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Abstract The problem of nonprehensile manipula-
tion of a stick in three-dimensional space using inter-
mittent impulsive forces is considered. The objective is
to juggle the stick between a sequence of configurations
that are rotationally symmetric about the vertical axis.
The dynamics of the stick is described by five general-
ized coordinates and three control inputs. Between two
consecutive configurations where impulsive inputs are
applied, the dynamics is conveniently represented by a
Poincaré map in the reference frame of the juggler. Sta-
bilization of the orbit associatedwith a desired juggling
motion is accomplished by stabilizing a fixed point on
the Poincaré map. The Impulse Controlled Poincaré
Map approach is used to stabilize the orbit, and numer-
ical simulations are used to demonstrate convergence
to the desired juggling motion from an arbitrary initial
configuration. In the limiting case, where consecutive
rotationally symmetric configurations are chosen arbi-
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trarily close, it is shown that the dynamics reduces to
that of steady precession of the stick on a hoop.
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List of symbols

g Acceleration due to gravity (m/s2)
hx , hy , hz Cartesian coordinates of the center-of-

mass of the stick in the xyz frame (m)
� Length of the stick (m)
m Mass of the stick (kg)
r Distance of point of application of impul-

sive force from the center-of-mass of the
stick,measured positive along the z2-axis
(m)

vx , vy , vz Velocities of the center-of-mass of the
stick in the xyz frame (m/s)

xyz Inertial reference frame
x0y0z0 Reference framewith origin at the center-

of-mass of the stick; aligned with the xyz
frame

x1y1z1 Reference framewith origin at the center-
of-mass of the stick; obtained by rotating
x0y0z0 frame by α about the z0-axis

x2y2z2 Reference framewith origin at the center-
of-mass of the stick; obtained by rotating
x1y1z1 frame by β about the y1-axis
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x3y3z3 Body-fixed reference frame with ori-
gin at the center-of-mass of the stick;
obtained by rotating x2y2z2 frame by γ

about the z2-axis
Hx , Hy , Hz Components of the angular momentum

about the center-of-mass of the stick in
the xyz frame (kgm2/s)

I Nonnegative magnitude of impulsive
force applied on the stick (Ns)

J Massmoment of inertia of the stick about
the principal axes x3 and y3 (kgm2)

R Rotation matrix that transforms a vec-
tor from the x3y3z3 frame to the x0y0z0
frame

α, β, γ zyz Euler angle sequence describing the
stick orientation (rad)

φ Angle that the impulsive force makes
with the x2-axis, measured positive about
the z2-axis, lies in the interval [−π/2,
π/2] (rad)

α̇, β̇, γ̇ zyz Euler angle rates (rad/s)
¯[.] [.] expressed in the reference frame of the

juggler

1 Introduction

With robots expected to perform increasingly complex
tasks, it is imperative that nonprehensile manipulation
is included in their repertoire.Nonprehensilemanipula-
tion represents an important class of problems in which
objects aremanipulatedwithout grasping; they are sub-
jected to unilateral constraints and need not strictly fol-
low the motion of the manipulator [12,14–16,22,28].
The advantages of nonprehensile manipulation over
prehensile manipulation [14,22] include:

– added flexibility in manipulation since additional
surfaces of the manipulator may be used to make
unilateral contact with the object.

– an increased workspace, exceeding the kinematic
reach of the manipulator.

– the ability to control more degrees-of-freedom
(DOFs) than that of the manipulator.

Nonprehensile manipulation can be subdivided into
tasks where the contact between the manipulator and
the object is continuous, and tasks where the contact
is intermittent. Continuous contact occurs, for exam-
ple, when an object is pushed by a manipulator to

slide or roll on a surface. Examples of the latter class
of problems include the nonprehensile manipulation
primitives of dynamic catching, throwing, and batting
[22], which combines dynamic catching and throw-
ing into a single collision. Juggling is a nonprehen-
sile manipulation task comprised of iterative batting
primitives [22]. The dynamics of juggling is hybrid
(non-smooth) and involves the application of intermit-
tent impulsive forces. The controllability and stability
of hybrid dynamical systems has been investigated by
many researchers [4–6,13,26,30], but is not the focus
of this paper.

Juggling a point mass, such as a ball or a hockey
puck, requires the application of a single impulsive
force for each batting primitive to achieve a desired
motion. The ball-juggling problem was investigated
using a one-DOF table [29] first, and later using a
two-DOF manipulator [3]. The work in [3] is, how-
ever, more extensive, and treats the feedback control
of complementary-slackness juggling systems. Both
[3,29] consider the complete dynamicmodel of the sys-
tem, comprised of both the object and the robot, along
with the associated unilateral constraint and impact
rule. Blind-jugglers, which juggle balls without rely-
ing on external sensors, have been analyzed in [20,21],
and other solutions to juggling of point masses have
been proposed in [23,24,27]. Compared to a point
mass,which is described byposition coordinates only, a
stick represents an extended object that is described by
both position and orientation coordinates. Therefore,
both the physical task and the mathematical problem
of stick-juggling are more challenging than juggling a
ball or a point mass.

Previous work on nonprehensile manipulation of
sticks has documented the use of continuous-time
inputs for rotary propeller motion [17,18,25] but there
is limited literature on manipulation of sticks using
impulsive forces. For nonprehensile manipulation of
a stick using impulsive forces, the location, direction,
and magnitude of the impulsive force have to be taken
into consideration for every batting primitive. An open-
loop strategy for planar stick-juggling was presented
by Schaal and Atkeson [24]; the dynamics of the sys-
tem was, however, not completely modeled. The com-
plete dynamic model and closed-loop control designs
for planar stick-juggling were presented by Kant and
Mukherjee in [9,10]. Nonprehensile manipulation of a
stick in three-dimensional space has not appeared in the
literature and this work is the first to present a hybrid
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dynamic model that lends itself to closed-loop control
design. The dynamic model represents an underactu-
ated systemwith five generalized coordinates and three
control inputs; the three-dimensional juggling problem
ismore challenging than the planar casewhere the stick
is described by three generalized coordinates and two
control inputs. The Impulse Controlled Poincaré Map
(ICPM) approach [8,10], in which impulsive forces are
intermittently applied on a Poincaré section, is used for
stabilizing the hybrid orbit that describes the desired
juggling motion.

This paper is organized as follows. The problem
of juggling a stick in three-dimensional space using
impulsive forces is formally stated in Sect. 2. The
impulsive and continuous-time dynamics of the stick is
presented in Sect. 3. The hybrid dynamics of the stick
between two consecutive configurations where impul-
sive inputs are applied is described with the help of
a nonlinear discrete-time Poincaré map in Sect. 4. The
control design is presented inSect. 5. Simulation results
are presented in Sect. 6. Section 7 considers the spe-
cial cases of planar juggling and steady precession. It
is shown that previously derived expressions for planar
symmetric juggling [9,10] can be recovered from the
current, more general, formulation. The steady preces-
sion of the stick is shown to be a limiting case of the
hybrid dynamics. Concluding remarks are provided in
Sect. 8.

2 Problem description

Consider the six DOF stick shown in Fig. 1, which can
move freely in three-dimensional space. The center-of-
mass of the stick is denoted by G. The configuration
of the stick is specified by the generalized coordinates
(hx , hy, hz, α, β, γ ). The stick is assumed to be sym-
metric about the body-fixed z3-axis, which is the same
as the z2-axis. Due to this axisymmetry, the rotation
by γ about the z2-axis is imperceptible. The objective
is to juggle the stick between a sequence of configura-
tions which, at steady-state, are rotationally symmetric
about the inertial z-axis—see Fig. 2. Each configura-
tion in the sequence satisfies β = β∗, β∗ ∈ (0, π/2),
and can be obtained from the previous configuration
by a fixed change in α, equal to Δα∗. For the sequence
of configurations, the coordinates of G lie on a cir-
cle parallel to the xy plane. The stick is juggled using
purely impulsive forces applied normal to the stick;

Fig. 1 A rigid stick in the three-dimensional space has
six DOFs and is described by the configuration variables
(hx , hy, hz, α, β, γ )

Fig. 2 A sequence of configurations of the stick at steady-state,
rotationally symmetric about the z-axis

the impulsive forces are applied only when β = β∗.
Since the impulsive force is applied normal to the stick,
the impulsive force lies on a plane parallel to the x2y2
plane—see Fig. 3. The control inputs are the triplet
(I, r, φ); at steady-state, they assume the constant val-
ues (I ∗, r∗, φ∗).

3 System dynamics

3.1 Coordinate transformations

The elementary rotation matrices describing a rotation
about the y- and z-axes by angle θ are given as:
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Fig. 3 Control inputs (I, r, φ): the impulsive force is applied
when β = β∗

Ry(θ)=
⎡
⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ , Rz(θ)=

⎡
⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦

(1)

A vector p described in the inertial reference frame can
be related to the same vector expressed in the body-
fixed frame by the expression

p = Rpb, R � Rz(α)Ry(β)Rz(γ ) (2)

We define the position and velocity vectors in the iner-
tial frame

h �

⎡
⎣
hx
hy

hz

⎤
⎦ , v �

⎡
⎣

vx
vy
vz

⎤
⎦ =

⎡
⎣
ḣx
ḣ y

ḣz

⎤
⎦ (3)

The vector of Euler angle rates can be related to the
angular velocity vector in the inertial frame using the
relationship

ω = S�, S �

⎡
⎣
0 − sin α cosα sin β

0 cosα sin α sin β

1 0 cosβ

⎤
⎦ , � �

⎡
⎣

α̇

β̇

γ̇

⎤
⎦

(4)

Assuming a slender stick, the moment of inertia matrix
J in the inertial reference frame is related to the iner-
tia matrix Jb in the body-fixed x3y3z3 frame by the
expression

J = RJbRT, Jb � diag
[
J J 0

]
(5)

where the mass moment of inertia about the principal
axis z3 is zero. The matrix J is found to be independent
of γ ; this is due to the symmetry of the stick about the
z3- axis. Using (4), the angular momentum of the stick

in the inertial reference frame,H �
[
Hx Hy Hz

]T
, can

be expressed as

H = Jω = JS� (6)

where

JS = J

⎡
⎣

− cosα sin β cosβ − sin α 0
− sin α sin β cosβ cosα 0

sin2 β 0 0

⎤
⎦ (7)

The above expression, which was obtained using (4)
and (5), indicates that the matrix JS is singular and H
is a function of α̇ and β̇, but not γ̇ .

3.2 Impulsive dynamics

Let tk, k = 1, 2, . . . , denote the instants of timewhen
impulsive inputs are applied on the stick. Furthermore,
let t−k and t+k denote the instants of time immediately
before and after application of the impulsive inputs.
Since impulsive inputs cause no change in position
coordinates [2,11], we have

h(t+k ) = h(t−k )

α(t+k ) = α(t−k ) � αk, β(t+k ) = β(t−k ) = β∗ (8)

where αk is defined for notational simplicity and
β(t+k ) = β(t−k ) = β∗ ∀ k follows from our discussion
in Sect. 2. At time tk , the vector of impulsive force can
be written in the inertial reference frame as

Ik = Rz(αk)Ry(β
∗)

⎡
⎣

−Ik cosφk

−Ik sin φk

0

⎤
⎦ = Ikfk,

fk �

⎡
⎣

sin αk sin φk − cosαk cosβ∗ cosφk

− cosαk sin φk − sin αk cosβ∗ cosφk

sin β∗ cosφk

⎤
⎦

(9)

where Ik = I (tk) and φk = φ(tk). The vector from
the center-of-mass G to the point of application of the
impulsive force can be written in the inertial reference
frame as

rk = Rz(αk)Ry(β
∗)

⎡
⎣
0
0
rk

⎤
⎦ = rk

⎡
⎣
cosαk sin β∗
sin αk sin β∗

cosβ∗

⎤
⎦ (10)

where rk = r(tk). The discontinuous jumps in veloci-
ties due to the impulsive inputs can be obtained from the
linear and angular impulse-momentum relationships.
The linear impulse-momentum relationship is given by

mv(t+k ) = mv(t−k ) + Ik (11)

which, using (9), can be expressed as

v(t+k ) = v(t−k ) + Ik
m

fk (12)
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The angular impulse-momentum relationship is given
by

H(t+k ) = H(t−k ) + rk × Ik (13)

Using (6), (9), and (10), we get

JkSk�(t+k ) = JkSk�(t−k ) + Ikrk

×
⎡
⎣

sin αk cosφk + cosαk cosβ∗ sin φk

− cosαk cosφk + sin αk cosβ∗ sin φk

− sin β∗ sin φk

⎤
⎦ (14)

where JkSk = J(tk)S(tk), and is obtained from (7) by
using α = αk and β = β∗. It can be shown that two of
the three equations in (14) are independent; these two
equations can be used to solve for the two unknowns,
namely,

α̇(t+k ) = α̇(t−k ) − Ikrk sin φk

J sin β∗ (15a)

β̇(t+k ) = β̇(t−k ) − Ikrk cosφk

J
(15b)

Remark 1 The problem definition imposes the unilat-
eral constraint

β ≤ β∗ ⇒ β̇(t+k ) < 0 ⇒ rk > 0 (16)

Remark 2 The equations describing the impulsive
dynamics are independent of γ and γ̇ .

3.3 Continuous-time dynamics

Over the interval t ∈ [t+k , t−k+1], the stick undergoes
torque-free motion under gravity. The motion of the
center-of-mass is therefore described by the differential
equation

ḣ = v, v̇ = [
0 0 −g

]T
(17)

Using h(t+k ) and v(t+k ) as the initial conditions for h
and v, the solution to (17) is obtained as

h(t−k+1) = h(t−k ) + v(t−k )δk + Ikδk
m

fk − 1

2

⎡
⎣

0
0
gδ2k

⎤
⎦

(18a)

v(t−k+1) = v(t−k ) + Ik
m
fk −

⎡
⎣

0
0
gδk

⎤
⎦ (18b)

where δk � (t−k+1 − t−k ) is the interval between the
kth and (k + 1)th impulsive input; it is also the dura-
tion of the flight phase. Due to conservation of angular
momentum, the rotational dynamics is described by the
relation

H = H(t+k ) ⇒ JS� = H(t+k ) (19)

Since JS is singular, (19) yields the following three
equations that are not all independent

J α̇ sin β cosβ = −Hx (t
+
k ) cosα − Hy(t

+
k ) sin α

(20a)

J β̇ = −Hx (t
+
k ) sin α + Hy(t

+
k ) cosα (20b)

J α̇ sin2 β = Hz(t
+
k ) (20c)

where Hx (t
+
k ), Hy(t

+
k ), and Hz(t

+
k ) are the components

of H(t+k ), which can be obtained from (13). We now
solve for α, α̇ and β̇ at t−k+1, knowing that β = β∗ at
t−k+1, which is the end of the flight phase. Eliminating α̇

between (20a) and (20c) and noting that β = β∗ both
at the beginning and end of the flight phase, we get

Hx (t
+
k ) cosαk+1 + Hy(t

+
k ) sin αk+1

= Hx (t
+
k ) cosαk + Hy(t

+
k ) sin αk

(21)

By ignoring the trivial solution αk+1 = αk , we get

αk+1 = αk + π + 2 arctan⎡
⎢⎢⎣sin β∗cosβ∗

α̇(t−k ) − Ikrk sin φk

J sin β∗

β̇(t−k ) − Ikrk cosφk

J

⎤
⎥⎥⎦

(22)

Equation (20c) can be solved for α̇(t−k+1) to obtain

α̇(t−k+1) = α̇(t−k ) − Ikrk sin φk

J sin β∗ (23)

Differentiating (20b) with respect to time and eliminat-
ing terms in α and α̇ using (20a) and (20c) allows us to
obtain a decoupled second-order differential equation
in β:

J β̈ = H2
z (t+k ) cot β csc2 β

⇒ J β̇dβ̇ = H2
z (t+k ) cot β csc2 βdβ (24)

The above equation can be integrated subject to initial
conditions β̇ = β̇(t+k ) and β = β∗ to obtain

β̇2 = −K1 cot
2 β + K2 (25)
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where K1 and K2 are constants over the duration of the
flight phase and are given by the relations

K1 � sin4β∗
[
α̇(t−k ) − Ikrk sin φk

J sin β∗

]2

K2 � sin2β∗ cos2β∗
[
α̇(t−k ) − Ikrk sin φk

J sin β∗

]2

+
[
β̇(t−k ) − Ikrk cosφk

J

]2
(26)

To obtain β̇(t−k+1), we substitute β = β∗ in (25) and
simplify. Since β = β∗ both at the beginning and end
of the flight phase, we get two solutions. One solution
gives the value of β̇ at the beginning of the flight phase
and is identical to (15b); the other gives the value of β̇

at the end of the flight phase:

β̇(t−k+1) = −β̇(t−k ) + Ikrk cosφk

J
(27)

To obtain the minimum value of β during the flight
phase, we substitute β̇ = 0 in (25); this yields:

βmin = arccot
√
K2/K1 (28)

Separating the variables β and t in (25), and observing
that β̇ is necessarily negative (positive)whenβ changes
fromβ∗ toβmin (βmin toβ∗),we obtain the time of flight
δk as

δk =
∫ βmin

β∗
dβ

−√
K2 − K1 cot2 β

+
∫ β∗

βmin

dβ√
K2 − K1 cot2 β

= 2
∫ β∗

βmin

dβ√
K2 − K1 cot2 β

= 1√
K1 + K2

[
π − 2 arctan

( √
K1 + K2 cot β∗

√
K2 − K1 cot2β∗

)]

(29)

Remark 3 Similar to the impulsive dynamics, the equa-
tions describing the continuous-time dynamics are
independent of γ and γ̇ . Therefore, the configuration
of the stick can be adequately described by the five
generalized coordinates (hx , hy, hz, α, β).

4 Hybrid dynamic model

4.1 Poincaré map in inertial reference frame

In light of Remark 3, the generalized coordinates and
their derivatives can be chosen to be the components
of the state vector:

X = [
hx hy hz vx vy vz α β α̇ β̇

]T
(30)

The vector of control inputs is denoted by

U = [
I r φ

]T
(31)

We now define the Poincaré section1 based on the con-
figuration where the impulsive inputs are applied:

S = {X ∈ R
10 | β = β∗} (32)

A point on S can be described by the vector Y , Y ⊂ X ,
where

Y = [
hx hy hz vx vy vz α α̇ β̇

]T
(33)

Using (18), (22), (23) and (27), the hybrid dynam-
ics, comprised of the impulsive and continuous-time
dynamics, can be described by the map P : S → S as
follows:

Y (t−k+1) = P
[
Y (t−k ),Uk

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hx (t
−
k )+vx (t

−
k )δk+ Ikδk

m
(sin αk sin φk

−cosαk cosβ∗ cosφk)

hy(t
−
k )+vy(t

−
k )δk+ Ikδk

m
(− cosαk sin φk

−sin αk cosβ∗ cosφk)

hz(t
−
k )+vz(t

−
k )δk+ Ikδk

m
sin β∗ cosφk

− 1

2
gδ2k

vx (t
−
k )+ Ik

m
(sin αk sin φk

−cosαk cosβ∗ cosφk)

vy(t
−
k )+ Ik

m
(− cosαk sin φk

−sin αk cosβ∗ cosφk)

vz(t
−
k ) + Ik

m
sin β∗ cosφk−gδk

αk + π + 2

× arctan

⎡
⎢⎢⎣sin β∗cosβ∗

α̇(t−k )− Ikrk sin φk

J sin β∗

β̇(t−k )− Ikrk cosφk

J

⎤
⎥⎥⎦

α̇(t−k )− Ikrk sin φk

J sin β∗

−β̇(t−k )+ Ikrk cosφk

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

1 It is assumed that the initial conditions of the stick are such
that its trajectory intersects the Poincaré section before the first
impulsive input is applied.
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Fig. 4 Steady-state trajectory of the stick in the inertial reference
frame for the particular case of Δα∗ = 2π/3; starting from the
configuration 1© : Y (t−k ), the stick returns to this configuration
at t−k+3 following the application of three control actions at tk ,
tk+1, and tk+2

Remark 4 All elements of the vector Y in (34) are
defined in the inertial reference frame.

Remark 5 The objective is to juggle the stick between a
sequence of configurations which are rotationally sym-
metric about the z-axis at steady-state—see problem
description inSect. 2. These steady-state configurations
do not correspond to a fixed point of the map P in (34)
since each variable in the set {hx , hy, vx , vy, α} does
not converge to a fixed value. This is illustrated with
the help of Fig. 4, which shows the Poincaré section
S and the steady-state trajectory of the stick for the
particular case of Δα∗ = 2π/3. The stick is juggled
between three configurations that are rotationally sym-
metric about the vertical axis and three control actions
are required to bring the stick back to the original
configuration, i.e., Y (t−k+3) = Y (t−k ). The impulsive
dynamics of the stick is shown by the line segments
1©→ 2©, 3©→ 4©, and 5©→ 6© on S; the continuous-
time dynamics is shown by the trajectories 2© → 3©,
4©→ 5©, and 6©→ 1©. It can be seen that the steady-
state configurations Y (t−k ), Y (t−k+1), and Y (t−k+2) are
different in the inertial coordinate system and do not
correspond to a fixed point of P. This problem can be
alleviated by defining the map in a rotating reference
frame following the approach in [9].
4.2 Poincaré map in the reference frame of the juggler

We assume that the juggler changes its position inter-
mittently. This position, which is denoted by P , is
updated immediately prior to application of each
impulsive input, i.e., when β = β∗. The point P lies
on a circle whose center is the origin of the xyz frame
O , and OP is parallel to the x1-axis at instants t = tk ,

Fig. 5 Configurations of the stick at tk and tk+1; the locations
of the juggler are denoted by P(tk) and P(tk+1)

k = 1, 2, . . .. The reference frame of the juggler is
obtained by rotating the xyz frame intermittently by
αk at t = t−k , k = 1, 2, . . ., about the z-axis; this frame
remains stationary in the interval [tk, t−k+1). The con-
figurations of the stick and locations of P at instants tk
and tk+1 are shown in Fig. 5. We denote the position
and velocity of the center-of-mass of the stick in the
reference frame of the juggler by the vectors h̄ and v̄.
Noting that α = αk at t−k and α = αk+1 at t−k+1, (18)
can be written as

Rz(αk+1)h̄(t−k+1) = Rz(αk)h̄(t−k ) + Rz(αk)v̄(t
−
k )δk

+ Ikδk
m

fk − 1

2

⎡
⎣

0
0
gδ2k

⎤
⎦ (35a)

Rz(αk+1)v̄(t
−
k+1) = Rz(αk)v̄(t

−
k ) + Ik

m
fk −

⎡
⎣

0
0
gδk

⎤
⎦

(35b)

Premultiplying both sides of (35) byRT
z (αk) and using

the identity

RT
z (αk)Rz(αk+1) = Rz(Δαk)

Δαk � (αk+1 − αk)
(36)

we get

h̄(t−k+1) = RT
z (Δαk)

{
h̄(t−k ) + v̄(t−k )δk

+ Ikδk
m

f̄k − 1

2

⎡
⎣

0
0
gδ2k

⎤
⎦

}
(37a)
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v̄(t−k+1) = RT
z (Δαk)

{
v̄(t−k ) + Ik

m
f̄k −

⎡
⎣

0
0
gδk

⎤
⎦

}

(37b)

where

f̄k � RT
z (αk)fk =

⎡
⎣

− cosβ∗ cosφk

− sin φk

sin β∗ cosφk

⎤
⎦

Δαk =π+2 arctan

⎡
⎢⎢⎣sin β∗cosβ∗

α̇(t−k )− Ikrk sin φk

J sin β∗

β̇(t−k )− Ikrk cosφk

J

⎤
⎥⎥⎦

(38)

The above expression for Δαk was obtained from
(22).

Based on the description of the reference frame of
the juggler, it is clear that the juggler is unaware of
the value of α but aware of the values of α̇, β and β̇.
Therefore, in this reference frame, the state vector is

X̄ = [
h̄x h̄ y h̄z v̄x v̄y v̄z β α̇ β̇

]T
(39)

Similar to (32), the Poincaré section in the reference
frame of the juggler is defined as:

S̄ = {X̄ ∈ R
9 | β = β∗} (40)

A point on S̄ can be described by the vector Ȳ , Ȳ ⊂ X̄ ,
where

Ȳ = [
h̄x h̄ y h̄z v̄x v̄y v̄z α̇ β̇

]T
(41)

Using (23), (27), and (37), the map P̄ : S̄ → S̄ can be
expressed in the reference frame of the juggler as

Ȳ (t−k+1)= P̄
[
Ȳ (t−k ),Uk

]
� RT(Δαk)F

[
Ȳ (t−k ),Uk

]

F[
Ȳ (t−k ),Uk

]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̄x (t
−
k )+v̄x (t

−
k )δk− Ikδk

m
cosβ∗ cosφk

h̄ y(t
−
k )+v̄y(t

−
k )δk− Ikδk

m
sin φk

h̄z(t
−
k )+v̄z(t

−
k )δk+ Ikδk

m
sin β∗ cosφk

− 1

2
gδ2k

v̄x (t
−
k )− Ik

m
cosβ∗ cosφk

v̄y(t
−
k )− Ik

m
sin φk

v̄z(t
−
k )+ Ik

m
sin β∗ cosφk − gδk

α̇(t−k )− Ikrk sin φk

J sin β∗

−β̇(t−k )+ Ikrk cosφk

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R(Δαk) �

⎡
⎣
Rz(Δαk) O3×3 O3×2

O3×3 Rz(Δαk) O3×2

O2×3 O2×3 I2×2

⎤
⎦

(42)

where Δαk is given by (38),Om×n ∈ R
m×n is a matrix

of zeros and In×n ∈ R
n×n is the identity matrix.

Remark 6 A sequence of configurations which are
rotationally symmetric about the z-axis at steady-state
(see Remark 5) corresponds to a fixed configuration
in the reference frame of the juggler. This configura-
tion corresponds to a fixed point of the map P̄ in (42).
Indeed, unlike P, P̄ is not a function of variables in the
set {hx , hy, vx , vy, α}. The steady-state trajectory of
the stick in the reference frame of the juggler is shown
in red in Fig. 6.
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5 Control design for juggling

5.1 Steady-state dynamics

The objective of juggling the stick between a sequence
of rotationally symmetric configurations is equivalent
to finding a fixed point of the Poincaré map in (42),
defined in the reference frame of the juggler. A fixed
point of the map P̄ is given by the pair {Ȳ ∗,U∗} which
satisfies

Ȳ ∗ = P̄
(
Ȳ ∗,U∗)

Ȳ ∗ �
[
h̄∗
x h̄∗

y h̄∗
z v̄∗

x v̄∗
y v̄∗

z α̇∗ β̇∗]T

U∗ �
[
I ∗ r∗ φ∗]T (43)

subject to the expressions that follow from (29) and
(38):

δ∗ = 1√
K ∗
1 + K ∗

2

×
⎡
⎣π − 2 arctan

⎛
⎝

√
K ∗
1 + K ∗

2 cot β
∗

√
K ∗
2 − K ∗

1 cot
2β∗

⎞
⎠

⎤
⎦

(44)

Δα∗ = π + 2 arctan⎡
⎢⎢⎣sin β∗cosβ∗

α̇∗− I ∗r∗ sin φ∗

J sin β∗

β̇∗− I ∗r∗ cosφ∗

J

⎤
⎥⎥⎦ (45)

where

K ∗
1 = sin4β∗

[
α̇∗ − I ∗r∗ sin φ∗

J sin β∗

]2

K ∗
2 = sin2β∗ cos2β∗

[
α̇∗ − I ∗r∗ sin φ∗

J sin β∗

]2

+
[
β̇∗ − I ∗r∗ cosφ∗

J

]2
(46)

The relations in (43), (44) and (45) represent 10 equa-
tions in 13 unknowns, namely h̄∗

x , h̄
∗
y , h̄

∗
z , v̄

∗
x , v̄

∗
y , v̄

∗
z , α̇

∗,
β̇∗, I ∗, r∗, φ∗, δ∗, and Δα∗. The unknown h̄∗

z is elim-
inated after simplification of (43); this leaves us with

10 equations in 12 unknowns. We choose the values of
δ∗ and Δα∗ to solve for the remaining ten unknowns:

h̄∗
x = gδ∗2 cot β∗

2(1 − cosΔα∗)
, h̄∗

y = 0

v̄∗
x = gδ∗ cot β∗

2
, v̄∗

y = gδ∗ cot β∗ sinΔα∗

2(1 − cosΔα∗)

v̄∗
z = −1

2
gδ∗, α̇∗ = Ψ sinΔα∗

δ∗ sin 2β∗(1 − cosΔα∗)

β̇∗ = Ψ

2δ∗ , I ∗ = mgδ∗

sin β∗

r∗ = JΨ sin β∗

mgδ∗2 , φ∗ = 0

(47)

where

Ψ = 2

ξ

[
π − 2 arctan

(
ξ cot β∗)] (48)

ξ �

√
1 + sec2 β∗

[
sinΔα∗

1 − cosΔα∗

]2

The value h̄∗
y = 0 indicates that, at steady-state, the

stick lies in the vertical plane containing point P at
instants when impulsive inputs are applied; φ∗ = 0
indicates that, at steady-state, the impulsive force vec-
tor also lies in this plane. The point of application of the
impulsive forcemust lie on the stick, i.e., 0 ≤ r∗ ≤ �/2;
this imposes the following constraint on the time of
flight:

δ∗ = p δmin, δmin �
√
2JΨ sin β∗

mg�
, p ≥ 1 (49)

The above relation requires that Ψ ≥ 0. Without loss
of generality, we assume that α̇∗ > 0, i.e., the stick
is juggled between a sequence of configurations where
one configuration is obtained from the previous by a
counterclockwise rotation about the z-axis; from the
expression of α̇∗ in (47), the choice ofΔα∗ must satisfy
Δα∗ ∈ (0, π ].

The desired juggling motion of the stick is repetitive
in nature and can be described by the following hybrid
orbit:

Ō∗ = {X̄ ∈ R
9 | Ȳ (t−k ) = Ȳ ∗,Uk = U∗} (50)

In the next subsection, we address the problem of sta-
bilization of the hybrid orbit Ō∗, which is equivalent
to stabilization of desired juggling motion.
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Fig. 6 Schematic of the ICPM approach to hybrid orbit stabi-
lization. The steady-state orbit of the stick in the reference frame
of the juggler is shown in red

5.2 Hybrid orbit stabilization

In the absence of disturbances, the input vector U∗ in
(43) ensures desired juggling motion if Ȳ (t−k ) = Ȳ ∗.
However, if this is not the case, the trajectory of the
stick may not converge to the desired orbit Ō∗ with
input U∗. It is therefore necessary to determine the
stability characteristics of Ō∗. To this end, we define
an ε-neighborhood of Ō∗ as follows:

Nε = {X̄ ∈ R
9 : dist(X̄ , Ō∗) < ε}

dist(X̄ , Ō∗) � inf
Z∈Ō∗

‖X̄ − Z‖

Definition 1 The orbit Ō∗ in (50) is

– stable, if for every ε > 0, there is a δ > 0 such that
X̄(0) ∈ Nδ ⇒ X̄(t) ∈ Nε, ∀t ≥ 0.

– asymptotically stable if it is stable and δ can be
chosen such that limt→∞ dist(X̄(t), Ō∗) = 0.

The hybrid orbit Ō∗ in (50) is asymptotically stable
if the fixed point Ȳ ∗ in (43) is asymptotically stable [10,
Th. 1], which is an abridged version of [7, Th. 1] and
[19, Th. 2.1]. To stabilize the fixed point Ȳ ∗, we use the
Impulse Controlled Poincaré Map (ICPM) approach
[8], which was developed for continuous orbits, and
later extended to hybrid orbits associated with planar
stick juggling [10]. The ICPM approach is explained
with the help of Fig. 6. The desired hybrid orbit Ō∗
(shown in red), first intersects the Poincaré section S̄ at
the fixed point Ȳ ∗. It then undergoes a discontinuous
jump due to application of the input U∗ before exit-
ing S̄ and evolving continuously. For a trajectory not
on Ō∗ (shown in black), the configuration jumps from

Ȳ (t−k ) to Ȳ (t+k ) on S̄ due to the application of inputUk .
Hereafter, the stick undergoes torque freemotion under
gravity and the next intersection of the continuous-time
trajectory with S̄ is denoted by Ȳ (t−k+1).

To apply the ICPM approach, we linearize the
Poincaré map P̄ in (42) about Ȳ = Ȳ ∗ and U = U∗ as
follows:

e(k + 1) = Ae(k) + Bu(k) (51)

e(k) � Ȳ (t−k ) − Ȳ ∗, u(k) � Uk −U∗

where

A �
[∇ȲP(Ȳ ,U )

]
Ȳ=Ȳ ∗,U=U∗

B �
[∇UP(Ȳ ,U )

]
Ȳ=Ȳ ∗,U=U∗

(52)

The analytical expressions forA andB are not provided
here for brevity. From the expressions, it can be verified
that the pair (A,B) is controllable. The hybrid orbit Ō∗
can therefore be stabilized by the following discrete
feedback:

u(k) = Ke(k) (53)

where the matrixK is chosen such that the eigenvalues
of (A + BK) lie inside the unit circle.

6 Simulation

The physical parameters of the stick in SI units are:

m = 0.1, � = 0.5, J = 1

12
m�2 = 0.0021 (54)

Choosing β∗ = π/3 rad, δ∗ = 0.6 s, and Δα∗ = 2π/3
rad, and using (54) in (47), we obtain

h̄∗
x = 0.6797 m, h̄∗

y = 0

v̄∗
x = 1.6991 m/s, v̄∗

y = 0.9810 m/s

v̄∗
z = −2.9430 m/s, α̇∗ = 2.4675 rad/s

β̇∗ = 1.8506 rad/s, I ∗ = 0.6797 Ns

r∗ = 0.0113 m, φ∗ = 0

(55)

The value h̄∗
z is chosen arbitrarily to be 1.6 m.

The gain matrix K in (53), which is not provided
here for brevity, is designed using the LQR method
[1]; it minimizes the cost functional

J =
∞∑
k=1

[
e(k)TQe(k) + u(k)TRu(k)

]
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Fig. 7 Simulation results: the state variables, control inputs, pre-
cession Δαk , and time of flight δk are shown at time instants t−k ,
k = 1, 2, . . . , 10, for the initial conditions in (57)

where the Q and R matrices were chosen as

Q = I8×8, R = diag
[
2.0 0.5 1.0

]
(56)

We assume that β(1) = β∗ = π/3 rad and choose
the initial values of the states as

h̄x (1) = 0.9 m, h̄ y(1) = −0.2 m

h̄z(1) = 1.2 m, v̄x (1) = 1.3 m/s

v̄y(1) = 0.2 m/s, v̄z(1) = −1.7 m/s

α̇(1) = 2.2 rad/s, β̇(1) = 2.1 rad/s

(57)

The simulation results are shown in Figs. 7 and 8.
Figure 7 shows that the states and inputs converge to
their steady-state values, indicated by dotted lines, in
approx. k = 10 steps. This validates that desired jug-
gling motion of the stick is achieved through stabiliza-
tion of the fixed point Ȳ ∗. The trajectory of the center-
of-mass of the stick over approx. 12.02 s (correspond-
ing to k = 20 steps) is shown in Fig. 8; a video of the
juggling motion is uploaded as supplementary mate-
rial.

Remark 7 At steady-state, the kinetic energy of the
stick is the same before and after the application of
each impulsive force; therefore, the impulsive forces
do no work. Since the energy of the stick remains con-

Fig. 8 Trajectory of the center-of-mass of the stick in the inertial
frame; also shown is the stick in its initial configuration (t = 0)
and three rotationally symmetric steady-state configurations

stant during the flight phase, the mechanical energy of
the stick is conserved at steady-state.

Todemonstrate robustness of the closed-loop system
to losses and uncertainties in the state measurements,
we consider a random reduction in the magnitude of
the impulsive force Ik in the range 0.0-2.5% of its
computed value, random noise in the positionmeasure-
ments h̄x (k), h̄ y(k), and h̄z(k) in the range±1.0%, and
random noise in the linear and angular velocity mea-
surements v̄x (k), v̄y(k), v̄z(k), α̇(k), and β̇(k) in the
range ±2.5%. For the same parameter values in (54),
steady-state values in (55), initial conditions in (57),
and gain matrix K, the simulation results are shown
in Fig. 9 for k = 40 steps. The results of the simula-
tion, which was carried out for a much larger number
of steps than shown, indicate that errors in the state
variables, control inputs, precession angle, and time of
flight remain bounded, implying stable behavior.

7 Special cases

7.1 Planar juggling

The choice Δα∗ = π reduces the problem to that of
planar symmetric juggling, which was discussed in [9,
10]. Setting Δα∗ = π in (47) yields
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Fig. 9 Simulation results demonstrating stable behavior in the
presence of energy losses: the state variables, control inputs, pre-
cession Δαk , and time of flight δk are shown at time instants t−k ,
k = 1, 2, . . . , 40, for the initial conditions in (57)

h̄∗
x = (gδ∗2 cot β∗)/4, h̄∗

y = 0

v̄∗
x = (gδ∗ cot β∗)/2, v̄∗

y = 0

v̄∗
z = −gδ∗/2, α̇∗ = 0

β̇∗ = 2β∗/δ∗, I ∗ = mgδ∗/ sin β∗

r∗ = (4Jβ∗ sin β∗)/mgδ∗2, φ∗ = 0

(58)

which are identical to those derived in [9,10]. Com-
pared to the results in [9,10], the current formulation
is more general in that the initial condition can be arbi-
trary and need not be restricted to lie on the plane of
steady juggling.

7.2 Steady precession

In the limiting case where Δα∗ → 0+, the surface
traced by the motion of the stick defines an inverted
cone of semi-vertex angleβ∗—seeFig. 10. The discrete
set of impulsive forces tend to a continuous force F∗
that acts in the direction normal to the cone. The point
of application of F∗ lies at a distance of r = r∗ and
traces a circle on the cone. This circle can be viewed
as a hoop on which the stick slides without friction
and precesses; F∗ is the reaction force of the hoop on
the stick. The center-of-mass G also traces a circle on

Fig. 10 Motion of stick in the limiting case of Δα∗ → 0+

the cone; the radius of this circle is h̄∗
x . In the limit, the

steady-state time of flight, which satisfies the constraint
in (49), equals

lim
Δα∗→0+ δ∗ = p lim

Δα∗→0+ δmin = 0 (59)

The above result, which is intuitive, can be obtained
from (49) by computing the value of Ψ in (48) in the
limit Δα∗ → 0+. The continuous force F∗ can be
expressed by the relation

F∗ = I ∗

δ∗ (60)

since the impulse of the force over the time interval
δ∗, which is equal to F∗δ∗, must equal the impulse I ∗
of the impulsive force at steady-state. By replacing the
expression for I ∗ in (47) with F∗ in (60) and taking
the limit Δα∗ → 0+, we get the following values that
describe the dynamics of the stick:

h̄∗
x = 2p2 J sin β∗ cos2β∗

m�
, h̄∗

y = 0

v̄∗
x = 0, v̄∗

y = p

√
2Jg cos3β∗

m�

v̄∗
z = 0, α̇∗ = 1

p

√
mg�

2J sin2β∗ cosβ∗

β̇∗ = 0, F∗ = mg/ sin β∗

r∗ = �/(2p2), φ∗ = 0

(61)

In the above expressions, p is a free parameter. For
a specific value of p, p ≥ 1, the stick will exhibit a
unique motion. The results in (61) can be indepen-
dently derived (see “Appendix”) by considering the
continuous-time dynamics of the stick.
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8 Conclusions

Juggling is an example of nonprehensile manipulation
using intermittent impulsive forces. An experienced
juggler can juggle a stick between desired configura-
tions by intermittently applying impulsive forces while
the stick falls freely under gravity. With the motivation
of enabling robotic systems to perform complex non-
prehensile manipulation tasks that can be performed
by humans, the problem of juggling a stick in three-
dimensional space is considered in this paper.

We consider juggling a stick between a sequence
of configurations that are rotationally symmetric about
the vertical axis. The stick is assumed to be slender and
its configuration is described by five generalized coor-
dinates. The location, direction, and magnitude of the
impulsive forces applied on the stick aremodeled as the
control inputs. The control is event-based, with impul-
sive forces applied when the stick reaches a desired ori-
entation relative to the vertical axis. The hybrid dynam-
ics of the stick is represented using a Poincaré map
but the sequence of rotationally symmetric configura-
tions do not correspond to a fixed point of this map.
To alleviate this problem, the Poincaré map is rede-
fined in a rotating reference frame. The trajectory of
the stick at steady-state is represented by a hybrid orbit,
and stabilizing the desired juggling motion is equiva-
lent to stabilization of the hybrid orbit; this is accom-
plished through stabilization of the fixed point of the
Poincarémap in the rotating reference frame. Using the
ICPM approach, the Poincaré map is linearized about
the fixed point and this results in a controllable linear
discrete-time system. Simulation results based on an
LQR design are presented to demonstrate stabilization
of a desired juggling motion from an arbitrary initial
configuration.

In our approach, the angle of precession of the
stick about the vertical axis between consecutive con-
trol actions at steady-state can be specified. When
this angle equals π rad, the model for planar sym-
metric stick-juggling [9] is recovered. In the limit-
ing case, when the angle approaches zero, the hybrid
dynamics approaches the continuous-time dynamics of
steady precession on a hoop.With focus on robotic jug-
gling, our future work will extend the model presented
here to include the mechanics of impact, address the
motion planning and control problems of the robot end-
effector for generating the required impulsive forces,
and demonstrate stick-juggling using real hardware.

To this end, we will use the framework developed in
[3,4,29,30], where the complete control problem of the
object and the robot is considered using a backstepping-
like strategy.
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Appendix: Steady precession of stick on hoop

For continuous motion of the stick, which was
described in Sect. 7.2, we already have β̇ = β̇∗ = 0
and φ = φ∗ = 0. To derive the remaining eight expres-
sions in (61), we first write the expressions for the force
on the stick and its point of application:

F = F∗
⎡
⎣

− cosα cosβ∗
− sin α cosβ∗

sin β∗

⎤
⎦ , r = r∗

⎡
⎣
cosα sin β∗
sin α sin β∗
cosβ∗

⎤
⎦

(62)

where α indicates the angle of precession. The motion
of the center-of-mass is described by the differential
equation

ḣ = v, v̇ = F
m

+ [
0 0 −g

]T
(63)

with h and v defined in (3). The angular dynamics is
governed by the relation

Ḣ = r × F = F∗r∗
⎡
⎣

sin α

− cosα

0

⎤
⎦ (64)

where F and r are given in (62). The last equation
implies Hz is constant. Using (6) and (7), we get

Hz = J α̇ sin2 β∗ = constant ⇒ α̇ = constant

(65)

By denoting the constant value of α̇ by α̇∗ and compar-
ing Ḣx and Ḣy in (64) with the derivatives of Hx and
Hy in (6), we get

J α̇∗2 sin β∗ cosβ∗ = F∗r∗ (66)
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The motion of the center-of-mass in (63) can be
expressed in the reference frame of the juggler by mul-
tiplying both sides of both equations by RT

z (α); this
yields

˙̄h = v̄, ˙̄v = F∗

m

⎡
⎣

− cosβ∗
0

sin β∗

⎤
⎦ −

⎡
⎣
0
0
g

⎤
⎦ (67)

Since h̄z is constant, we have

v̄z = v̄∗
z = 0 ⇒ ˙̄vz = 0 (68)

Using ˙̄vz = 0, we get from (67)

F∗ = mg/ sin β∗ (69)

We now make the choice

r∗ = �/(2p2), p ≥ 1 (70)

such that the point of application of the force satisfies
r = r∗, 0 ≤ r∗ ≤ �/2. Substituting (69) and (70) in
(66), we obtain

α̇∗ = 1

p

√
mg�

2J sin2 β∗ cosβ∗ (71)

The center-of-mass of the stick undergoes uniform cir-
cular motion with a radius h̄x = h̄∗

x ; therefore, we have

v̄∗
x = 0, ˙̄v∗

x = −α̇∗2 h̄∗
x (72)

Comparing the expressions for ˙̄v∗
x in (67) and (72) and

substituting the value of α̇∗ in (71), we get

h̄∗
x = 2p2 J sin β∗ cos2 β∗

m�
(73)

For the motion of the center-of-mass of the stick, we
can also write

h̄∗
y = 0, v̄∗

y = α̇∗h̄∗
x (74)

Substituting (71) and (73) in the expression for v̄∗
y , we

get

v̄∗
y = p

√
2Jg cos3 β∗

m�
(75)

Equations (68)–(75) verify the expressions in (61).
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