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Abstract

While nonlinear functions such as square and square root are critical for fields such as signal processing and machine learn-
ing, computation of these functions presents challenges in the digital domain, including power, area, and delay overheads.
While selective computation in the analog domain is a viable alternative, tradeoffs of increased noise and reduced accuracy
are prominent challenges. Herein, we propose a reconfigurable analog circuit which is capable of performing generalized
exponentiation within a mixed-signal field programmable array. The resulting analog block of magnetic tunnel junctions along
with FET-based sensing and amplification circuits are circuit-switched-configurable with terminal-level control. Herein the
design is configured to rapidly evaluate various arithmetic operations within acceptable error tolerances for selected applica-
tions. When compared to a state-of-the-art approximate digital multiplier, our design yields an approximately 95% reduction
in area and stable output within a period comparable to single-cycle execution. In addition, the analog circuit allows for
efficient and versatile computation of activation functions in a neural network architecture; simulation results demonstrate

the possibility of reducing network size while retaining accuracy through such an approach.

Keywords Analog computation - Magnetic tunnel junction - Artificial neural network - Activation function

Introduction

Multiplication and exponentiation operations are critical
for a variety of applications, including computer vision
[1], signal processing [2, 3], and machine learning [4, 5].
Square and square root, for example, are commonly used
for normalizing vectors in signal processing applications,
and square root may serve as an activation function for neu-
ral networks [4]. Despite their ubiquity, a traditional digital
implementation of such functions can incur significant area
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and delay overheads in the digital domain, requiring 12 or
more clock cycles to execute [6] and hundreds of logic gates
[7]. As a result, there has recently been renewed interest in
pursuing an analog approach to operations such as multipli-
cation, square, and square root [8, 9].

Analog circuits trade off computational accuracy for
reduction in overheads such as power and area; this is an
attractive tradeoff for error-tolerant applications, where
power and area are constrained, e.g., Internet of Things
(IoT) devices. The benefits offered by analog computation
are amplified when used with vector-valued data, since the
output data can be transferred to a memristive crossbar array
for further processing without the need for digital-to-analog
conversion [3]. One example of an ideal use case is Com-
pressive Sensing (CS). CS entails compression and transmis-
sion of a spectrally sparse signal, and then reconstruction of
the signal at the receiving end. Machine learning via neural
networks is another example.

In recent years, Field Programmable Analog Arrays
(FPAAs) have been demonstrated as a viable approach to
signal processing applications [10]. FPAAs serve as analog
equivalents of Field Programmable Gate Arrays (FPGAs),
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with analog circuit components being used to replace lookup
tables found in FPGAs. Analog devices, such as field-effect
transistors (FETs), capacitors, resistors, and diodes, are
integrated into a reconfigurable fabric architecture (Fig. 1).
Recent innovations including the Reconfigurable Analog
Signal Processor (RASP) and associated high-level tools
have provided a pathway for system-level analog design
[11].

Vast improvements in energy efficiency have been dem-
onstrated by taking an analog computation approach [12],
and FPAA technology has been demonstrated for power-
constrained IoT sensing applications, such as temperature
sensors and heart rate alarms [13].

Herein, we extend our previous work [14] on an analog
fabric for execution of generalized exponentiation. Area
overheads are minimized by leveraging intrinsic computa-
tion and reconfigurability, as well as 3D integration capa-
bilities attained by the embedded Magnetic Tunnel Junction
(MTJ) devices.

The remainder of the manuscript is organized as fol-
lows: the following section gives background and related
works relating to analog computation circuits and spin-
based devices. Next, we introduce the proposed design, and

Fig. 1 FPAA fabric comprised

proceed to provide simulation results on circuit performance,
followed by application-level results relating to Compressive
Sensing and Machine Learning. Conclusions are given in
the final section.

Background and Related Works
Analog Computational Circuits

Analog computation leverages intrinsic properties of elec-
tronic devices for efficient execution of mathematical func-
tions. Thus, analog circuits may be superior to digital equiv-
alents in latency, power consumption, and area, at the cost
of computational error.

A wide variety of approaches have been proposed for
analog computation within AI applications (Table 1).
Abuelma'Atti and Abuelmaatti [15] achieves generalized
computation through Taylor series approximation. By suc-
cessively applying a squaring unit based on a class AB cur-
rent mirror architecture, this circuit yields a maximum error
of 10% for a Sth order polynomial. In [16], a time-mode cir-
cuit is proposed for achieving root and power computations
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Table 1 Comparison of analog computation architectures
Work  Functionality Mode of operation No. of Highlighted contributions
compo-
nents
[15] nth power via Squaring Unit Class AB current mirror 22 Arbitrary nonlinear functions in terms of Taylor
series expansion
[16] Square, cube, 4th power Translinear time-to-voltage and ~ ~100 Nonlinear operations through the time-mode
voltage-to-time convertors translinear principle
[17] Cube root Evolved computational circuit 48 Pioneer in evolutionary circuit design
[18] Square, square root, cube, cube root Evolved computational circuit <44 Genetic algorithms for optimizing analog circuits

Herein Generalized nth power and root;
inverse functions

Op-amps in reconfigurable fabric 43

for non-conventional applications

Reconfigurable design, and intrinsic stochasticity

based on the translinear principle, i.e., cascading hardware
with exponential and logarithmic outputs to yield the desired
result.

Several authors [17-19] have sought automated hardware
synthesis and optimization through the use of genetic algo-
rithms. Specifically, Thangavel et al. [19] explores synthesis
of arbitrary functions through Puiseux series, with genetic
algorithms used to minimize error. A generalized computa-
tion approach as described in [15] and [19] enables effi-
cient computation of complex mathematical functions, thus
bringing these functions into the realm of feasibility for IoT
applications. This can result in significant improvements in
machine learning performance by reducing constraints on
the choice of activation function [4].

Spin-Based Devices

Magnetic tunnel junctions (MTJs) are a class of spin-based
emerging logic device which have been recently researched
for applications such as non-volatile memory due to their
numerous advantages, including near-zero standby power
dissipation [3], high endurance [20] and vertical integra-
tion capabilities resulting in high density [21]. MTJs are
composed of two ferromagnetic layers: a fixed layer and free
layer, separated by a thin oxide barrier. The two stable states
of the MTJ are determined by the relative orientation of
the free-layer magnetization with respect to the fixed layer:
the Parallel (P) state and Anti-parallel (AP) state, with the
latter state corresponding to a significantly higher device
resistance. A bi-directional spin-polarized current passing
through the device may flip the state of the device.

While various materials may be chosen for MTJ fabrica-
tion, one common choice is the use of Fe for ferromagnetic
layers, and MgO for the oxide barrier. This structure may
be achieved using existing fabrication methods, e.g., the
use of molecular beam epitaxy for preparation of the Fe
layer, followed by growth of the MgO layer using e-beam
evaporation, and patterning using photolithography [22].

The fabricated device is then placed on chip at the fourth
metal line, in a CMOS backend process [23]. MTJs are com-
monly vertically integrated with CMOS technology using
through-silicon vias in a 3D architecture, thus maximizing
area efficiency and simultaneously minimizing data transfer
overheads [24, 25]. As the building block of Magnetoresis-
tive Random Access Memory (MRAM) technology, MTIJs
have been proposed as a nonvolatile alternative to SRAM in
cache memory [26]. Further applications benefiting from a
hybrid CMOS/MRAM approach include full adders [23] and
analog-to-digital converters [27].

The device resistance is given by Rp = Ryq; and
Ryp = Ryry (1 + TMR), whereby [28]

z

ox exp (1.02510X \/5), 1)

~ Factor x Area\ /g

RMTJ

2

in which TMR is tunneling magnetoresistance, #,, the oxide
layer thickness, Factor a material-dependent parameter
which depends on the resistance-area product of the device,
Area the surface area of the device, @ the oxide layer energy
barrier height, V, bias voltage, and V,, the bias voltage at
which TMR drops to half of its initial value. MTJs have been
fabricated at varying resistance levels ranging from the kilo-
Ohm [27] to mega-Ohm [29] range.

In addition to device resistance, the energy barrier, Ey,
between the P and AP states of an MTJ device can be tuned
based on fabrication dimensions. The device is considered
to be low-barrier under the condition £y < 40 kT, in which
case thermal fluctuations at room temperature are sufficient
to change the state of the device. This observation has led to
construction of the probabilistic bit (p-bit) device, as shown
in Fig. 2. A p-bit [30, 31] takes analog input and yields a
digital output whose probability of being logic 1 depends on
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Fig.2 Structure of a p-bit

device consisting of a voltage +VDD
divider between a low-barrier -T1
MT]J device and NMOS transis-
tor (a); probability of a logic-1 P
output value (b)
Vik Vour
GND
a

the supplied input voltage. This functionality is due to the

p-bit’s structure as a voltage divider between a low-barrier

MTJ and NMOS transistor. A higher voltage applied to the

gate of the transistor results in reduced drain—source voltage,

r4> Which increases the probability of delivering sufficient

voltage to the input of the inverter to yield a logic 1 output.
The p-bit output is described by the equation [30]:

Vou = Vppsgn{tanh (V,/V,) +rand(-1, 1)}, (3)
where sgn represents the sign function, rand(—1, 1) repre-
sents a random number in [—1, 1], V| is bias voltage and
V) is a model parameter. Thus, the probability of obtaining
a logic-1 output from the p-bit device is given by Eq. (4):

w)

It is common to average the p-bit output to realize the
hyperbolic tangent function through Eq. (4).

P(1) = %(1 + tanh < 4)

Field Programmable Mixed-Signal Arrays

Due to the significant benefits offered by analog computa-
tion to certain use cases, there has been a renewed interest
in extending the scope of reconfigurable computing to the
analog domain. The Reconfigurable Analog Signal Pro-
cessor (RASP) [11] introduced in 2012 was an attempt to
overcome two of the main challenges preventing widespread
adaptation of analog processing: lack of a programmable
interface and lack of robust design tools. The RASP pro-
vided a set of high-level design tools for system-level analog
design.

Concurrently with the introduction of the RASP,
researchers [32] developed a Field Programmable Mixed-
Signal Array (FPMA) consisting of both analog and digi-
tal elements arranged in a Manhattan-style fabric. Their
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design consisted of Computational Logic Blocks (CLBs)
comprised of LUTs and D Flip-flops, and Computational
Analog Blocks (CABs) consisting of analog elements such
as op-amps, capacitors, and transistors. Their design used a
global interconnect to route signals between computational
blocks; in addition, each block contained a local interconnect
which operated via a set of reconfigurable switches.

Subsequent innovations included the addition of a 16-bit
microprocessor to the mixed-signal array for added compu-
tational capability [33] and the use of Time-domain Config-
urable Analog Blocks [34] for dynamic reconfigurability of
the analog function being implemented.

Analog Circuit Design
Op-amp Design

The proposed reconfigurable analog multiplier is based
on the op-amp design presented in Fig. 3. The op-amp

Out

il

Fig.3 Op-amp comprised of 10 MOSFETs offering high speed and
compact area
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consists of two cascaded stages; an input stage consist-
ing of a differential amplifier, followed by a gain stage.
A simple design consisting of only 10 CMOS transistors
is chosen to optimize for power consumption as well as
area. The op-amp is simulated using models from the PTM
14 nm LSTP library, at V, =0.8 V.

Figure 4a then presents a layout of the proposed op-
amp design. The layout indicates dimensions of 43F x 23F,
for a total area of 989F2. This layout is contrasted with
a CMOS NAND gate in Fig. 4b, which has dimensions
of 18F x 14.5F, for a total area of 261F>. The op-amp
and NAND gate form an interesting comparison as com-
mon building blocks of analog and digital multipliers,
respectively.

Three-Stage Analog Multiplier

Similarly to [16], the translinear principle is applied to
attain exponentiation of the input signal. As shown in
Fig. 5, we introduce a three-stage design whose output
is a power function of the input. The design as shown in
Fig. 5 accepts a single input for performing exponentiation
operations; the design can also be reconfigured to accept
two inputs for performing analog multiplication.

The first stage, outlined in red in Fig. 5, is a logarithmic
amplifier with output given by

Vi =-AoL V. 5)

() e

where Ay represents open-loop gain and /g, represents the
saturation current of diode D;. Equation (5) is from general
op-amp theory and Eq. (6) follows from KCL. Thus, solving
Egs. (5) and (6) simultaneously yields

Fig.4 a Layout of op-amp used in this paper vs. b a CMOS NAND gate
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Fig.5 Analog circuit for generalized exponentiation. The first, sec-
ond, and third stage are outlined in red, blue, and green, respectively
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In the limit of infinite open-loop gain and sufficiently high
input voltage, Eq. (7) is approximated as

V——Vln< Vi“) (8)
1= .
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The second stage is an analog adder, whereby a similar

analysis yields V, = —2‘2R3. Finally, the third stage is an
2

anti-log amplifier with output approximately given by
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V2

Vou = —Rulgre'r, ©))

O

where I, represents the saturation current of diode D,. Over-
all, it is simple to see that the output of this circuit is given
by

Rlsy a
Vour = ———=(Vin) >
YL (Vin) (10)
where a = 2R, /R,.

The above theory demonstrates the ability to implement
any positive power function of the input via the design
shown in Fig. 5. In addition, a dual-input stage consisting
of two logarithmic amplifiers can be inserted to attain an
analog multiplier. Finally, an inverting amplifier can be
inserted between the second and third stages to realize
inverse power functions as well. Each mode can be imple-
mented using the elements included in the fabric presented
in Fig. 1. To minimize area, MTJs in the P state are used
to implement the resistors shown in Fig. 5; MTJs in the
P state have roughly linear I-V characteristics as implied
by Eq. (1) and validated through experimental data [35].

Equations (8—10) hold only for infinite open-loop gain
which is not attained in practice. Thus, the equations pro-
vide a starting point for the design, after which param-
eters must be adjusted to minimize output errors. Final
parameters are: R, =3500 kQ, R,=50 kQ, R;=150 kQ,
R,=75 kQ, Ig; =50 nA, and Iy, =5.4 nA. In addition, a
load capacitance of 100 fF and load resistance of 1000 kQ
is included at the output stage of each op-amp.

DC Transfer Characteristics

Vout (V)

03 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Vin1 (V)

Fig.6 DC transfer characteristics for the proposed multiplier, with
one input fixed and the second input varying across the operational
range
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Analog Circuit Performance
Analog Multiplier

First, the performance of the analog circuit is evaluated as a
multiplier. In this mode, two separate logarithmic amplifiers
serve as the input stage, receiving inputs V,,; and V,,. The
circuit is evaluated in terms of DC transfer characteristics,
frequency response, and Total Harmonic Distortion (THD),
for various DC amplitudes of V; , within the operational
range between 0.3 and 0.7 V.

DC transfer characteristics are presented in Fig. 6. In
each trial, V;,, is swept across the operational range and the
average non-linearity error is determined based on the per-
centage deviation from a linear regression line. As listed in
Table 2, the maximum non-linearity error of 0.55% occurs
atV,,=0.7 V.

Figure 7 shows the frequency response of the multiplier,
evaluated in the range from 100 MHz to 1 GHz. In this case,
Vin1 18 a sinusoidal signal with offset of 0.45 V and amplitude

1

Table 2 Error, bandwidth, and delay data

Vi (V) Error (%) —3-dB bandwidth Delay (ns)
(MHz)
0.3 0.48 195 3.8
0.4 0.11 191 39
0.5 0.25 186 4.1
0.6 0.43 178 44
0.7 0.55 174 5.0
0 Frequency Response
——Vin2=0.3V
——Vin2= 0.4V
5| Vin2 = 0.5V| |
—Vin2=0.6V
——Vin2=0.7V
10+
o
o
=15
>
(®]
>
-20 -
-25
-30
108 10°

Frequency (Hz)

Fig. 7 Frequency response, with one input fixed and the second input
sinusoidal with offset of 0.45 V and amplitude of 0.25 V
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of 0.25 V. The — 3-dB bandwidth, listed in Table 2, is in the
100 MHz range in each case. While this bandwidth may
be high for applications with limited signal-to-noise ratio,
the circuit can be reconfigured to attain various bandwidths
depending on the RC time constant at the op-amp output.

Table 2 also lists the delay in reaching 90% of the target
voltage in the case when V,,; = V,,; the delays are in the
nanosecond range, consistent with the circuit bandwidth.

Next, Table 3 provides THD in the case, where one
input is 0.45 V DC, and the second input is sinusoidal with
amplitudes of 0.05 V and 0.25 V. THD is within 1% up to
a frequency of approximately 1 MHz, indicating practical
functionality of the system.

nth Power and Root

The circuit is next evaluated in its ability to compute square
and square root functions. Simulation results demonstrate
high-accuracy implementation of nth-root functions; power
functions beyond squaring introduce challenges related to
voltage saturation. It is, however, possible to obtain these
functions via a squaring unit by iteratively applying the
mathematical identity:(A + B)?> — (A — B)? = 4AB.For exam-
ple, in the case of the cubing function, x? is substituted for
A and x for B; any nth power function, n>2, can thus be
computed [15]. The authors of [15] were able to compute
a Sth order polynomial function within 10% error through
this approach.

Table 3 THD with one DC and one sinusoidal input

Data on cube root, square root, and squaring circuits
implemented using the proposed design are given in Table 4,
including technology node, supply voltage, total number of
elementary components, power dissipation, and mean error
over an input range of 0.2-0.6 V.

Comparing to the approximate digital multiplier
described in [7], at the design point giving nearly identi-
cal power consumption, the analog circuit described herein
yields slightly improved mean error across the operational
range. Furthermore, the approximate digital design requires
an area equivalent to 245 CMOS NAND gates, i.e., 980
CMOS transistors. Thus, our design achieves a 97% reduc-
tion in transistor count. In addition, the layout presented in
Fig. 4 indicates that the layout of an op-amp is approxi-
mately 3.79 X the area of a NAND gate; this indicates an
approximately 95% reduction in area if three op-amps are
used for squaring.

The design presented in [9] demonstrates reduced power
consumption but significantly higher error, and a relatively
limited bandwidth of 51.2 kHz. [16] introduces a similar
design to the one described herein, relying on the translinear
principle to implement nth power functions by combining
hardware with logarithmic and exponential output charac-
teristics; a limitation of this design is that its reliance on
time-mode circuitry intrinsically leads to significant time
delays, on the order of microseconds.

In addition, a Monte Carlo simulation is performed to
determine the effects of process variation in MTJ devices.
For this simulation, 100 trials are conducted considering
a 1.5% standard deviation in the resistance of each MTJ
device; this value is consistent with the variation seen in a
4-Mb MRAM array [36]. The resulting standard deviations

Frequenc Amplitude=0.25 V (% Ampli- . L. . . . .
aneney P 0 tudep —005v inthe circuit outputs are listed in Table 5. While the maxi-
(%) mum standard deviation due to PV is 6.36%, the presence
of only 16 high-barrier MTJ devices in the reconfigurable
10 kHz 0.80 0.76 . . .
fabric may allow for improved device tolerances and thus
100 kHz 0.81 0.77 . . . . .
improved computational accuracy in the fabricated design.
1 MHz 0.81 0.75 . .
> MHy 108 110 Given the temperature dependence of diodes as well as
’ ’ MT]J devices, a brief temperature analysis of the circuit
3 MHz 1.82 1.61 . .
performance is conducted to complement the previous
Table 4 Comparison of results Herein  Herein Herein  [7] 9] [15] [16]
Mode Analog Analog Analog  Digital Analog Analog  Analog
Operation Cube root  Square root  Square  Multiplier =~ Multiplier =~ Square  Square
Tech node (nm) 14 14 14 28 130 500 180
Vop (V) 0.8 0.8 0.8 1 0.6 1.5 1.3
No. of components 43 43 43 ~1000 35 12 ~100
Power (pW) 123 122 126 126 23 600 149
Mean error (%) 0.50 0.66 1.30 1.87 9.1* N/A 0.24°

“RMS noise vs. max. output
ALV, =04V
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Table 5 Error due to process variation of MTJ devices

Vin (V) Square (%) Square root (%)
0.3 5.96 3.81
0.4 6.36 3.88
0.5 6.13 3.92
0.6 5.72 3.95
0.7 5.30 3.96

data attained at a temperature of 25 °C. In this analysis,
the temperature dependency of the mean error of Fig. 5 is
determined when configured to function as a squaring unit.
While HSPICE includes temperature dependent models for
diodes, a custom model is used for MTJs. Specifically, the
MT]J conductance may be modeled as [37, 38]

G(T, 0) = GH(T){1 + P(T)*cos 0} + Gg(T) an
T — G,CT

(1) n(CT) (12)
P(T) = P0<1 - aT§> (13)
b TMR, "
°7V 2-TMR, 14
Gg(T) = ST*/3. (15)

In these equations, G represents MTJ device conduct-
ance, T represents absolute temperature, 6 represents relative
magnetization orientation, P represents polarization, and
TMR represents tunneling magnetoresistance. G, TMR,,
a, C and § are model parameters. The proposed design uses
P-state MTJs, so 8=0 is chosen for this analysis. Further-
more, the model parameters TMRy=1, & = 2 x 107> K2,
C=0.015K " and § = 10-2 Q7! K=*? are used; G, is cho-
sen based on the target MTJ conductance value. TMR; is
consistent with [27]; moreover, @ and S are consistent in
order of magnitude with [37]. C is chosen based on the equa-
tion [37]:

C =1.387x107*1/1/o, (16)

where ¢ represents oxide barrier height in Angstroms, and
@. is the oxide barrier potential in electron-volts. The figure
C=0.0015 is derived assuming an oxide barrier thickness of
10A [27], and a barrier potential on the order of 1 eV [37].

Based on the above model, the mean computational error
of the squaring unit across an input voltage range between
0.2 and 0.6 V is determined, for temperatures ranging from

SN Computer Science
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Table 6 Mean error of analog

. . . T (°C) Mean error (%)

squaring circuit as a function of

temperature, 7 —20 14.1
-10 3.17
0 0.748
10 0.352
20 0.551
30 1.70
40 5.71
50 14.2
60 229
70 27.3

—20to 70 °C, with results summarized in Table 6. An error
below 10% is observed between temperatures of — 10 °C and
40 °C. This operational interval includes common environ-
mental temperatures as well as physiological temperature
but does not cover the commercial temperature range. Thus,
further work is necessary to improve the temperature resil-
ience of the design for use in more extreme environments.

Generalized Functions

The proposed hardware may also be used to implement
generalized functions. For one, the analog circuit can func-
tion in a third mode, where inverse power and root func-
tions are computed by adding an inverting amplifier before
the final stage; al/ \/J_c function yields an average error of
0.4%. Furthermore, exponential and logarithmic functions
can be computed using only one op-amp stage. Other gen-
eralized functions can be implemented using a Taylor series
approximation.

Algorithm 1 Approximate Message Passing

Inputs: The measurement matrix, ®
The measurement vector, y
The number of measurements, m
Output: The approximate signal vector, X
Procedure:
1) Initialize the residual ro =y, the signal approximation Xy = 0, and the

counter ¢ = 1.

while i < k do

2) 0 = lri_1ll/yim
a==%_1 + ®Tr;

1) X; = sign(a)max(| a | -6, 0)

5) bi = ||xillo/m
6) r; =y - ®x; + biri—y
end while

Figure 8 shows an approximation of the function
f(x) = x —x? — x> —x* — ¥’ based on the proposed analog
squaring unit. This simulation includes squaring errors, but
does not include errors in addition, subtraction, and volt-
age rescaling; the resulting output is a fair approximation of
the target function, with an average error of 4.83% over the
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Approximation of f(x) = x - X -x3-x*-x5

BN — — Approximate
— Exact ]

0.2

0.15

0.1

0.05 -

-0.05 -

-0.1 1

-0.15 -

0.2 . . . . . . .
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

X

Fig.8 Approximation of a 5th order polynomial function using the
proposed hardware, showing agreement with an error-free implemen-
tation

tested range. This demonstrates the feasibility of generating
generalized functions through Taylor series using our analog
approach.

Application to Compressive Sensing

Compressive Sensing (CS) is an emerging signal process-
ing technique which allows for sub-Nyquist sampling of
spectrally sparse and wideband data. Applications of CS
include reduction of power consumption and complexity in
5G communication networks [39], and reduction of sam-
pling duration in time-critical applications such as MRI [40].
CS applies a linear transformation to signal x € R” via the
measurement matrix, @ € R™ ™ to obtain a compressed
measurement vector, y € R”, with m < n. The receiver must
then solve an undetermined system of linear equations to
reconstruct the original signal.

One possible approach to the CS reconstruction problem
is to choose the solution with the lowest sparsity, such that
the sparsity, k, is defined as the number of nonzero elements
in the signal. This translates directly to the minimization
problem: & = argmin||x||, s.t. y = ®x. Due to this problem
being NP-hard [41], an alternative approach is to solve the
basis pursuit problem:

X = argmin||x||; s.t. y = Px. (17)

The condition for X being an accurate reconstruction of
the original signal vector is the Restricted Isometry Property
(RIP) [42], i.e., that for any k-sparse vector x:

IxI3(1 = 6) < [|®x|13 < [Ix]I3(1 + ). (18)

Besides basis pursuit, a variety of algorithms with differ-
ent tradeoffs allow for CS reconstruction [43]. One example,
Approximate Message Passing (AMP), is a soft thresholding
algorithm designed for fast convergence [44]. The design is
presented as Algorithm 1. In this notation, sign(a)max(lal —6,
0) refers to elementwise vector operations, where the constant
0 is applied to each element. The function sign(x) is defined to
be+ 1 for x>0 and —1 for x<0.

The AMP algorithm begins by initializing the residual
vector, ry to the measurement vector y, as well as initializ-
ing the estimate of the signal vector x to zero (Line 1). Next,
the threshold @ is computed as the root mean square error of
the residual (Line 2). Lines 3—4 provide an estimation of the
reconstructed signal vector as a function of the thresholding
parameter, in accordance with the Iterative Soft Thresholding
technique. Finally, Lines 5-6 demonstrate the key difference
between AMP and the Iterative Soft Thresholding approach
[45], i.e., the residual is updated based on not only the current
signal estimate X, but also based on the residual of the previ-
ous iteration, r;_;.

AMP reconstruction, as an error tolerant use case requiring
square and square root computations in each iteration, serves
as a viable application for the hardware presented herein. The
performance of AMP is evaluated in MATLAB based on
signals of length n=1000, with sparsity rate k/n=0.1. The
number of measurements, m, is varied from 200 to 500 to
determine the magnitude of the reconstruction error in deci-
bels, defined as

Error (dB) = 20 log <%) (19)
X

Figure 9 shows AMP performance considering an exact
implementation (blue dots), approximation errors intrinsic
to the analog hardware as detailed in Table 4 (red dots), and
finally approximation errors considering process variation
errors detailed in Table 5 (yellow dots).

The results demonstrate a negligible impact of the intrinsic
circuit error on AMP performance; certain data points such
as m=>500 demonstrate a lower error with the approximate
approach, indicating statistical insignificance of the error.
Even the increased computational error due to process varia-
tion amounts to only a slight degradation in performance and
consistently requires less than 50 additional measurements to
regain the reconstruction accuracy of the AMP algorithm.

SN Computer Science
A SPRINGER NATURE journal



148 Page 100f 14

SN Computer Science (2022) 3:148

Reconstruction Error using AMP
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Fig.9 Signal reconstruction error of the AMP algorithm as a function
of number of measurements, where square and square root operations
are performed exactly (blue circles), with approximation error of the
presented hardware (red circles), and with approximation error due to
process variation (yellow circles)

Application to Machine Learning
Gradient Decay Problem

Deep neural networks (DNNs) have been gaining popular-
ity in the context of diverse applications including com-
puter vision [46] and speech recognition [47]. At each
layer, the DNN takes a vector input, X, and outputs a linear
transformation of the input, z, according to the equation
z=Wx, where W is the weight matrix. To facilitate learn-
ing non-linear relationships, the output z is transformed by
an activation function to yield a final layer output, h=£{(z).
The choice of activation function has recently been a sub-
ject of research interest due to its significant impact on the
success of a neural network [5]. While hyperbolic tangent
has been commonly used, this function suffers drawbacks
including the gradient decay problem, i.e., the gradient is
diminished for multi-layer networks due to repeated mul-
tiplication of values having absolute value less than 1 [48].

The vanishing gradient problem has been addressed
by choice of alternative activation functions, e.g.,
the Rectified Linear Unit (ReLU) which is defined as
Jfreru®¥) =max(0, x) and has a gradient of 1 for all x> 0.
Another alternative is the square root function, which
experiences significantly slower gradient decay com-
pared with hyperbolic tangent. It has been observed that
the derivative of the hyperbolic tangent function at x=10
is less than the derivative of the square root function at
x=10"'6. Previous research has demonstrated that replacing
hyperbolic tangent with a square root activation function
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can allow for a 5% improvement in classification accuracy
on the CIFAR-10 data set [4].

Given the robust capabilities of the analog circuit pre-
sented herein, we next evaluate its ability to generate
improved activation functions for DNN performance. The
evaluation is performed in the context of a Deep Belief Net-
work (DBN) used to classify samples from the MNIST data
set.

Deep Belief Networks (DBNs)

Restricted Boltzmann Machines (RBMs) are a class of recur-
rent stochastic neural network [49] in which the energy of
the network in state k is determined by Eq. (20):

—Z kb—Zssw (20)

i<j

E(k) =

where sf refers to the state of node i, while the network is in
state k, and w;; represents the weight between nodes i and j.
Each node in an RBM has a probability of being in state 1
given by Eq. (21):

P(s;=1)= a(b[ + ZWUS/>’ @1
7

where o represents the sigmoid function. Over time, a Boltz-
mann distribution is reached, where the probability of find-
ing the system in state & is defined as

o—E®
Te

where the summation in the denominator is taken over all
possible states of the system. An RBM is a two-layer neural
network consisting of a visible layer and hidden layer; by
stacking RBMs, it is possible to realize a DBN of arbitrary
length [49].

P(k) = (22)

Probabilistic Inference Network Simulator (PIN-Sim)

DBN simulations on the MNIST data set can be readily per-
formed at both the software and hardware level, using the
Probabilistic Inference Network Simulator (PIN-Sim) [49].
PIN-Sim consists of five modules: first, trainDBN reads the
training images in MATLAB and outputs the weight and bias
matrices representing the DBN; a second MATLAB module,
mapWeight, converts the weight and bias data into device
conductance values. Next, the Python module, mapRBM,
generates SPICE representations of multiple crossbar
weighted arrays based on the outputs of mapWeight and the
given network topology. A final Python module, festDBN,
executes a SPICE circuit simulation of the DBN to deter-
mine classification error rate as well as power consumption.
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The inputs to the testDBN module consist of the outputs
of mapWeight and mapRBM as well as the module, neu-
ron, which is a SPICE representation of the circuit used for
computing the activation function. A visual description of
PIN-Sim is shown in Fig. 10.

Impact of Activation Function

Given the robustness of the analog circuit presented herein,
we investigate the impact of three separate activation
functions on DBN performance: f;(x) = %(1 + tanh(x)),
£®) = v/f,(x), and f)=(1+ e™)~1. Since f,(x) > £, ((x)
for x < — 0.55 and f,(x) > f, (x) for |x| > 1.06, substitution
of these functions may potentially alleviate the rate of gradi-
ent decay for certain inputs. Moreover, each function may
be implemented using the FPAA fabric shown in Fig. 1; the
presence of low-barrier MTJ devices allows for construc-
tion of p-bit devices, at which point f; is computed via an
op-amp integrator at the output. Computation of f, requires
an additional 3 op-amps to execute the square root function
in analog; finally, f; requires a total of 6 op-amps to execute
based on the computational units described in Fig. 5.

A DBN software simulation is performed in MATLAB
for each activation function to evaluate the classification
accuracy for the MNIST data set, based on 3000 training
samples and 1000 test samples. Figure 11 shows the results
based on various network topologies. Over the network
topologies tested, both f, and f; demonstrate a consistent
improvement in error rate over f;; the average improve-
ment is 6.4% for f, and 8.7% for f;. Moreover, in certain
cases, selection of f; vs. f as an activation function allows

Training
images
_

trainDBN.m

Weight and bias
matrices (.mat)

Test inputs (.txt)
_ estinpuss LB

MAPWEIEREM | et iabels (0x) testDBN.py
—
Weight and bias
arrays (.txt)
RBMs (.sp) Error Power
mapRBM.py — rate consumption

Fig. 10 Logical flow of PIN-Sim, including the five main modules
involved in DBN simulation
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Fig. 11 Normalized error rate for image classification, based
on various DBN topologies and the activation functions,

fix) = %(1 + tanh(x)), f,(x) = 1/f;(x), and f3(x) = (1 + e™*)~! repre-

sented by blue, red, and yellow bars, respectively

for reduction in error rate while decreasing the size of the
array, e.g., from 784 x 500 x 10 to 784 x 200 x 10, and from
784 %200x200x200x% 10 to 784 x 100x 100X 100 x 10.

A PIN-Sum simulation is conducted, based on the MTJ
parameters taken from [50] and listed in Table 7, for average
RBM power consumption in select network topologies using
the f, and f, activation functions. For simulations imple-
menting f,, the neuron.sp file in the PIN-Sim framework is
modified by adding an analog square root unit to the output,
based on the design shown in Fig. 5.

Simulation results are listed in Table 8, including average
power consumption and corresponding software error rates;
the power-error-product (PEP) is computed as a product of
these data points and listed in the table as well. Similar to
the previously used energy-error-product [50], PEP is a use-
ful metric for attaining an overall evaluation of each design.
Based on the results, the f, activation function yields an

Table 7 MTJ parameters used for simulating p-bit devices [50]

Parameter Value

1100 emu/cm’®

22 nm, 2 nm

Saturation magnetization

Free layer diameter, thickness

Polarization 0.59
TMR 110%
MTJ RA-product 9 pQ-cm?
Damping coefficient 0.01
Temperature 300 K
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Table 8 Error rate, average

. Network topology Activation func-  Error rate Power (mW) Power-
DBN power consumption, tion error-
anq power—error—product.for product
various network topologies and
activation functions 784 %200 10 fi 0.1239 72.4 8.97
784%200x 10 5 0.1152 76.1 8.77
784%200%200% 10 h 0.1030 106.3 10.95
784%200%200% 10 5 0.0922 88.5 8.16
784 %200%200%x200x 10 h 0.0945 153.7 14.52
784 x200x%200x200x% 10 b 0.0919 119.2 10.95
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