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Abstract
While nonlinear functions such as square and square root are critical for fields such as signal processing and machine learn-
ing, computation of these functions presents challenges in the digital domain, including power, area, and delay overheads. 
While selective computation in the analog domain is a viable alternative, tradeoffs of increased noise and reduced accuracy 
are prominent challenges. Herein, we propose a reconfigurable analog circuit which is capable of performing generalized 
exponentiation within a mixed-signal field programmable array. The resulting analog block of magnetic tunnel junctions along 
with FET-based sensing and amplification circuits are circuit-switched-configurable with terminal-level control. Herein the 
design is configured to rapidly evaluate various arithmetic operations within acceptable error tolerances for selected applica-
tions. When compared to a state-of-the-art approximate digital multiplier, our design yields an approximately 95% reduction 
in area and stable output within a period comparable to single-cycle execution. In addition, the analog circuit allows for 
efficient and versatile computation of activation functions in a neural network architecture; simulation results demonstrate 
the possibility of reducing network size while retaining accuracy through such an approach.

Keywords  Analog computation · Magnetic tunnel junction · Artificial neural network · Activation function

Introduction

Multiplication and exponentiation operations are critical 
for a variety of applications, including computer vision 
[1], signal processing [2, 3], and machine learning [4, 5]. 
Square and square root, for example, are commonly used 
for normalizing vectors in signal processing applications, 
and square root may serve as an activation function for neu-
ral networks [4]. Despite their ubiquity, a traditional digital 
implementation of such functions can incur significant area 

and delay overheads in the digital domain, requiring 12 or 
more clock cycles to execute [6] and hundreds of logic gates 
[7]. As a result, there has recently been renewed interest in 
pursuing an analog approach to operations such as multipli-
cation, square, and square root [8, 9].

Analog circuits trade off computational accuracy for 
reduction in overheads such as power and area; this is an 
attractive tradeoff for error-tolerant applications, where 
power and area are constrained, e.g., Internet of Things 
(IoT) devices. The benefits offered by analog computation 
are amplified when used with vector-valued data, since the 
output data can be transferred to a memristive crossbar array 
for further processing without the need for digital-to-analog 
conversion [3]. One example of an ideal use case is Com-
pressive Sensing (CS). CS entails compression and transmis-
sion of a spectrally sparse signal, and then reconstruction of 
the signal at the receiving end. Machine learning via neural 
networks is another example.

In recent years, Field Programmable Analog Arrays 
(FPAAs) have been demonstrated as a viable approach to 
signal processing applications [10]. FPAAs serve as analog 
equivalents of Field Programmable Gate Arrays (FPGAs), 
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with analog circuit components being used to replace lookup 
tables found in FPGAs. Analog devices, such as field-effect 
transistors (FETs), capacitors, resistors, and diodes, are 
integrated into a reconfigurable fabric architecture (Fig. 1). 
Recent innovations including the Reconfigurable Analog 
Signal Processor (RASP) and associated high-level tools 
have provided a pathway for system-level analog design 
[11].

Vast improvements in energy efficiency have been dem-
onstrated by taking an analog computation approach [12], 
and FPAA technology has been demonstrated for power-
constrained IoT sensing applications, such as temperature 
sensors and heart rate alarms [13].

Herein, we extend our previous work [14] on an analog 
fabric for execution of generalized exponentiation. Area 
overheads are minimized by leveraging intrinsic computa-
tion and reconfigurability, as well as 3D integration capa-
bilities attained by the embedded Magnetic Tunnel Junction 
(MTJ) devices.

The remainder of the manuscript is organized as fol-
lows: the following section gives background and related 
works relating to analog computation circuits and spin-
based devices. Next, we introduce the proposed design, and 

proceed to provide simulation results on circuit performance, 
followed by application-level results relating to Compressive 
Sensing and Machine Learning. Conclusions are given in 
the final section.

Background and Related Works

Analog Computational Circuits

Analog computation leverages intrinsic properties of elec-
tronic devices for efficient execution of mathematical func-
tions. Thus, analog circuits may be superior to digital equiv-
alents in latency, power consumption, and area, at the cost 
of computational error.

A wide variety of approaches have been proposed for 
analog computation within AI applications (Table  1). 
Abuelma'Atti and Abuelmaatti [15] achieves generalized 
computation through Taylor series approximation. By suc-
cessively applying a squaring unit based on a class AB cur-
rent mirror architecture, this circuit yields a maximum error 
of 10% for a 5th order polynomial. In [16], a time-mode cir-
cuit is proposed for achieving root and power computations 

Fig. 1   FPAA fabric comprised 
of active and passive analog 
devices such as NMOS/PMOS 
transistors, capacitors and 
diodes, along with spin-based 
magnetic tunnel junction (MTJ) 
devices



SN Computer Science (2022) 3:148	 Page 3 of 14  148

SN Computer Science

based on the translinear principle, i.e., cascading hardware 
with exponential and logarithmic outputs to yield the desired 
result.

Several authors [17–19] have sought automated hardware 
synthesis and optimization through the use of genetic algo-
rithms. Specifically, Thangavel et al. [19] explores synthesis 
of arbitrary functions through Puiseux series, with genetic 
algorithms used to minimize error. A generalized computa-
tion approach as described in [15] and [19] enables effi-
cient computation of complex mathematical functions, thus 
bringing these functions into the realm of feasibility for IoT 
applications. This can result in significant improvements in 
machine learning performance by reducing constraints on 
the choice of activation function [4].

Spin‑Based Devices

Magnetic tunnel junctions (MTJs) are a class of spin-based 
emerging logic device which have been recently researched 
for applications such as non-volatile memory due to their 
numerous advantages, including near-zero standby power 
dissipation [3], high endurance [20] and vertical integra-
tion capabilities resulting in high density [21]. MTJs are 
composed of two ferromagnetic layers: a fixed layer and free 
layer, separated by a thin oxide barrier. The two stable states 
of the MTJ are determined by the relative orientation of 
the free-layer magnetization with respect to the fixed layer: 
the Parallel (P) state and Anti-parallel (AP) state, with the 
latter state corresponding to a significantly higher device 
resistance. A bi-directional spin-polarized current passing 
through the device may flip the state of the device.

While various materials may be chosen for MTJ fabrica-
tion, one common choice is the use of Fe for ferromagnetic 
layers, and MgO for the oxide barrier. This structure may 
be achieved using existing fabrication methods, e.g., the 
use of molecular beam epitaxy for preparation of the Fe 
layer, followed by growth of the MgO layer using e-beam 
evaporation, and patterning using photolithography [22]. 

The fabricated device is then placed on chip at the fourth 
metal line, in a CMOS backend process [23]. MTJs are com-
monly vertically integrated with CMOS technology using 
through-silicon vias in a 3D architecture, thus maximizing 
area efficiency and simultaneously minimizing data transfer 
overheads [24, 25]. As the building block of Magnetoresis-
tive Random Access Memory (MRAM) technology, MTJs 
have been proposed as a nonvolatile alternative to SRAM in 
cache memory [26]. Further applications benefiting from a 
hybrid CMOS/MRAM approach include full adders [23] and 
analog-to-digital converters [27].

The device resistance is given by RP = RMTJ and 
RAP = RMTJ (1 + TMR) , whereby [28]

in which TMR is tunneling magnetoresistance, tox the oxide 
layer thickness, Factor a material-dependent parameter 
which depends on the resistance-area product of the device, 
Area the surface area of the device, � the oxide layer energy 
barrier height, Vb bias voltage, and Vh the bias voltage at 
which TMR drops to half of its initial value. MTJs have been 
fabricated at varying resistance levels ranging from the kilo-
Ohm [27] to mega-Ohm [29] range.

In addition to device resistance, the energy barrier, EB, 
between the P and AP states of an MTJ device can be tuned 
based on fabrication dimensions. The device is considered 
to be low-barrier under the condition EB ≪ 40 kT , in which 
case thermal fluctuations at room temperature are sufficient 
to change the state of the device. This observation has led to 
construction of the probabilistic bit (p-bit) device, as shown 
in Fig. 2. A p-bit [30, 31] takes analog input and yields a 
digital output whose probability of being logic 1 depends on 

(1)RMTJ =
tox

Factor × Area
√
�
exp

�
1.025tox

√
�
�
,

(2)
TMR =

TMR0

1 +
(

Vb

Vh

)2
,

Table 1   Comparison of analog computation architectures

Work Functionality Mode of operation No. of 
compo-
nents

Highlighted contributions

[15] nth power via Squaring Unit Class AB current mirror 22 Arbitrary nonlinear functions in terms of Taylor 
series expansion

[16] Square, cube, 4th power Translinear time-to-voltage and 
voltage-to-time convertors

~ 100 Nonlinear operations through the time-mode 
translinear principle

[17] Cube root Evolved computational circuit 48 Pioneer in evolutionary circuit design
[18] Square, square root, cube, cube root Evolved computational circuit ≤ 44 Genetic algorithms for optimizing analog circuits 

for non-conventional applications
Herein Generalized nth power and root; 

inverse functions
Op-amps in reconfigurable fabric 43 Reconfigurable design, and intrinsic stochasticity
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the supplied input voltage. This functionality is due to the 
p-bit’s structure as a voltage divider between a low-barrier 
MTJ and NMOS transistor. A higher voltage applied to the 
gate of the transistor results in reduced drain–source voltage, 
rds, which increases the probability of delivering sufficient 
voltage to the input of the inverter to yield a logic 1 output.

The p-bit output is described by the equation [30]:

where sgn represents the sign function, rand(−1, 1) repre-
sents a random number in [− 1, 1], Vb is bias voltage and 
V0 is a model parameter. Thus, the probability of obtaining 
a logic-1 output from the p-bit device is given by Eq. (4):

It is common to average the p-bit output to realize the 
hyperbolic tangent function through Eq. (4).

Field Programmable Mixed‑Signal Arrays

Due to the significant benefits offered by analog computa-
tion to certain use cases, there has been a renewed interest 
in extending the scope of reconfigurable computing to the 
analog domain. The Reconfigurable Analog Signal Pro-
cessor (RASP) [11] introduced in 2012 was an attempt to 
overcome two of the main challenges preventing widespread 
adaptation of analog processing: lack of a programmable 
interface and lack of robust design tools. The RASP pro-
vided a set of high-level design tools for system-level analog 
design.

Concurrently with the introduction of the RASP, 
researchers [32] developed a Field Programmable Mixed-
Signal Array (FPMA) consisting of both analog and digi-
tal elements arranged in a Manhattan-style fabric. Their 

(3)Vout = VDDsgn
{
tanh

(
Vb∕V0

)
+ rand(−1, 1)

}
,

(4)P(1) =
1

2

(
1 + tanh

(
Vb

V0

))
.

design consisted of Computational Logic Blocks (CLBs) 
comprised of LUTs and D Flip-flops, and Computational 
Analog Blocks (CABs) consisting of analog elements such 
as op-amps, capacitors, and transistors. Their design used a 
global interconnect to route signals between computational 
blocks; in addition, each block contained a local interconnect 
which operated via a set of reconfigurable switches.

Subsequent innovations included the addition of a 16-bit 
microprocessor to the mixed-signal array for added compu-
tational capability [33] and the use of Time-domain Config-
urable Analog Blocks [34] for dynamic reconfigurability of 
the analog function being implemented.

Analog Circuit Design

Op‑amp Design

The proposed reconfigurable analog multiplier is based 
on the op-amp design presented in Fig. 3. The op-amp 

Fig. 2   Structure of a p-bit 
device consisting of a voltage 
divider between a low-barrier 
MTJ device and NMOS transis-
tor (a); probability of a logic-1 
output value (b)

Fig. 3   Op-amp comprised of 10 MOSFETs offering high speed and 
compact area
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consists of two cascaded stages; an input stage consist-
ing of a differential amplifier, followed by a gain stage. 
A simple design consisting of only 10 CMOS transistors 
is chosen to optimize for power consumption as well as 
area. The op-amp is simulated using models from the PTM 
14 nm LSTP library, at VDD = 0.8 V.

Figure 4a then presents a layout of the proposed op-
amp design. The layout indicates dimensions of 43F × 23F, 
for a total area of 989F2. This layout is contrasted with 
a CMOS NAND gate in Fig. 4b, which has dimensions 
of 18F × 14.5F, for a total area of 261F2. The op-amp 
and NAND gate form an interesting comparison as com-
mon building blocks of analog and digital multipliers, 
respectively.

Three‑Stage Analog Multiplier

Similarly to [16], the translinear principle is applied to 
attain exponentiation of the input signal. As shown in 
Fig. 5, we introduce a three-stage design whose output 
is a power function of the input. The design as shown in 
Fig. 5 accepts a single input for performing exponentiation 
operations; the design can also be reconfigured to accept 
two inputs for performing analog multiplication.

The first stage, outlined in red in Fig. 5, is a logarithmic 
amplifier with output given by

where AOL represents open-loop gain and IS1 represents the 
saturation current of diode D1. Equation (5) is from general 
op-amp theory and Eq. (6) follows from KCL. Thus, solving 
Eqs. (5) and (6) simultaneously yields

(5)V1 = −AOLV0,

(6)−
V0 − Vin

R1

= IS1

[
exp

(
V0 − V1

VT

)
− 1

]
,

In the limit of infinite open-loop gain and sufficiently high 
input voltage, Eq. (7) is approximated as

The second stage is an analog adder, whereby a similar 
analysis yields V2 = −

2V1R3

R2

. Finally, the third stage is an 
anti-log amplifier with output approximately given by

(7)V1

�
1 +

1

AOL

�
= −VT ln

⎛⎜⎜⎝

Vin +
V1

AOL

R1IS1
+ 1

⎞⎟⎟⎠
.

(8)V1 = −VT ln

(
Vin

R1IS1

)
.

Fig. 4   a Layout of op-amp used in this paper vs. b a CMOS NAND gate

Fig. 5   Analog circuit for generalized exponentiation. The first, sec-
ond, and third stage are outlined in red, blue, and green, respectively
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where IS1 represents the saturation current of diode D2. Over-
all, it is simple to see that the output of this circuit is given 
by

where a = 2R3∕R2.
The above theory demonstrates the ability to implement 

any positive power function of the input via the design 
shown in Fig. 5. In addition, a dual-input stage consisting 
of two logarithmic amplifiers can be inserted to attain an 
analog multiplier. Finally, an inverting amplifier can be 
inserted between the second and third stages to realize 
inverse power functions as well. Each mode can be imple-
mented using the elements included in the fabric presented 
in Fig. 1. To minimize area, MTJs in the P state are used 
to implement the resistors shown in Fig. 5; MTJs in the 
P state have roughly linear I–V characteristics as implied 
by Eq. (1) and validated through experimental data [35].

Equations (8–10) hold only for infinite open-loop gain 
which is not attained in practice. Thus, the equations pro-
vide a starting point for the design, after which param-
eters must be adjusted to minimize output errors. Final 
parameters are: R1 = 3500 kΩ, R2 = 50  kΩ, R3 = 150  kΩ, 
R4 = 75  kΩ, IS1 = 50 nA, and IS2 = 5.4 nA. In addition, a 
load capacitance of 100 fF and load resistance of 1000 kΩ 
is included at the output stage of each op-amp.

(9)Vout = −R4IS2e
V2

VT ,

(10)Vout = −
R4IS2(
R1IS1

)a
(
Vin

)a
,

Analog Circuit Performance

Analog Multiplier

First, the performance of the analog circuit is evaluated as a 
multiplier. In this mode, two separate logarithmic amplifiers 
serve as the input stage, receiving inputs Vin1 and Vin2 . The 
circuit is evaluated in terms of DC transfer characteristics, 
frequency response, and Total Harmonic Distortion (THD), 
for various DC amplitudes of Vin2 within the operational 
range between 0.3 and 0.7 V.

DC transfer characteristics are presented in Fig. 6. In 
each trial, Vin1 is swept across the operational range and the 
average non-linearity error is determined based on the per-
centage deviation from a linear regression line. As listed in 
Table 2, the maximum non-linearity error of 0.55% occurs 
at Vin2 = 0.7 V.

Figure 7 shows the frequency response of the multiplier, 
evaluated in the range from 100 MHz to 1 GHz. In this case, 
Vin1 is a sinusoidal signal with offset of 0.45 V and amplitude 

Fig. 6   DC transfer characteristics for the proposed multiplier, with 
one input fixed and the second input varying across the operational 
range

Table 2   Error, bandwidth, and delay data

Vin2 (V) Error (%) − 3-dB bandwidth 
(MHz)

Delay (ns)

0.3 0.48 195 3.8
0.4 0.11 191 3.9
0.5 0.25 186 4.1
0.6 0.43 178 4.4
0.7 0.55 174 5.0

108 109

Frequency (Hz)
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V
ou
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)

Frequency Response

Vin2 = 0.3V
Vin2 = 0.4V
Vin2 = 0.5V
Vin2 = 0.6V
Vin2 = 0.7V

Fig. 7   Frequency response, with one input fixed and the second input 
sinusoidal with offset of 0.45 V and amplitude of 0.25 V
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of 0.25 V. The − 3-dB bandwidth, listed in Table 2, is in the 
100 MHz range in each case. While this bandwidth may 
be high for applications with limited signal-to-noise ratio, 
the circuit can be reconfigured to attain various bandwidths 
depending on the RC time constant at the op-amp output.

Table 2 also lists the delay in reaching 90% of the target 
voltage in the case when Vin1 = Vin2 ; the delays are in the 
nanosecond range, consistent with the circuit bandwidth.

Next, Table  3 provides THD in the case, where one 
input is 0.45 V DC, and the second input is sinusoidal with 
amplitudes of 0.05 V and 0.25 V. THD is within 1% up to 
a frequency of approximately 1 MHz, indicating practical 
functionality of the system.

nth Power and Root

The circuit is next evaluated in its ability to compute square 
and square root functions. Simulation results demonstrate 
high-accuracy implementation of nth-root functions; power 
functions beyond squaring introduce challenges related to 
voltage saturation. It is, however, possible to obtain these 
functions via a squaring unit by iteratively applying the 
mathematical identity:(A + B)2 − (A − B)2 = 4AB. For exam-
ple, in the case of the cubing function, x2 is substituted for 
A and x for B; any nth power function, n ≥ 2, can thus be 
computed [15]. The authors of [15] were able to compute 
a 5th order polynomial function within 10% error through 
this approach.

Data on cube root, square root, and squaring circuits 
implemented using the proposed design are given in Table 4, 
including technology node, supply voltage, total number of 
elementary components, power dissipation, and mean error 
over an input range of 0.2–0.6 V.

Comparing to the approximate digital multiplier 
described in [7], at the design point giving nearly identi-
cal power consumption, the analog circuit described herein 
yields slightly improved mean error across the operational 
range. Furthermore, the approximate digital design requires 
an area equivalent to 245 CMOS NAND gates, i.e., 980 
CMOS transistors. Thus, our design achieves a 97% reduc-
tion in transistor count. In addition, the layout presented in 
Fig. 4 indicates that the layout of an op-amp is approxi-
mately 3.79 × the area of a NAND gate; this indicates an 
approximately 95% reduction in area if three op-amps are 
used for squaring.

The design presented in [9] demonstrates reduced power 
consumption but significantly higher error, and a relatively 
limited bandwidth of 51.2 kHz. [16] introduces a similar 
design to the one described herein, relying on the translinear 
principle to implement nth power functions by combining 
hardware with logarithmic and exponential output charac-
teristics; a limitation of this design is that its reliance on 
time-mode circuitry intrinsically leads to significant time 
delays, on the order of microseconds.

In addition, a Monte Carlo simulation is performed to 
determine the effects of process variation in MTJ devices. 
For this simulation, 100 trials are conducted considering 
a 1.5% standard deviation in the resistance of each MTJ 
device; this value is consistent with the variation seen in a 
4-Mb MRAM array [36]. The resulting standard deviations 
in the circuit outputs are listed in Table 5. While the maxi-
mum standard deviation due to PV is 6.36%, the presence 
of only 16 high-barrier MTJ devices in the reconfigurable 
fabric may allow for improved device tolerances and thus 
improved computational accuracy in the fabricated design.

Given the temperature dependence of diodes as well as 
MTJ devices, a brief temperature analysis of the circuit 
performance is conducted to complement the previous 

Table 3   THD with one DC and one sinusoidal input

Frequency Amplitude = 0.25 V (%) Ampli-
tude = 0.05 V 
(%)

10 kHz 0.80 0.76
100 kHz 0.81 0.77
1 MHz 0.81 0.75
2 MHz 1.08 1.10
3 MHz 1.82 1.61

Table 4   Comparison of results

a RMS noise vs. max. output
b At Vin = 0.4 V

Herein Herein Herein [7] [9] [15] [16]

Mode Analog Analog Analog Digital Analog Analog Analog
Operation Cube root Square root Square Multiplier Multiplier Square Square
Tech node (nm) 14 14 14 28 130 500 180
VDD (V) 0.8 0.8 0.8 1 0.6 1.5 1.3
No. of components 43 43 43 ~ 1000 35 12 ~ 100
Power (μW) 123 122 126 126 23 600 149
Mean error (%) 0.50 0.66 1.30 1.87 9.1a N/A 0.24b
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data attained at a temperature of 25 °C. In this analysis, 
the temperature dependency of the mean error of Fig. 5 is 
determined when configured to function as a squaring unit. 
While HSPICE includes temperature dependent models for 
diodes, a custom model is used for MTJs. Specifically, the 
MTJ conductance may be modeled as [37, 38]

In these equations, G represents MTJ device conduct-
ance, T represents absolute temperature, � represents relative 
magnetization orientation, P represents polarization, and 
TMR represents tunneling magnetoresistance. G0, TMR0, 
� , C and S are model parameters. The proposed design uses 
P-state MTJs, so � = 0 is chosen for this analysis. Further-
more, the model parameters TMR0 = 1, � = 2 × 10−5 K−3/2, 
C = 0.015 K−1 and S = 10−12 Ω−1 K−4/3 are used; G0 is cho-
sen based on the target MTJ conductance value. TMR0 is 
consistent with [27]; moreover, � and S are consistent in 
order of magnitude with [37]. C is chosen based on the equa-
tion [37]:

where t represents oxide barrier height in Angstroms, and 
� . is the oxide barrier potential in electron-volts. The figure 
C = 0.0015 is derived assuming an oxide barrier thickness of 
10 Å [27], and a barrier potential on the order of 1 eV [37].

Based on the above model, the mean computational error 
of the squaring unit across an input voltage range between 
0.2 and 0.6 V is determined, for temperatures ranging from 

(11)G(T , �) = GT(T)
{
1 + P(T)2 cos �

}
+ GSI(T)

(12)GT(T) =
G0CT

sin(CT)

(13)P(T) = P0

(
1 − �T

3

2

)

(14)P0 =

√
TMR0

2 − TMR0

(15)GSI(T) = ST4∕3.

(16)C = 1.387 × 10−4t∕
√
�,

− 20 to 70 °C, with results summarized in Table 6. An error 
below 10% is observed between temperatures of − 10 °C and 
40 °C. This operational interval includes common environ-
mental temperatures as well as physiological temperature 
but does not cover the commercial temperature range. Thus, 
further work is necessary to improve the temperature resil-
ience of the design for use in more extreme environments.

Generalized Functions

The proposed hardware may also be used to implement 
generalized functions. For one, the analog circuit can func-
tion in a third mode, where inverse power and root func-
tions are computed by adding an inverting amplifier before 
the final stage; a 1∕

√
x function yields an average error of 

0.4%. Furthermore, exponential and logarithmic functions 
can be computed using only one op-amp stage. Other gen-
eralized functions can be implemented using a Taylor series 
approximation.

Figure  8 shows an approximation of the function 
f (x) = x − x2 − x3 − x4 − x5 based on the proposed analog 
squaring unit. This simulation includes squaring errors, but 
does not include errors in addition, subtraction, and volt-
age rescaling; the resulting output is a fair approximation of 
the target function, with an average error of 4.83% over the 

Table 5   Error due to process variation of MTJ devices

Vin (V) Square (%) Square root (%)

0.3 5.96 3.81
0.4 6.36 3.88
0.5 6.13 3.92
0.6 5.72 3.95
0.7 5.30 3.96

Table 6   Mean error of analog 
squaring circuit as a function of 
temperature, T 

T (°C) Mean error (%)

− 20 14.1
− 10 3.17
0 0.748
10 0.352
20 0.551
30 1.70
40 5.71
50 14.2
60 22.9
70 27.3
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tested range. This demonstrates the feasibility of generating 
generalized functions through Taylor series using our analog 
approach.

Application to Compressive Sensing

Compressive Sensing (CS) is an emerging signal process-
ing technique which allows for sub-Nyquist sampling of 
spectrally sparse and wideband data. Applications of CS 
include reduction of power consumption and complexity in 
5G communication networks [39], and reduction of sam-
pling duration in time-critical applications such as MRI [40]. 
CS applies a linear transformation to signal x ∈ ℝ

n via the 
measurement matrix, � ∈ ℝ

m×m, to obtain a compressed 
measurement vector, y ∈ ℝ

m, with m < n. The receiver must 
then solve an undetermined system of linear equations to 
reconstruct the original signal.

One possible approach to the CS reconstruction problem 
is to choose the solution with the lowest sparsity, such that 
the sparsity, k, is defined as the number of nonzero elements 
in the signal. This translates directly to the minimization 
problem: �̂ = argmin‖x‖0 s.t. y = �x . Due to this problem 
being NP-hard [41], an alternative approach is to solve the 
basis pursuit problem:

(17)�̂ = argmin‖x‖1 s.t. y = �x.

The condition for �̂ being an accurate reconstruction of 
the original signal vector is the Restricted Isometry Property 
(RIP) [42], i.e., that for any k-sparse vector x:

Besides basis pursuit, a variety of algorithms with differ-
ent tradeoffs allow for CS reconstruction [43]. One example, 
Approximate Message Passing (AMP), is a soft thresholding 
algorithm designed for fast convergence [44]. The design is 
presented as Algorithm 1. In this notation, sign(a)max(|a| − θ, 
0) refers to elementwise vector operations, where the constant 
θ is applied to each element. The function sign(x) is defined to 
be + 1 for x > 0 and − 1 for x < 0.

The AMP algorithm begins by initializing the residual 
vector, r0, to the measurement vector y, as well as initializ-
ing the estimate of the signal vector x to zero (Line 1). Next, 
the threshold θ is computed as the root mean square error of 
the residual (Line 2). Lines 3–4 provide an estimation of the 
reconstructed signal vector as a function of the thresholding 
parameter, in accordance with the Iterative Soft Thresholding 
technique. Finally, Lines 5–6 demonstrate the key difference 
between AMP and the Iterative Soft Thresholding approach 
[45], i.e., the residual is updated based on not only the current 
signal estimate x̂i but also based on the residual of the previ-
ous iteration, ri−1.

AMP reconstruction, as an error tolerant use case requiring 
square and square root computations in each iteration, serves 
as a viable application for the hardware presented herein. The 
performance of AMP is evaluated in MATLAB based on 
signals of length n = 1000, with sparsity rate k/n = 0.1. The 
number of measurements, m, is varied from 200 to 500 to 
determine the magnitude of the reconstruction error in deci-
bels, defined as

Figure 9 shows AMP performance considering an exact 
implementation (blue dots), approximation errors intrinsic 
to the analog hardware as detailed in Table 4 (red dots), and 
finally approximation errors considering process variation 
errors detailed in Table 5 (yellow dots).

The results demonstrate a negligible impact of the intrinsic 
circuit error on AMP performance; certain data points such 
as m = 500 demonstrate a lower error with the approximate 
approach, indicating statistical insignificance of the error. 
Even the increased computational error due to process varia-
tion amounts to only a slight degradation in performance and 
consistently requires less than 50 additional measurements to 
regain the reconstruction accuracy of the AMP algorithm.

(18)‖x‖2
2
(1 − �) ≤ ‖�x‖2

2
≤ ‖x‖2

2
(1 + �).

(19)Error (dB) = 20 log

�‖x̂ − x‖
‖x‖

�
.
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Fig. 8   Approximation of a 5th order polynomial function using the 
proposed hardware, showing agreement with an error-free implemen-
tation
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Application to Machine Learning

Gradient Decay Problem

Deep neural networks (DNNs) have been gaining popular-
ity in the context of diverse applications including com-
puter vision [46] and speech recognition [47]. At each 
layer, the DNN takes a vector input, x, and outputs a linear 
transformation of the input, z, according to the equation 
z = Wx, where W is the weight matrix. To facilitate learn-
ing non-linear relationships, the output z is transformed by 
an activation function to yield a final layer output, h = f(z). 
The choice of activation function has recently been a sub-
ject of research interest due to its significant impact on the 
success of a neural network [5]. While hyperbolic tangent 
has been commonly used, this function suffers drawbacks 
including the gradient decay problem, i.e., the gradient is 
diminished for multi-layer networks due to repeated mul-
tiplication of values having absolute value less than 1 [48].

The vanishing gradient problem has been addressed 
by choice of alternative activation functions, e.g., 
the Rectified Linear Unit (ReLU) which is defined as 
fReLU(x) = max(0, x) and has a gradient of 1 for all x > 0. 
Another alternative is the square root function, which 
experiences significantly slower gradient decay com-
pared with hyperbolic tangent. It has been observed that 
the derivative of the hyperbolic tangent function at x = 10 
is less than the derivative of the square root function at 
x = 1016. Previous research has demonstrated that replacing 
hyperbolic tangent with a square root activation function 

can allow for a 5% improvement in classification accuracy 
on the CIFAR-10 data set [4].

Given the robust capabilities of the analog circuit pre-
sented herein, we next evaluate its ability to generate 
improved activation functions for DNN performance. The 
evaluation is performed in the context of a Deep Belief Net-
work (DBN) used to classify samples from the MNIST data 
set.

Deep Belief Networks (DBNs)

Restricted Boltzmann Machines (RBMs) are a class of recur-
rent stochastic neural network [49] in which the energy of 
the network in state k is determined by Eq. (20):

where sk
i
 refers to the state of node i, while the network is in 

state k, and wij represents the weight between nodes i and j. 
Each node in an RBM has a probability of being in state 1 
given by Eq. (21):

where � represents the sigmoid function. Over time, a Boltz-
mann distribution is reached, where the probability of find-
ing the system in state k is defined as

where the summation in the denominator is taken over all 
possible states of the system. An RBM is a two-layer neural 
network consisting of a visible layer and hidden layer; by 
stacking RBMs, it is possible to realize a DBN of arbitrary 
length [49].

Probabilistic Inference Network Simulator (PIN‑Sim)

DBN simulations on the MNIST data set can be readily per-
formed at both the software and hardware level, using the 
Probabilistic Inference Network Simulator (PIN-Sim) [49]. 
PIN-Sim consists of five modules: first, trainDBN reads the 
training images in MATLAB and outputs the weight and bias 
matrices representing the DBN; a second MATLAB module, 
mapWeight, converts the weight and bias data into device 
conductance values. Next, the Python module, mapRBM, 
generates SPICE representations of multiple crossbar 
weighted arrays based on the outputs of mapWeight and the 
given network topology. A final Python module, testDBN, 
executes a SPICE circuit simulation of the DBN to deter-
mine classification error rate as well as power consumption. 

(20)E(k) = −
∑
i

sk
i
bi −

∑
i<j

sk
i
sk
j
wij,

(21)P(si = 1) = �

(
bi +

∑
j

wijsj

)
,

(22)P(k) =
e−E(k)∑
u e

−E(u)
,

Fig. 9   Signal reconstruction error of the AMP algorithm as a function 
of number of measurements, where square and square root operations 
are performed exactly (blue circles), with approximation error of the 
presented hardware (red circles), and with approximation error due to 
process variation (yellow circles)
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The inputs to the testDBN module consist of the outputs 
of mapWeight and mapRBM as well as the module, neu-
ron, which is a SPICE representation of the circuit used for 
computing the activation function. A visual description of 
PIN-Sim is shown in Fig. 10.

Impact of Activation Function

Given the robustness of the analog circuit presented herein, 
we investigate the impact of three separate activation 
functions on DBN performance: f1(x) =

1

2
(1 + tanh(x)), 

f2(x) =
√
f1(x) , and f3(x) = (1 + e−x)−1 . Since f �

2
(x) > f

�

1
((x) 

for x < − 0.55 and f �
3
(x) > f

�

1
(x) for |x| > 1.06 , substitution 

of these functions may potentially alleviate the rate of gradi-
ent decay for certain inputs. Moreover, each function may 
be implemented using the FPAA fabric shown in Fig. 1; the 
presence of low-barrier MTJ devices allows for construc-
tion of p-bit devices, at which point f1 is computed via an 
op-amp integrator at the output. Computation of f2 requires 
an additional 3 op-amps to execute the square root function 
in analog; finally, f3 requires a total of 6 op-amps to execute 
based on the computational units described in Fig. 5.

A DBN software simulation is performed in MATLAB 
for each activation function to evaluate the classification 
accuracy for the MNIST data set, based on 3000 training 
samples and 1000 test samples. Figure 11 shows the results 
based on various network topologies. Over the network 
topologies tested, both f2 and f3 demonstrate a consistent 
improvement in error rate over f1; the average improve-
ment is 6.4% for f2 and 8.7% for f3. Moreover, in certain 
cases, selection of f3 vs. f1 as an activation function allows 

for reduction in error rate while decreasing the size of the 
array, e.g., from 784 × 500 × 10 to 784 × 200 × 10, and from 
784 × 200 × 200 × 200 × 10 to 784 × 100 × 100 × 100 × 10.

A PIN-Sum simulation is conducted, based on the MTJ 
parameters taken from [50] and listed in Table 7, for average 
RBM power consumption in select network topologies using 
the f1 and f2 activation functions. For simulations imple-
menting f2, the neuron.sp file in the PIN-Sim framework is 
modified by adding an analog square root unit to the output, 
based on the design shown in Fig. 5.

Simulation results are listed in Table 8, including average 
power consumption and corresponding software error rates; 
the power-error-product (PEP) is computed as a product of 
these data points and listed in the table as well. Similar to 
the previously used energy-error-product [50], PEP is a use-
ful metric for attaining an overall evaluation of each design. 
Based on the results, the f2 activation function yields an 

Fig. 10   Logical flow of PIN-Sim, including the five main modules 
involved in DBN simulation

Fig. 11   Normalized error rate for image classification, based 
on various DBN topologies and the activation functions, 
f1(x) =

1

2
(1 + tanh(x)), f2(x) =

√
f1(x) , and f3(x) = (1 + e−x)−1 repre-

sented by blue, red, and yellow bars, respectively

Table 7   MTJ parameters used for simulating p-bit devices [50]

Parameter Value

Saturation magnetization 1100 emu/cm3

Free layer diameter, thickness 22 nm, 2 nm
Polarization 0.59
TMR 110%
MTJ RA-product 9 μΩ-cm2

Damping coefficient 0.01
Temperature 300 K
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improvement in PEP for each of the tested topologies; the 
average improvement is 17.4%.

Conclusions

Herein, we have presented an analog circuit capable of 
multiplication and general exponentiation operations. The 
circuit is based on a reconfigurable fabric which allows for 
versatility in the mode of operation as well as tunability in 
bandwidth, allowing for adaptation to diverse signal process-
ing and machine learning applications.

Simulation results on circuit performance indicate reduc-
tion in error and 95% reduction in area when compared to 
a state-of-the-art approximate digital multiplier; a signifi-
cant reduction in execution time in addition to reduction in 
complexity is attained in comparison to a time-mode analog 
exponentiation circuit operating on similar principles.

A key use case of the proposed design is computation of 
activation functions in DNN applications. Simulation results 
demonstrate that varying the activation function of a neural 
network can allow for similar improvements in error rate as 
increasing the network size. Thus, the intrinsic computation 
capabilities of our analog design can allow for synergistic 
area benefits, not only in the design itself, but also in a DNN 
crossbar architecture making use of the design.

Neural network activation functions constitute a field of 
active research, and many potential alternatives have been 
proposed. Future work may include a more complete analy-
sis on the applicability of an analog computation approach 
to machine learning scenarios.
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