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Abstract—This article presents a case study of using 

self-cognizant prognostics for the management of three key areas 
in a nursing home where a substantial proportion of power 
consumption is spent in a typical nursing home environment.  
Using a power-efficient monitoring system, our case study covers 
smart lighting, air conditioning and meal preparation; which is 
aimed at reducing the cost of operation through more efficient use 
of energy with smart and assistive technologies.  The results show 
an overall enhancement of approximately 10% in energy 
efficiency while offering a safe environment for elderly patients in 
a smart nursing home. 
 

Index Terms—Elderly care, energy efficiency, self-cognizant 
prognostics, smart buildings 
 

I. INTRODUCTION 

HE cost of energy that include electricity and natural gas 
contribute towards a substantial portion of the operational 

cost for a typical nursing home.  In particular, elderly patients 
are more prone to variation in temperature that can potentially 
trigger a number of medical conditions [1].  Temperature 
regulation alone consumes a very substantial amount of power 
all year round [2]. 
 In the smart city context, optimizing energy efficiency is an 
important aspect in many parts across the smart city 
infrastructure, examples like transport system [3] and lighting 
system [4].  The latter specifically tackles the implementation 
challenges with interoperability and this is an important design 
consideration in a smart nursing home where several 
sub-systems work together to serve elderly residents.  Another 
important factor is an optimal balance between the cost and 
value in elderly care [5].  The situation concerning nursing 
homes differs from premises like regular homes and offices in 
that simple energy saving mechanisms such as motion-based 
lighting sensors are inappropriate due to safety reasons.  In this 
example, the lights must be switched on shortly before an 
elderly person enters as an accident prevention measure.  
Contrary to the simple motion-based sensors, lighting system 
that yields energy saving must also provide elderly residents 
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adequate illumination for accident prevention [6]. 
Addressing the issue associated with optimizing energy 

efficiency in a nursing home such that the operating cost can be 
lowered, this paper proposes a smart power management 
system through a self-cognizant prognostic approach [7].  
Optimizing power consumption entails on site assessment of 
different parts of the facility during different times of the day as 
well as any seasonal patterns throughout the year [8].  One of 
the main objectives is to develop a system that minimizes 
energy consumption without compromising on safety.  The 
paper is organized as follows: Section II provides an overview 
of the problems associated with energy efficiency in a smart 
nursing home setting followed by the design and 
implementation of a self-cognizant power monitoring and 
management system in Section III.  Overall system operation 
for power optimization is presented in Section IV and a 
summary of contributions is concluded in Section V. 

II. SMART NURSING HOME PROBLEM OVERVIEW 

To analyze power usage in relation to the operating cost of a 
nursing home, we look at the layout of a nursing home that 
serves up to 90 elderly residents with a maximum staff to 
resident ratio of approximately 1:4.  Our main objective is to 
enhance the operational efficiency of the nursing home by 
optimizing power usage.  Power consumption is analyzed by 
using data-driven prognostics that integrates usage pattern 
recognition with a spatial-temporal dynamic statistical model 
for utilization prediction that takes into consideration seasonal 
patterns such as heating and air-conditioning during winter and 
summer months [9].  The proposed self-cognizant methodology 
devises a machine-learning framework with the study of three 
main areas across the nursing home. For the purpose of 
identifying areas of substantial power usage, we link all special 
assistive support apparatus to the smart lighting system where 
apparatuses are usually used when the lights are also operating 
at the same time [10]. 

In addition to illumination, air conditioning system that 
entails both ambient temperature and indoor air quality (IAQ) 
control is another area that use a substantial amount of 
electricity.  The meal preparation sub-system is more 
complicated than the other systems outlined above in that it 
uses both electricity and natural gas as energy sources.  For this 
reason, the laundry sub-system is also linked to the meal 
preparation system as dryers are also operated on natural gas. 
 Power utilization across the nursing home is made smarter 
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through the development of a spatial-temporal dynamic 
monitoring approach for the power usage modeling, with a 
data-driven approach that learns power consumption, followed 
by the implementation of a Bayesian analysis method for 
self-updating of data-driven statistical model that dynamically 
adjusts to any environmental or operational changes over time.  
This takes into consideration variations such as ambient 
environment and number of residents.   Self-cognizant 
prognostics methodology is designed to eliminate the 
dependence on models derived from traditional smart meters 
making power management adaptive to variations due to other 
uncontrollable factors such as component aging and 
degradation or variation of a given system’s operational 
conditions that may cause power usage to be less efficient [11]. 

The power usage data across the nursing home from smart 
meter is analyzed as prognostics data [12].  There is a strong 
need for a major change in power consumption assessment as 
well as identification of areas where wastage can be cut across 
smart buildings, and prognostics that entails the real-time 
prediction of power consumption.  There is also a special need 
to address power savings through switching off unused 
apparatus without compromising safety.  Thus, the proposed 
prognostics-based power optimization scheme is a new 
approach whose design goals include effective and efficient 
smart control for various systems that continuously monitor 
power consumption themselves, that are self-cognizant using 
algorithms that fuse sensor data, analyze historical power usage 
data from smart meters and generate false alarms for areas with 
power wastage identified, correlate faults with relevant system 
events and and predict surge of power usage in advance. 

To optimize energy efficiency, a management system is 
needed to monitor power usage of each of these systems as well 
as the sensing network that gathers information about the 
nursing home environment and co-ordinate the operation of 

various systems.  

III. SELF-COGNIZANT PROGNOSTIC POWER MANAGEMENT 

Addressing the grand challenge of optimizing power usage 
across a smart city, various artificial intelligence (AI) and big 
data analytics techniques have been developed in making smart 
grids more efficient [13].  To carry out power usage assessment 
for subsequent optimization, the process entails several 
complex steps in deriving analysis strategies as well as 
implementation decisions [14]. The process also involves 
statistical modeling and drawing inference from power usage 
data through extraction of meaningful patterns from a set of 
observations to suggest where within a particular building that 
power usage can be reduced while at the same time not 
compromising on health and safety. 

As there are practical problems with handling a huge amount 
of data points collected from our test lab and sites, using data 
reduction methods as pre-processing is essential.  In this 
research, we develop a new data reduction method based on 
density-based techniques to assess the energy consumption of 
different areas within the building [15].  So in addition, we have 
conduct assessment on energy demands from different sections 
of the nursing home. 

With the energy consumption of various sections profiled, it 
is possible to apply a self-cognizant algorithm for energy 
optimization through a prognostics approach.  The power 
management model is shown in Fig. 1 where the core parts 
consist of a wireless sensing network (WSN) and input from the 
smart power meters.  The WSN gathers important information 
about the location of nursing home residents, staff members as 
well as areas that are vacant so that energy saving measures 
such as dimming the lights and air conditioning can be adjusted 
accordingly. 

Fig. 1 Self-cognizant prognostic power management model 
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A. Lighting 
Smart lighting control in a nursing home primarily concerns 

balancing residents saving and minimizing the time of lights 
being switched on when not needed.  The lighting system 
entails far more than motion sensors for lighting control.  In the 
nursing home environment where elderly residents often have 
some form of visual impairments, ordinary motion sensors are 
inadequate due to risk of falls [16].  Location tracking of 
individual residents is accomplished using the active RFID 
system presented in [17].  With profiles of each resident’s 
health conditions, it is then possible to develop a motion 
recognition system that caters for individual conditions such as 
visual or mobility impairment.  Using methodologies such as 
Long Short-Term Memory Network (LSTM) and 
Convolutional Neural Network (CNN) proposed in [18] can be 
used for feature extraction from a lidar-based feature extraction 
system.  The objective of such system is to balance between 
power consumption and illumination for individual elderly 
resident.  Based on different activities, that can include 
different people in the same area within the nursing home as 
well as the same elderly resident moving across different areas, 
there are two modes of recognition as either cross-person or 
cross-area recognition.  These modes require that both the 
training set and the testing set are mutually exclusive in the 
dataset.  One of the major implementation issue is that [19] 
reported a substantial reduction in performance over the 
cross-person recognition mode with its accuracy drops from 
96% to 73% when a fifth person enters the system as the testing 
set.  To address this performance degradation issue, we 
commence by analyzing the set of cross-person and cross-area 
experimental data with a comparison of feature distributions in 
two sets of experiments.  

These feature distributions in cross-person and cross-session 
experiments correspond to the outputs of the penultimate fully 
connected layer that uses a pooling layer in conjunction with 
each convolutional layer, which consists of contains 32 filters 
of size (5,5) using a Parametric Rectified Linear Unit (PReLU) 
deployed as in [20].  A classifier that possess generalized ability 
such that feature extraction is carried out within a class since 
the classifier exhibits similar feature distributions on both the 
training as well as the test datasets.  The classifier is unaffected 
by the unknown source labels for feature representation.  In 
cross-person (session) recognition, the test dataset shows a 
certain degree of divergence in part of the test features that 
possesses similarities to the training set distribution. 

 An associative classification proposed in [21] provides 
adequate generalized ability exhibits similar feature 
distributions on the training and testing sets.  The extracted 
features are then collected in the class such that the intra-class 
feature distributions for assessing the distributions under the 
influence of unknown source samples in the training set can be 
computed.  This is an important assessment when the system 
senses unregistered persons such as visitors.  The results 
indicate that both recognition modes have the intra-class 
features distribution changes.  The distribution changes of 
intra-class features are fairly similar in both recognition modes 

such that the corresponding features extracted are divergent 
while the classifier has no prior knowledge on the properties of 
the source characteristics and convergence can be observed 
such that features extracted from remaining samples as some 
knowledge about the source characteristics are became known 
to the classifier.  Such observation indicates that the classifier 
can learned the subject movement performing characteristics 
that is embedded in the movement signal. 

Dynamic motion analysis that detects gait and posture 
information within a frame is processed through data 
augmentation [22].  Range doppler map (RDM) is then used for 
gait and posture recognition using lidar and acquires 
discriminative information [23].   This map consists of a 
sequence of range verses walking velocity plots, such that the 
maps reveals the reflected energy from a person with different 
intensity values, data augmentation is implemented from across 
a frame sequence over timef in the motion sequences, such that, 
for example, when a person walks across the corridor the entire 
map is composed of N frames.  A resultant range doppler map 
with its i-th frame is the sum of the first i raw map within the 
sequence of maps, as shown in Eq. (1): 

 

𝑒𝑅𝐷𝑀𝑖 ൌ 𝑅𝐷𝑀𝑖 ൅ 𝑅𝐷𝑀𝑖െ1  𝑖 ∈ ሾ1, 2, … , 𝑁ሿ     (1) 
 
where eRDMi is the i-th frame of the resultant range doppler 
map that has been enhanced, and RDMi is the i-th raw range 
doppler map.  Combining the posture signals’ characteristics 
when a user walks, a non-coherent accumulation from frame to 
frame is analyzed through the posture sequences.  Such that the 
complete trip made by the user that walks around the nursing 
home contains a total of N frames of RDM, the i-th frame of 
eRDM would be the sum of the first i number of raw RDMs.  
The data augmentation mechanism preserves the walking 
movement information from one frame to the next, such that it 
reduces the impact of anomaly frames on movement analysis.  
Increasing the frame index can yield more comprehensive 
movement information within the resultant range doppler map 
that in turn yields a higher degree of recognition confidence, 
thereby increasing the accuracy of motion tracking for a given 
person.   Fig. 2 shows a sequence of RDMs that represents a 
posture sequence over a certain period of time, the horizontal 
axis of RDM represents the velocity at which the user walks at 
the instance of a given frame being captured, whereas the 
vertical axis represents the range. The different brightness in 
RDM conveys information about the reflected energy with the 
respective intensity values. 
 

 
 
Fig. 2 Range Doppler Maps (RDMs) sequence structure 
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 The second training phase helps focus on generalization by 
utilizing data augmentation for feature representation [24].  
Similarities in gait and posture between different persons can 
be assessed within the intra-class variant movement.  For 
example, two different persons that use crutch on the right hand 
side would exhibit very similar features within a class that 
enhances identification accuracy.  Focus on generalization error 
is analyzed to identify the similarities among different 
personalized samples, that utilize aggregated intra-class salient 
features irrespective of the source of data.  A motion sample 
that corresponds to an associated category label and a source 
label that represent the person labels in cross-person 
recognition and the area labels in cross-area recognition, are 
used to compute the focus on generalization error.  These labels 
act as precursors for the analysis of gait and posture. The 
category labels are used for classification whereas the source 
labels are used for error calculation.  The feature distance 
determines the convergent features within a class hence should 
be minimized. 
 The difference between different persons, as inter-source 
difference, as well as the difference in gait and posture, as in 
intra-source differences will need to be computed to yield 
feature convergence of the same category and source with an 
intra-source error of EIntra. Whereas EInter is computed to ensure 
feature convergence of different sources within the same 
category such that: 
 

𝐸𝐼𝑛𝑡𝑟𝑎 ൌ
1

2
෍ ห𝑓𝑐𝑖,𝑠𝑖
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                      (3) 
 
Error calculation is based on a total of n samples and the i-th 
feature that contains a pair of category c and source s labels.  
These are used for computing the discriminative features so that 
the frames can be enhanced to be fed into the recognition model 
under the constraints of the focus on generalization error.  The 
main purpose of this recognition model as shown in Fig. 3 is for 
extraction of generalized discriminative features with a 
connected layer for feature extraction.  It consists of two 
convolutional layers and followed by pooling of each layer.  

The outputs of the last two connected layers yield the focus on 
generalization error. 

 In the initial trial run, a deep model with a classifier such that 
the operation shown in Fig. 3 entails Conv 1 = 32 filters of size 
(5; 5) | stride =1; padding =2, Conv 2 = 64 filters of size (5; 5) 
|stride=1;padding=2, Conv 3= 128 filters of size (5; 5) | stride 
=1; padding =2 and the two FCs are 64 followed by 2.   

B. Temperature and Indoor Air Quality Control 
The ambient environment has a substantial impact on both 

the health and safety of nursing home residents.  In particular, 
ambient temperature variation can have a substantial impact on 
component durability as well as energy efficiency.   Electronic 
component life cycle loads can be significantly affected by 
operating environmental conditions such as temperature, 
humidity, vibration, shock, utilization duration and frequency 
that make power usage of air conditioners particularly 
unpredictable in certain parts of the nursing home. 

In addition to temperature control, indoor air quality (IAQ) is 
another important parameter that needs to be regulated.  These 
include carbon monoxide (CO) sensing and pollution control 
that is particularly important for COPD patients [25].  The idea 
of optimizing energy efficiency for both temperature and IAQ 
control commences by analyzing the concentration of people in 
a given section of the building [26].  Profiling section by 
section within the nursing home building is accomplished by an 
active RFID tagging system derived from [27], where patients 
with washable tags embedded in smart clothing as well as tags 
carried by staff members as well as visitors are tracked for the 
purpose of their whereabouts.  Such profiling of crowds within 
a given section provides prognostics information about the 
necessity for temperature and ventilation adjustments in 
conjunction to fused data from in-room temperature and air 
quality sensors. 

In a typical RFID system deployment, there is at least one of 
a reader and multiple identification tags.   Each tag is embedded 
in the smart clothes conveys certain information about the 
patient [28].   The likelihood of a tag collision increases when 
the number of tags within a given area increases. 
In the most primitive implementation, Framed Slotted Aloha 
(FSA) reading process uses Markov chain to derive the optimal 
frame length [29].  The frame length is dynamically adjusted 
according to the number of remaining tags in Dynamic FSA.   

 
 

 
 
Fig. 3 Recognition model architecture 
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Estimation of the number of remaining tags would allow the 
length of the next frame to be adjusted accordingly.  
Identification cycle is the process of identifying all the tags 
within the RFID tag reader coverage area [30], which consists 
of multiple frames.  Upon successful identification of the first 
frame, the initial tag population size is estimated from the 
number of tags identified within the first frame. 

The initial tag population size estimation algorithm is 
computed between the first and the second frame through initial 
tag population size estimation and subsequent removal of the 
pseudo size value.  The tags that have been successfully 
identified are subtracted from the second frame.  The current 
frame length is optimized for the number of the remaining tags.  
The process is repeated for subsequent frames until all tags 
within range are successfully identified.  This linear 
interpolation estimation algorithm solves a transcendental 
equation, which yields a pseudo value that is subsequently 
subtracted.  In the case where the number of estimated tags far 
exceeds that of the number of actual tags, QN + 1, i.e. length of 
the next frame, will be larger than the actual number of tags 
within the area.  Adjustment of frame length will thus result in 
the increase in idle slots, thereby reduces the identification 
efficiency.  Conversely, if the number of estimated tags is much 
smaller than the number of actual tags, Q becomes smaller than 
the number of tags to be identified, thereby increases of 
probability of a tag collision. 
 Upon completion of the first frame, the linear interpolation 
algorithm is utilized to solve the nonlinear transcendental 
equation to estimate the initial tag population size   according to 
the number of successfully read slots.  The number of 
remaining tags can therefore be estimated through subtracting 
the number of tags successfully identified within the frame.  
The length of the next frame can then be adaptively adjusted for 
enhanced identification.  The length of the subsequent frame is 
identical to the number of remaining tags for global optimal 
identification through the following process: 
 

Step 1: Broadcast command Query(Q) as the reader 
commences frame #1 of length Q1; 

Step 2: Upon reception of command Query(Q), each tag 
generates a random number RCi, in response to the reader;  

Step 3: Broadcast command ReadID as a slot commences at 
the reader; 

Step 4: Upon reception of command ReadID, each tag 
subtracts RCi by 1.  Tags with RCi = 0 respond to reader while 
other tags (RCi ≠ 0) wait for the next slot; 

Step 5: The reader reads with slot IdN, when only one tag 
responds to reader; 

    Step 6: The reader estimates the number of initial tags n̂  
from IdN. 
 
A simple state machine for tag state transition is shown in Fig. 4 
that consists of three states with accompanying conversion 
logic [31].  In the Active state, a tag will enter the Period 
Silence state when it is successfully read by the reader. 
Conversely, a tag enters the Frame Silence state upon a 

collision while responding to the reader. 

 
 
Fig. 4 Tag state transition 

 
 
The probability that r tags occupy one slot is with number of n 
tags being identified based on a uniform distribution such that: 
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Further, the probability that only one tag being successfully 
read is: 
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The expected value for all subsequent Q2,3,...,n  tags with Qe 
successful slots out of Q slots is thus: 
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e
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The estimated value n̂  can be computed by solving Eq. (6) 
from substituting successful slots IdN from Qe after the first 
frame such that: 

11
( ) (1 )xf x x

Q
 

                   (7) 

Consider IdN as a function of integral value x, i.e. f(x)=IdN.  

This yields ˆ ( )n round x  as Eq. (7) is a continuous function of 
x between xl and xu (0,), such that: 
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With either xS,l or xS,u being substituted for xS under repetitive 
iteration, solving Eq. (10) will result in a solution within the 
interval between xS,l and xS,u.  The interpolation algorithm will 
proceed as follows: 
 

Step 1:  Determine lower bound xS,l and upper bound xS,u: 
f(1) < f(xS) < f(Q), set initial value as xS,l=1 and xS,u=Q. 

Step 2:  Initial estimation  
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Step 3:  Compute and compare function f(x) so that: 
If ሾ𝑓ሺ𝑥௦,௟ሻ െ 𝐼𝑑𝑁ሿ. ሾ𝑓ሺ𝑥௦ሻ െ 𝐼𝑑𝑁ሿ ൏ 0, 𝑥௦,௨ ൌ 𝑥௦; 
Then repeat Step 2; 
Else ሾ𝑓ሺ𝑥௦,௨ሻ െ 𝐼𝑑𝑁ሿ. ሾ𝑓ሺ𝑥௦ሻ െ 𝐼𝑑𝑁ሿ ൏ 0 , 𝑥௦,௟ ൌ 𝑥௦ , 

proceed to Step 4. 
Step4:  Determine completion: If [f(xS,u)-IdN]•[ f(xS,l)-IdN] 

=0, or |𝑥௦,௟ െ 𝑥௦,௨| ൏ 𝜀்௛ , terminate the iteration. With 𝜀்௛ 
being the threshold to be determined by the required accuracy. 

The simulation results of linear interpolation are listed in 
Table I.  Two solutions exist for each Qe, one of which is a 
pseudo size value that can be eliminated.  The maximum 
relative-error is 1.29% and the maximum number of iterations 
are 12. When n=1000, the two solutions are 1000 and 1002 

which yields a 0.2% error under a maximum of 2 iterations.  
These simulation results are derived from Qe as the function 
value.  Simulation result on iterations of the initial tag 
population size computed using linear interpolation upon 
completion of the first frame by substituting IdN for Qe is 
shown in Table II.  It shows a relative error of for first test is 
7.2%, the error is significantly reduced to below 1.5% for all 
subsequent tests when number of iterations does not exceed 10. 

There are two solutions for each IdN when a significant 
difference between n and Q exists.  One of which is a pseudo 
size value that needs to be removed.  Based on the simulation 
results of Tables I and II, two solutions, nS and nB, are obtained 
after the first frame.  Where nS is less than the optimal value and 
nB is greater than the optimal value.  

 

 

 

 
The reader broadcasts command Query(QS) to all tags.  Tagi 

(i=1,2,..., n) generates a random number RSi[1, QS] as the 
designated slot to which it sends data back to the reader.  Tagi 
also generates a random number PSi of length u as the 
substitution for the ID code to minimize the time overheads.  
After sending the Query(QS) command, the reader sends the 
command NextSlot to all tags slot by slot.  Upon receiving the 
NextSlot command, Tagi subtracts 1 from RSi until RSi = 0, 

indicating that Tagi responds to the reader. Tags with RSis > 0 
will waits for the next NextSlot command.  The reader counts 
the number of successful tags, NS, according to tag response.  
The same methodology is applied for processing the Query(QB) 
command to obtain the number of successful tags NB.  nB is 
regarded as a pseudo size value when NS≥NB. 

C. Meal Preparation 
Meal preparation that caters for both nursing home residents 

TABLE I 
LINEAR INTERPOLATION SIMULATION RESULTS 

n  Qe  LoS 
Iteration sequence and corresponding approximation solution n̂  

AE  RE  IT 
1  2  3  4  5  6  7  8  9  10  11  12 

100  91 
ˆSn   246  116  102  101  101  —  —  —  —  —  —  —  1  1%  5 

ˆBn   7783  6151  5021  4326  3963  3804  3741  3719  3710  —  —  —  PS  PS  11 

400  268 
ˆSn   728  554  466  427  410  404  400  —  —  —  —  —  0  0%  7 

ˆBn   3450  1948  2035  2020  —  —  —  —  —  —  —  —  PS  PS  4 

700  348 
ˆSn   945  895  851  815  785  763  746  733  724  717  713  709  9  1.29%  12 

ˆBn   1491  1305  1366  1372  —  —  —  —  —  —  —  —  PS  PS  4 

1000  368 
ˆSn   1000  1000  —  —  —  —  —  —  —  —  —  —  0  0%  2 

ˆBn   1002  —  —  —  —  —  —  —  —  —  —  —  2  0.2%  1 

ˆSn   962  926  893  864  839  819  802  789  779  771  765  760  PS  PS  12 

TABLE II 
INITIAL TAG POPULATION SIZE ESTIMATION 

n  IdN  LoS 
Iteration sequence and corresponding solution  n̂  

AE  RE  IT 
1  2  3  4  5  6  7  8  9  10 

100  90 
ˆSn   243  115  101  99  99  —  —  —  —  —  1  1%  5 

ˆBn   7808  6188  5059  4359  3990  3825  3759  3735  3726  3723  PS  PS  10 

400  268 
ˆSn   728  554  466  427  410  404  401  —  —  —  1  0.25%  7 

ˆBn   3450  1948  2035  2020  —  —  —  —  —  —  PS  PS  4 

700  343 
ˆSn   932  870  818  777  746  722  706  694  686  681  9  1.29%  10 

ˆBn   1614  1330  1413  1422  —  —  —  —  —  —  PS  PS  4 

1000  368 
ˆBn   1026  1049  1064  1072  —  —  —  —  —  —  72  7.2%  4 

ˆSn   1000  1000  —  —  —  —  —  —  —  —  0  0%  2 

ˆSn   964  931  900  873  849  829  813  800  790  781  PS  PS  10 
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and staff members consume a substantial amount of energy. 
This sub-system mainly covers the catering facility and also 
includes water boilers.  The dietary and softness requirements 
are particularly problematic in the nursing home environment 
where certain patients might have a wide range of issues such as 
chewing and risk of chocking [32]. 

This part on energy consumption for meal preparation is 
simpler than the previous two parts discussed due to the 
fixed-time daily schedule.  Traditional energy usage prediction 
methods for commercial kitchens assume that cooking is 
carried out with a fixed daily schedule [33], such usage 
prediction models would have would have substantial fallacies 
due to the varying needs of meals among elderly patients in a 
nursing home environment [34].  In particular, the schedule for 
meal preparations is known to not be constants even though a 
daily pattern exists, like there are breakfast, lunch, tea and 
supper that make up for four times daily.  Also, because the 
models require a significant amount of data associated with the 
type of meals, they tend to be outdated as soon as they are 
developed.  In addition, none of the energy usage prediction 
methods identify what types of special meals are required to 
cater for patients with eating problem due to various health 
problems or mechanisms for balancing dietary needs, nor do 
they include any uncertainty analysis that could potentially lead 
to a significant wastage of both food and energy [35]. 
Furthermore, they all provide completely different results for 
any given cooking facility subject to given conditions.  An 
alternative prognostics-based approach for optimizing energy 
consumption in a smart nursing home is therefore proposed. 

Prognostics approach utilizes the idea that the energy 
consumption could be determined and that the types of meals 
needed for both patients and staff members of the nursing home 
could be predicted on an in-situ session-level basis using 
known data about individual health requirements.  The model is 
to use in-situ health and daily activity data to predict the type of 
meals needed by an individual person (or, in some cases, the 
number of additional meals required).  Modeling and drawing 
inference from fulfilling meal requirements requires extraction 
of meaningful information from a set of observations about 
patients as well as staff members.  To achieve this goal, our 
prognostics algorithm utilizes data reduction methods as 
pre-processing to categorize mainly into regular and soft meals, 
where the latter is more uniform in terms of the associated 
energy consumption for preparation. 

Principal Component Analysis (PCA) is most appropriately 
used for representing data after dimension reduction [36].   In 
classifying meals to be prepared for a particular session, the 
support vector machines (SVM) is well-known for its 
classification ability that relies on preprocessing the data in a 
high dimension.  As a result, SVM tends to be less prone to 
problems of overfitting than some other classifiers [37].  SVMs 
are especially suited to analyze data with unknown or 
non-linear distributions as a supervised technique that is useful 
when patients’ health and daily activities information are 
available. 
 Anomaly detection is other key task in prognostics for 
energy efficiency enhancement in meal preparation, such 

anomaly addresses the fluctuations in meal demands for special 
occasions such as a reduction in number of patients present or 
additional demands are needed for visitors.  While the 
classification task focuses on minimizing the misclassification 
of various discriminating states, the anomaly detection task 
focuses on minimizing the time-delay of detecting such 
variations subject to a controllable false alarm, implying that 
the variations in meals demand may not be significant.  We 
make use of statistical process control (SPC) methods, being 
one of the widely used techniques for process monitoring and 
change detection in manufacturing applications [38], to detect 
the occurrence of special cause variations. The control chart of 
SPC is useful to prognostics implementation in that it is able to 
monitor in-situ the performance of the concerned components 
over time. 

IV. IMPLEMENTATION AND ANALYSIS 

The baseline of energy consumption is set as the three 
consecutive months of the previous year without any power 
management scheme deployed.  Historical data also provides 
important insights into profiling the energy usage of different 
sub-systems within the smart nursing home.  

This self-cognizant approach applies multivariate 
monitoring techniques to the extracted features that include 
projections, transformations, and metrics statistics such as 
centroids.  It takes into consideration the correlations among 
feature parameters to detect changes in energy consumption 
efficiently and accurately. Changes in metrics that are 
indicative of any wastage or otherwise can be more efficiently 
used are the precursors to adjusting certain parameters within 
the nursing home power system and will be used to make usage 
decisions pertaining to the energy consumption in real time. 

Time series data of the extracted features will be modeled 
with forecasting methodologies to make future decisions 
regarding the optimal usage of different apparatus in order to 
yield enhanced energy efficiency across the nursing home.  
This inference framework is developed for classification and 
regression of the metrics data to moderate the prognostic and 
energy usage predictions in line with posterior distributions that 
will assign overly high confidence to the estimated class 
memberships of the feature patterns.  Forecasting models for 
energy usage is also developed for prediction of multivariate 
time series data with strong correlations and periodic 
systematic patterns.  The prognostic accuracy is estimated 
using both simulated from experimental test data and known 
abrupt increase in power usage as well as actual field data read 
from meter.  Features of scientific and practical interest include 
the presence of sudden changes in usage pattern and 
intermittent wastage, highly correlated parameters, and the 
masking of wastage due to the large multivariate and 
multidimensional characteristics of the data.  The tree model 
shown in Fig. 5 is computationally feasible to include capable 
of including many possible trees based on critical variables as 
well as to provide better prediction accuracy to detect and 
reduce power wastage.  This data-driven tree-based approach is 
utilized as a mechanism for feature selection, failure mode 
discrimination, and fitting predictive power usage models for 
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self-cognizant prognostics. 
 

 
Fig. 5 Data-driven tree-based automatic power wastage modeling strategy 

 
One of the important areas of energy efficiency optimization 

is a wireless sensing network (WSN) that carries out 
environmental monitoring.  Both wireless sensors that serve 
varying functions from simple ambient temperature, air quality, 
to more sophisticated patient tracking for lighting control are 
coupled with fixed smart meters to fuse data for prognostics.  
The network is designed from our earlier work in [39] with the 
Reed-Solomon based coding scheme developed in [40].  To 
optimize its efficiency, a wake-up sequence is sent to evaluate 
the minimum power Pmin for establishing connection.  Its 
sensitivity Ps is: 

 
Ps  = Pm (1 – R2)               (10) 

 
Where R is the voltage reflection coefficient, such that the 

sensitivity is derived from features detected from the function 
of the resistance over power [41].  Calibration is referenced 
with the Short Open and Load (SO) standard [42].  As 
communication commences, the resistance drops substantially 
at the power level.  The output power Pout that measures the 
chip impedance’s real and imaginary parts having a 0.01 dBm 
step size is plotted in Fig 6, a power sweep in the range of -20 to 
10 dBm indicates that it would require a matching network with 
a reactance of 40  in order to compensate for the capacitance 
of the RFID chip.  Finally, the average power saving is plotted 
in Fig. 7 over the three-month trial period that yields 
approximately 10% of power consumption reduction. 

 

 
Fig. 6 Measured impedance of the RFID chip as a function of Pout 

 

 
Fig. 7 Average power saving as observed in consumption meter 

V. CONCLUSIONS 

The scope of optimizing power utilization efficiency is 
becoming an increasingly important topic given the fact that 
scarcity of energy is an important part of sustainable smart city 
development.  Moreover, the cost of energy resources has risen 
very substantially since the beginning of year 2022, such that 
business operators have all the incentives to increase energy 
efficiency in their premises.  Our work presents a 
self-cognizant prognostics approach that has yielded an average 
of approximately 10% saving in power consumption for a smart 
nursing home.  We have presented a power monitoring and 
management system to dynamically adjust relevant parameters 
to save power without compromising on nursing home 
residents’ health and safety.  This would result in considerable 
cost savings for nursing home operators. 

The utilization of self-cognizant prognostics can have a 
potential of standardizing the way of enhancing energy 
efficiency in various types of buildings across a smart city.  The 
design and implementation for autonomous commercial power 
monitoring and management systems will be increasingly 
important when buildings get smarter and that such system will 
be integrated into different parts of a business.  In our particular 
case study, we have investigated the effectiveness of the system 
in three separate areas within a nursing home that are known to 
be consume a substantial amount of energy, namely lighting, air 
conditioning and air quality regulation, as well as for meal 
preparation, with the latter resulting in a somewhat less 
substantial improvement in power efficiency.  The findings in 
our work show that the development smart power monitoring 
and management systems are still at a fairly early phase with a 
three-month trial, yet the improvement in power utilization 
efficiency yielded is set to improve the way smart buildings can 
be made more energy efficient in the foreseeable future. 
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