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Abstract—This article presents a case study of using
self-cognizant prognostics for the management of three key areas
in a nursing home where a substantial proportion of power
consumption is spent in a typical nursing home environment.
Using a power-efficient monitoring system, our case study covers
smart lighting, air conditioning and meal preparation; which is
aimed at reducing the cost of operation through more efficient use
of energy with smart and assistive technologies. The results show
an overall enhancement of approximately 10% in energy
efficiency while offering a safe environment for elderly patients in
a smart nursing home.

Index Terms—Elderly care, energy efficiency, self-cognizant
prognostics, smart buildings

1. INTRODUCTION

HE cost of energy that include electricity and natural gas

contribute towards a substantial portion of the operational
cost for a typical nursing home. In particular, elderly patients
are more prone to variation in temperature that can potentially
trigger a number of medical conditions [1]. Temperature
regulation alone consumes a very substantial amount of power
all year round [2].

In the smart city context, optimizing energy efficiency is an
important aspect in many parts across the smart city
infrastructure, examples like transport system [3] and lighting
system [4]. The latter specifically tackles the implementation
challenges with interoperability and this is an important design
consideration in a smart nursing home where several
sub-systems work together to serve elderly residents. Another
important factor is an optimal balance between the cost and
value in elderly care [5]. The situation concerning nursing
homes differs from premises like regular homes and offices in
that simple energy saving mechanisms such as motion-based
lighting sensors are inappropriate due to safety reasons. In this
example, the lights must be switched on shortly before an
elderly person enters as an accident prevention measure.
Contrary to the simple motion-based sensors, lighting system
that yields energy saving must also provide elderly residents
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adequate illumination for accident prevention [6].

Addressing the issue associated with optimizing energy
efficiency in a nursing home such that the operating cost can be
lowered, this paper proposes a smart power management
system through a self-cognizant prognostic approach [7].
Optimizing power consumption entails on site assessment of
different parts of the facility during different times of the day as
well as any seasonal patterns throughout the year [8]. One of
the main objectives is to develop a system that minimizes
energy consumption without compromising on safety. The
paper is organized as follows: Section II provides an overview
of the problems associated with energy efficiency in a smart
nursing home setting followed by the design and
implementation of a self-cognizant power monitoring and
management system in Section III. Overall system operation
for power optimization is presented in Section IV and a
summary of contributions is concluded in Section V.

II. SMART NURSING HOME PROBLEM OVERVIEW

To analyze power usage in relation to the operating cost of a
nursing home, we look at the layout of a nursing home that
serves up to 90 elderly residents with a maximum staff to
resident ratio of approximately 1:4. Our main objective is to
enhance the operational efficiency of the nursing home by
optimizing power usage. Power consumption is analyzed by
using data-driven prognostics that integrates usage pattern
recognition with a spatial-temporal dynamic statistical model
for utilization prediction that takes into consideration seasonal
patterns such as heating and air-conditioning during winter and
summer months [9]. The proposed self-cognizant methodology
devises a machine-learning framework with the study of three
main areas across the nursing home. For the purpose of
identifying areas of substantial power usage, we link all special
assistive support apparatus to the smart lighting system where
apparatuses are usually used when the lights are also operating
at the same time [10].

In addition to illumination, air conditioning system that
entails both ambient temperature and indoor air quality (IAQ)
control is another area that use a substantial amount of
electricity. ~ The meal preparation sub-system is more
complicated than the other systems outlined above in that it
uses both electricity and natural gas as energy sources. For this
reason, the laundry sub-system is also linked to the meal
preparation system as dryers are also operated on natural gas.

Power utilization across the nursing home is made smarter

rom |IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIA.2022.3183957

through the development of a spatial-temporal dynamic
monitoring approach for the power usage modeling, with a
data-driven approach that learns power consumption, followed
by the implementation of a Bayesian analysis method for
self-updating of data-driven statistical model that dynamically
adjusts to any environmental or operational changes over time.
This takes into consideration variations such as ambient
environment and number of residents. Self-cognizant
prognostics methodology is designed to eliminate the
dependence on models derived from traditional smart meters
making power management adaptive to variations due to other
uncontrollable factors such as component aging and
degradation or variation of a given system’s operational
conditions that may cause power usage to be less efficient [11].

The power usage data across the nursing home from smart
meter is analyzed as prognostics data [12]. There is a strong
need for a major change in power consumption assessment as
well as identification of areas where wastage can be cut across
smart buildings, and prognostics that entails the real-time
prediction of power consumption. There is also a special need
to address power savings through switching off unused
apparatus without compromising safety. Thus, the proposed
prognostics-based power optimization scheme is a new
approach whose design goals include effective and efficient
smart control for various systems that continuously monitor
power consumption themselves, that are self-cognizant using
algorithms that fuse sensor data, analyze historical power usage
data from smart meters and generate false alarms for areas with
power wastage identified, correlate faults with relevant system
events and and predict surge of power usage in advance.

To optimize energy efficiency, a management system is
needed to monitor power usage of each of these systems as well
as the sensing network that gathers information about the
nursing home environment and co-ordinate the operation of

|

various systems.

III. SELF-COGNIZANT PROGNOSTIC POWER MANAGEMENT

Addressing the grand challenge of optimizing power usage
across a smart city, various artificial intelligence (AI) and big
data analytics techniques have been developed in making smart
grids more efficient [13]. To carry out power usage assessment
for subsequent optimization, the process entails several
complex steps in deriving analysis strategies as well as
implementation decisions [14]. The process also involves
statistical modeling and drawing inference from power usage
data through extraction of meaningful patterns from a set of
observations to suggest where within a particular building that
power usage can be reduced while at the same time not
compromising on health and safety.

As there are practical problems with handling a huge amount
of data points collected from our test lab and sites, using data
reduction methods as pre-processing is essential. In this
research, we develop a new data reduction method based on
density-based techniques to assess the energy consumption of
different areas within the building [15]. So in addition, we have
conduct assessment on energy demands from different sections
of the nursing home.

With the energy consumption of various sections profiled, it
is possible to apply a self-cognizant algorithm for energy
optimization through a prognostics approach. The power
management model is shown in Fig. 1 where the core parts
consist of a wireless sensing network (WSN) and input from the
smart power meters. The WSN gathers important information
about the location of nursing home residents, staff members as
well as areas that are vacant so that energy saving measures
such as dimming the lights and air conditioning can be adjusted
accordingly.
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Fig. 1 Self-cognizant prognostic power management model
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A. Lighting

Smart lighting control in a nursing home primarily concerns
balancing residents saving and minimizing the time of lights
being switched on when not needed. The lighting system
entails far more than motion sensors for lighting control. In the
nursing home environment where elderly residents often have
some form of visual impairments, ordinary motion sensors are
inadequate due to risk of falls [16]. Location tracking of
individual residents is accomplished using the active RFID
system presented in [17]. With profiles of each resident’s
health conditions, it is then possible to develop a motion
recognition system that caters for individual conditions such as
visual or mobility impairment. Using methodologies such as
Long Short-Term Memory Network (LSTM) and
Convolutional Neural Network (CNN) proposed in [18] can be
used for feature extraction from a lidar-based feature extraction
system. The objective of such system is to balance between
power consumption and illumination for individual elderly
resident. Based on different activities, that can include
different people in the same area within the nursing home as
well as the same elderly resident moving across different areas,
there are two modes of recognition as either cross-person or
cross-area recognition. These modes require that both the
training set and the testing set are mutually exclusive in the
dataset. One of the major implementation issue is that [19]
reported a substantial reduction in performance over the
cross-person recognition mode with its accuracy drops from
96% to 73% when a fifth person enters the system as the testing
set. To address this performance degradation issue, we
commence by analyzing the set of cross-person and cross-area
experimental data with a comparison of feature distributions in
two sets of experiments.

These feature distributions in cross-person and cross-session
experiments correspond to the outputs of the penultimate fully
connected layer that uses a pooling layer in conjunction with
each convolutional layer, which consists of contains 32 filters
of size (5,5) using a Parametric Rectified Linear Unit (PReLU)
deployed as in [20]. A classifier that possess generalized ability
such that feature extraction is carried out within a class since
the classifier exhibits similar feature distributions on both the
training as well as the test datasets. The classifier is unaffected
by the unknown source labels for feature representation. In
cross-person (session) recognition, the test dataset shows a
certain degree of divergence in part of the test features that
possesses similarities to the training set distribution.

An associative classification proposed in [21] provides
adequate generalized ability exhibits similar feature
distributions on the training and testing sets. The extracted
features are then collected in the class such that the intra-class
feature distributions for assessing the distributions under the
influence of unknown source samples in the training set can be
computed. This is an important assessment when the system
senses unregistered persons such as visitors. The results
indicate that both recognition modes have the intra-class
features distribution changes. The distribution changes of
intra-class features are fairly similar in both recognition modes
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such that the corresponding features extracted are divergent
while the classifier has no prior knowledge on the properties of
the source characteristics and convergence can be observed
such that features extracted from remaining samples as some
knowledge about the source characteristics are became known
to the classifier. Such observation indicates that the classifier
can learned the subject movement performing characteristics
that is embedded in the movement signal.

Dynamic motion analysis that detects gait and posture
information within a frame is processed through data
augmentation [22]. Range doppler map (RDM) is then used for
gait and posture recognition using lidar and acquires
discriminative information [23].  This map consists of a
sequence of range verses walking velocity plots, such that the
maps reveals the reflected energy from a person with different
intensity values, data augmentation is implemented from across
a frame sequence over timeyin the motion sequences, such that,
for example, when a person walks across the corridor the entire
map is composed of N frames. A resultant range doppler map
with its i-th frame is the sum of the first i raw map within the
sequence of maps, as shown in Eq. (1):

eRDM, = RDM, + RDM,_, i € [1,2, ..., N] (1)

where eRDMi is the i-th frame of the resultant range doppler
map that has been enhanced, and RDM:; is the i-th raw range
doppler map. Combining the posture signals’ characteristics
when a user walks, a non-coherent accumulation from frame to
frame is analyzed through the posture sequences. Such that the
complete trip made by the user that walks around the nursing
home contains a total of N frames of RDM, the i-th frame of
eRDM would be the sum of the first i number of raw RDMs.
The data augmentation mechanism preserves the walking
movement information from one frame to the next, such that it
reduces the impact of anomaly frames on movement analysis.
Increasing the frame index can yield more comprehensive
movement information within the resultant range doppler map
that in turn yields a higher degree of recognition confidence,
thereby increasing the accuracy of motion tracking for a given
person. Fig. 2 shows a sequence of RDMs that represents a
posture sequence over a certain period of time, the horizontal
axis of RDM represents the velocity at which the user walks at
the instance of a given frame being captured, whereas the
vertical axis represents the range. The different brightness in
RDM conveys information about the reflected energy with the
respective intensity values.
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Fig. 2 Range Doppler Maps (RDMs) sequence structure
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The second training phase helps focus on generalization by
utilizing data augmentation for feature representation [24].
Similarities in gait and posture between different persons can
be assessed within the intra-class variant movement. For
example, two different persons that use crutch on the right hand
side would exhibit very similar features within a class that
enhances identification accuracy. Focus on generalization error
is analyzed to identify the similarities among different
personalized samples, that utilize aggregated intra-class salient
features irrespective of the source of data. A motion sample
that corresponds to an associated category label and a source
label that represent the person labels in cross-person
recognition and the area labels in cross-area recognition, are
used to compute the focus on generalization error. These labels
act as precursors for the analysis of gait and posture. The
category labels are used for classification whereas the source
labels are used for error calculation. The feature distance
determines the convergent features within a class hence should
be minimized.

The difference between different persons, as inter-source
difference, as well as the difference in gait and posture, as in
intra-source differences will need to be computed to yield
feature convergence of the same category and source with an
intra-source error of Emra. Whereas Einer is computed to ensure
feature convergence of different sources within the same
category such that:

1 n . — 2
Elntra = ;Z 1|flci,si - fci,sll (2)
i=
3 1 _ = - 2
Elnter - Ez z ” [1 - 8(5k - 50) (fcj,sk - fcj‘s())] ”
ij k
3)

Error calculation is based on a total of n samples and the i-th
feature that contains a pair of category ¢ and source s labels.
These are used for computing the discriminative features so that
the frames can be enhanced to be fed into the recognition model
under the constraints of the focus on generalization error. The
main purpose of this recognition model as shown in Fig. 3 is for
extraction of generalized discriminative features with a
connected layer for feature extraction. It consists of two
convolutional layers and followed by pooling of each layer.

The outputs of the last two connected layers yield the focus on
generalization error.

In the initial trial run, a deep model with a classifier such that
the operation shown in Fig. 3 entails Conv 1 = 32 filters of size
(5;5) | stride =1, padding =2, Conv 2 = 64 filters of size (5; 5)
|stride=1;padding=2, Conv 3= 128 filters of size (5; 5) | stride
=1, padding =2 and the two FCs are 64 followed by 2.

B. Temperature and Indoor Air Quality Control

The ambient environment has a substantial impact on both
the health and safety of nursing home residents. In particular,
ambient temperature variation can have a substantial impact on
component durability as well as energy efficiency. Electronic
component life cycle loads can be significantly affected by
operating environmental conditions such as temperature,
humidity, vibration, shock, utilization duration and frequency
that make power usage of air conditioners particularly
unpredictable in certain parts of the nursing home.

In addition to temperature control, indoor air quality (IAQ) is
another important parameter that needs to be regulated. These
include carbon monoxide (CO) sensing and pollution control
that is particularly important for COPD patients [25]. The idea
of optimizing energy efficiency for both temperature and IAQ
control commences by analyzing the concentration of people in
a given section of the building [26]. Profiling section by
section within the nursing home building is accomplished by an
active RFID tagging system derived from [27], where patients
with washable tags embedded in smart clothing as well as tags
carried by staff members as well as visitors are tracked for the
purpose of their whereabouts. Such profiling of crowds within
a given section provides prognostics information about the
necessity for temperature and ventilation adjustments in
conjunction to fused data from in-room temperature and air
quality sensors.

In a typical RFID system deployment, there is at least one of

areader and multiple identification tags. Each tag is embedded
in the smart clothes conveys certain information about the
patient [28]. The likelihood of a tag collision increases when
the number of tags within a given area increases.
In the most primitive implementation, Framed Slotted Aloha
(FSA) reading process uses Markov chain to derive the optimal
frame length [29]. The frame length is dynamically adjusted
according to the number of remaining tags in Dynamic FSA.
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Fig. 3 Recognition model architecture
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Estimation of the number of remaining tags would allow the
length of the next frame to be adjusted accordingly.
Identification cycle is the process of identifying all the tags
within the RFID tag reader coverage area [30], which consists
of multiple frames. Upon successful identification of the first
frame, the initial tag population size is estimated from the
number of tags identified within the first frame.

The initial tag population size estimation algorithm is
computed between the first and the second frame through initial
tag population size estimation and subsequent removal of the
pseudo size value. The tags that have been successfully
identified are subtracted from the second frame. The current
frame length is optimized for the number of the remaining tags.
The process is repeated for subsequent frames until all tags
within range are successfully identified. = This linear
interpolation estimation algorithm solves a transcendental
equation, which yields a pseudo value that is subsequently
subtracted. In the case where the number of estimated tags far
exceeds that of the number of actual tags, ON + 1, i.e. length of
the next frame, will be larger than the actual number of tags
within the area. Adjustment of frame length will thus result in
the increase in idle slots, thereby reduces the identification
efficiency. Conversely, if the number of estimated tags is much
smaller than the number of actual tags, O becomes smaller than
the number of tags to be identified, thereby increases of
probability of a tag collision.

Upon completion of the first frame, the linear interpolation
algorithm is utilized to solve the nonlinear transcendental
equation to estimate the initial tag population size according to
the number of successfully read slots. The number of
remaining tags can therefore be estimated through subtracting
the number of tags successfully identified within the frame.
The length of the next frame can then be adaptively adjusted for
enhanced identification. The length of the subsequent frame is
identical to the number of remaining tags for global optimal
identification through the following process:

Step 1: Broadcast command Query(Q) as the reader
commences frame #1 of length Q;;

Step 2: Upon reception of command Query(Q), each tag
generates a random number RC;, in response to the reader;

Step 3: Broadcast command ReadID as a slot commences at
the reader;

Step 4: Upon reception of command ReadID, each tag
subtracts RC;by 1. Tags with RC; = 0 respond to reader while
other tags (RC; # 0) wait for the next slot;

Step 5: The reader reads with slot /dN, when only one tag
responds to reader;

Step 6: The reader estimates the number of initial tags n
from IdN.

A simple state machine for tag state transition is shown in Fig. 4
that consists of three states with accompanying conversion
logic [31]. In the Active state, a tag will enter the Period
Silence state when it is successfully read by the reader.
Conversely, a tag enters the Frame Silence state upon a
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collision while responding to the reader.

silence
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Fig. 4 Tag state transition

The probability that r tags occupy one slot is with number of n
tags being identified based on a uniform distribution such that:

(1Y 1"
PO,n,r)=C, x(—j x(l——)
0 0 @

Further, the probability that only one tag being successfully
read is:

1.1
on1), =—(1-
p(@:n.1) Q(

_)n—l
2 ®)
The expected value for all subsequent (03, ., tags with O,
successful slots out of O slots is thus:
n 1 n-1 1 n-1
0, ==(1-—)"Q=n(1-=)
0" 0 0 ©

The estimated value 7 can be computed by solving Eq. (6)
from substituting successful slots /dN from Q. after the first
frame such that:

|-
) =x(1-—)""

0 @)
Consider /dN as a function of integral value x, i.e. f{x)=IdN.

This yields A =round(x) as Eq. (7) is a continuous function of

x between x; and x,, €(0,00), such that:

f(xs,/) _ f(xS,u)

Xs — X5,

Xs = Xsu

®)

_ f (xs,u )(xS,l X5y )
f(xs,l) _f(xs,u)

xS - xS,u

©

With either xs; or x5, being substituted for xs under repetitive
iteration, solving Eq. (10) will result in a solution within the
interval between xs; and xs,. The interpolation algorithm will
proceed as follows:

Step 1:  Determine lower bound xs; and upper bound xs,:

A1) <flxs) <AQ), set initial value as xg,~=1 and xs5,=Q.
Step 2:  Initial estimation
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_ f(xs,u )(xs,l - xS,u)
Xg =Xsu —
' f (xs,/)_f (‘xS,u)

Step 3:  Compute and compare function f{x) so that:
If [f(xs;) —IdN].[f (xs) — IdN] < 0, x5, = xg;
Then repeat Step 2;

Else [f(xs,) —IdN].[f(xs) —IdN] <O ,
proceed to Step 4.

Step4: Determine completion: If [f{xs,)-IdN] * [ fixs,)-IdN]
=0, or |xs; — xsy| < &rp, terminate the iteration. With epp,
being the threshold to be determined by the required accuracy.

The simulation results of linear interpolation are listed in
Table I. Two solutions exist for each Q., one of which is a
pseudo size value that can be eliminated. The maximum
relative-error is 1.29% and the maximum number of iterations
are 12. When #=1000, the two solutions are 1000 and 1002

xS,l = xS )

TABLE I

which yields a 0.2% error under a maximum of 2 iterations.
These simulation results are derived from Q. as the function
value. Simulation result on iterations of the initial tag
population size computed using linear interpolation upon
completion of the first frame by substituting IdN for Q. is
shown in Table II. It shows a relative error of for first test is
7.2%, the error is significantly reduced to below 1.5% for all
subsequent tests when number of iterations does not exceed 10.

There are two solutions for each IdN when a significant
difference between n and Q exists. One of which is a pseudo
size value that needs to be removed. Based on the simulation
results of Tables I and II, two solutions, nsand 73, are obtained
after the first frame. Where nyis less than the optimal value and
np is greater than the optimal value.

LINEAR INTERPOLATION SIMULATION RESULTS

~
Iteration sequence and corresponding approximation solution 71

n Q LoS AE RE 1T
1 2 3 4 5 6 7 8 9 10 11 12
A 246 116 102 101 101  _ _ _ _ _ _ - 1 1% 5
N
10091 - 7783 6151 5021 4326 3963 3804 3741 3719 3710 _ _ Ps ps 11
B
A, 728 554 466 427 410 404 400  _ _ _ _ - 0 0% 7
400 268
A, 3450 1948 2035 2020  — _ _ _ _ _ _ - ps ps 4
A, 945 895 851 815 785 763 746 733 724 717 713 709 g  129% 12
700 348
A, 1491 1305 1366 1372 _ _ _ _ _ _ _ - Ps ps 4
A, 1000 1000 _ _ _ _ _ _ _ _ - 0 0% 2
1000 368
Ay 1002 — - - - - - - - - — - 5 02% 1
h, 92 926 893 84 839 819 82 78 779 771 765 760  pg ps 12
TABLE II
INITIAL TAG POPULATION SIZE ESTIMATION
n 1N LoS Iteration sequence and corresponding solution 7 AE RE I
1 2 3 4 5 7 8 9 10
Aig 243 115 101 99 99 - - - - - 1 1% 5
100 90 .
My 7808 6188 5059 4359 3990 3825 3759 3735 3726 3723  PS PS 10
Aig 728 554 466 427 410 404 401 - - - 1 023% 7
400 268 .
Ay 3450 1948 2035 2020  — - - - - - PS PS 4
Aig 932 870 818 777 746 722 706 694 686 68l 9  1.29% 10
700 343 .
iy 1614 1330 1413 1422  — - - - - - PS PS 4
Ty 1026 1049 1064 1072  — - - — - - 72 72% 4
1000 368 . .
B 1000 1000 — - - - - - — - 0 0% 2
Al 964 931 900 873 849 89 813 800 790 781  PS PS 10

The reader broadcasts command Query(Qs) to all tags. Tag;
(i=1,2,..., n) generates a random number RS;e[1, QOs] as the
designated slot to which it sends data back to the reader. Tag;
also generates a random number PS; of length u as the
substitution for the ID code to minimize the time overheads.
After sending the Query(Qs) command, the reader sends the
command NextSlot to all tags slot by slot. Upon receiving the
NextSlot command, Tag; subtracts 1 from RS; until RS; = 0,
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indicating that Tag; responds to the reader. Tags with RS;s > 0
will waits for the next NextSlot command. The reader counts
the number of successful tags, NS, according to tag response.
The same methodology is applied for processing the Query(Qp)
command to obtain the number of successful tags NB. npis
regarded as a pseudo size value when NS>NB.

C. Meal Preparation
Meal preparation that caters for both nursing home residents
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and staff members consume a substantial amount of energy.
This sub-system mainly covers the catering facility and also
includes water boilers. The dietary and softness requirements
are particularly problematic in the nursing home environment
where certain patients might have a wide range of issues such as
chewing and risk of chocking [32].

This part on energy consumption for meal preparation is
simpler than the previous two parts discussed due to the
fixed-time daily schedule. Traditional energy usage prediction
methods for commercial kitchens assume that cooking is
carried out with a fixed daily schedule [33], such usage
prediction models would have would have substantial fallacies
due to the varying needs of meals among elderly patients in a
nursing home environment [34]. In particular, the schedule for
meal preparations is known to not be constants even though a
daily pattern exists, like there are breakfast, lunch, tea and
supper that make up for four times daily. Also, because the
models require a significant amount of data associated with the
type of meals, they tend to be outdated as soon as they are
developed. In addition, none of the energy usage prediction
methods identify what types of special meals are required to
cater for patients with eating problem due to various health
problems or mechanisms for balancing dietary needs, nor do
they include any uncertainty analysis that could potentially lead
to a significant wastage of both food and energy [35].
Furthermore, they all provide completely different results for
any given cooking facility subject to given conditions. An
alternative prognostics-based approach for optimizing energy
consumption in a smart nursing home is therefore proposed.

Prognostics approach utilizes the idea that the energy
consumption could be determined and that the types of meals
needed for both patients and staff members of the nursing home
could be predicted on an in-situ session-level basis using
known data about individual health requirements. The model is
to use in-situ health and daily activity data to predict the type of
meals needed by an individual person (or, in some cases, the
number of additional meals required). Modeling and drawing
inference from fulfilling meal requirements requires extraction
of meaningful information from a set of observations about
patients as well as staff members. To achieve this goal, our
prognostics algorithm utilizes data reduction methods as
pre-processing to categorize mainly into regular and soft meals,
where the latter is more uniform in terms of the associated
energy consumption for preparation.

Principal Component Analysis (PCA) is most appropriately
used for representing data after dimension reduction [36]. In
classifying meals to be prepared for a particular session, the
support vector machines (SVM) is well-known for its
classification ability that relies on preprocessing the data in a
high dimension. As a result, SVM tends to be less prone to
problems of overfitting than some other classifiers [37]. SVMs
are especially suited to analyze data with unknown or
non-linear distributions as a supervised technique that is useful
when patients’ health and daily activities information are
available.

Anomaly detection is other key task in prognostics for
energy efficiency enhancement in meal preparation, such
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anomaly addresses the fluctuations in meal demands for special
occasions such as a reduction in number of patients present or
additional demands are needed for visitors. While the
classification task focuses on minimizing the misclassification
of various discriminating states, the anomaly detection task
focuses on minimizing the time-delay of detecting such
variations subject to a controllable false alarm, implying that
the variations in meals demand may not be significant. We
make use of statistical process control (SPC) methods, being
one of the widely used techniques for process monitoring and
change detection in manufacturing applications [38], to detect
the occurrence of special cause variations. The control chart of
SPC is useful to prognostics implementation in that it is able to
monitor in-situ the performance of the concerned components
over time.

IV. IMPLEMENTATION AND ANALYSIS

The baseline of energy consumption is set as the three
consecutive months of the previous year without any power
management scheme deployed. Historical data also provides
important insights into profiling the energy usage of different
sub-systems within the smart nursing home.

This  self-cognizant approach applies multivariate
monitoring techniques to the extracted features that include
projections, transformations, and metrics statistics such as
centroids. It takes into consideration the correlations among
feature parameters to detect changes in energy consumption
efficiently and accurately. Changes in metrics that are
indicative of any wastage or otherwise can be more efficiently
used are the precursors to adjusting certain parameters within
the nursing home power system and will be used to make usage
decisions pertaining to the energy consumption in real time.

Time series data of the extracted features will be modeled
with forecasting methodologies to make future decisions
regarding the optimal usage of different apparatus in order to
yield enhanced energy efficiency across the nursing home.
This inference framework is developed for classification and
regression of the metrics data to moderate the prognostic and
energy usage predictions in line with posterior distributions that
will assign overly high confidence to the estimated class
memberships of the feature patterns. Forecasting models for
energy usage is also developed for prediction of multivariate
time series data with strong correlations and periodic
systematic patterns. The prognostic accuracy is estimated
using both simulated from experimental test data and known
abrupt increase in power usage as well as actual field data read
from meter. Features of scientific and practical interest include
the presence of sudden changes in usage pattern and
intermittent wastage, highly correlated parameters, and the
masking of wastage due to the large multivariate and
multidimensional characteristics of the data. The tree model
shown in Fig. 5 is computationally feasible to include capable
of including many possible trees based on critical variables as
well as to provide better prediction accuracy to detect and
reduce power wastage. This data-driven tree-based approach is
utilized as a mechanism for feature selection, failure mode
discrimination, and fitting predictive power usage models for
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self-cognizant prognostics.
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Fig. 5 Data-driven tree-based automatic power wastage modeling strategy

One of the important areas of energy efficiency optimization
is a wireless sensing network (WSN) that carries out
environmental monitoring. Both wireless sensors that serve
varying functions from simple ambient temperature, air quality,
to more sophisticated patient tracking for lighting control are
coupled with fixed smart meters to fuse data for prognostics.
The network is designed from our earlier work in [39] with the
Reed-Solomon based coding scheme developed in [40]. To
optimize its efficiency, a wake-up sequence is sent to evaluate
the minimum power P,; for establishing connection. Its
sensitivity Ps is:

Py =P, (1-R? (10)

Where R is the voltage reflection coefficient, such that the
sensitivity is derived from features detected from the function
of the resistance over power [41]. Calibration is referenced
with the Short Open and Load (SO) standard [42]. As
communication commences, the resistance drops substantially
at the power level. The output power P, that measures the
chip impedance’s real and imaginary parts having a 0.01 dBm
step size is plotted in Fig 6, a power sweep in the range of -20 to
10 dBm indicates that it would require a matching network with
a reactance of 40 Q) in order to compensate for the capacitance
of the RFID chip. Finally, the average power saving is plotted
in Fig. 7 over the three-month trial period that yields

approximately 10% of power consumption reduction.
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Fig. 6 Measured impedance of the RFID chip as a function of Pou
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V. CONCLUSIONS

The scope of optimizing power utilization efficiency is
becoming an increasingly important topic given the fact that
scarcity of energy is an important part of sustainable smart city
development. Moreover, the cost of energy resources has risen
very substantially since the beginning of year 2022, such that
business operators have all the incentives to increase energy
efficiency in their premises. Our work presents a
self-cognizant prognostics approach that has yielded an average
of approximately 10% saving in power consumption for a smart
nursing home. We have presented a power monitoring and
management system to dynamically adjust relevant parameters
to save power without compromising on nursing home
residents’ health and safety. This would result in considerable
cost savings for nursing home operators.

The utilization of self-cognizant prognostics can have a
potential of standardizing the way of enhancing energy
efficiency in various types of buildings across a smart city. The
design and implementation for autonomous commercial power
monitoring and management systems will be increasingly
important when buildings get smarter and that such system will
be integrated into different parts of a business. In our particular
case study, we have investigated the effectiveness of the system
in three separate areas within a nursing home that are known to
be consume a substantial amount of energy, namely lighting, air
conditioning and air quality regulation, as well as for meal
preparation, with the latter resulting in a somewhat less
substantial improvement in power efficiency. The findings in
our work show that the development smart power monitoring
and management systems are still at a fairly early phase with a
three-month trial, yet the improvement in power utilization
efficiency yielded is set to improve the way smart buildings can
be made more energy efficient in the foreseeable future.
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