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A B S T R A C T

Cooperative electric vehicle (EV) charging control has emerged as a key component in grid-edge resource
(GER) management. However, customers’ privacy remains a major barrier to large-scale implementation of EV
charging control. In this paper, we develop a distributed privacy-preserving EV charging control protocol based
on secret sharing (SS) that (1) achieves scalability over EV population size; (2) enjoys higher computation
efficiency compared to homomorphic encryption (HE) based methods; and (3) secures the privacy of the
participating EVs against honest-but-curious adversaries and external eavesdroppers. The cooperative EV
charging control is formulated to achieve overnight valley filling and framed into the projected gradient
algorithm (PGA) structure as a distributed optimization problem. SS is integrated into PGA to achieve secure
updates of both primal and dual variables. Theoretical security analyses and simulations in a residential area
are conducted to prove the privacy preservation guarantee as well as the efficacy and efficiency of the proposed
privacy preservation method. Broadly, the proposed method can be readily extended to various GER control
applications.
1. Introduction

The increasing penetration of electric vehicles (EV) has brought
unprecedented challenges and opportunities to the power grid. EVs are
more economic and environmental friendly owing to their petroleum
independence and reduced greenhouse gas emissions [1]. Nevertheless,
without proper coordination and control, the enormous EV charging
loads can cause multiple detrimental impacts on the traditional dis-
tribution grid, such as stability, uncertainty, and scalability issues [2,
3]. On the other side, EV charging load coordination and regulation
can provide a range of grid services [4], e.g., peak shaving and val-
ey filling. Hence, a commensurate EV charging control framework is
emanded to attenuate the impacts and promote the benefits.
To improve the scalability and resilience of the distribution grid,

istributed controller and optimization strategies for large-scale EV
harging problems are drawing more attentions. Faddel et al. in [5]
ocused on demand side management programs and designed a dis-
ributed controller to coordinate the charging behaviors of EVs. In [6],
n optimization framework based on the alternating directions method
f multipliers (ADMM) was proposed to achieve computational scal-
bility of large-scale EV charging control. The proposed method can
oncurrently solve the valley filling and cost minimization optimization
roblems. Similarly, Shao et al. in [7] proposed a partial decomposition
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method based on the Lagrangian relaxation for EV charging control,
aiming at reducing the total generation cost and alleviating the grid
congestion. To deal with the high penetration of EVs, Ma et al. in [8]
designed three distributed EV charging control algorithms and com-
pared the trade-off between the feasibility and the optimality under
power network capacity constraints.

However, the abovementioned distributed EV charging control al-
gorithms as well as general distributed multi-agent optimization tech-
niques require frequent communications between participants, which
can lead to potential privacy breaches, e.g., the charging behavior
of an EV can reveal the owner’s driving patterns [9]. Therefore, pri-
vacy has emerged as a major blocking barrier to the implementation
of distributed control. One popular tool that can be integrated into
distributed control to achieve privacy preservation is homomorphic en-
cryption (HE). HE enables secure arithmetic operations over encrypted
data, and when decrypted, the result matches operations performed on
the original plaintext. Li et al. in [10] designed a privacy-preserving
demand response scheme based on HE, and an adaptive key evolution
was proposed to balance the trade-off between the communication
efficiency and security level. In [11], a privacy-preserving approach
based on partial HE was proposed to solve consensus problems securely.
The proposed approach leverages cryptography to protect each agent
vailable online 13 July 2022
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from disclosing its true states to the neighbors and guarantee the con-
vergence to the consensus value. Brettschneider et al. in [12] proposed
an HE scheme for distributed load adaption, where the complexity of
the communicational and computational overhead was analyzed.

Though HE-based methods have guaranteed security and high accu-
racy, their industrial applicability is severely limited by the high com-
putational complexity induced by encryption and decryption. In con-
trast to HE-based strategies, another lightweight cryptographic strategy
to enabling privacy preservation is secret sharing (SS) which was firstly
introduced by Shamir in [13]. SS is polynomial based and it deploys a
manager to divide a secret message to multiple shares and distribute
each share to an agent. In this manner, individuals learn nothing
about the secret, but any set of agents that has a cardinality more
than a threshold can reconstruct the secret. Compared to HE-based
methods, SS-based strategies remove the computing burden caused by
frequent encryption and decryption, and achieve improved efficiency
by adopting share computation and secret reconstruction. In [14], a
distributed cloud-based controller using SS was proposed to achieve
encrypted linear state feedback, where the encryption scheme was
modified by one-time pad to reduce the computational overhead. Li
et al. in [15] developed a distributed privacy-preserving algorithm
based on SS specifically for averaging consensus problems. In [16], a
distributed privacy-preserving framework based on SS was proposed
to protect the privacy of the customers. The designed framework can
protect the readings of a smart meter from dedicated aggregators and
the electrical utility.

However, none of the existing SS-based methods are applicable to
EV charging control, as they either rely on the coordination of a third
party or are designed for special problem formulations that are not
suitable for EV charging control. This paper fills this gap by developing
a novel SS-based distributed privacy-preserving EV charging control
scheme that is third party free and concurrently achieves privacy
preservation, scalability, high computing efficiency, and high accuracy.

The contribution of this paper is three-fold: (1) We, for the first time,
integrate SS into distributed optimization algorithms to achieve scal-
able EV charging control for valley filling. (2) The proposed protocol
enjoys high computing efficiency compared to HE-based methods. (3)
We investigate the attacks from both internal and external adversaries,
and provide theoretically sound proof of security. The proposed method
can be extended to other grid-edge resource (GER) controls.

2. Main results & methodologies

2.1. Problem formulation

In a distribution feeder, the high electricity demand during day-
time and the low electricity demand at night create a valley in the
demand profile. Such valley can increase the grid operation cost like
shutting down or restarting large power plants [17]. In this section,
we formulate an EV charging control optimization problem to fill the
overnight demand valley. Suppose 𝑛 EVs need to be charged during
the valley-filling period 𝑇̃ = [1 ∶ 𝑇 ] of length 𝑇𝛥𝑇 where 𝛥𝑇 is
the sampling period. We denote the charging profile of the 𝑖th EV by
𝒙𝑖 = [𝑥𝑖(1),… , 𝑥𝑖(𝑇 )]𝖳 ∈ R𝑇 where 𝑥𝑖(𝑡) is a scalar representing its
harging rate at time 𝑡. For the 𝑖th EV, its charging rate is constrained
y

≤ 𝒙𝑖 ≤ 𝒓𝑢𝑖 , (1)

where 𝒓𝑢𝑖 denotes the maximum charging rate of the 𝑖th EV.
To guarantee all EVs can be charged to the desired energy level by

he end of valley-filling period, the summation of the charging loads of
he 𝑖th EV during period 𝑇̃ should satisfy

𝒙𝑖 = 𝑑𝑖, (2)

here 𝑮 = [𝛥𝑇 ,… , 𝛥𝑇 ] ∈ R1×𝑇 denotes the aggregation vector and 𝑑𝑖
2

enotes the charging demand of the 𝑖th EV.
Filling the overnight demand valley is equivalent to flattening the
otal demand curve by exploiting the EV charging loads [18]. There-
ore, the valley-filling optimization problem can be formulated into a
uadratic programming problem with the abovementioned constraints
s
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s.t. 𝟎 ≤ 𝒙𝑖 ≤ 𝒓𝑢𝑖 , ∀𝑖 = 1, 2,… , 𝑛,

𝑮𝒙𝑖 = 𝑑𝑖, ∀𝑖 = 1, 2,… , 𝑛,

(3)

where 𝑷 𝑏 denotes the baseline load. Other network constraints, e.g., the
voltage limits of the distribution network, can also be included in
problem (3) and have no impact on privacy preservation. In this paper,
to better illustrate the design of the privacy preservation method, we
avoid over-complicating the optimization problem by omitting those
network constraints.

To solve the valley-filling problem in (3), 𝑛 agents (EVs) can work
corporately using projected gradient algorithms (PGA) [19]. The PGA
based method is widely adopted in distributed and decentralized opti-
mization, e.g., multiuser optimization problem [20], decentralized EV
charging control [21], and convex games [22]. Using PGA, agent 𝑖
updates its decision variable by following

𝒙𝓁+1𝑖 = P𝑋𝑖
[𝒙𝓁𝑖 − 𝛾𝓁𝑖 𝛷𝑖(𝒙𝓁)], (4)

where 𝓁 denotes the iteration index, 𝒙 ≜ [𝒙𝖳1 ,… ,𝒙𝖳𝑛 ]
𝖳, 𝑋𝑖 denotes the

feasible set of 𝒙𝑖, 𝛾𝓁𝑖 is the step size length of agent 𝑖, 𝛷𝑖(⋅) is the first-
order gradient of the Lagrangian function w.r.t. 𝒙𝑖, and P𝑋𝑖

[⋅] denotes
the Euclidean projection operation onto set 𝑋𝑖.

To solve (3) with any projection-based method, we firstly calculate
the relaxed Lagrangian of (3) as

(𝒙,𝝀) = 1
2
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+
𝑛
∑

𝑖=1
𝜆𝑖(𝑮𝒙𝑖 − 𝑑𝑖), (5)

where 𝝀 ≜ [𝜆1,… , 𝜆𝑛]𝖳 and 𝜆𝑖 is the dual variable associated with the
𝑖th equality constraint. Therefore, the subgradients of (𝒙,𝝀) w.r.t. 𝒙𝑖
and 𝜆𝑖 can be readily obtained as

∇𝑥𝑖(𝒙,𝝀) = 𝑷 𝑏 +
𝑛
∑

𝑖=1
𝒙𝑖 + 𝜆𝑖𝑮𝖳, (6a)

∇𝜆𝑖(𝒙,𝝀) = 𝑮𝒙𝑖 − 𝑑𝑖. (6b)

Then, the decision variable (primal variable) and the dual variable
can be updated using the PGA. Herein, we derive the update rule (7a)
for the primal variable using the subgradient in (6a) and PGA equation
in (4). The dual variable can be updated using subgradient ascent with
the subgradient in (6b). Consequently, we have

𝒙𝓁+1𝑖 = 𝛱X𝑖

(

𝒙𝓁𝑖 − 𝛾𝑖∇𝑥𝑖
(

𝒙𝓁 ,𝝀𝓁
)

)

, (7a)

𝜆𝓁+1𝑖 = 𝜆𝓁𝑖 + 𝛽∇𝜆𝑖
(

𝒙𝓁 ,𝝀𝓁
)

, (7b)

where X𝑖 ≜ {𝒙𝑖 ∣ 𝟎 ≤ 𝒙𝑖 ≤ 𝒓𝑢𝑖 } denotes the feasible set of the
charging rate limits, and 𝛾𝑖 and 𝛽 denote the primal and dual step
sizes, respectively. Note that X𝑖 assumes the 𝑖th EV’s charging rate can
vary continuously between 𝟎 and 𝒓𝑢𝑖 . This is an assumption commonly
made in EV charging control algorithm designs [18,23]. Discrete local
constraint sets that accommodate positive lower bounded charging
power will be considered in our future work.

Remark 1. X𝑖 is chosen to only include (1) so that (2) can mimic the
global network constraints in (𝒙,𝝀). □

Note that in (6a), the calculation of ∇𝑥𝑖(𝒙,𝝀) depends on 𝒙𝑖’s
from all the agents. Therefore, the update in (7a) requires decision
variable exchanges between agents, which can lead to potential pri-
vacy breaches [24]. To overcome this privacy challenge, we aim at
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designing a novel protocol based on SS that can protect agents’ privacy,
in which the agents aggregate and distribute information privately
without exposing privacy to others. In the following, we first illustrate
the standard steps of SS, then develop the SS-based privacy-preserving
protocol.

2.2. Shamir’s secret sharing scheme

The essential idea of SS is Lagrange polynomial interpolation,
i.e., given 𝑘 points (𝑎1, 𝑏1),… , (𝑎𝑘, 𝑏𝑘) with distinct 𝑎𝑖’s on the 2-D
plane, there exists a unique polynomial 𝑞(𝑧) of degree 𝑘 − 1 such that
𝑞(𝑎𝑖) = 𝑏𝑖,∀𝑖 = 1,… , 𝑘. Any number of points that are strictly smaller
than 𝑘 will not reveal any information about the polynomial, and at
least 𝑘 points are required to reconstruct the polynomial.

In the following, we present a case where a manager wants to
istribute an integer secret 𝑠 to 𝑛 agents, and at least 𝑘 agents are
required to cooperatively retrieve the secret. The secret is randomized
via a polynomial and sent to the agents in the form of shares. Any
𝑘̂ agents, where 𝑘 ≤ 𝑘̂ ≤ 𝑛, can reconstruct the secret, otherwise
no information about the secret can be revealed. This is called a
(𝑘, 𝑛)-threshold SS which comprises of three steps as

(1) Polynomial generation: The manager constructs a random polyno-
mial

𝑓 (𝑧) = 𝑠 + 𝑐1𝑧 +⋯ + 𝑐𝑘−1𝑧
𝑘−1, (8)

where 𝑠 denotes the secret, the coefficients 𝑐1,… , 𝑐𝑘−1 are ran-
domly chosen from a uniform distribution in the integer field
E ≜ [0, 𝑒), where 𝑒 denotes a prime number that is larger than 𝑠.

(2) Share distribution: The manager computes the shares with a non-
zero integer input and the corresponding output, e.g., set 𝑖 =
1,… , 𝑛 to retrieve (𝑖, 𝑓 (𝑖)). Then, it distributes the share 𝑓𝑖 to the
𝑖th agent, where

𝑓𝑖 = 𝑓 (𝑖) mod 𝑒, (9)

and mod denotes the modular operation.
(3) Secret reconstruction: Since each agent is given a point and 𝑘

points are sufficient to reconstruct the polynomial using La-
grange interpolation, any 𝑘̂ agents, where 𝑘 ≤ 𝑘̂ ≤ 𝑛, can
calculate the secret 𝑠 using interpolation as

𝑠 =
𝑘
∑

𝑖=1
𝑓𝑖

𝑘
∏

𝑗=0
𝑗≠𝑖

𝑗
𝑗 − 𝑖

. (10)

Note that the constant term 𝑠 in (8) is exactly the secret that can
be calculated by 𝑓 (0) = 𝑠. The Shamir’s SS scheme requires integers
and finite field arithmetic to guarantee the perfect security, i.e., the
coefficients 𝑐1,… , 𝑐𝑘−1 and the secret 𝑠 have to be within the field E.
Besides, the modular operation in (9) also guarantees that the outputs
of the polynomials are within the field E. In (10), though we only
calculate the secret 𝑠, it is also possible to reconstruct (8). But since we
are only interested in retrieving the secret, (10) is adopted to reduce
the unnecessary computing cost.

2.3. Real number and integer transformation

Note that the SS scheme requires modular arithmetic within the
field E. However, distributed optimization genetically requires real
decision variables and parameters. Therefore, to integrate SS into dis-
tributed optimization, a real number needs to be transformed into an
integer. Herein, we formulate the real number to integer transformation
rule as

𝑧𝑒 = ⌊10𝛿𝜃⌋, (11)

where 𝜃 denotes any real number, 𝛿 denotes the preserved decimal
3

fraction digits, ⌊⋅⌋ denotes the floor operation, and 𝑧𝑒 is the transformed
integer. To proceed with the SS, we further need to map 𝑧𝑒 to the field
E, which can be achieved by

𝑧+𝑒 = 𝑧𝑒 mod 𝑒, (12)

where 𝑧+𝑒 ∈ E denotes the integer that is mapped to the field E. To
transform an integer back to the real number, we employ the inverse
function 𝜙(⋅) that is defined as

𝜙(𝑧) =

{

𝑧 − 𝑒, if 𝑧 ≥ 𝑒
2 ,

𝑧, otherwise.
(13)

herefore, a number in the field E can be transformed to the original
igned integer. Finally, we can simply divide the signed integer by 10𝛿

o convert it to the original real number.

.4. Proposed privacy-preserving algorithm

In this section, we develop a novel privacy-preserving protocol
ased on SS. During the iterative computations, agents update their
rimal and dual variables by following (7). The agents can perform the
ual update in (7b) independently without having to communicate with
ach other. Therefore, the dual variables 𝜆𝑖’s can be kept private to the
th agents directly. However, the primal update in (7a) requires the
ggregation ∑𝑛

𝑖=1 𝒙𝑖 in (6a), leading to mandatory exchange of decision
ariables between all the agents. To eliminate the potential decision
ariable leakage caused by the information exchange, we integrate SS
nto (7) to achieve the secure message aggregation. To clearly state the
rivacy issues concerned in this paper, we herein define the privacy as
ollows.

efinition 1 (Privacy). For the 𝑖th EV, the private information includes
its charging profile 𝒙𝑖, dual variable 𝜆𝑖, the maximum charging rates
𝒓𝑢𝑖 , demand 𝑑𝑖, and the primal and dual step sizes 𝛾𝑖 and 𝛽. ■

The privacy in Definition 1 can be categorized into three aspects: (1)
private parameters of the EVs (agents), i.e., 𝒓𝑢𝑖 and 𝑑𝑖; (2) intermediate
iteration variables of the agents, i.e., 𝒙𝓁𝑖 and 𝜆𝓁𝑖 ; and (3) the parameters
used by the PGA, i.e., 𝛾𝑖 and 𝛽. Though Definition 1 specifically targets
at EV charging control problem, it can also be extended to various
optimization problems in other fields (as illustrated in Remark 3).
Besides, the private parameters of the agents can be extended as well,
e.g., constraints on charging ramp rate.

To proceed with the protocol design, the following assumption is
required for the network communication.

Assumption 1. The network is interconnected through communication
channels. ■

Under Assumption 1, each agent is able to communicate with any
other agents. This interconnected communication network can be easily
set up, e.g., EVs can communicate in the cloud or on a specific server
with internet access [25]. In the following proposed framework, we
admit that Assumption 1 may introduce an overall high communication
load between agents, so our future research direction will target at
lifting Assumption 1 to reduce the communication cost, e.g., using a
spanning-tree communication network.

Recall that in the SS scheme, a manager is required to generate
the polynomial and distribute the shares. To eliminate the need of a
manager, we empower each agent to act as both manager and agent.
Each agent can construct polynomials, distribute shares, and receive
messages from others. The 𝑖th agent firstly generates a set of random
parameters 𝑐𝓁𝑖1,… , 𝑐𝓁𝑖𝑘 ∈ E, then constructs a polynomial as

𝑝𝓁𝑖 (𝑧) = 𝑠𝓁𝑖 + 𝑐𝓁𝑖1𝑧 +⋯ + 𝑐𝓁𝑖𝑘𝑧
𝑘, (14)

where 𝑠𝓁𝑖 is the secret held by the 𝑖th agent, i.e., the charging profile 𝒙
𝓁
𝑖 .

Note that the charging profiles 𝒙𝓁𝑖 ’s are real number vectors, while 𝑠𝓁𝑖 ’s

need to be integers. To resolve this issue, agents should firstly transform
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Fig. 1. The information exchange between the 𝑖th EV and other EVs.

ecret 𝒙𝓁𝑖 into integer vectors using (11), then deal with the integer
ectors elementwisely.
Having the polynomial constructed, the 𝑖th agent then evaluates

𝓁
𝑖 (𝛼𝑗 ),∀𝑗 = 1,… , 𝑛 where 𝛼𝑗 ’s are the shared input knowledge among
ll the agents. Following that, the 𝑖th agent sends 𝑝𝓁𝑖 (𝛼𝑗 ), 𝑗 ≠ 𝑖, to the
th agent and keeps 𝑝𝓁𝑖 (𝛼𝑖) to itself. After receiving all the messages,
gent 𝑖 is ready to compute the summation of the received messages as

𝓁
𝑖 =

𝑛
∑

𝑙=1
𝑝𝓁𝑙 (𝛼𝑖). (15)

Following the summation, agent 𝑖 broadcasts 𝑣𝓁𝑖 to other agents
without revealing any true self-relevant information. Note that the
summation 𝑣𝓁𝑖 ’s calculated by the agents in (15) correspond to the
outputs of the polynomial

𝑝̃𝓁𝑖 (𝑧) =
𝑛
∑

𝑙=1
𝑠𝓁𝑙 +

𝑘
∑

𝑗=1
(

𝑛
∑

𝑙=1
𝑐𝓁𝑙𝑗 )𝑧

𝑗 , (16)

at 𝑧 = 𝛼𝑙 ,∀𝑙 = 1,… , 𝑛. The polynomial 𝑝̃𝓁𝑖 (𝑧) has a degree of 𝑘, affiliated
with the constant term ∑𝑛

𝑙=1 𝑠
𝓁
𝑙 and the coefficients

∑𝑛
𝑙=1 𝑐

𝓁
𝑙𝑗 , 𝑗 = 1,… , 𝑘.

Therefore, the 𝑖th agent can collect in total 𝑛 points, i.e., (𝛼𝑙 , 𝑣𝓁𝑙 ),∀𝑙 =
1,… , 𝑛, that correspond to the input and output pairs of the polynomial
in (16). In the following, each agent is ready to reconstruct the constant
term ∑𝑛

𝑙=1 𝑠
𝓁
𝑙 according to the secret reconstruction step in (10). After

obtaining the summation of the secrets ∑𝑛
𝑙=1 𝑠

𝓁
𝑙 , one can apply the

inverse function 𝜙(⋅) defined in (13) to acquire the signed integer
ummation 10𝛿

∑𝑛
𝑙=1 𝒙̂

𝓁
𝑙 elementwisely. Note that 𝒙̂

𝓁
𝑙 is a real vector that

s approximated by keeping 𝛿 digits of 𝒙𝓁𝑙 . Then, the signed integer
ummation ∑𝑛

𝑙=1 𝒙̂
𝓁
𝑙 ⋅ 10𝛿 can be transformed back to the real vectors

y the division of 10𝛿 .
Finally, the agents can update the primal and dual variables accord-

ng to (7). The agents firstly calculate the subgradients defined in (6)
sing the summation ∑𝑛

𝑙=1 𝒙̂
𝓁
𝑙 . The 𝑖th agent then updates its primal

ariable 𝒙𝓁𝑖 → 𝒙𝓁+1𝑖 and dual variable 𝜆𝓁𝑖 → 𝜆𝓁+1𝑖 . The convergence
rror 𝜖𝓁𝑖 can be calculated as the summation of the Euclidean distances
f the primal and dual variables in two consecutive iterations as
𝓁
𝑖 = ‖𝒙𝓁+1𝑖 − 𝒙𝓁𝑖 ‖

2
2 + ‖𝜆𝓁+1𝑖 − 𝜆𝓁𝑖 ‖

2
2. (17)

V 𝑖 can stop the iterations and keep the previous values if 𝜖𝓁𝑖 ≤ 𝜖0
here 𝜖0 denotes the error tolerance.
The detailed procedure of the proposed method is presented via

rotocol 1. The information exchange between the 𝑖th EV and other
Vs is shown in Fig. 1.

heorem 1 (Correctness). Within the precision range 𝛿, the results calcu-
ated by Protocol 1 are exactly the same as those calculated without privacy
reservation. ■
4

Protocol 1 Distributed SS-based privacy-preserving EV charging
control protocol
1: The 𝑖th EV is associated with an integer 𝛼𝑖, and 𝛼𝑗 ,∀𝑗 = 1,… , 𝑛, are
common knowledge among all EVs.

2: All EVs initialize primal and dual variables, tolerance 𝜖0, iteration
counter 𝓁 = 0, and maximum iteration 𝓁𝑚𝑎𝑥.

3: while 𝜖𝓁𝑖 > 𝜖0 and 𝓁 < 𝓁𝑚𝑎𝑥 do
4: EV 𝑖 generates a set of random parameters satisfying 𝑐𝓁𝑖1,… , 𝑐𝓁𝑖𝑘 ∈

E, then constructs the polynomial in (14).
5: The 𝑖th EV calculates 𝑝𝓁𝑖 (𝛼𝑗 ),∀𝑗 = 1,… , 𝑛, and sends 𝑝𝓁𝑖 (𝛼𝑗 ), 𝑗 ≠ 𝑖
to the 𝑗th EV and keeps 𝑝𝓁𝑖 (𝛼𝑖) to itself.

6: EV 𝑖 computes the summation of the received messages 𝑣𝓁𝑖
defined in (15) and broadcasts it to other agents.

7: Each EV collects in total 𝑛 points, i.e., (𝛼𝑙 , 𝑣𝓁𝑙 ),∀𝑙 = 1,… , 𝑛, then
reconstructs the constant term of the polynomial in (16) based on
the secret reconstruction method introduced in (10).

8: The 𝑖th EV updates the primal variable 𝒙𝓁𝑖 by (7a) and the dual
variable 𝜆𝓁𝑖 by (7b).

9: Each agent 𝑖 calculates the error 𝜖𝓁𝑖 .
10: 𝓁 = 𝓁 + 1.
11: end while

Theorem 1 states that the proposed privacy-preserving protocol does
ot jeopardize the accuracy of the PGA except for the rounding error
ntroduced by real to integer number transformation. In fact, Protocol 1
an achieve arbitrarily higher precision level by increasing the decimal
igits 𝛿 at the cost of computing load.

heorem 2 (Privacy-preservation against honest-but-curious agents and
xternal eavesdroppers). Privacy of all agents are guaranteed if the number
of agents is larger than two and each agent carries out the proposed protocol
accordingly. ■

Theorem 2 provides that the participants’ privacy preservation can
e guaranteed under Protocol 1 against both internal and external
ttacks. The internal attacks are launched by the honest-but-curious agent
ho follows the protocol but may observe the intermediate data to infer
he private information of other participants. The external eavesdropper
an launch external attacks by wiretapping and intercepting exchanged
essages from the communication channels to invade the privacy of the
gents. The detailed privacy analysis will be presented in Section 2.5.

emark 2. The polynomial in (16) is of degree 𝑘, hence at least
+ 1 points are required to reconstruct the polynomial. According
o Protocol 1, each agent can have access to 𝑛 points on the 2-D
lane corresponding to the inputs and outputs of (16). To guarantee
successful secret reconstruction, the number of agents 𝑛 and the
egree 𝑘 of the polynomials need to satisfy 𝑛 ≥ 𝑘 + 1. Note that
increasing the degree 𝑘 does not improve the security level of Protocol 1
against honest-but-curious agents or external eavesdroppers. However,
a larger 𝑘 could potentially prevent the information leakage caused
by the collaboration between honest-but-curious agents. Please refer to
Section 2.5.3 for the extended discussion on the collaboration between
honest-but-curious agents. □

Remark 3. Protocol 1 is not limited to the specific valley-filling
optimization problem in (3). We use this EV charging control example
to illustrate the grid-level applications. The proposed protocol can be
applied to a variety of different areas, e.g., controlling heterogeneous
GERs for grid-level services [26], energy management optimization
where the neighbors are required to exchange information [27], and

the general cooperative optimization problem in [28]. □
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2.5. Privacy analysis

2.5.1. Security analysis against honest-but-curious agents
An honest-but-curious agent can use the private information belong-

ng to itself, the common knowledge between all the agents, and the
eceived messages from others to infer the privacy of certain agents.
o analyze the attacks from honest-but-curious agents, we simulate its
ehaviors to prove that no private information can be obtained under
he proposed protocol. Let EV 𝑖 be an honest-but-curious agent. Then
during the 𝓁th iteration, EV 𝑖 can have access to

I𝓁ℎ𝑖 = {𝛼𝑗 , 𝑝𝓁𝑖 (𝛼𝑗 ), 𝑣
𝓁
𝑗 ,∀𝑗 = 1,… , 𝑛, 𝑠𝓁𝑖 , 𝑝

𝓁
𝑗 (𝛼𝑖),∀𝑗 ≠ 𝑖}, (18)

here I𝓁ℎ𝑖 denotes the accessible information to EV 𝑖. Suppose EV 𝑖 is
nterested in finding the secret 𝑠𝓁𝑚 that belongs to EV 𝑚. The information
V 𝑖 can use includes 𝛼𝑚, 𝑝𝓁𝑖 (𝛼𝑚), and the message 𝑝𝓁𝑚(𝛼𝑖) received from
EV 𝑚. To reconstruct the secret 𝑠𝓁𝑚 contained in 𝑝𝓁𝑚(⋅), EV 𝑖 needs to
obtain at least 𝑘 points on the 2-D plane. However, EV 𝑖 only has
access to a single point (𝛼𝑖, 𝑝𝓁𝑚(𝛼𝑖)). Therefore, it is impossible for EV
𝑖 to reconstruct the secret 𝑠𝓁𝑚. Another useful information for EV 𝑖 is
the collected points (𝛼𝑙 , 𝑣𝓁𝑙 ),∀𝑙 = 1,… , 𝑛, from which it can deduce the
summation of secrets ∑𝑛

𝑙=1 𝑠
𝓁
𝑙 from all the agents. However, when there

exist other EVs other than EV 𝑖 and EV 𝑚, having the summation∑𝑛
𝑙=1 𝑠

𝓁
𝑙

is still insufficient for EV 𝑖 to infer any private information of EV 𝑚.
We next consider a special case where only two EVs exist, i.e., EV

𝑖 and EV 𝑚, and EV 𝑖 tries to infer the secret 𝑠𝓁𝑚 that belongs to EV
𝑚. Since EV 𝑖 knows its own secret 𝑠𝓁𝑖 and the summation ∑𝑛

𝑙=1 𝑠
𝓁
𝑙 ,

𝑠𝓁𝑚 can be easily compromised. We argue that this rarely happens in
real EV charging control cases as well as other large-scale networked
optimization problems because of the large agent population size. To
address this concern, Theorem 2 states the requirement that more than
two agents should be involved during the execution of Protocol 1.

2.5.2. Security analysis against external eavesdroppers
Another principal adversary is the external eavesdropper. For general

SS-based schemes (presented in Section 2.2), the shares are distributed
by the manager, and 𝑘 shares can expose the secret. In those cases, an
external eavesdropper can easily wiretap and collect all the transmitted
messages, thus revealing the secret. We next simulate the behaviors of
the external eavesdroppers and prove the security of Protocol 1.

Suppose an external eavesdropper wiretaps all communication chan-
nels in Protocol 1. Then the external eavesdropper can have access to
the following transmitted messages

I𝓁𝑒 = {𝑝𝓁𝑖 (𝛼𝑗 ),∀𝑖 ≠ 𝑗, 𝑣𝓁𝑖 ,∀𝑖, 𝑗 = 1,… , 𝑛}, (19)

where I𝓁𝑒 denotes the accessible information to the external eavesdrop-
per. The message 𝑝𝓁𝑖 (𝛼𝑖), 𝑖 = 1,… , 𝑛, is kept private to the 𝑖th EV,
therefore this message cannot be directly overheard by the external
eavesdroppers. However, the external eavesdropper can deduce the
value of 𝑝𝓁𝑖 (𝛼𝑖) by wiretapping the value of 𝑣

𝓁
𝑖 due to the summation

operation in (15). Therefore, the external eavesdropper can have access
to {𝑝𝓁𝑖 (𝛼𝑗 ),∀𝑖, 𝑗 = 1,… , 𝑛}. In summary, the external eavesdropper
can have access to the outputs of the polynomials in (14) and the
polynomial in (16). In order to derive the secrets of the agents, the
external eavesdropper also need to know the inputs of those polynomi-
als. Instead of distributing the shares in the form of both the inputs and
outputs of a polynomial, the proposed protocol keeps the inputs 𝛼𝑖,∀𝑖 =
1,… , 𝑛, private to the agents. Hence, any external eavesdropper cannot
reconstruct agents’ secrets with only outputs of those polynomials.

2.5.3. Collusion between honest-but-curious agents
Honest-but-curious agents may collude to infer the privacy of other

agents. However, few research has addressed the collusion between
honest-but-curious agents. In this paper we extend the privacy analysis
against this type of attacks to achieve enhanced security. The degree of
the polynomial in (14) is 𝑘, hence at least 𝑘 honest-but-curious agents
5

need to collude to infer the privacy of one specific agent. To prevent
Fig. 2. The baseline load profile and the total load profile under the proposed
privacy-preserving EV charging control protocol.

from this collusion, it is possible to increase the degree 𝑘 within the
limit of 𝑘 ≤ 𝑛 − 1. By increasing 𝑘, more honest-but-curious agents
are required to work together in order to infer the privacy, which is
more demanding for the honest-but-curious agents. Consequently, a
higher security level towards colluding honest-but-curious agents can
be achieved.

Note that when 𝑘 is at the maximum, i.e., 𝑘 = 𝑛 − 1, the received
shares from all 𝑛 agents are needed to reconstruct a secret. In this
scenario, all agents have to be honest-but-curious so as to retrieve the
secret. However, it is trivial to discuss the case where all agents are
honest-but-curious and trying to collaborate with each other, because
they share information with each other through collusion and secrets
do not exist.

3. Simulation results

In this section, we conduct valley-filling simulations with 20 EVs
for an apartment complex in the residential area. Assume this com-
plex is equipped with a 20 level-2 electric vehicle supply equipment
(maximum 6.6 kW). All EVs need to be charged to the desired levels
by the end of the valley-filling period. The net demand profile (system
demand minus wind and solar) was taken from California Independent
System Operator on 07/21/2021 and 07/22/2021 [29]. We scale the
demand profile by 200 to simulate the daily residential load profile of
the complex. The valley filling starts at 19:00 in the evening and ends
at 7:00 in the morning next day. Herein, we have in total 48 time slots
by sampling every 15 min within 12 h. The preserved decimal fraction
digits is set as 𝛿 = 3. The primal step sizes are uniformly chosen as
𝛾𝑖 = 0.01,∀𝑖 = 1,… , 𝑛, and the dual step size is 𝛽 = 1. For the 𝑖th EV, the
input 𝛼𝑖 is chosen to be 𝑖. Initial values of 𝒙𝑖 and 𝜆𝑖 are set to be zeros.
The maximum charging rates of all EVs are uniformly set as 𝑟𝑢 = 6.6
kW. The charging demands 𝑑𝑖’s of the EVs are randomly distributed in
[10, 20] kWh. The degree of all polynomials are set as 𝑘 = 3 and the
integer field is chosen as E = [0, 231 − 1).

Fig. 2 presents the valley-filling results where the baseline load is
flattened into the total load by controlling the EVs’ charging loads. The
final charging profiles of the 20 EVs are shown in Fig. 3. All the EVs
charge at the fastest rates ranging from 1 kW to 4.5 kW at around
00 ∶ 00 to fill the midnight deep valley. Without the loss of generality,
we present the messages sent by two EVs in Fig. 4, i.e., 𝑝𝓁1 (𝛼2) and 𝑣𝓁1
sent by EV 1, and 𝑝𝓁2 (𝛼1) and 𝑣𝓁2 sent by EV 2 within 100 iterations. As
can be readily observed, all the transmitted messages are randomized
to achieve privacy preservation. Fig. 5 gives the polynomials generated
by EV 1 that are of degree 3 and aim at randomizing and protecting
the first element of the decision variable 𝒙𝑖. In total 300 polynomials
𝑝𝓁1 (𝑧),𝓁 = 1,… , 300 are presented in the upper plot of Fig. 5, and the
polynomials from the first two iterations are shown in the lower plot
for clear presentation. All other coefficients, i.e., 𝑐11, 𝑐12, and 𝑐13, are
randomized and vary in each iteration as well.
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Fig. 3. Charging profiles of all EVs after 300 iterations during the valley-filling period.

Fig. 4. Messages sent from EV 1 and EV 2.

Fig. 5. Polynomials generated by EV 1 w.r.t the secret 𝒙1(1).

. Conclusion and future research

In this paper, we proposed a novel distributed SS-based privacy-
reserving EV charging control protocol. We integrated SS into PGA
o secure the privacy of the EVs where only secret shares were trans-
itted between EVs. Through theoretical security analyses, privacy
f all EVs are guaranteed against individual and colluding honest-
ut-curious agents as well as external eavesdroppers. The proposed
rotocol enjoys lower computing cost compared to HE-based methods
nd achieves scalability through its distributed setting. Simulation re-
ults of a valley-filling problem show the efficiency and efficacy of the
roposed privacy-preserving protocol. Some limitations of the proposed
6

method were identified, and those limitations motivate future research
directions including reducing the communication loads between EVs,
considering discrete local constraint sets that accommodate positive
lower bounded charging power, and targeting at broader grid-level
services besides valley filling.
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