNARKs. The
game-based notion of updateable security with respect to structured reference
strings was defined recently by Groth et al. [GKM+18]. Informally, if a zk-
SNARK has an updateable SRS, then any party can publish and update to
the SRS at any time, along with a proof of well-formedness, and the security
properties of the zk-SNARK hold so long as at least one honest party has con-
tributed at some point. We direct the reader to Groth et al. for a full formal
definition. Because the update operation is defined to be a local algorithm
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producing a new SRS and a proof of well-formedness, which takes as input
only a random tape and the previous SRS state, it is tempting to consider the
protocol comprising sequentially broadcasted SRS updates by every party as
a pre-existing specialization of πRRSample. However, we require that the proof

of well-formedness be a realization of FRf

NIZK for whatever f maps the previous
SRS to the next one, and the update algorithm of Groth et al. (also used by
later works [MBKM19, GWC19, CHM+20]) does not have straight-line extrac-
tion. Modifying any updateable zk-SNARK to fit into our model is beyond the
scope of this work. Nevertheless, we discuss two alternatives that do not involve
modifying the zk-SNARK.

First, we observe that if the proofs of well-formedness of the Groth et al.
update procedure [GKM+18] are taken to be part of the SRS itself, then the
entire update function (let it be called GrothUpdate) is in fact a homomorphic
update procedure per Definition 4.1, by an argument similar to our proof of
Lemma 4.9. This implies a result similar to Corollary 4.10: for any n,m ∈ N+

such that m ≤ n, there exists a protocol in the uniformly distributed CRS
model that UC-realizes FPostTrans(GrothUpdate, n, 1SRS,m + n/m) while using
only O(m + n/m) broadcasts under the assumption that enhanced trapdoor
permutations exist, where 1SRS is the “default” SRS. Furthermore, the well-
formedness of SRSes generated via this protocol can be verified without checking
the entire protocol transcript.

Second, we can define the functions f mapping the previous SRS to the next
one (without the proofs), specialize our protocol πRRSample for that function

(realizing Ff
NIZK generically), and rely on the public verifiability of JFPostTransKPV

to ensure that the resulting SRS has the well-formedness property required.
In service of this approach, we present the update functions for three recent
zk-SNARKs. The update function BilinearSRSG1,G2,d is a simple modification of
PowTauG,d that is compatible with both Marlin [CHM+20] and Plonk [GWC19]:

V = Gd
1 ×G2 W = Zq

f : V×W→ V = BilinearSRSG1,G2,d((X, Y ), τ) ↦→
(︂{︁

τ i ·Xi

}︁
i∈[d]

, τ · Y
)︂

whereas Sonic [MBKM19] has a more complex SRS with a more complex update
function

V = G4d
1 ×G4d+1

2 ×GT W = Z2
q f : V×W→ V = SonicSRSG1,G2,d

SonicSRSG1,G2,d((X,Y, Z), (τ, β))

↦→

⎛⎝{︁
τ i−d−1 ·Xi

}︁
i∈[d]
∥
{︁
τ i ·Xi+d

}︁
i∈[d]
∥
{︁
β · τ i ·Xi+3d+1

}︁
i∈[−d,d]\{0} ,{︁

τ i−d−1 ·Yi

}︁
i∈[d]
∥
{︁
τ i ·Yi+d

}︁
i∈[d]
∥
{︁
β · τ i ·Yi+3d+1

}︁
i∈[−d,d]

, β · Z

⎞⎠
and all three have homomorphic rerandomization per Definition 4.1, by an ar-
gument similar to our proof of Lemma 4.9.

Because zk-SNARKs with updateable SRSes must tolerate adversarial up-
dates, it seems natural to assume that they can tolerate the adversarial bias
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induced by either of the above sampling methods. However, as we have men-
tioned, their proofs tend to be in powerful idealized models that are incompatible
with UC, and so formalizing this claim is beyond the scope of this work.

4.5 Application: Verifiable Mixnets

Finally, we discuss the specialization of πRRSample to the mixing procedure of ver-
ifiable mixnets. Most mixnet security definitions, whether game-based or simu-
lation based, encompass a suite of algorithms (or interfaces, in the simulation-
based case) for key generation, encryption, mixing, and decryption. We reason
only about the mixing function, via an exemplar: the game-based protocol of
Boyle et al. [BKRS18]. Though we do not give formal proofs, and argue that
the security of the overall mixnet construction is preserved under our transfor-
mation.

Boyle et al. base their mixnet upon Bellare et al.’s [BHY09] lossy variant
of El Gamal encryption for constant-sized message spaces. Let the message-
space size be given by ϕ. Given a group G (chosen according to the security
parameter λ) of prime order q and generated by G, it is as follows:

KeyGenG(sk ∈ Zq) ↦→ (sk, pk) : pk ..= sk ·G
Encpk(m ∈ [ϕ], r ∈ Zq) ↦→ (R,C) : R ..= r ·G, C ..= r · pk+m ·G

ReRandpk((R,C) ∈ G2, r ∈ Zq) ↦→ (S,D) : S ..= R+ r ·G, D ..= r · pk+ C

Decsk((R,C) ∈ G2) ↦→ m ∈ [ϕ] s.t. m ·G = C +R/sk

Note that we have given the random values (sk and r) for each function as
inputs, but they must be sampled uniformly and secretly in order to prove that
the above algorithms constitute an encryption scheme. Boyle et al. define the
notion of a (perfectly) rerandomizable encryption scheme and assert that the
above scheme satisfies it. We claim that given any pk ∈ G, if the homomorphic
operator ⋆ is taken to be addition over Zq, then ReRandpk is a homomorphic
update function per Definition 4.1. Given ReRandpk, the ciphertext mixing
function for a vector of d ciphertexts in the Boyle et al. mixnet is as follows:

V = (G×G)d W = Σd × Zd
q

f = Mixpk,d(c, (σ, r)) ↦→
{︁
ReRandpk(cσ−1(i), ri)

}︁
i∈[d]

where Σd is the set of all permutations over d elements. We claim that this
function is a homomorphic update function.

Lemma 4.16. For any pk ∈ G and any d ∈ N+, Mixpk,d is a homomorphic
update function with perfect rerandomization, per Definition 4.1.

Proof Sketch. Perfect rerandomization holds because all elements in the vec-
tor of ciphertexts are individually perfectly rerandomized. The homomorphic
operator is defined to be

⋆ : ((σ1, r), (σ2, s)) ↦→
(︃
σ1 ◦ σ2,

{︂
si + rσ−1

2 (i)

}︂
i∈[d]

)︃
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where ◦ is the composition operator for permutations.

In the mixnet design of Boyle et al., every mixing server runs Mixpk,d in
sequence and broadcasts the output along with a proof that the function was
evaluated correctly. In other words, their protocol is round-robin and player
replaceable. Because their proofs of correct execution achieve only witness-
indistinguishability (which is sufficient for their purposes), whereas we require
our proofs to UC-realize FRMixpk,d

NIZK , their protocol is not a pre-existing specializa-

tion of πRRSample. Nevertheless, we can realize FRMixpk,d
NIZK generically as we have

in our previous applications.

Corollary 4.17. For any prime-order group G, any d ∈ N+, any n,m ∈ N+

such that m ≤ n, any pk ∈ G, and any c ∈ image(Encpk)
d, there exists a protocol

in the FCRS-hybrid model that UC-realizes JFPreTrans(Mixpk,d, n, c)KPV and that
requires O(m+n/m) sequential broadcasts and no other communication, under
any of the conditions enumerated in Remark 4.7.

Proof. By conjunction of Lemma 4.16 and Theorems 4.6 and 4.8.

We remark that the public-verifiability aspect of the functionality ensures
that the mixnet that results from integrating it into the scheme of Boyle et
al. is verifiable in the sense that they require [BKRS18, Definition 7]. Fur-
thermore, the game-based security definition of Boyle et al. [BKRS18, Defi-
nition 12] permits the adversary to induce precisely the same sort of bias as
JFPreTrans(Mixpk,d, ·, ·)KPV. It follows naturally that their construction retains its
security properties when mixing is done via our functionality. Setting m ..=

√
n,

we have achieved a verifiable mixnet with guaranteed output delivery against
n− 1 maliciously-corrupt mix servers in O(

√
n) broadcast rounds.

Finally, we note that the above transformation can be applied to other
mixnets as well. Consider the UC-secure mixnet protocol of Wikström [Wik05].
It also uses a variation of El Gamal encryption, but it combines mixing and
threshold decryption into a single protocol phase, which makes it incompati-
ble with our transformation as written. If the two operations are separated,
then our transformation can be applied to the mixing phase to reduce it from
n rounds to O(

√
n), just as with Boyle et al.

5 With Concrete Efficiency

The previous sections of this paper have been concerned with optimizing round
efficiency to the exclusion of all else. In practice, this may lead to protocols that
are concretely round-efficient, but prohibitively expensive due to large concrete
communication or computation costs. Consider, for example, the powers of tau
in an elliptic curve: in practice, d ∈ [210, 220] [BGM17]. This implies that the
PowTauG,d function involves thousands (possibly many thousands) of elliptic-
curve scalar multiplications; if rendered into a Boolean circuit, the function
could easily require trillions of gates. Evaluating circuits of such size is at or
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beyond the edge of feasibility with current techniques even in the security-with-
abort setting, and our compiler requires the circuit to be evaluated many times
with identifiable abort.

We believe that this concrete inefficiency is a shortcoming of our com-
piler and not the technique that underlies it. In evidence of this,
we use this section to sketch a new protocol, πBilinearSRS, which realizes
FPostTrans(BilinearSRSG1,G2,d, n, (X, Y ), 2

√
n − 1) directly, where (X, Y ) is any

well-formed SRS. Our new protocol requires O(
√
n · log d) sequential broadcast

rounds and avoids the major concrete costs implied by compiling the round-robin
protocol. For details of the BilinearSRS update function for bilinear groups, and
its applications to zk-SNARKs, we refer the reader to Section 4.4, and we note
that our construction could easily be adapted to sample with related update
functions such as PowTau. We begin with a simple and intuitive description,
and then give the full formal protocol in Section 5.1, a concrete cost analysis in
Section 5.2, and a proof of security in Section 5.3.

πBilinearSRS will leverage the fact that the well-formedness of SRSes sampled
by the BilinearSRS update function can be checked using the pairing operation
of the underlying bilinear group, without any additional protocol artifacts or
external information. πBilinearSRS is structured similarly to πCompiler, with two
major differences. First, when a committee’s intermediate output is chosen to
become definitive, it is first double-checked for well-formedness by all parties
in the protocol (the check is performed via the pairing operation and there-
fore incurs only computational costs), and the entire committee is ejected for
cheating if this check fails. Second, we replace instances of JFSFE-IAKPV that
evaluate the BilinearSRSG1,G2,d update function as a circuit with instances of a
new SRS extension functionality JFExtSRSKPV that directly computes the same
update function. JFExtSRSKPV maintains most of the public-verifiability proper-
ties of JFSFE-IAKPV, but unlike the latter it allows the adversary to choose the
output arbitrarily if all active participants are corrupted (which necessitates the
aforementioned double-check).

In order to realize JFExtSRSKPV with reasonable concrete efficiency, each com-
mittee samples shares of a uniform secret τ and uses a generic reactive arith-
metic MPC functionality JFMPC-IAKPV to compute secret sharings of the powers
of τ . The functionality JFMPC-IAKPV is similar to JFSFE-IAKPV, except that it is
reactive (that is, it allows the circuit to be determined dynamically after in-
puts are supplied), it allows the adversary to choose outputs arbitrarily if all
active participants are corrupted (much like JFExtSRSKPV), and it natively sup-
ports arithmetic computations over an arbitrary field, which implies that this
computation requires only O(d) gates arranged in a circuit of depth O(log d).
Using these shares of the powers of τ , the committee engages in a round of
distributed scalar operations to generate its intermediate SRS, which is checked
for well-formedness by the members of the committee (but not by any pas-
sive verifiers). If any active participants are honest, and the intermediate SRS
is not well-formed, then they broadcast a message indicating as much, along
with information that allows passive verifiers to efficiently confirm which active
participant has cheated. Known techniques [BOS16] for realizing JFMPC-IAKPV
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require a round count proportionate to the circuit’s multiplicative depth, and
so the protocol realizing JFExtSRSKPV runs in O(log d) rounds overall.

In practice, bilinear groups are realized by certain elliptic curves, and the
pairing operation has a large concrete computational cost; thus we must use it
judiciously. The elliptic-curve scalar multiplication operation is also expensive,
and so we wish to minimize the use of this operation as well. In our protocol,
these two operations incur the vast majority of computational costs that are not
due to the protocol realizing JFMPC-IAKPV. In Section 5.2 we will argue that for
our protocol, the latency incurred by these operations is both asymptotically
and concretely less than the latency incurred by the same operations in the state
of the art round-robin sampling protocol.

5.1 Protocols

Now we give the formal description of the concretely efficient protocol for
SRS sampling described previously. We begin by specifying the functionality
JFExtSRSKPV that the committees use for computing SRS updates.

Functionality 5.1. FExtSRS(n,X, Y,G1,G2). SRS Extension

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn and with the ideal adversary S. It is also parameterized by
a pair of prime-order groups G1,G2 such that |G1| = |G2| = q, a vector
of group elements X ∈ Gd

1 for some d ∈ N+, and a single group element
Y ∈ G2.

Extension Sampling: On receiving (sample, sid) from at least one party
Pi for i ∈ [n],

1. If (sample, sid) has been received from at least one active participant,
sample τ ← Zq and then compute A ..=

{︁
τ i ·Xi

}︁
i∈[d]

and B ..= τ · Y

2. Send (candidate-output, sid, (A, B)) to S, and receive (proceed, sid)
or (override, sid, (A′, τ ′)) or (abort, sid) from S in response.

(a) If proceed is received, then send (output, sid, (A, B)) to all parties.

(b) If override is received and there are any honest parties, then ignore
the message and wait for another response.

(c) If override is received and there are no honest parties, then send
(output, sid, (A′, τ ′ · Y )) to all parties.

(d) If abort is received, then send (secret, sid, τ) to S, receive
(stooge, sid, c) in response, where c is the index of a corrupt party,
and then send (abort, sid, c) to all parties.

Notice that JFExtSRS(n,X, Y,G1,G2)KPV behaves similarly to an instance of
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JFSFE-IA(γ, n)KPV where

γ
(︁
ω ∈ Zn

q

)︁
↦→ BilinearSRSG1,G2,|X|

(︂
(X, Y ),

∑︂
i∈[n]

ωi

)︂
so long as there is at least one honest party, who supplies a random value
for its share in ω. Using this functionality, we specify a protocol to realize
FPostTrans(BilinearSRSG1,G2,d, n, (X, Y ), 2

√
n− 1). As we have said, this protocol

is extremely similar to the compiler, except for the use of JFExtSRSKPV and the
fact that all parties double-check the well-formedness of all intermediate values.

Protocol 5.2. πBilinearSRS(n,m,X, Y,G1,G2). SRS Sampling

This protocol is parameterized by the number of actively participating par-
ties, n ∈ N+. It is also parameterized by a pair of groups G1 and G2, both
of the same prime order q, such that there exists a third group GT of order q
and an efficient bilinear map e : G1 ×G2 → GT. Let G1 and G2 be gener-
ators of G1 and G2. In addition, it is parameterized by a vector of group
elements X ∈ Gd

1 for some d ∈ N+ and a single group element Y ∈ G2 with
the constraint that there exists some x ∈ Zq such that Y = x · G2 and
Xi = xi ·G1 for every i ∈ [d]. In addition to the actively participating par-
ties Pi for i ∈ [n], the protocol involves the ideal functionality JFExtSRSKPV,
and it may involve one or more observing verifiers, denoted by V.

Sampling: Let A0,∗ ..= X and B0
..= Y and let C1,∗,∗ be a deterministic

partitioning of [n] into m balanced subsets. That is, for i ∈ [m], let C1,i,∗
be a vector indexing the parties in the ith committee. Upon receiving
(sample, sid) from the environment Z, each party repeats the following
sequence of steps, starting with k ..= 1 and j1

..= 1, incrementing k with
each loop, and terminating the loop when jk > m

1. For all i ∈ [m] (in parallel) each party Pℓ for ℓ ∈ Ck,i,∗ sends
(sample,GenSID(sid, k, i)) to JFExtSRS(|Ck,i,∗|,X, Y,G1,G2)KPV.

2. For all i ∈ [m] (in parallel) each party Pℓ for ℓ ∈ [n] \ Ck,i,∗
sends (observe,GenSID(sid, k, i)) to JFExtSRS(|Ck,i,∗|,X, Y,G1,G2)KPV
(thereby taking the role of verifier).

3. For i ∈ [m], all parties receive either (abort,GenSID(sid, k, i), ck,i)

or (output,GenSID(sid, k, i), (Âk,i,∗, B̂k,i)) from
JFExtSRS(|Ck,i,∗|,X, Y,G1,G2)KPV. In the latter case, let ck,i ..= ⊥.

4. If any outputs were produced in the previous step, let ℓ be the smallest
integer such that (output,GenSID(sid, k, ℓ), (Âk,ℓ,∗, B̂k,ℓ)) was received.
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All parties individually sample local values r← Zd
q and check that

e
(︂ ∑︂

j∈[d]

rj · Âk,ℓ,j , G2

)︂
= e

(︂
r1 ·G1 +

∑︂
j∈[2,d]

rj · Âk,ℓ,j−1, B̂k,ℓ

)︂
and if this relation holds, then the parties set jk+1

..= jk + 1 and

(Ajk+1,∗,Bjk+1) ..= (Âk,ℓ,∗, B̂k,ℓ). On the other hand, if the check fails,
then the parties set jk+1

..= jk. Regardless, for every i ∈ [m] let

Ck+1,i,∗ ..=

{︄
Ck,i,∗ \ {ck,i} if i ̸= ℓ

∅ if i = ℓ

5. If no outputs were produced in Step 3, then let jk+1
..= jk and for every

i ∈ [m] let
Ck+1,i,∗ ..= Ck,i,∗ \ {ck,i}

Finally, each party outputs (output, sid, (Am,∗,Bm)) to the environment
when the loop terminates.

Verification: If there is an observing verifier V, then upon receiving
(observe, sid) from the environment Z, it repeats the following sequence
of steps, starting with k ..= 1 and j1

..= 1, incrementing k with each loop,
and terminating the loop when jk > m.

6. V sends (observe,GenSID(sid, k, i)) to JFExtSRS(|Ck,i,∗|,X, Y,G1,G2)KPV
for all i ∈ [m], and receives either (abort,GenSID(sid, k, i), ck,i) or

(output,GenSID(sid, k, i), (Âk,i,∗, B̂k,i)) in response.

7. V determines the value of jk+1 and Ck+1,∗,∗ per the method in Steps 4
and 5.

Finally, V outputs (output, sid, (Am,∗,Bm)) to the environment when the
loop terminates.

Realizing JFExtSRSKPV. Before we show how this functionality is to be real-
ized, we will specify a few building blocks that are required. We begin by giving
a functionality for reactive arithmetic MPC with Identifiable Abort. This func-
tionality is a derivative of the one given by Baum et al. [BOS16].

Functionality 5.3. FMPC-IA(n,F). Reactive MPC with IA [BOS16]

This functionality interacts with n actively participating parties denoted
by P1 . . .Pn and with the ideal adversary S. It is also parameterized by the
description of a field F over which it operates. Whenever this functionality
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receives a message from any party, it notifies the other parties that the
message was received, including in the notification the sender’s ID, the
session ID, and any subsession IDs.

Input: On receiving (input, i, sid, ssid, x) for x ∈ F from Pi and
(input, i, sid, ssid) from Pj for every j ∈ [n] \ {i}, if ssid is a fresh sub-
session ID, then store (sid, ssid, x) in memory.

Addition: On receiving (add, sid, ssid1, ssid2, ssid3) from Pi for every i ∈
[n], if ssid3 is a fresh subsession ID and records of the form (sid, ssid1, x) and
(sid, ssid2, y) are stored in memory, then store (sid, ssid3, x+ y) in memory.

Multiplication: On receiving (mult, sid, ssid1, ssid2, ssid3) from Pi for
every i ∈ [n], if ssid3 is a fresh subsession ID and records of the form
(sid, ssid1, x) and (sid, ssid2, y) are stored in memory, then store (sid, ssid3, x·
y) in memory.

Output: On receiving (output, sid, ssid) from Pi for every i ∈ [n], if at
least one actively participating party is honest and a record of the form
(sid, ssid, x) exists in memory, then send (candidate-output, sid, ssid, x)
to S, and receive (abort-stooge, sid, ssid, c) in response. If c is the in-
dex of a corrupt party, then send (abort, sid, c) to all parties, and send
(output, sid, ssid, x) to all parties otherwise. If there are no honest ac-
tively participating parties, then send (adv-output, sid, ssid) to S, and if
S replies with a message of the form (output, sid, ssid, ∗) or (abort, sid, ∗),
then forward the reply to all parties.

In addition to the above functionality, we will use a commitment function-
ality FCom that is similar to the standard functionality given by Canetti and
Fischlin [CF01]. However, since we only need “broadcast-style” (i.e. one-to-
everyone) commitments, we will omit explicit destination parties, instead in-
sisting that every commitment and decommitment is received by all partici-
pants (and any observing verifiers in the case of JFComKPV). We will also use a
one-to-everyone version of the standard FCP zero-knowledge commit-and-prove
functionality. Both of these functionalities are defined and discussed by Canetti
et al. [CLOS02]. FCP is is parameterized by a relation, and the one that our
protocol requires is the discrete logarithm relation in an elliptic-curve group:

RDL = {((X,B), x) : X = x ·B}

Using these building blocks, we now specify a protocol to realize JFExtSRSKPV.
Protocol 5.4. πExtSRS(n,X, Y,G1,G2). SRS Extension

This protocol is parameterized by the number of actively participating par-
ties, n ∈ N+. It is also parameterized by a pair of groups G1 and G2, both
of the same prime order q, such that there exists a third group GT of order
q and an efficient bilinear map e : G1 ×G2 → GT. Let G1 and G2 be gen-
erators of G1 and G2. In addition, it is parameterized by a vector of group
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elements X ∈ Gd
1 for some d ∈ N+ and a single group element Y ∈ G2

with the constraint that there exists some x ∈ Zq such that Y = x · G2

and Xi = xi · G1 for every i ∈ [d]. In addition to the actively partici-
pating parties Pi for i ∈ [n], the protocol involves the ideal functionalities
JFMPC-IAKPV, JFComKPV, and JFRDL

CP KPV, and it may involve one or more
observing verifiers, denoted by V.

Extension Sampling: On receiving (sample, sid) from the environment,
each party Pi for i ∈ [n] follows the steps below. If at any point in this
sequence of steps Pi expects to receive a broadcast from some Pc or a no-
tification from JFMPC-IAKPV that it was activated by Pc in a particular way,
but no such broadcast or notification arrives, or if at any point JFMPC-IAKPV
sends (abort, sid, c) to Pi, then Pi aborts by sending (abort, sid, c) to the
environment.

1. Each party Pi samples τ i ← Zq and µi,∗ ← Zd
q , and then the parties

use JFMPC-IA(n,Zq)KPV to compute α ∈ Zd
q such that

α =
{︂ ∑︂

i∈[n]

µi,j +
(︂ ∑︂

i∈[n]

τ i

)︂j}︂
j∈[d]

and then α is revealed to all parties. Using the following methodology,
the parties can perform this procedure using log2 d+1 batches of parallel
calls to the mult interface of JFMPC-IAKPV, plus one batch of parallel calls
to the input interface and one to the output interface. The parties
send instructions to the functionality in batches as specified, and do
not proceed until all the instructions in a batch are confirmed to have
been received and evaluated. If some party Pc fails to send a specified
instruction, then the other parties (and observing verifiers) will receive
no notification from the functionality (as they would had Pc behaved
honestly), and they will abort, identifying Pc as the cheater.

(a) The parties use the input interface of JFMPC-IAKPV to load all ele-
ments of τ and µ into the functionality (in parallel), and then via
the add interface they instruct the functionality to compute

τ ..=
∑︂
i∈[n]

τ i

(b) Via the mult interface of JFMPC-IAKPV, the parties instruct the func-
tionality to compute the parity-1 powers of τ , which is to say, τ2

k

for k ∈ [⌊log2 d⌋]. This requires ⌊log2 d⌋ sequential invocations of
the mult interface.
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(c) As soon as the functionality has calculated each value τ2
k

for
k ∈ [⌊log2 d⌋] (as instructed in Step 1b), the parties use the mult in-
terface of JFMPC-IAKPV to instruct the functionality to compute the
product of τ j and τ2

k

for every j < 2k, in parallel. The former set
of values will have already been computed and stored by the func-
tionality, and the result will be that the functionality computes and
stores the values τ j

′
for every j′ < 2k+1. This step requires ⌊log2 d⌋

sequential batched invocations of the mult interface; since all but
one of these invocations can be performed simultaneously with the
invocations in Step 1b, it adds only one batch of invocations overall.

(d) The parties use the add interface to instruct JFMPC-IAKPV to com-
pute

αj
..= τ j +

∑︂
i∈[n]

µi,j

for every j ∈ [d], in parallel.

(e) Finally, the parties instruct JFMPC-IAKPV via the output interface
to reveal α to all parties and observing verifiers.

2. Upon being notified by JFMPC-IAKPV that all operations in the previous
step were completed successfully, every Pi for i ∈ [n] computes

Mi,∗ ..=
{︁(︁

q − µi,j

)︁
·Xj

}︁
j∈[d]

and Ni
..= (q − µi,1) · Y

after which it sends (commit,GenSID(sid, i),Mi,∗) to JFComKPV, sends

(commit,GenSID(sid, i), q − µi,1) to JFRDL

CP KPV, and registers to be an
observing verifier for every other party’s matching instances of JFComKPV
and JFRDL

CP KPV. Upon being notified that all other parties are committed,
Pi sends (open,GenSID(sid, i)) to JFComKPV and (prove,GenSID(sid, i),

(Ni, Y )) to JFRDL

CP KPV. If any party Pc fails to commit, open, or prove in
this step, then Pi aborts by sending (abort, sid, c) to the environment.

3. On receiving Mi′,∗ from JFComKPV and Ni′ from JFRDL

CP KPV for every
i′ ∈ [n] \ {i}, Pi computes

A ..=
{︂
αj ·Xj +

∑︂
i′∈[n]

Mi′,j

}︂
j∈[d]

and B ..= α1 · Y +
∑︂
i′∈[n]

Ni′

4. Pi samples a local value r← Zd
q , and checks that

e
(︂ ∑︂

j∈[d]

rj ·Aj , G2

)︂
= e

(︂
r1 ·G1 +

∑︂
j∈[2,d]

rj ·Aj−1, B
)︂
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If this relation holds, then Pi broadcasts (ok, sid, (A, B)), and if it does
not, then Pi broadcasts (not-ok, sid). In the former case, we will say
that Pi’s certified output value is (A, B), and in the latter case, it is ⊥.

5. On receiving ok or not-ok messages from the other active participants
(certifying their outputs),

(a) If all parties (including Pi) certified identical non-⊥ outputs, then
Pi outputs (output, sid, (A, B)) to the environment, and halts.

(b) If some party Pc certified an output (A′, B′) such that B′ ̸= B, then
Pi outputs (abort, sid, c

′) to the environment and halts. If multiple
parties certified such outputs, Pc is taken to be the lowest-indexed
among them.

(c) If there were two parties who certified two distinct non-⊥ outputs
(A′, B) and (A′′, B), then let c′ and c′′ their indices, and let them
be the lowest such indices if more than one pair of parties meets this
condition. Pi finds the minimal value of j ∈ [d] such that A′

j ̸= A′′
j ,

and outputs (abort, sid, c′) to the environment if A′
j ̸= Aj , or else

outputs (abort, sid, c′′) if A′
j = Aj . Pi halts regardless.

(d) Otherwise, it must be the case that at least one party certified ⊥
and all other parties certified identical outputs. In this case, Pi

initiates cheater identification by jumping to Step 6.

Cheater Identification: Pi arrives at this set of instructions if it de-
tected a cheat elsewhere in the protocol, but the cheater was not identified.

6. The parties use the output interface of JFMPC-IA(n,Zq)KPV to instruct
the functionality to reveal all elements of τ and µ (in parallel) to all
parties and observing verifiers.

7. Let I ⊆ [n] be a set (stored in ascending order) indexing the parties who
broadcasted (not-ok, sid) and thereby initiated cheater identification.
PI1 (the lowest-indexed party in this set) finds the smallest value of
j ∈ [d] such that

Aj ̸=
(︂ ∑︂

i∈[n]

τ i

)︂j

·Xj

and then finds the smallest value c ∈ [n] such that Mc,j ̸=
(︁
q − µc,j

)︁
·

Xj , then broadcasts (malformed-output, sid, c, j) to all parties. If no
such values exist, then PI1 finds the smallest value c ∈ [n] such that
Nc ̸=

(︁
q − µc,1

)︁
· Y and broadcasts (malformed-output, sid, c, 0) to all

parties.a

49



8. On receiving the message (malformed-output, sid, c, j) from PI1 , Pi for
i ∈ [n] \ {I1} checks whether

Mc,j =
(︁
q − µc,j

)︁
·Xj

If this relation holds, then Pi aborts by sending (abort, sid, I1) to the en-
vironment, and if this relation does not hold, then Pi aborts by sending
(abort, sid, c) to the environment. PI1 aborts by sending (abort, sid, c)
to the environment, regardless.

Verification: If there is an observing verifier V, then upon receiv-
ing (observe, sid) from the environment Z, V sends (observe, sid) to
JFMPC-IAKPV and also begins observing the relevant instances of JFComKPV
and JFRDL

CP KPV. Thereafter it receives the same notifications and outputs
as the active participants. In particular, it receives the output values in
Steps 1e and 6 and the broadcasts in Steps 2, 4, and 7. It does not perform
the randomized well-formedness check in Step 4: instead,

9. If some party Pc omitted an expected message anywhere in the protocol,
then V outputs (abort, sid, c) to the environment. If multiple parties
omitted expected messages at the same time, then Pc is taken to be the
lowest-indexed one.

10. If all active participants certified a consistent non-⊥ output (A, B),
then V takes them at their word and outputs (output, sid, (A, B)) to
the environment, and halts.

11. V computes

B ..= α1 · Y +
∑︂
i∈[n]

Ni

and if any party Pc certified an output (A′, B′) such that B′ ̸= B,
then V outputs (abort, sid, c) to the environment and halts. If multiple
parties certified such outputs, then Pc is taken to be the lowest-indexed
one.

12. If there were two parties who certified two distinct non-⊥ outputs
(A′, B) and (A′′, B), then let c′ and c′′ their indices, and let them be the
lowest such indices if more than one pair of parties meets this condition.
V finds the minimal value of j ∈ [d] such that A′

j ̸= A′′
j , computes

Aj
..= αj ·Xj +

∑︂
i∈[n]

Mi,j

and outputs (abort, sid, c′) to the environment if A′
j ̸= Aj , or

(abort, sid, c′′) if A′
j = Aj . V halts regardless.
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13. Otherwise, it must be the case that at least one party certified ⊥ and all
other parties certified identical outputs. Let Pi be the lowest-indexed
party who certified ⊥, and let (malformed-output, sid, c, j) be subse-
quent message sent by Pi in Step 7. V uses the relations in Step 8 to
verify that Pc has indeed cheated. If Pc has cheated, then V outputs
(abort, sid, c) to the environment; otherwise it outputs (abort, sid, i). It
halts regardless.

aAll parties could perform this step, but it would improve neither asymptotic nor
worst-case concrete performance.

Finally, we note that when there is only one active participant, the above
protocol can be dramatically simplified: the single active party need not invoke
JFMPC-IAKPV or perform any distributed SRS assembly or cheater identification:
it simply samples τ , computes (A, B) locally, broadcasts its output, and uses
JFRDL

CP KPV to prove knowledge of the discrete logarithm of B with respect to Y .
This protocol is very similar to πRRSample(BilinearSRSG1,G2,d, 1, ·), apart from the
fact that the invocation of FNIZK that guarantees semi-malicious behavior in

the latter protocol has been replaced by an invocation of JFRDL

CP KPV that simply
allows the discrete logarithm of B to be extracted. Consequently, we omit any
further formal description or security proof.

Realizing JFMPC-IAKPV. To realize JFMPC-IAKPV, we requite a reactive generic
MPC protocol that is secure with publicly verifiable identifiable abort against
adversaries corrupting up to n− 1 active participants. Due to the structure of
our main protocol, which ejects parties from committees dynamically, it cannot
be determined in advance which sets of parties will invoke JFMPC-IAKPV, and con-
sequently any “offline” preprocessing must actually be done “online” and with
the same guarantees as the rest of the protocol. Thus preprocessing cost counts
against the efficiency of the protocol realizing JFMPC-IAKPV. Also for the sake of
efficiency, we prefer our protocol to natively compute arithmetic circuits over
prime-order fields. To our knowledge, four recently-developed protocols satisfy
or nearly satisfy our requirements. The first three derive from SPDZ [DPSZ12],
and therefore natively compute arithmetic circuits with a round-count propor-
tionate to circuit depth.

The protocol of Spini and Fehr [SF16] has low overhead relative to the orig-
inal SPDZ protocol in the case that there are no cheaters, but it does not ex-
plicitly address public verifiability, does not address the necessary preprocessing
phase, and achieves agreement with respect to the identity of cheaters only with
“significant overhead.”

The protocol of Cunningham et al. [CFY17] achieves public verifiability
(which they refer to as auditability) and is capable of identifying all cheaters in
an instance, rather than just one as per the standard definition of identifiable
abort.8 They also describe a preprocessing protocol with publicly verifiable

8Prior works [IOZ14, CL17] focused on feasibility results, in which context there is no
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identifiable abort. The authors do not provide a cost analysis, but it seems
likely that their protocol is computationally expensive, since it uses Somewhat
Homomorphic Encryption (SHE) with NIZK proofs over the homomorphic op-
erations extensively in the preprocessing phase. In our context, the number
of such SHE/NIZK operations that must be verified by every party (active or
passive) in the preprocessing phase grows with Ω(n2 · d), and they must be
both computed and verified “online.” Furthermore, this protocol is secure only
when computing over fields where the order is a Sophie-Germain prime. This
makes it incompatible with the order-fields of some elliptic curves, including the
BLS12-381 curve used by prior works on SRS sampling.

The protocol of Baum et al. [BOS16] achieves the standard notion of publicly
verifiable identifiable abort. They describe a preprocessing protocol with a
matching security guarantee that is based on SHE and NIZK proofs, similarly
to the protocol of Cunningham et al. [CFY17]. The authors do provide a cost
analysis, which suggests that the number of NIZK proofs (over SHE ciphertexts)
to be verified by each party (active or passive) grows with Ω(n4 · d).

A more-recent protocol of Baum et al. [BOSS20] achieves publicly verifiable
identifiable abort so long as there is at least one honest party, which is sufficient
for our purposes. It also requires only a constant number of rounds, regard-
less of circuit-depth, and it avoids the use of homomorphic encryption entirely.
However, it computes over Boolean circuits, and rewriting our arithmetic circuit
as a Boolean circuit yields tens or hundreds of billions of gates for the parameter
regimes we expect in practice.

We think it likely that future work will improve upon these results. Thus,
for the purpose of our efficiency analysis, we leave our costs in terms of circuit
topology rather than choosing among the above protocols.

Realizing JFRDL

CP KPV. The RDL relation can be proven in zero knowledge via
the Schnorr protocol [Sch89], and the proof can be made noninteractive and
straight-line extractable by applying the transforms of Pass [Pas03] or Fis-
chlin [Fis05], in order to UC-realize JFRDL

CP KPV in the JFComKPV-hybrid random-
oracle model. The prior work of Kohlweiss et al. [KMSV21] proved security
only in the Algebraic Group Model (AGM) [FKL18]; in this model, the Schnorr
protocol has a non-rewinding extractor by assumption. However, the AGM is
incompatible with the UC Model, and so we assume the Fischlin transform is
used for the sake of cost estimates.

5.2 Cost Analysis

In this section, we will analyze the costs of our protocol, and in particular its
latency, without choosing a particular protocol to realize JFExtSRSKPV. In service
of this goal, we will introduce latency metrics for each major cost component.
The computational and communication latency due to JFExtSRSKPV is determined

difference between identifying a single cheater or a larger set. The difference is relevent only
when efficiency is a consideration.
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by the number of gates, the circuit depth, and the number of parties involved
in each invocation. The communication latency excluding JFExtSRSKPV is de-
termined by the total amount of data to be broadcasted, and the number of
broadcast rounds. This leaves only the computational latency due to elliptic
curve (EC) operations.

To account for the latency due to EC operations, we define two metrics.
Our protocol can be broken down cleanly into individual broadcast rounds; in
each round, every party begins by receiving the messages broadcasted in the
previous round, whereupon it performs some computation, and then ends the
round by broadcasting a new message. The latency due to pairings is the sum
over all broadcast rounds of the maximum over the set of parties of the number
of EC pairing operations performed by a given party in each round. Similarly,
the latency due to scalar multiplications is the sum over all broadcast rounds of
the maximum over the set of parties of the number of EC scalar multiplications
performed by a given party in each round. For example, in state-of-the-art
round-robin SRS-sampling protocols, each of the n parties must use O(d) scalar
multiplications and O(1) pairing operations to verify the intermediate output of
its predecessor;9 since they are required to work sequentially, the pairing latency
is O(n) and the scalar latency is O(d · n).

Analysis of πExtSRS(n, ·, ·,G1,G2). The costs of this protocol differ depending
on whether or not the cheater-identification phase occurs; thus we will give both
optimistic and pessimistic costs. The generic component of πExtSRS comprises
exactly d − 1 multiplication gates, (d + 1) · n input gates, and d output gates
(optimistically) or (d + 1) · (n + 1) − 1 output gates (pessimistically) arranged
in a circuit of depth log2 d + 3 or log2 d + 4 (optimistically or pessimistically,
respectively), and evaluated among n parties.

In the optimistic case, active participants must each compute 4d + 2 EC
scalar multiplications and 2 pairings, and they must each commit and reveal d
elements of G1 using JFComKPV, and they must commit and prove one element

of G2 using JFRDL

CP KPV, and they must each broadcast d elements of G1, plus
one element of G2, and one bit. These operations are distributed over three
broadcast rounds, assuming that the commitment and proof phases of JFRDL

CP KPV
require one broadcast round each. Verifiers broadcast nothing, and need only
evaluate 2 EC scalar multiplications and no pairings.

In the pessimistic case, at most one extra broadcast round is required (in
addition to the extra circuit layer require by the generic component), during
which one active participant is required to send at most log2 d + log2 n bits.
The same single active participant must evaluate at most d + n additional EC
scalar multiplications, and every other active participant and observing verifier
must evaluate at most one additional EC scalar multiplication.

For the sake of concrete cost analysis, we will assume that the commitment

9Assuming such protocols use the same randomized well-formedness check as we do. This
check seemingly does not appear in the prior academic literature on the subject, but it has
been used in practice [Bow18].
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phase of JFComKPV is realized via a single call to a random oracle, and a broadcast
of the oracle’s 2λ-bit output, and the decommitment phase is realized via the
broadcast of the committed data. As we have previously said, we assume that
JFRDL

CP KPV is realized via the Schnorr protocol under the Fischlin transform,
in the JFComKPV-hybrid random-oracle model. We take the cost of realizing

JFRDL

CP KPV to be equivalent to λ/ log2 λ repetitions of the underlying Schnorr
protocol, plus one commitment.10

Summing it all up, we come to the following metrics: excluding generic costs
(which were stated above), πExtSRS incurs a communication cost of at least three
sequential broadcast rounds, over the course of which at least n · (2d · |G1| +
2|G2| + 4λ + (|G2| + |q|) · λ/ log2 λ) bits must be broadcasted in total over all
parties. At most, it incurs an additional communication cost of one broadcast
round and log2 d + log2 n broadcasted bits. For active participants, the scalar
latency of the protocol is at least 4d + 2 + (2n − 1) · λ/ log2 λ and at most
5d + n + 2 + (2n − 1) · λ/ log2 λ, while the pairing latency is always exactly 2.
For verifiers, the scalar latency of the protocol is at least 2 and at most 3, while
the pairing latency is 0.

Analysis of πBilinearSRS(n,m, ·, ·,G1,G2). This protocol too has a variable cost
that depends upon adversarial behavior, and so we will both compute the cost
in the case of honest behavior, and bound the worst-case cost in the case of
malicious behavior. We will make two major simplifications for the sake of
analysis: first, we will assume that n/m is an integer, and thus all committees
are the same size. Second, we will say for the sake of analysis that in every
iteration of the main sampling loop, either an entire committee is removed, or
one party is removed from each committee. Formally, we replace committee
update instruction in Step 5 of πBilinearSRS with

Ck+1,i,∗ ..=

{︄
Ck,i,∗ if i ̸= ℓ

∅ if i = ℓ

for every i ∈ [m]. This makes the analysis simpler, and does not affect the
asymptotics of our protocol, but does degrade its performance by a small con-
stant for certain non-worst-case adversarial behavior patterns.

In each iteration of the main sampling loop, each committee invokes one in-
stance of JFExtSRSKPV as active participants, and also acts as passive verifiers for
the other committee’s instances of JFExtSRSKPV (which are invoked concurrently).
Verifiers for πBilinearSRS passively verify all instances of JFExtSRSKPV, and everyone
(participants and verifiers alike) must compute 2d EC scalar multiplications and
2 pairing operations per iteration of the main sampling loop.

10In actuality, the Fischlin transform requires c · λ/ log2 λ repetitions of the Schnorr proto-
col’s first message to be computed and broadcasted for some parameter c. The prover must
also silently compute (but not broadcast) an asymptotically greater number of repetitions of
the second and third messages, but these involve no EC scalar multiplications and thus do
not impact the cost metrics we have devised.
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In the case that all parties behave honestly, the best-case cost of πExtSRS is
always achieved, and in each iteration of the main sampling loop, one committee
goes from actively participating to passively verifying, but no individual parties
are ever removed from any committee. Thus the total number of instances of
πExtSRS invoked is

∑︁
i∈[m] i = (m2 +m)/2. This implies that the total numbers

of generic input gates, multiplication gates, and output gates evaluated are
(d − 1) · (m2 + m)/2, (d + 1) · n · (m + 1)/2, and d · (m2 + m)/2 respectively,
and all such gates are evaluated among exactly n/m parties. It also implies
that total number of bits transmitted excluding the foregoing generic costs is
(m+ 1) · n · (2d · |G1|+ 2|G2|+ 4λ+ (|G2|+ |q|) · λ/ log2 λ)/2 in the case that
all parties behave honestly.

Again in the case that all parties behave honestly, the number of iterations of
the main sampling loop is m. This implies that the total circuit depth incurred
is 3m + m · log2 d, the number of broadcast rounds not due to generic MPC
is 3m. In the ith iteration of the main sampling loop, every remaining party
participates in one instance of πExtSRS actively, and passively verifies m − i
instances of πExtSRS: thus for passive verifiers the EC pairing latency is 2m and
the EC scalar latency is m2 + 2d ·m +m, and for active participants, the EC
pairing latency is 4m and the EC scalar latency is∑︂

i∈[m]

2(m− i) + 6d+ 2 + (2n/m− 1) · λ/ log2 λ

= m2 + (6d+ 1) ·m+ (2n−m) · λ/ log2 λ

In the case of dishonest behavior, we have as an invariant that in each
iteration of the main loop, either one committee is removed, or one party is
removed from each committee. This gives us an upper bound of m + n/m
iterations. The number of committees per iteration is always bounded above
by m and the number of parties per committee by n/m. In order to simplify our
calculations, we will assume these quantities apply in all iterations of the main
loop, even though this strictly (and substantially) inflates our costs relative to
the true worst-case protocol cost.

Plugging in the worst-case costs for πExtSRS, under the above simplifications,
the total numbers of generic input gates, multiplication gates, and output gates
required by our protocol in the worst case are strictly less than (d+1) · (n2/m+
n ·m), (d− 1) · (m2 +n), and (d+1) · (n2/m+n ·m)+ d · (m2 +n) respectively,
arranged in circuits of total depth strictly no more than (log2 d+4) · (m+n/m)
and evaluated among at most n/m parties. The total number of bits transmitted
excluding the foregoing generic costs is strictly less than

(n2/m+ n ·m) · (2d · |G1|+ 2|G2|+ 4λ+ (|G2|+ |q|) · λ/ log2 λ)
+ (log2 d+ log2(n/m)) · (m2 + n)

Similarly, the total number of broadcast rounds required in the worst case
(excluding those due to generic computation) is strictly no greater than 4(m+
n/m). The EC pairing latency in the worst case is strictly no greater than 4(m+
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n/m) for active participants and 2(m+n/m) for passive verifiers. The EC scalar
latency in the worst case is strictly no greater than 3(m2 + n) + 2d · (m+ n/m)
for passive verifiers, and for active participants it is strictly no greater than

3(m2 + n−m− n/m) + (7d+ n/m+ 2 + (2n/m− 1) · λ/ log2 λ) · (m+ n/m)

Finally, we will let m =
√
n and consider the worst-case asymptotics implied

by the above strict bounds. This gives us total generic input and output gates
in O(d · n1.5), and total multiplication gates in O(d · n), all to be evaluated
among O(

√
n) parties. The total number of bits broadcasted excluding generic

computation is in O(n1.5 · d ·λ+n1.5 ·λ2/ log λ). For active participants the EC
scalar latency is in O(d ·

√
n + n · λ/ log λ), while for passive verifiers the EC

scalar latency is in O(n+ d ·
√
n), and for both active participants and passive

verifiers, the pairing latency is in O(
√
n). Finally, if we assume for the sake of

asymptotic analysis that the number of rounds required to instantiate generic
MPC is proportionate to the depth of the circuit to compute, then the round
count of the entire computation is bounded by O(

√
n log d).

5.3 Proof of Security

We proceed to prove the security of πExtSRS(n,X, Y,G1,G2).

Lemma 5.5. Suppose G1 and G2 are a pair of groups, both of prime or-
der q, such that there exists an efficient bilinear map e : G1 × G2 → GT

and such that q is exponential in λ. For any n, d ∈ O(poly(λ)), X ∈ Gd
1,

and Y ∈ G2, with the constraints that d ≥ 2 and there exists some x ∈ Zq

such that Y = x · G2 and Xi = xi · G1 for every i ∈ [d], it holds that
πExtSRS(n,X, Y,G1,G2) statistically UC-realizes JFExtSRS(n,X, Y,G1,G2)KPV in

the (JFMPC-IA(n,Zq)KPV, JFRDL

CP KPV, JFComKPV)-hybrid model.

Proof. We begin by specifying a simulator SExtSRS, after which we will use a
series of hybrid experiments to argue that

∀A ∀Z,{︂
REALπExtSRS(n,{xi·G1}i∈[d],x·G2,G1,G2),A,Z(λ)

}︂
λ,n,d∈N+,x∈Zq

≈s

{︄
IDEALJFExtSRS(n,X,Y,G1,G2)KPV,SA

ExtSRS(n,X,Y,G1,G2),Z(λ) :

X ..=
{︁
xi ·G1

}︁
i∈[d]

, Y ..= x ·G2

}︄
λ,n,d∈N+,x∈Zq

(7)

Protocol 5.6. SAExtSRS(n,X, Y,G1,G2). SRS Extension

This simulator is parameterized by the number of actively participating
parties, n ∈ N+. It is also parameterized by a pair of groups G1 and
G2, both of the same prime order q, such that there exists a third group
GT of order q and an efficient bilinear map e : G1 × G2 → GT. Let G1

and G2 be generators of G1 and G2. In addition, it is parameterized by
a vector of group elements X ∈ Gd

1 for some d ∈ N+ and a single group
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element Y ∈ G2 with the constraint that there exists some x ∈ Zq such
that Y = x · G2 and Xi = xi · G1 for every i ∈ [d]. This simulator in-
teracts directly with the functionality JFExtSRS(n,X, Y,G1,G2)KPV, and it
has black-box access to an adversary A that statically corrupts the parties
indexed by P∗ ⊆ [n]; it simulates an instance of the real-world UC experi-
ment for πExtSRS(n,X, Y,G1,G2) to A, interacting with A on behalf of any
honest parties and on behalf of the ideal oracles JFMPC-IAKPV and FRDL

NIZK,
and forwarding messages from the environment Z in its own ideal-world
experiment to A and vice-versa.

Extension Sampling:

1. Upon receiving the initial batch of messages on behalf of JFMPC-IAKPV
from every party Pi for i ∈ P∗, as specified by Step 1a of πExtSRS, store
(inputs), sid, i, τ i,µi,∗) in memory and send (sample, sid) to JFExtSRSKPV
on behalf of Pi. Because our model is synchronous, this step should
occur in parallel for all corrupt parties.

2. If (candidate-output, sid, (A, B)) is received from JFExtSRSKPV before
all parties indexed by P∗ have sent their initial batch of messages to
JFMPC-IAKPV (as specified by Step 1a of πExtSRS), choose c ∈ P∗ to be
the smallest index corresponding to a party that has not followed the
protocol, send (abort, sid) and then (stooge, sid, c) to JFExtSRSKPV, and
halt. Otherwise, wait to receive (candidate-output, sid, (A, B)) from
JFExtSRSKPV if there are any honest parties, or if there are no honest
parties, then continue immediately.

3. Perform the interaction on behalf of JFMPC-IAKPV that the corrupt parties
would observe, were JFMPC-IAKPV also being activated by honest parties
(if there are any) as per Step 1 of πExtSRS. If there are any honest parties
present, then sample α ← Zd

q uniformly, and if all active participants
are corrupt, then compute

αj
..=

(︂ ∑︂
i∈[n]

τ i

)︂j

+
∑︂
i∈[n]

µi,j

as JFMPC-IAKPV would in Step 1d of πExtSRS. Regardless, if at any point
some corrupt party Pc fails to send an expected message to JFMPC-IAKPV,
then send (abort, sid) and then (stooge, sid, c) to JFExtSRSKPV, and halt.

4. Receive (commit,GenSID(sid, i),Mi,∗) from every party Pi for i ∈ P∗

on behalf of JFComKPV, and (commit,GenSID(sid, i),µ′
i) on behalf of

JFRDL

CP KPV. If any party Pc fails to send either of these messages, send
(abort, sid) and then (stooge, sid, c) to JFExtSRSKPV, and halt. If there
are honest parties participating, then send notifications to the corrupt
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parties on behalf of JFComKPV and JFRDL

CP KPV as though the honest par-
ties had committed per the instructions in Step 2 of πExtSRS. If there are
no honest parties then ignore the candidate-output message that was
previously received from JFExtSRSKPV, and instead compute

A ..=
{︂
αj ·Xj +

∑︂
i∈[n]

Mi,j

}︂
j∈[d]

and b ..= α1 +
∑︂
i∈[n]

µ′
i

and B ..= b · Y .

5. Receive (open,GenSID(sid, i)) from every party Pi for i ∈ P∗ on behalf
of JFComKPV, and (prove,GenSID(sid, i), (Ni, Y )) on behalf of JFRDL

CP KPV.
If any party Pc fails to send either of these messages, or if for any c it
holds that Nc ̸= µc,1 ·Y , then send (abort, sid) and then (stooge, sid, c)
to JFExtSRSKPV, and halt. Otherwise, if there are any honest parties
participating, then choose h ∈ [n] and PH ⊂ [n] arbitrarily such that
h ̸∈ PH and PH ∪ {h} = [n] \P∗, and then sample

{(µi,∗)}i∈PH ← Z(d+1)×|PH|
q

uniformly and compute

{Mi,∗}i∈PH
..=

{︂{︁(︁
q − µi,j

)︁
·Xi

}︁
j∈[d]

}︂
i∈PH

Mh,∗ ..=
{︂(︂

αj −
∑︂
i∈P∗

µi,j

)︂
·Xj +

∑︂
i′∈PH

Mi′,j −Aj

}︂
j∈[d]

{Ni}i∈PH
..=

{︁(︁
q − µi,1

)︁
· Y

}︁
i∈PH

Nh
..=

(︂
α1 −

∑︂
i∈P∗

µi,1

)︂
· Y +

∑︂
i′∈PH

Mi′,1 −B

and then for every i ∈ [n] \ P∗ broadcast Mi,∗ on behalf of JFComKPV
and Ni on behalf of JFRDL

CP KPV to the corrupt parties as the openings to
Pi’s commitments.

6. Check whether

αj ·Xj +
∑︂
i∈[n]

Mi,j = Aj and α1 · Y +
∑︂
i∈[n]

Ni = B

for all j ∈ [d], and if there are any honest parties, then for the following
set of conditions, consider their certified output values to be (A, B) if
this relation holds, or ⊥ if it does not.
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(a) If there is at least one honest participant, and all active participants
certified the output (A, B), then send (proceed, sid) to JFExtSRSKPV
and halt.

(b) If all active participants are corrupt and they all certified some
consistent non-⊥ output (A′, B), then send (override, sid, (A′, b))
to JFExtSRSKPV and halt.

(c) If there were two parties who certified two distinct non-⊥ outputs
(A′, B) and (A′′, B), then let c′ and c′′ be their indices, and let them
be the lowest such indices if more than one pair of parties meets
this condition. Send (abort, sid) to JFExtSRSKPV. Find the minimal
value of j ∈ [d] such that A′

j ̸= A′′
j , and send (stooge, sid, c′) to

JFExtSRSKPV if A′
j ̸= Aj , or else send (stooge, sid, c′′) if A′

j = Aj .
Halt regardless.

(d) Otherwise, it must be the case that at least one party certified ⊥
and all other parties certified identical outputs. In this case, send
(abort, sid) to JFExtSRSKPV and continue to Step 7 in the cheater-
identification phase.

Cheater Identification:

7. If any party Pc fails to send the correct batch of output instructions
to JFMPC-IAKPV, then send (stooge, sid, c) to JFExtSRSKPV and halt. On
receiving (secret, sid, τ) from JFExtSRSKPV, compute

µh,∗
..=

{︂
τ j −αj +

∑︂
i∈[n]\{h}

µi,j

}︂
j∈[d]

and sample {τ i}i∈PH uniformly subject to∑︂
i∈[n]

τ i = τ

and output the elements of µ and τ to the corrupt parties on behalf
of JFMPC-IAKPV in the appropriate way, or else send (stooge, sid, c) to
JFExtSRSKPV if JFMPC-IAKPV would abort and identify Pc as a cheater.a

8. If the cheater-identification phase was initiated because the check in
Step 6 failed, and there is at least one honest party, and all corrupt
parties with lower indices than any honest parties broadcasted ok, then
find the smallest values of j ∈ [d] and c ∈ P∗ (in that order) such that
Mc,j ̸= (q − µc,j) · Xj , or if no such j exists, then the smallest value
of c ∈ P∗ such that Nc ̸= (q − µc,1) · Y , and send (stooge, sid, c) to
JFExtSRSKPV, and then halt.
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9. If the cheater-identification phase was initiated because the check in
Step 6 failed, and there was a corrupt party Pi′ who broadcasted not-ok,
and whose index i′ is smaller than the indices of all other parties who
broadcasted not-ok, then wait to receive (malformed-output, sid, c, j)
from Pi′ . If Mc,j ̸= (q − µc,j) · Xj or j = 0 and Nc ̸= (q − µc,1) ·
Y , then send (stooge, sid, c) to JFExtSRSKPV. If Pi′ fails to send a
malformed-output message, or neither of the previous conditions hold,
then send (stooge, sid, i′) to JFExtSRSKPV. Halt regardless.

10. If the cheater-identification phase was initiated because one or more
corrupt parties broadcasted not-ok, even though the check in Step 6
passed, then send (stooge, sid, c) to JFExtSRSKPV, where c is the index of
the lowest-indexed corrupt party who broadcasted not-ok, and halt.

aWhen we say output an element in the appropriate way, we mean to mimic the
behavior described in the Output phase of FMPC-IA, including a candidate-output or
adv-output message to S.

We proceed to define a series of hybrid experiments. We begin with the real
experiment,

H0
..=

{︂
REALπExtSRS(n,{xi·G1}i∈[d],x·G2,G1,G2),A,Z(λ)

}︂
λ,n,d∈N+,x∈Zq

Hybrid H1. This hybrid is identical to H0, except that Z now communicates
with a single, monolithic entity, S, which internally emulates an instance of
the real-world experiment for A (to which S has black-box access), in which
S itself plays the roles of all honest parties and oracles (excluding Z and A),
following their code exactly as specified in πExtSRS, and forwarding all messages
between the emulated experiment’s environment and Z. H1 differs from H0

only syntactically; the two have identical distributions.

Hybrid H2. This hybrid is identical to H1 when all parties are corrupt. If
there is at least one honest party, then the method by which the values in the
experiment are calculated is altered. Let Ph be an (arbitrary) honest party.
Rather than sampling a uniform value for τh and µh,∗ and using these to com-

pute α in the way JFMPC-IAKPV would, S instead samples α ← Zd
q and τ ← Zq

uniformly, and then computes (A, B) from τ in the way that JFExtSRSKPV would.
Then, using (A, B), α, and {µi,∗}i∈[n]\{h}, S computes

Mh,∗ ..=
{︂(︂

αj −
∑︂
i∈P∗

µi,j

)︂
·Xj +

∑︂
i′∈PH

Mi′,j −Aj

}︂
j∈[d]

Nh
..=

(︂
α1 −

∑︂
i∈P∗

µi,1

)︂
· Y +

∑︂
i′∈PH

Mi′,1 −B
(8)

and uses these values. Only if the simulated protocol enters the cheater-
identification phase (Step 6 of πExtSRS) will S need to calculate and reveal τh
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and µh,∗, which it has not otherwise needed. In this case, it calculates

µh,∗
..=

{︂
τ j −αj +

∑︂
i∈[n]\{h}

µi,j

}︂
j∈[d]

τh
..= τ −

∑︂
i∈[n]\{h}

τ i

(9)

Although the sequence by which the values are calculated differs, H2 is
distributed identically to H1. Notice that Equation Pair 8 is simply an algebraic
rewriting of the equations in Steps 2 and 3 of πExtSRS, and likewise Equation
Pair 9 is a rewriting of the equations evaluated by JFMPC-IAKPV in Steps 1a
and 1d of πExtSRS. Because identical constraints relate all of the values in both
H2 and H1, and because τh and µh,∗ were sampled uniformly in H1, whereas
τ and α are chosen uniformly in H2, it must be the case that H2 = H1.

Hybrid H3. This hybrid differs from H2 in only one respect: the random-
ized checks performed by all honest active participants in Step 4 of πExtSRS are
replaced by deterministic checks. Specifically if there is at least one honest ac-
tive participant, then whenever it would have run the original check, S instead
checks whether

e(G1, B) = e(A1, G2)

∧ e(Aj−1, B) = e(Aj , G2) ∀j ∈ [2, d]

Observe that by the correctness of the bilinear mapping operator e, this
check verifies that the SRS (A, B) is well-formed (i.e., it is in the image of
BilinearSRS((Gd

1, G2), ·)) with perfect soundness. Thus, the adversary can dis-
tinguish H3 from H2 only when there is at least one honest active participant,
by contriving generate an ill-formed output (A, B) which nevertheless passes
the probabilistic check in Step 4 of πExtSRS.

Suppose for some j, we define ∆ to be the additive deviation of Aj from its
ideal value, where the ideal value is defined with respect to B. That is, if b ∈ Zq

is chosen such that B = b ·G2, then let ∆ = Aj − bj ·G1. On the left hand side
of the probabilistic check, Aj is multiplied by rj , and on the right hand side,
it is multiplied by rj+1; thus the two sides of the checking equation differ by
e((|rj+1 · b− rj |) ·∆, G2). Over the uniform choice of r, Pr[rj+1 · b = rj ] = 1/q.
The adversary cannot improve its probability of success by offsetting additional
elements of A, since those elements are also multiplied by the corresponding
uniformly chosen values in r, and the probability that the intended offset occurs
is also 1/q. The probabilistic check is repeated once for each honest active
participant, with independently sampled value values of r, and the adversary
distinguishes only if it passes all instances of the check. Its probability of doing
so is upper-bounded by 1/q ∈ negl(λ), and thus H3 ≈s H2.

Hybrid H4. This hybrid is identical to H3 when all parties are corrupt. When
there is at least one honest active participant, this hybrid differs from H3 in that
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the deterministic well-formedness check that we introduced in H3 is replaced;
instead S verifies that

αj ·Xj +
∑︂
i∈[n]

Mi,j = Aj and α1 · Y +
∑︂
i∈[n]

Ni = B

for every j ∈ [d]. This check not only guarantees the well-formedness of (A, B)
(again, in the sense that it is in the image of BilinearSRS((Gd

1, G2), ·)), but also
guarantees with perfect soundness that an abort occurs if the honest parties’
outputs to the environment are not actually equal to (A, B). Consequently, H4

and H3 can be distinguished if and only if the adversary can find values of Mi,∗
and Ni for i ∈ P∗ such that if we set

A′ ..=
{︂
αj ·Xj +

∑︂
i∈[n]

Mi,j

}︂
j∈[d]

and B′ ..= α1 · Y +
∑︂
i∈[n]

Ni

then A′ ̸= A or B′ ̸= B, but (A′, B′) is a well-formed SRS. In order to do
this, the adversary must offset the value of Mi,∗ for at least one i ∈ P∗ and
every j ∈ [d], relative to the values that S expects. However, it must commit
to these values before Mh,∗ is revealed to it (and indeed, S need not even have
flipped the coins required to computeMh,∗ before the adversary commits itself).
Consequently, the chance that it guesses a set of offsets that yields a well-formed
SRS is upper-bounded by 1/qd−1, and if d ≥ 2, then H4 ≈s H3.

Hybrid H5. This hybrid differs from H4 only when all active participants
are corrupt. In this case, the code of all honest passive verifiers is removed
from S, and they are replaced by dummy parties that interact (in the typical
way) with JFExtSRSKPV, which interacts with S in turn. S sends (sample, sid) to
JFExtSRSKPV on behalf of each Pi for i ∈ P∗ when it receives the first message in
the protocol from Pi on behalf of JFMPC-IAKPV. If at any point, some party Pc

omits an expected message (including the prove message for JFRDL

CP KPV, which
must include a specific set of values in order for JFRDL

CP KPV to produce output
for the other parties), or sends a message that would cause JFMPC-IAKPV to
abort, S triggers JFExtSRSKPV to abort, identifying Pc as the cause.11 Upon the
completion of Step 2 of πExtSRS by the corrupt parties, S takes µ′

i to be the value
committed by each Pi to JFRDL

CP KPV, computes

A ..=
{︂
αj ·Xj +

∑︂
i∈[n]

Mi,j

}︂
j∈[d]

and b ..= α1 +
∑︂
i∈[n]

µ′
i

. Finally, at the end of the protocol, all corrupt parties broadcast either
ok or not-ok (in which case one party also broadcasts malformed-output),
and S then runs single modified copy of the verifiers’ code in Steps 9
though 13 of πExtSRS. Specifically, it is modified in the following ways:

11The simulator can do this by sending (abort, sid), and (stooge, sid, c) in sequence, or only
(stooge, sid, c) if an abort message has already been sent.
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whenever V would output (abort, sid, c) to the environment, S instead
sends (abort, sid) to JFExtSRSKPV, followed by (stooge, sid, c), and whenever
V would output (output, sid, (A′, B)) to the environment, S instead sends
(override, sid, (A′, b)) to JFExtSRSKPV. The code by which V computes B in
Step 11 of πExtSRS can be omitted, since S has already computed b such that
B = b ·Y ; it can be verified by inspection that S extracts the discrete logarithms
of the values V uses to compute B, and computes b using the same equation. S
halts when V would.

Because H5 differs from H4 only when all active participants are corrupt,
and the distributions of all values sent by S to the corrupt participants are
unchanged, relative to H4, the only way the two hybrids could be distinguished
is via the outputs of honest passive verifiers; thus for the remainder of the
argument concerning H5, we consider only aborts and outputs produced by
such verifiers. We have already argued that the value of b passed to JFExtSRSKPV
in H5 is the discrete logarithm with respect to Y of the value of B computed by
V in H4, and by virtue of the fact that S runs a modified version of the code of
V, it is easy to see by inspection that the dummy verifiers in H5 receive an abort
under exactly the same conditions that V aborts in H4, and the same party is
identified as a cheater. Finally, we observe that if no abort occurs, JFExtSRSKPV
simply passes A′ through to the dummy verifiers, and thus the output value
in the case that no cheating occurs is identical in H5 and H4. Thus the two
hybrids are distributed identically.

Hybrid H6. This hybrid is identical toH5 when all parties are corrupt, and dif-
fers when there is at least one honest active participant. The output-producing
code of all honest active participants and all honest passive verifiers is deleted
from S; they are replaced in their interactions with the environment by dummy
parties that interact with JFExtSRSKPV, which interacts with S in turn. S sends
(sample, sid) to JFExtSRSKPV on behalf of each Pi for i ∈ P∗ when it receives the
first message in the protocol from Pi on behalf of JFMPC-IAKPV, and if S receives
a candidate-output message from JFExtSRSKPV before some corrupt participant
Pi activates JFMPC-IAKPV, then it triggers JFExtSRSKPV to abort, identifying Pi as
the cheater.

In H6, when there is at least one honest active participant, S samples αi ←
Zq only for i ∈ P∗ rather than for i ∈ [n] (as it did in H5), and it does not sam-
ple τ or compute (A, B), but instead receives (candidate-output, sid, (A, B))
from JFExtSRSKPV. Using these values it computes Mh,∗ and Nh as before. At
the end of the protocol, all corrupt parties certify their outputs (or ⊥), and S
determines whether an honest party would certify (A, B) or ⊥, via the second
deterministic well-formedness check previously introduced two hybrids previ-
ously. S then determines how to interact with JFExtSRSKPV and complete the
simulation via a modified version of the honest-party code in Step 5 though 8 of
πExtSRS. Specifically, the code of the simulated honest parties is modified in the
following ways: whenever the honest parties would output (output, sid, (A, B))
to the environment, S instead sends (proceed, sid) to JFExtSRSKPV, and whenever
the honest parties would jump to Step 6 (which implies that they will eventually

63



abort), S instead sends (abort, sid) to JFExtSRSKPV, and receives (secret, sid, τ)
in response, which enables it to compute values for τh and µh,∗ that are con-
sistent with the transcript so far, using the same equations as in H5. It then
uses these values to simulate Step 6 of πExtSRS to the corrupt participants, after
which S sends (stooge, sid, c) to JFExtSRSKPV whenever the honest parties would
output (abort, sid, c) to the environment.

We note first of all that the protocol values inH6 are calculated via equations
identical to those used to compute the values in H5 (though some parts of
the calculation are now done by JFExtSRSKPV instead of S). It can be seen by
inspection that the values of τh and µh,∗ used in simulating Step 6 of πExtSRS in
H6 are distributed identically to the ones used in H5, and by virtue of the fact
that S uses a modified version of the honest parties’ code, it is easy to verify
that the dummy honest participants in H6 receive an abort under exactly the
same conditions as the honest parties aborted independently in H5, and that
the same cheating party is identified to the functionality as an honest party
would identify, and that the same output is produced if no abort occurs.

There remain two potential differences about which we must argue: in H6,
JFExtSRSKPV checks to make sure only corrupt parties are identified as cheaters,
so we must argue that no honest party could be framed as a cheater in H5,
and in H6, the dummy verifiers always receive the same output as the dummy
honest parties from JFExtSRSKPV, so we must argue that the verifiers and honest
parties always computed the same output in H5, even though they ran different
code. The first point can be verified by exhaustive inspection: honest parties
send all messages that they’re expected to send (by definition), never send
values that are inconsistent (since the consistency criteria are defined relative
to honest behavior), and never incorrectly blame other parties who have acted
consistently; these are the only criteria under which any party is ever declared
to have cheated. The second requires us only to note that the conditions under
which outputs are produced in the honest parties’ code, in Steps 5a, 5b, 5c,
and 8, exactly match the conditions in 10, 11, 12, and 13 respectively. It follows
that H6 and H5 are identically distributed.

Finally, we observe that apart from syntactic differences, H6 is identical to
the ideal-world experiment. That is, in H5, S behaves exactly the same as
SAExtSRS, and it follows that

H5 =

{︄
IDEALJFExtSRS(n,X,Y,G1,G2)KPV,SA

ExtSRS(n,X,Y,G1,G2),Z(λ) :

X ..=
{︁
xi ·G1

}︁
i∈[d]

, Y ..= x ·G2

}︄
λ,n,d∈N+,x∈Zq

and, by transitivity, that the real and ideal-world experiments are statistically
indistinguishable as stated in Equation 7.

Theorem 5.7. Suppose G1 and G2 are a pair of groups, both of prime or-
der q, such that there exists an efficient bilinear map e : G1 × G2 → GT

and such that q is exponential in the statistical security parameter. For any
n, d,m ∈ O(poly(λ)), X ∈ Gd

1, and Y ∈ G2, with the constraints that d ≥ 2,
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1 ≤ m ≤ n, and there exists some x ∈ Zq such that Y = x · G2 and
Xi = xi ·G1 for every i ∈ [d], it holds that πBilinearSRS(n,m,X, Y,G1,G2) statis-
tically UC-realizes JFPostTrans(BilinearSRSG1,G2,d, n, (X, Y ),m + n/m)KPV in the
JFExtSRS(∗, ∗, ∗,G1,G2)KPV-hybrid model.

Proof Sketch. The form of a full proof of Theorem 5.7 would be similar to a
proof of Theorem 3.9 (though without the elaborate reduction the security of
the round-robin protocol), and thus we give a simplified sketch, noting mainly
the differences. Since we are only sketching a proof, we will assume for simplicity
that there is a single honest party. In each iteration of the primary loop of
πBilinearSRS, S embeds a fresh candidate SRS provided by JFPostTransKPV in the
protocol via the candidate-output message of the instance of JFExtSRSKPV in
which the honest party as an active participant. If that same instance does not
abort and its output becomes the finalized intermediate SRS for its iteration of
the loop, then S does not reject, but begins accumulating the product of the
finalized b values it extracts in its role as JFExtSRSKPV in subsequent iterations of
the main loop; otherwise, S sends reject and receives a fresh candidate from
JFPostTransKPV. At the end of the protocol, let b̂ be the accumulated product of
the b values extracted in each iteration of the protocol’s main loop after the
functionality’s candidate SRS is finalized. b̂ is sent as the adversary’s bias value
in S’s accept message to JFPostTransKPV.

Note that unlike in the case of πCompiler, the output of a particular instance
of JFExtSRSKPV is not finalized immediately simply because that instance is the
lowest-indexed one that did not abort in a particular iteration of the loop: in-
stead, it is verified using a randomized check in Step 4 of πBilinearSRS. If the check
passes, the output is finalized, and if it fails, no output is finalized for that itera-
tion. The latter case can only occur when all active participants in the instance
of JFExtSRSKPV are corrupt. Proving that the ideal-world experiment with S
constructed as described above is indistinguishable from the real-world experi-
ment will involve a series of hybrid experiments: in each sequential hybrid, one
instance of the randomized check will be replaced with an exact check that the
to-be-finalized intermediate SRS is well-formed; this exact transition between
hybrid-experiments is also used our proof of Lemma 5.5, and here, as there, the
two are statistically indistinguishable. All other differences are purely syntac-
tic, and so the real and ideal experiments are statistically indistinguishable, by
transitivity.

Corollary 5.8. Suppose G1 and G2 are a pair of groups, both of prime order
q, such that there exists an efficient bilinear map e : G1 × G2 → GT and such
that q is exponential in the statistical security parameter. For any n, d,m ∈
O(poly(λ)), X ∈ Gd

1, and Y ∈ G2, with the constraints that d ≥ 2, 1 ≤ m ≤ n,
and there exists some x ∈ Zq such that Y = x · G2 and Xi = xi · G1 for ev-
ery i ∈ [d], it holds that πBilinearSRS(n,m,X, Y,G1,G2) statistically UC-realizes
JFPreTrans(BilinearSRSG1,G2,d, n, (X, Y ))KPV in the JFExtSRS(∗, ∗, ∗,G1,G2)KPV-
hybrid model.

Proof. By conjunction of Theorems 5.7 and 4.8, and the fact that BilinearSRS
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is a homomorphic update function as discussed in Section 4.4.
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