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Abstract—Coordinating the charging process of a large popu-
lation of electric vehicles (EV) is promising in increasing power
grid flexibility from the demand side, yet requires highly scalable
control protocols. In contrast to classical decentralized opti-
mization based methods that require approximated distribution
network models, this paper frames the EV charging control
problem into a multi-agent reinforcement learning (MARL)
framework. The MARL-based framework is trained through
an actor-critic network and adopts the structure of centralized
training and decentralized execution with partial observations.
Comparing with model-based approaches, the developed MARL-
based approach better captures the attributes of the distribution
network, improves grid-level service performance, achieves better
network constraints control, reduces the communication load,
and achieves a faster response. The efficacy and efficiency of the
developed method are verified by simulations on the IEEE 13-bus
test feeder.

Index Terms—Multi-agent reinforcement learning, electric ve-
hicle charging control, smart grid, distribution grid service,
distributed control

I. INTRODUCTION

The market share of electric vehicles (EV) continues to
grow because of EVs’s reduced emissions and governmental
incentives. Besides, the aggregated energy capacity of a large
population of EVs is proven to be effective in increasing power
system flexibility, through providing grid-level services at the
demand side, to facilitate the integration of renewable energy
resources [1], [2]. These features have led to recent research
on EV charging control framework design for valley filling
[3], power loss minimization [4], etc.

Historical EV charging control schemes rely on centralized
control and optimization [4], [5]. As the number of EVs
participating in grid services increases and the service cov-
erage area grows, centralized approaches are strained by their
inherently impaired scalability, preventing their use in large-
scale implementations [6]. To alleviate the scalability issues,
recent research focuses on distributed and decentralized EV
charging control schemes. In [7], a distributed EV charging
control scheme was developed for valley filling based on the
alternating direction method of multipliers (ADMM). In [8],
the authors proposed a distributed model predictive control
(MPC) scheme to control a large population of EVs. How-
ever, the peer-to-peer communication overhead resulting from
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ADMM and distributed MPC impairs the practicality of those
methods. To resolve this issue, Liu et al. [9] proposed the
shrunken primal dual subgradient (SPDS) algorithm to realize
decentralized EV charging control, eliminating the peer-to-
peer communication load. This method was later extended
in [10] as shrunken primal multi-dual subgradient (SPMDS)
to achieve improved scalability w.r.t. distribution network
dimension.

Despite the promising scalability, the aforementioned de-
centralized/distributed approaches must rely on well-defined
distribution network models. In nature, the distribution net-
work is a very complex network which is highly nonlinear and
non-convex. Therefore, the distribution network model must
be linearized or convexified for use in any optimization-based
EV charging control approaches. In [9], [10], LinDistFlow
model [11] was used to obtain single-phase linear distribution
network models, where power loss was omitted. Sankur et al.
[12] proposed using semi-definite programming to linearize
the unbalanced distribution network. However, this approach
must rely on assumptions of ratios of angles across three
phases are fixed and zero line losses. Nick et al. [13] proposed
the use of relaxed-optimal power flow by relaxing power losses
to convexify the distribution network. However, this method
is only applicable for balanced networks. Though linearizing
and convexifying the network model enable optimization-
based EV charging control, many nonlinear, nonconvex, but
critical characters of distribution networks are omitted, which
is expected to result in service performance discrepancies,
network constraint violations, and power loss increase in
practical applications.

To circumvent the model-simplification-induced perfor-
mance deviations, model-free, especially reinforcement learn-
ing (RL) based, EV charging control and general distributed
energy resource control approaches are attracting growing
attentions. Dang et al. [14] introduced a Q-learning based
single-agent RL technique to realize EV charging control
for peak load reduction. Paraskevas et al. [15] introduced
a deep Q-learning based single-agent RL approach for EV
charging control, however, without consideration of individual
objectives such as battery state-of-health (SOH) protection.
More importantly, the action space defined in this approach is
discrete, which is not suitable for grid services. Chiş et al. [16]
proposed a demand response program for decreasing the long-
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term battery charging cost for EVs using RL-based techniques.
Though the above work validated the possibility of using
RL in EV charging control, the single-agent nature makes
them unscalable for large-scale implementation. Considering
the scalability, ease of implementation, and flexibility, multi-
agent RL (MARL), which inherently considers the interactions
of multiple agents in the same environment, has emerged in
recent EV charging control and distributed energy resource
coordination. MARL model is normally trained by using an
actor-critic network in a dual network mechanism. The trained
model provides each agent an individual policy that allows
it to, based on local observations and inherently considering
the interactions with other agents, generate its optimal actions
to maximize the reward. This enables MARL to be more
robust, computationally feasible, and practical solutions for
large-scale EV charging control. Jiang et al. [17] developed a
MARL approach based on multi-step Q learning to realize
EV charging control in a completely cooperative setting.
Cao et al. in [18] used multi-agent deep deterministic policy
gradient (MADDPG) to train a MARL model in a cooperative
setting to leverage solar photovoltaic for distribution voltage
regulation. Huang et al. [19] also adopted MADDPG to
train a MARL model in minimizing the charging cost of
EV and avoiding peak demand. Though the above methods
provide a promising direction of using MARL in EV charging
control, the completely cooperative setting made them fail to
consider each agent’s customized local objectives. Considering
both global and local objectives in MARL requires a mixed
cooperative-competitive setting which is the most challenging
setting in MARL algorithm design. Marinescu et al. [20]
made an attempt by proposing a prediction-based MARL (P-
MARL) EV charging control approach in a mixed setting to
encourage charging during low-demand hours. However, the
application of this method is not general enough to realize
various grid services. Therefore, a generic scalable MARL-
based EV charging control framework is yet to be developed.

This paper will construct an MARL based EV charging con-
trol framework to achieve decentralized EV charging control
for the provision of various grid-level services while maintain-
ing grid constraints. The contributions of this paper include:
(1) the EV charging control problem is, for the first time,
framed into MARL framework under a mixed cooperative-
competitive setting to concurrently consider grid services and
individual charging objectives, and (2) it validates that directly
applying model-based approaches in real distribution networks
causes service performance degradation and violations of
network constraints.

The rest of the paper is structured as follows. Section
II presents the problem formulations of the contemporary
optimization-based EV charging control framework. The de-
veloped MARL-based EV charging control is presented in
Section III. Section IV presents the simulation results which
compare the model-based and model-free approaches. Finally,
the paper is concluded in Section V with some future research
directions.

II. MODEL-BASED APPROACH

In this work, we consider controlling the charging process
of a large population of EVs to provide distribution grid-level
services while fulfilling local charging objectives. The general
EV charging control can be formulated as

min F (U) +
n∑
i=1

fi(Ui)

s. t. g(U) ≤ 0

Ui ∈ Ui, ∀ i = 1, . . . , n,

(1)

where Ui ∈ RK denotes the charging schedule, along the
concerned period of length K, of the ith EV where each
element ui(k) is the charging rate, ranging between 0 and 1,
at time k, U is the collection of all EVs’ charging schedules,
F (·) represents the grid service objective, fi(·) represents the
ith EV’s local objective function, g(·) denotes the distribution
network operational constraint function that involves power
flow equations, and Ui is the local charging constraint set of
the ith EV.

Solving the problem in (1) by decentralized optimizations
requires a well-defined, more practically convex, distribution
network model to facilitate the construction of objective func-
tions and network constraint functions. LinDistFlow [11] has
been widely used to characterize a linear network model. For
a distribution network with h nodes, the LinDistFlow model
at time k is written as

V (k) = V 0 − 2Rp(k)− 2Xq(k), (2)

where V (k) = [V1(k) · · ·Vh(k)]T ∈ Rh with Vı(k) being the
squared voltage magnitude at node ı, V 0 = [V0 · · ·V0]T ∈
Rh and V0 denotes the squared nominal voltage magnitude at
the feeder head, p(k) = [p1(k) · · · ph(k)]T ∈ Rh with pı(k)
being node ı’s aggregated real power consumption, q(k) =
[q1(k) · · · qh(k)]T ∈ Rh with qı(k) being node ı’s aggregated
reactive power consumption, and R ∈ Rh×h and X ∈ Rh×h
are linear mappings from nodal real power consumption and
reactive power consumption, respectively, to squared voltage
magnitude drops. Details of the definitions of R and X can
be found in [9], [21].

At the ıth node, the aggregated real power consumption
consists of the uncontrollable baseline load pı,b(k) and con-
trollable EV charging load pı,EV (k), indicating

pı(k) = pı,b(k) + pı,EV (k). (3)

Assuming EVs do not consume a significant amount of reac-
tive power, we have

qı(k) = qı,b(k). (4)

Consequently, (2) is rewritten as

V (k) = V 0 − V b(k)− 2RpEV (k), (5)

where V b(k) is the squared voltage drop due to the baseline
load, and pEV (k) = [p1,EV (k) · · · ph,EV (k)]T.
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In this paper, we consider two types of distribution services
for the global objective F (·), i.e., valley filling and power loss
minimization. The former can be formulated as

F (U) =

∥∥∥∥∥P b +
n∑
i=1

P̄iUı

∥∥∥∥∥
2

2

, (6)

where P b ∈ RK is the aggregated baseline load profile across
the valley filling period of the distribution feeder and P̄i is the
maximum charging power of the ith EV.

For power loss minimization, at any time instant k, define

P̃ (k) = [P̄1u1(k) P̄2u2(k) · · · P̄nun(k)]T. (7)

Assuming each node has the ideal voltage magnitude, the total
active power loss can be calculated as [22]

F (U) =
K∑
k=1

P̃ (k)TR̃P̃ (k), (8)

where, R̃ ∈ Rn×n denotes a matrix evaluated as

R̃ = DTATR̂AD, (9)

where, D = diag{Dı} ∈ Rh×n, i = 1, 2, . . . , n with
Dı = 1T

nı
is the nodal aggregation vector, nı is the number of

EVs connected to node ı, A ∈ Rh×h denotes the connectivity
matrix with Aı, = 1 if the line segment (ı, ) ∈ Sı, where Sı
denotes all downward line segments from node ı, otherwise
Aı, = 0, and R̂ = diag{rı} ∈ Rh×h, for ı,  = 1, · · · , h,
where, rı denotes the resistance for the line (ı, ).

Each EV would have its own charging objective. Herein,
we consider the battery SOH protection for illustration, which
can be represented as

fi(Ui) = ‖Ui‖22 . (10)

For the ith EV, let ηi be the charging efficiency, ∆k be the
sampling time interval, xi(0) be the initial charging demand,
Ei(k) be the remaining energy needed to charge at time k,
then the charging requirement is expressed as

Ei(K) = xi(0)−
K∑
k=1

ηiP̄iui(k)∆k = 0. (11)

Assuming no reactive power supply or other distributed gen-
eration in the network and considering the lower bound of the
distribution network operating voltage, the global constraint
g(U) can be expressed as

g(U) = Yb −
n∑
i=1

DiUi ≤ 0, (12)

where, Yb ∈ RhK denotes the squared baseline voltage
magnitude profile across the service period and Di ∈ RhK×K
denotes mapping from EV charging schedules to the voltage
drop profile. Detailed derivations and definitions can be found
in [9].

To realize decentralized control, problem in (1) can be
solved using ADMM [7], regularized primal-dual subgradient

(RPDS) [23], or shrunken-primal-dual subgradient (SPDS)
[9]. In this paper, we chose SPDS as the representative to
present the results from model-free approaches. Detailed SPDS
algorithm can be found in [9].

III. MODEL-FREE APPROACH

In this section, we adopt MADDPG to develop a MARL-
based EV charging control framework. The MARL-based
framework used in this work is formulated into a mixed
cooperative-competitive setting to incorporate both global and
local objectives. To achieve this purpose, we extend the
Markov Decision Process (MDP) to a multi-agent optimization
problem with EVs’ charging objectives. The MDP in (1) is
represented by the tuple (N ,S,A,O,R), where N represents
the set of n agents (EVs), S represents the joint state space,
A represents the joint action space, O represents the joint
observation space, R represents the joint reward achieved in
transition of states. Each state s = {s1, s2, . . . , sK} ∈ S :=
S1×· · ·×SK consists of the network states across the charging
scheduling duration K. Each action a = {a1, a2, . . . , an} ∈
A := A1×· · ·×An consists of the actions across the charging
schedule of all n EVs. Then each EV constructs its own policy
as πi(ai|oi) : A×O → [0, 1]. The objective of the training is
to learn a joint policy π := [πi]

n
i=1 based on the joint action a

so that the reward is maximized. The probability to move from
state s1 ∈ S to s2 ∈ S after executing action a1 is denoted
by P(s2|s1; a1) : S × A× S → [1]. This transition results in
each EV receiving two types of rewards, i.e., the local reward
and the global reward, for the transition from s to s′ after
executing a.

1) State Space: Assume each EV is connected to an
associated building. Then the state space S includes all
buildings’ baseline loads, charging demands of all EVs,
and the baseline nodal voltage magnitudes, i.e., at time k,
sk = [pk,b ET

k vT
k ]T, where pk,b is the aggregated baseline

load, Ek = [E1,k E2,k . . . En,k]T ∈ Rn represents the
energy remained to be charged of all n EVs, and vk =
[v1,k v2,k . . . vh,k]T ∈ Rh represents the baseline nodal voltage
magnitudes of all nodes.

2) Action Space: In the action space, ai = Ui denotes the
charging schedule of the ith EV. The joint action, a ∈ A, is
therefore represented as

a = U = [UT
1 · · · UT

n ]T (13)

3) Reward: The local reward of the ith EV is constructed
to meet its local charging demand and comply with the nodal
voltage constraints. Let, during each state s, the local reward
EV i will receive after the joint action a is taken be denoted
by ri, then the reward can be calculated as

ri = rEi + rvi + rBi , (14)

where

rEi =

{
0 if E′K,i = 0

−108 if E′K,i 6= 0,
(15)

and

rvi =

{
0 if v′k,j ≥ v0
−108 if v′k,j < v0,

(16)
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and
rBi = −‖ai‖22 (17)

∀k = 1, . . . ,K and j is the node where EV i is connected.
Considering the grid service objectives, the total reward EV

i will receive is calculated as

Ri = rg + ri,

where

rg =

{
−F (U) for valley filling
− Power loss for power loss minimization.

(18)
4) Observation Space: For the ith EV, the observation

space includes its charging demand and the baseline nodal
voltage profile of the node ı it is connected to. Mathematically,
this can be represented by oi = [vT

ı xi(0)]T.
5) Actor-Critic Network & MADDPG Algorithm: In this

paper, we adopt MADDPG to realize the training of the
MARL-based EV charging control strategy. The structural
overview of the training and execution of the MARL frame-
work is shown in Fig. 1. The MADDPG algorithm works in

Centralized Training

Decentralized Execution

…

…

…

EV1 EVn

Environment (distribution network)

Fig. 1. Actor-critic network for centralized training and decentralized execu-
tion

such a way that during the training phase, the critic network
has information of all the parameters including the global
and local variables, while the actor network only has access
to local information. We use a centralized critic to provide
information about the optimality of the policy’s actions for
the entire system. The action space determined from the joint
optimal policy sets the charging schedule for each EV. After
the training is completed, the actors act in a decentralized way
based on the local information only. Since each agent has its
own critic function, the agents are allowed to possess different
actions and rewards. Finally, the reward is calculated based on
the actions from each agent. During the training process, the
actor network takes action ai ∈ A in the training data set;
the critic network maps the state-action pair to the global and

local rewards. For the actor network, the policy gradient for
thewhich maps the observation to action is denoted by

∇θiπi = Es,a∼B[ ∇θiπi(ai|oi)
∇aiQπi (s, a)|ai=πi(oi)]

(19)

where B is the replay buffer, Qπi (·) denotes the critic function,
θi denotes the weight given to the policy. The critic function
used for the critic network is represented as

Qπi (s, a) = Es,s′∼M [Ri(s, a)] (20)

where M is the environment and Ri(s, a) denotes the total
reward agent i receives. The critic network estimates the value
of the policy followed by the actor after transitioning from
state s to s′. The goal of the critic is to maximize the total
reward received at each iteration.

IV. SIMULATION RESULTS

A. Environment Setup

To compare the performance of the optimization-based and
MARL-based approaches, a single-phase IEEE-13 bus test
feeder is used to simulate the distribution network environ-
ment. For the optimization-based approach, the environment
is formulated by using LinDistFlow in Matlab. For the MARL-
based model-free approach, the environment is constructed in
GridLab-D for distribution network simulation. The MARL
model is trained by Spyder using the keras library and tensor-
flow library. Once the model is trained, same test data sets are
used in both optimization-based and MARL-based approaches
to compare the performance, efficiency, and efficacy.

B. Data Collection

In total 540 EVs are configured to connect to the single-
phase IEEE-13 bus test feeder, i.e., 45 EVs are connected to
each node. The EVs’ battery capacities vary from 18 kWh
to 20 kWh. The initial and desired state of charge (SOC) of
all EVs uniformly distribute within [0.3, 0.5] and [0.7, 0.9],
respectively. The baseline load of each house is collected and
scaled from Southern California Edison. Each baseline load
data for each time instant is randomized at each data point
within 1% to 5% and in total 10400 data points are generated.
The service period is set to from 7 pm to 8 am next day with a
15-minute time resolution, and the lower voltage bound is set
to v = 0.954. Three testing aggregated baseline load profiles
are shown in Fig. 2.

C. Simulation Results

By using the MADDPG algorithm presented in Section III,
the MARL-based EV charging control framework is trained by
using the training data generated in Section IV-B, providing
each EV an optimal policy. By using the optimal policies,
each EV generates its own charging profiles. Adopting the
same three testing data sets as in Section IV-B, the charging
profiles result in the evolution of the energy remained to be
charged of all 540 EVs shown in Fig. 3, which readily validates
that all EVs’ charging requests can be fulfilled at the end of
the service period.
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Fig. 2. Load curves for valley filling and power loss minimization under three
data sets.
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Fig. 3. Evolution of energy remained to be charged.

To compare the network constraint control performance
of optimization-based and MARL-based approaches, charging
profiles generated from those two methods are implemented
in the same GridLab-D environment and result in the nodal
voltage profiles as shown in Fig. 4. For the clarity of pre-
sentation, for the optimization-based approach only voltage
magnitude profile of test data 1 is shown. It can be readily
seen that the MARL-based approach can well maintain all
nodes’ voltage magnitudes above the designated lower bound,
while the optimization-based approach fails to do so.

Fig. 2 demonstrates the feeder total load profiles under the
objectives of valley-filling and power loss minimization using
the MARL-based approach. In either case, the trained control
framework tends to smooth the total load profile which fulfills
the valley-filling objective.

Fig. 5 shows the evolution of power loss as the MARL
model training proceeds in the power loss minimization case.
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Fig. 4. Voltage magnitudes at 12 nodes: circle, asterisk, and diamond markers
are from MARL-based approach for test sets 1, 2, and 3, respectively; dashed
lines are from optimization-based approach for test set 1.

To compare the performance in terms of total power loss
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Fig. 5. Convergence of power loss along episodes

of the optimization-based and MARL-based approaches, Fig.
6 presents the power loss comparisons by the same three
testing data sets. It can be seen that the optimization-based
approach has an average 50% more power loss than that of
the MARL-based approach. This is owing to the fact that
the optimization-based approach has omitted many critical
nonlinear and nonconvex features of the distribution network,
resulting in the power-loss-“minimizing” charging schedules
not truly minimizing the power loss. In contrast, the MARL-
based approach considers the full set of features of the
distribution network, resulting in better charging schedules.

V. CONCLUSIONS

In this paper, a model-free EV charging control framework
was developed by being framed into MARL under mixed
cooperative-competitive setting and was trained by using the
one-stage MADDPG algorithm. Simulations were conducted
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Fig. 6. Power loss comparison of model-based and model-free approaches

to compare the performance between the developed model-
free approach and traditional decentralized optimization-based
approaches. It has been validated that the MARL-based EV
charging control outperforms the optimization-based control
framework in terms of: (1) the model-free approach relaxes
the control design from requiring an exact model of the net-
work, which is usually impossible; (2) the adopted model-free
approach captures the full features of the distribution network,
and has a better control on power loss minimization; and (3)
the model-based approach failed to satisfy the global network
constraints, which has been resolved by the developed model-
free approach. As a future research direction, the work can be
extended to include the effect of distributed energy resources
(DERs), and reactive power supplies in the network. Moreover,
we may also improve the framework of the algorithm to
achieve a more reduced power loss.
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