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What does not get observed can be used to make age curves stronger:
estimating player age curves using regression and imputation
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Abstract The impact of player age on performance has received attention across sport. Most
research has focused on the performance of players at each age, ignoring the reality that age likewise
influences which players receive opportunities to perform. Our manuscript makes two contributions.
First, we highlight how selection bias is linked to both (i) which players receive opportunity to
perform in sport, and (ii) at which ages we observe these players perform. This approach is used to
generate underlying distributions of how players move in and out of sport organizations. Second,
motivated by methods for missing data, we propose novel estimation methods of age curves by using
both observed and unobserved (imputed) data. We use simulations to compare several comparative
approaches for estimating aging curves. Imputation-based methods, as well as models that account
for individual player skill, tend to generate lower RMSE and age curve shapes that better match
the truth. We implement our approach using data from the National Hockey League.

Keywords Age curves - Generalized Additive Models - NBA - NHL - Sport - Simulation -
Imputation

1 Introduction

How athletes perform as they age is a question that undermines models of player valuation and
prediction across sport. The impact of age is typically measured using age curves, which reflect the
expected average performance at each age among all players that participate.
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Standardized Points Per Game By Age, NHL Forwards
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Fig. 1 Standardized points per game by age for NHL forwards between the 1995-96 and 2018-19 seasons, along
with a cubic spline model fit to the data. The spline model does not decrease as it should for older ages because of
selection bias: the only players that are observed at older ages are very good players.

Because players receive different opportunities at different ages, a selection bias exists, one that
is linked to both entry into a league (more talented players typically start younger) and drop out
(less talented players stop earlier). More talented players are more likely to be observed at both
ends of the age curve, which makes it challenging to extrapolate the impact of age. For example,
Figure 1 shows standardized points per game for National Hockey League (NHL) forwards, along
with a spline regression model, one that uses age as the only predictor, fit to that observed data.
There seems to be a slight bump at 28 or 29, but then the curve starts increasing, which is the
opposite of what we would expect from an age curve. Because average and below average players
tend drop out, the only players competing in their late 30s tend to be very good players.

In Figure 2, we highlight observed data for four example players who were in the league at least
until their late 30s (left) and three players who were in the NHL through their late 20s and early
30s (right). These data for individual players initially exhibit the same general trend — increasing
through their mid-to-late 20s. Unlike Figure 1, performance for these players decreases in their 30s,
which is closer to what we’d expect in an age curve.

Along with selection bias, a second challenge when estimating age curves is lower sample sizes
for higher ages. For some methods, a lack of data for mid-to-late 30s can lead to curves with higher
variance for those age ranges. In Figure 3, we show 100 age curves derived using the Delta method
(left, [10]) and a cubic spline using only observed data and no player effects (right) for estimating
the age curves for 100 bootstrapped samples of the NHL forwards data. Both methods are described
further in Section 2. Variance is low for some ages (e.g. mid 20s) but variance increases for older
ages as fewer observed data are available.

Our goal in this paper is to assess the performance of various methods for age curve estimation
under the selection bias of player entry and issues of small samples at younger and older ages.
We propose several methods for player age curve estimation, introduce a missing data framework,
and compare these new methods to more familiar approaches including both parametric and semi-
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Fig. 2 Standardized points per game for 4 examples of very good forwards who played in the NHL until at least there
late 30s (left), and 3 examples of good NHL forwards did not stay in the NHL through their late 30s. Individual player
statistics over time tend to follow an inverted U-shaped trend, increasing from the mid to late 20s, and decreasing
thereafter. For the players on the right, once their production fell, they exited the league, and have no observed data
in their late 30s that would factor into the curve generated in Figure 1.

Bootstrapped Age Curves for NHL Forwards, Delta Method
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Fig. 3 100 bootstrapped age curves using the Delta Method(left) and Natural Spline regression without player
effects (right) with the NHL Forwards data. Variation in the age curves increases for older ages where there are fewer

observed data.
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parametric modeling. Using simulations derived from NHL data age patterns, we compare the
accuracy of these methods with respect to estimating a true, known age curve. We conclude by
exploring these methods using actual NHL data.

2 Methodologies

For consistent terminology, we begin with the following notation. Let Y;; to represent the perfor-
mance value of player ¢ at age t. We assume discrete observations at each age (one per year), though
it is possible to treat age in a more granular way.

A basic model is:

Yie = g(t) + f(i,t) + €ir (1)

where ¢(t) is the average performance at age ¢ for all players, f(i,t) represents a possible performance
adjustment at age t for player i, and €;; is the model error at age t for player .

2.1 Related literature

Broadly, current approaches can be split based on assumptions for estimating g¢(t) (parametric,
semi-parametric, or non-parametric) and whether or not to model age specific curves, f(i,t). Table
1 summarizes how several authors have modeled age effects. Columns for author, sport or league,
sample of players, and method. Articles in Table 1 are arranged by a rough categorization of
approach for modeling the age term and then alphabetically by author.

Table 1 Summary of work on age curves

Paper | Sport/League | Unobserved? | Model |
Schulz et al[13] MLB No Average
Lichtman[10] MLB No Fixed effects (Delta Method)
Tulsky|[14] NHL No Fixed effects (Delta Method)
Albert[1] MLB No Fixed effects (Quadratic)
Bradbury[3] MLB No Fixed effects (Quadratic)
Fair[5] MLB, others No Fixed effects (Quadratic)
Villareal et al[17] Triathlon No Fixed effects

Brander et al[4] NHL Yes Fixed effects (Quadratic, Cubic)
Tutoro[15] NHL No Semiparametric
Judge[7] MLB Yes Semiparametric

Wakim and Jin[18] MLB, NBA No Semiparametric

Vaci et al[16] NBA No Fixed, random effects
Lailvaux et al[9] NBA No Random effects

Berry et al[2] MLB, NHL, Golf No Random effects
Kovalchik and Stefani[8] Olympic No Random effects

A most naive approach assumes f(i,t) =0 and §(t) = Y ., Yi/n for all ¢, as in [13], such that
the average of observed Y;; is sufficient for estimating g(t). Such an approach would only be valid
if players were chosen to participate in sport completely at random, making it too unrealistic for
professional sport. As in Figure 1, we can see that this approach yields results that are not credible.
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Player ¢ | Aget Season | Observable (¢;¢) | Observed (¢;;) | Note

Jagr 38 | 2010-11 1 0 | Played overseas in KHL

Jagr 39 | 2011-12 1 1 | Returned to NHL

Crosby 40 | 2027-28 0 0 | Future season, not yet observable

Table 2 Examples of player-ages that are observable but not observed, observable and observed, and not observable.

A common parametric assumption ([1], [4], [3], [5], [17]) is that Yj; is quadratic in age. If g(t) is
quadratic, performance “peaks” at some age, with players improving until this peak and eventually
declining after the peak. Quadratic age curves are also symmetric across the peak performance age.
[4] and [17] also consider a cubic age effect, while [1] uses a Bayesian model and weighted least
squares, with weights proportional to player opportunity. [5] do not assume that quadratic form
of f(i,t) is symmetric. The Delta Method ([10]) is a modified fixed effects model using different
subsamples at each consecutive pairs of ages, is expanded upon in Section 2.4.1.

A second suite of approaches assumes a semiparametric approach for estimating age curves,
including spline regression techniques ([18]) and the broader family of generalized additive models
([7], [15]). Either approach is more flexible in their ability to pick up on non-linear patterns in age
effects. A final assumption models age effects via individual age curves f(i,t), as in [2] and [9)].

In all but two examples above, authors use observed data only to make inferences on the impact
of age. Conditioning on players being observed at each age potentially undersells the impact of
age; only players deemed good enough to play will record observations. The two exceptions to this
assumption are [4], who extrapolate model fits to players not observed in the data, and [7], who
uses a truncated normal distribution to estimate errors. Importantly, [7] confirms that if dropout
rate is linked to performance, that effectively shifts the age effect downward, relative to surviving
players.

2.2 Notation

Our focus in this paper will be on the estimation of g(t), the average aging curve for all players.
Because not all of the players will be observed in a given year of their career (due to injury, lack of
talent, etc), we create ;;, an indicator for if Y;; was observed for player i at a given age ¢, where
t= tl; ce ,tK. That iS,

(2)

iy = 1if Y}, is observed, and
) 0 otherwise.

we let 1 be the youngest age considered and tx will be the oldest age considered.

Similarly we will have players who we would like to include in our analysis but their careers are
not yet complete. To that end we let ¢;; is an indicator of if Y (¢);; is observable. For our application
to NHL data ¢;; is an indicator that the performance could have happened by October 2020, when
the data for this project was collected.

(3)

Bip = 1 if Y}, is observable, and
%71 0 otherwise.

As an example, NHL star Sidney Crosby’s age 40 data is ¢;; = 0 because that is not yet observable
as of this writing. See Table 2 for more examples of ¥;; and ¢;;.
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For the methods below, we also add the following definitions and notation. The data for
a given player will be represented by the vector of values Y; = (Yitl,...,YitK)T and the ob-
served subset of those values will be denoted by the vector of values bes = (Y | ¢ie = DT,
Let Y = ((Y)T (Y90)T, ..., (YRP)T)T be the vector of all observed values, while Y =
(Y Yl YT,

2.3 Estimation Methods

In this section we describe several current and novel approaches to estimation of the mean aging
curve, g(t). We begin by describing the de facto standard methodology in the sport analytics
literature, the Delta method, [10], and an extension that we call Delta-plus. Below we outline some
facets of our proposed approaches to the problem of estimation of g(t). Roughly these methods
breakdown into the general approach to estimation of g(t), the data to be used for model fitting
and the additional fixed or random effects terms. To help the reader we develop a notational
shorthand for combining these facets that is method:data:effects.

2.4 Mean aging curve estimation

For this paper we consider four approaches to estimation of the mean player aging curve. The first is
the non-parametric Delta method and a simple extension of this approach which we call delta-plus.
The Delta Method which been discussed by [6], [15] and [10], is commonly used in practice. The
second approach that we consider is a natural spline regression approach which we denote by spline
and the third is a quadratic model quad. Finally, we propose a novel gquantile methodology that
utilizes information about the ratio of observed players to observable players at a given age.

2.4.1 Delta Method

The Delta Method is an approach to estimation that focuses on the maxima of ¢(t) over t. The basic
idea is to estimate the year of year change in the average player response curve by averaging among
only the players that we observed in both years. A benefit of this approach is that it implicitly
adjusts for a player effect by only using those players who have appeared in both years t; and
ty + 1. Further, by simply calculating year over year averages, this approach is hyper-localized.
However, the requirement that Y;, and Y;, 11 are both observed (i.e. that ¢, = i, +1 = 1) can
be limiting in sports where there is significant drop-in/drop-out across years or seasons.
To develop the delta method, let

5tk- = ?i*kvtk‘i’l - Yi*kytk (4)

where 1
Yi*k,tk = E }/iei*k,tka
kg,

ik = {0 | Vi, = Yir,+1 = 1}, and nxg, = |i ;| is the number of elements in i*;. Thus, i% is the
set of players whose performance value was observed at age t; and t; + 1. Traditionally, the delta
method is standardardized

g(t) = (St — m’?X 6tk (5)
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for t = t1,...,tx so that the largest value of §(t) is zero. To date the Delta Method has proved
effective at estimation of the maxima of g(t). See [15] and [6] for details on some evaluation of
the performance of the Delta method. This performance relative to other methods that use only
observed data is likely due to this focus on year over year differences, which are susceptible to small
sample size issues for older ages that can cause non-smooth age curves. Older ages are not (as big
of) an issue for regression techniques (e.g. spline regression), which use information from nearby
ages and result in a smooth age curve even when sample sizes are small.

2.4.2 Delta Plus Method

One drawback of the Delta Method as described above is that the maximal value for g(t) is forced
to take the value zero. In part, this has been the case because the focus of estimation was on the
age of maximal performance not on the estimation of the full aging curve; though the application
of the Delta Method has taken on the latter function. Using the notation from above we define the
estimation of y; as the following:

N —obs
g(t) =0, — max O, + max Y, (6)

—ob: . .
where Yf)t: = i Zi;witkzl Vb is the average of the ny, observed values at age tj. Below we will
refer to this method as delta-plus. We only use the Delta Plus Method in our evaluation below since

it offers a more flexible approach than the Delta Method.

2.4.3 Spline approach

For this spline approach (spline), we utilize flexible natural basis spline regression and apply them
to the Yj;’s, the player performance data. Thus, our spline regression use age, t, as a predictor and
the performance metric Y;; as the response. In particular, we use the s() option with 6 degrees
of freedom in the mgcv package from R. In our shorthand for these methods we call this approach
spline and use s(t) to denote a spline model for the mean aging curve.

2.4.4 Quadratic approach

As the name implies, this methodology assumes that the mean aging curve is quadratic in terms
of a player’s age. In our shorthand we will use ‘quad’ and the model will be written as g(t) =
Yo + Y1t + y2t%. Some authors including [5], [1] and [4] have assumed that g(t) has this particular
functional form. So we include this approach for comparison.

2.4.5 Quantile approach

In this method we aim to estimate g(¢) by utilizing the distribution and number of the observed
values at each age t. We observe at each age t some fraction of the players which is reasonably
assumed to be a truncated sample from a larger population. Let n; be the number of players
whose performance is observed at age t from the population of N; players whose performance was
observable at any age. If we know the fraction of players relative to the larger population (and the
form of the distribution) then we can map percentiles in our sample to percentiles in the larger
population.
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For example, suppose we had a corpus of N3; = 1000 players and that at age 32 we observed
nza = 400 of them. The 75th percentile of observed metrics among the age 32 players might be
reasonably used as an estimate for the 90th percentile of the population of 1000. Explicitly this is
because the 100*" best Y;, among the combined observed can be assumed to be the 100*" best Y;,
among the nszy = 400 observed and the N = 1000 unobserved Y;s. Similarly the 25th percentile
of the above example would be the 70th percentile in the population. Below we assume a Normal
distribution and use the additivity of the Normal distribution to obtain estimates for g(t) at each
age t. More generally, we can calculate the ¢ - 100" percentile from among the n; observed values.

Call that value v;. The value of v; is approximately the G; = ( — ]%(1 — q)) - 100*" percentile

from the population of values at age ¢t. From our example above the 0.90 =1 — %(1 —0.75).

From G} we can estimate the mean of the full population, g(t) at age ¢ via: G=v— d~1(Gy)oy
where @( ) is the cumulative density of a standard Normal distribution. From ¢; we can estimate
other percentiles as long as we can assume Normality and we have a reasonable estimate of the
standard deviation, &;. Our justification for assuming Normality notes that most performance met-
rics are averages or other linear combinations of in-game measurements and that the Central Limit
Theorem applies to these linear combinations.

For estimation of oy, the standard deviation of the population at age t, we can estimate the
standard deviation at age t, denote that by s;, and adjust based upon the proportion of truncation.
Note that the variance of a truncated Normal is always less than the variance of an untruncated
one with similar underlying variance. So then we use 6, = 3t where 0; is the ratio of truncation
from a standard Normal for these data at age ¢t. To obtain §; we use the vtruncnorm function in the
truncnornm library in R [12]. For our methodology shorthand we will use quant for this approach
and denote the quantile based aging curve approach as ¢(t).

2.5 Data Imputation Methods

Another modeling choice to be made when working with missing data is whether or not to impute
the missing values. We consider three possible options for imputation of responses, Y;;’s. The first
option is simply to use the observed data and only the observed data. When we do this, we will use
obs as part of our shorthand. The second and third options involve imputation of the unobserved
but observable data, that is the set of values {Y;; | ¥ = 0,¢;; = 1}. In the second option trunc,
we impute values for Y;; with truncation. In the third option notrunc we impute values without
truncation. Below we describe our algorithm for imputation.

In this general imputation algorithm, we first estimate a naive aging curve using a regression
approach on only the observed data. Then we use that estimated curve to generate imputed values
for the unobserved values, those with ¢;; = 0, ensuring that these unobserved values are below
a smoothed boundary upper threshold at each age which is defined by a lower percentile of the
observed values. Our default percentile is the 75" percentile. The choice of the 75" percentile
is arbitrary, though we considered several choices, in particular, the 20" and 50" percentiles and
found that using the 75" percentile produced better estimation performance. It is sensible that there
is an upper bound on the performance a player who is not in a top league would have; otherwise
they would be in the top league. We then refit our estimated model using both the observed and
imputed values and use this new estimated curve to generate a second set of imputed values. It is
this second set of imputed values that we report as our estimate of the the mean aging curve g(t).
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The impetus behind the second imputation and curve estimation is to wash out any initial impact
on estimated curve which is based solely on the observed values.
For the algorithm below:

1. Fit the model Yi‘t’bS = n;t + €;; for just the fully observed data, i.e. Yj; where 1;; = 1. Calculate
the estimated standard deviation of the é;;, call that og.

2. Estimate a smoothed boundary via splines of performance for players in the NHL based upon
the ¢*" percentile of players at each age, say the 75" percentile. Call the boundary value Bt-
Note that for imputation without truncation, notrunc, Bt = 00.

3. Simulate values for the Y;; with ¢;; = 0 from a Normal distribution with mean n;t and stan-
dard deviation o¢ but truncated so they are not larger than ;. That is the range of possible
values for these Yj; is (—o0,3;), we will denote this by Y/ ~ TN(#,,,62, —0c0, 3;) where
Y ~ TN(u,0? a,b) denotes a random variable ¥ with a Truncated Normal distribution with
mean p, variance o2 and takes values such that a <Y < b. Call these simulated values Y.\"P.

itk
4. Fit Y] = nit + e using

y/ull — {1@;";8,1@12”? li=1,...,N,k= 1K}

5. We next impute the original missing values again. We do this because the first set of imputed
values, the Y;;"""’s, was based upon predicted values from a model that used only fully observed
data. So then we imputed again, this time using Y,;"? ~ T'N (91, 63, —00, Bt).

6. We then refit the model above using Yi{“” = g(t) + f(i,t) + €; based upon the imputed data
from the previous step.

Figure 4 depicts Steps 1 and 3, model fitting and imputation without truncation for one example
player in one simulation (left) and the upper bounds used for truncation at each age for one of the
simulations that did use truncation (right).

Our reasoning for steps five and six is that there is possibly some initial effect in the model
it = Mot +Yo; which comes from fitting to only fully observed data. By adding the second iteration
we hope to wash out some of that initial impact. Our use of the boundary for imputation is based
upon the idea that there are players who may be good enough to have their performance observed,
that is play in whatever top league, but do have that opportunity, while at the same time there
are players whose performance puts them well below the performance of other in the same league.
Additionally, the estimation of n;; for generation of the imputed values was done two ways: using
the quantile approach described above as well as the spline approach.

2.6 Player Effects

In addition to the basic model methodology and the data that we fit to these models we considered
some additional fixed and random effects for players. The most common approach we used was a
fixed constant player effect denoted as fized. Our notation for a this fixed effect is vg;. We considered
two random effects models one with quadratic random effects and the other with spline random
effects. The former we denote by random-quad and it has the following functional form: go; + g1t +
g2:t2. For the spline random effects component of our model our shorthand is random-spline and
our function form is go; + &;(¢). If the model did not have a fixed or random effect for player we use
none in our shorthand.
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Model Fitting and Imputation Simulated Data With Upper Bounds Used For Truncation

Standardized GAR

<
T T T T 4 -12 T 1
20 25 30 55 40 18 25| 40
Age Age

Fig. 4 Modeling fitting and imputation without truncation for one example player in one simulation (left), and all
simulated players (gray dots) and upper bounds (red line) used for truncation (right). In the left figure, red dots
are observed data for one example player from one simulation, the black line denotes fitted values using the cubic
spline model spline:trunc:fized for this player. The black dots, which lie on the line, are the means of the normal
distribution that is used for imputing data for the ages for which data is missing, and the gray lines are 3 standard
deviations away from the mean for those normal distributions.

Table 3 Summary of Estimation Methods

Method Name Model formulation Estimation of g(t) Imputation
delta-plus Non-parametric Piecewise No
spline:obs:none s(t) Natural Splines No
spline:obs:fixed s(t) + Y04 Natural Splines No
spline:trunc:fixed s(t) + o4 Natural Splines Truncated
spline:notrunc:fixed s(t) + voi Natural Splines Not Truncated
quant:trunc:fixed C(t) + voi Quantile Approx. Truncated
quant:obs:none ¢(t) Quantile Approx. No
quad:trunc:fixed Y0 + Yoi + 71t + Y2t? Quad. Linear Model Truncated
spline:trunc:random-quad | s(t) 4+ go; + g1it + goit? Natural Splines Truncated
spline:trunc:random-spline | s(t) + go; + & (t) Natural Splines Truncated

In the subsections above, we have described three facets of our estimation approaches for g(¢).
We combine these three facets to consider a range of estimation methods though we do not consider
all the possible combinations of these approaches. We chose a specific subset of these combinations to
make comparisons between our proposed methodologies and existing methodologies. Table 3 shows
the full list of methods that we considered for evaluation along with shorthand and descriptions of
the methodology. For example, spline:trunc:fized uses natural splines to estimate g(t) fit to both
observed and truncated imputed data via a model that includes a fixed effect for each player.
Likewise quant:obs:none use the quantile methodology described above to estimate the mean aging
curve using only the observed Y;;’s. Somewhat unique is quant:trunc:fived which generates the mean
of the truncated imputed values via the quantile approach then fits a natural spline with fixed player
effects to those truncated values.
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3 Simulation Study
3.1 Simulation Design

We created a series of simulations to evaluate how well the various approaches described in the
previous section estimate g(t). To generate data we followed a similar approach to that of [15]
and created an underlying smooth curve, and generated values for player performance based upon
that curve. We then modelled the dropout of players through a missingness process that generated
values for v;;. These simulations focused on the distribution of players and the methodology for
their missingness.

3.2 Simulating individual player observations

Our simulated performance values for the i** player in year ¢ are generated in the following manner:

Yie = w +Y0i + a(t — timaz)? + (b+ b)) (t — tmaz)Ql{t>tmam} +c(t — tmaz)3I{t>tmam} + €it (7)

where i =1,...,N and t = t1,...,tx. The first three terms form a piecewise quadratic curves that
serves as the underlying generating curve. The term ~yy; ~ N (0, 03). Thus this model is a piecewise
cubic function with constant and quadratic player random effects.

We can rewrite Equation 7 to highlight the model components as:

Yie = g(t) + f(i,1) + €ir, (8)
g(t) = w+ a(t — tmax)® + bt — tmaz) Tiestrany + (= tma)* Tist,onts (9)
f(i7 t) = Y0 t+ bz(t - tmam)QI{t>tmam}- (10)

The term €;; ~ N(0,02?) is random noise that simulates year-to-year randomness in player perfor-
mance and variation unaccounted for elsewhere in the model. For our simulations we fixed ¢,,4. = 25,
a=—1/9,b=—6/1000, c = 45/10000 t; = 18, txr = 40, and o2 = 1. Our choice of these values for
a, b, and ¢ was based upon trying to match the pattern of drop-in/drop-out for a subset of National
Hockey League Forwards. We used varying values of N, w, and o, in our simulations. In particular
we simulated a full factorial from N = 300, 600, 1000, w = 0,1 and 0., = 0.4,0.8,1.5. The values of
N that we chose were to illustrate the impact of sample size on estimation performance while also
have a reasonable range of values. For w which represents the maximum value that our simulated
g(t) would take, we want to have both a zero and a non-zero option. Finally, we based our choices
for o, on the standard deviation of the estimated player effects from fitting a natural spline with
player effects model to standardized points per game from National Hockey League forwards. That
value was approximately 0.8 and we subsequently chose values for o, that were half and twice as
large. For each combination of values for N, w and o, we simulated 200 data sets and calculated
the estimated g(t) for each method on each of these data sets.

For example, the components of g(t) from (7) are depicted in Figure 5. Shown in that figure
are the underlying generating curve, the player intercept terms for overall player ability, the player
quadratic curves for player aging, the random noise terms, and the final simulated player curves.
These were taken from one simulation with the parameters N = 600, w = 0, and o, = 0.8. All
simulated players are shown in gray, and the curves generated for one particular simulated player
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Generating curve, types of noise, and final simulated data

Generating Curve Player Intercept Player Quadratic
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0 /\ [ ———consE——.
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-10
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Age

Fig. 5 The underlying generating curve, different types of noise, and the final simulated data used in one simulation.
The gray curves represent simulated players. The curve for one simulated player is highlighted in red.

are shown in red. This highlighted player is slightly below average, intercept is slightly below zero,
and ages slightly more slowly than average. The player quadratic is slightly concave up, which when
added to the generating curve, gives a curve that indicates that this player’s decline will not be as
steep as an average player.

3.3 Simulating missingness of observations

For generating the 1;; values for each player and age, we chose a methodology that tried to mirror
the drop-in/drop-out behavior of forwards in the National Hockey League. Recall that ¢;; = 1 if
observation Y;; was observed. Using the methodology from the previous section, we simulated Yj;
for each player i and each age t between t; = 18 and tx = 40. Using those values, we obtained ;;
for each player via the following steps:

1. For each age ¢, round N7; to a whole number and call that n;".
2. For each player i, calculate p;; = eXp{Z}lzl Yir}.
3. Sample without replacement nj‘ players from the N players with each having probability of

selection p;; = EPZZ'L'
5 Pi
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Percent of Forwards Observed At Each Age
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Fig. 6 Percent of players that are observed at each age for NHL forwards and for the simulated data. The distributions
follow similar shapes and peak around ages 23-24.

4. Make 1b;; = 1 for the n;" players selected in the previous step and v;; = 0 for the remaining
players.

Simulations that used the cumulative performance missingness generation were paired with a full
factorial of values for w = 0,1, N = 600, 800, 1000, and o, = 0.4,0.8,1.5. For simplicity we assumed
that all simulated value of Y;; were observable, i.e. ¢;; = 1 for all 4 and t. To evaluate the methods
proposed in the previous section, we generated simulated data following the data generation and
missingness approaches described above in this section.

Figure 6 shows the percentage of players that are observed by age for NHL forwards (left) and
for simulated data (right) with N = 600,w = 0 and o, = 0.8.

3.4 Simulation Results

Next we consider how each of our methods performed in their estimation of the mean aging curve
on their average error and on their overall shape.

3.4.1 Root Mean Squared Error

Estimated curves are first compared to g(t) on their average root mean squared error (RMSE) at
each age. Figure 7 shows RMSE by age, averaged across simulations, and split for each of simulations
with 300 versus 1000 players. Six curves are shown; ones not presented in Figure 7 showed RMSE’s
that were larger and required a re-scaling of the y-axis that rendered comparisons of the remaining
methods difficult.

RMSE at each age is lowest at around age 24, which corresponds to when the majority of NHL
players in Figure 7 are observed. At entry (age 18) and at the end of careers (age 30 onwards),
RMSE’s tend to be higher.
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Avg RMSEs Across Simulations, By Age and # Players
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Age

Fig. 7 Root Mean Squared Error by Age and Number of Players.

Overall, two methods — spline:obs:fired and spline:notrunc:fired — boast the lowest average
RMSEs at each age. This suggests that for estimating age curves, either imputation or player
specific intercept models are preferred. These two methods yield nearly identical average RMSEs
at each age, which is why, the spline:notrunc:fized (blue) method is not visible in Figure 7.

All models better estimate age curves with the larger sample size (the right facet of Figure
7). The impact of sample size is largest for the delta-plus method. For example, at age 40, delta-
plus shows the 3rd lowest RMSE with 1,000 players, but the 5th lowest RMSE with 300 players.
Additionally, delta-plus is worse with the lowest age group — for both 300 and 1000 simulated
players, it shows the largest RMSE in Figure 7 among players at age 18. In general, simulations
with higher standard deviations (1.5, versus 0.8 and 0.4) averaged higher RMSEs, although the
impact of increasing standard deviation appeared uniform across age curve estimating method.

3.4.2 Shape Based Distance

To supplement simulation results based on RMSE, we use shape based distance (SBD, [11]), a metric
designed to approximate the similarity of time series curves. SBD normalizes the cross-correlation
between time series curves, which in our example is the estimated age curve and the truth. SBD
scores ranges from 0 to 1, where lower scores reflect more similar curves.

Figure 8 shows a boxplot with shape based distances at each simulation for each method. As in
Figure 7, spline:obs:fized and spline:notrunc:fized boast curve shapes that are closest to the true age
curve in Figure 8. The basic spline model without a player intercept (spline:obs:fized) has the third
lowest median SBD; however, this method also boasts several outlying SBD observations. Similarly,
the delta-plus shows SBD outliers. The method that assumes a quadratic response surface has the
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Distance Between Estimated Age Curve and Truth
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Fig. 8 Shape Based Distance between true and estimated age curves, across simulations

highest median SBD, and is in the top row of Figure 8, suggesting that quadratic-based approaches
may not identify the shape of age curves.

4 Application to National Hockey League Data

To illustrate the impact of the methods proposed in this paper, we apply some of the approaches
in this paper to data on 1079 NHL forwards who were born on or after January 1, 1970. The data
were obtained from www.eliteprospects.com and only players who played at least one season in
the National Hockey League were included. For our measure of player performance, Y;;, we chose a
standardized points (goals plus assists) per game where the z-score was calculated relative to the
mean and standard deviation for the NHL in that particular season. Our selection of this metric
was based upon its availability for all players across the range of seasons (1988-89 season to 2018-19
season).

In Figure 9 we show estimated age curves for NHL player points per game using different
methods. The differences in our two best methods, spline:notrunc:fized (red) and spline:obs:fized
(lightred), neither of which use truncation, are not perceptible as their lines overlap. The methods
with  truncation,  spline:trunc:fized  (blue),  spline:trunc:random-quad (gray) and
spline:trunc:random-spline (black) are very similar and have overlapping curves as well. Those
curves are lower than the curves from our best methods, which is expected since imputed values
were taken from a truncated normal. The overall pattern for all of these curves does not seem
quadratric.
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Estimated Age Curves For Points Per Game
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Fig. 9 Estimated age curves for NHL points per game using different methods.

5 Discussion

Understanding how player performance changes as players age is important in sports, particularly
for team management who need to sign players to contracts. In this paper we have proposed and
evaluated several new methodologies for estimation of mean player aging curves. In particular, we
have presented formal methods for adding imputed data to augment the missingness that regularly
appears in data from some professional sports leagues. The models that performed best in our
simulation study had either a flexible form or incorporated player effects (through imputation, or
directly). This paper has also presented a framework for incorporating imputed data into estimation
of player aging effects. With player effects, the age curve term contains information about the
relative changes in performance from age to age and overall performance is part of the player term.
When estimation is done with only observed data, the relative changes in the mean aging curve are
only utilized where a particular player is present. Without player effects as a model component, the
individual player and the overall are entangled. Specifically, we find that a spline methodology with
fixed player effects allow perform better than other methods and these methods have the flexibility
to appropriately and efficiently estimate player aging curves.

There are some additional considerations that might improve the performance of the methods
we have considered. One possibility would be to consider a fully Bayesian approach that treats
all of the unknown aspects of the model both the g(t) + f(i,t) and unobserved Y;;’s as random
variables. This approach could consider a complete posterior inference given the uncertainty in
estimation. Along similar lines, an approach that does multiple imputation for each unobserved Yj;
could improve performance. Another assumption that has been made in the literature is to treat
ages as whole numbers. It certainly seems possible for a regression based approaches for estimation
of g(t) to deal in fractional ages t for a given season.

Our simulation study was focused on mean aging curves that yielded similar player drop-in/drop-
out patterns to those observed in a particular professional league, the National Hockey League. It
would certainly be reasonable to consider other functional forms for the underlying ¢(t) and f(i,¢),
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though we believe that the results from such a study would be in line with those found in this paper.
Another avenue of possible future work would be to consider additional mechanisms for generation
of the 1;; values.

Overall the novel methods proposed and evaluated in this paper via simulation study have
improved our understanding of how to estimate player aging curves. It is clear from the results in
this paper that the best methods for estimation of player aging are those that have model flexibility
and that include player effects. The use of imputation also has potential to impact this methodology
and, thus, being aware of what we don’t observe can make our estimation stronger.
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