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Juggling a Devil-Stick: Hybrid Orbit Stabilization
Using the Impulse Controlled Poincaré Map

Nilay Kant and Ranjan Mukherjee , Senior Member, IEEE

Abstract—The control design for juggling a devil-
stick between two symmetric configurations is proposed.
Impulsive forces are applied to the devil-stick at the two
configurations; and impulse of the force and its point
of application are modeled as the control inputs. The
dynamics of the devil-stick is described by a single return
Poincaré map and it is shown that the control objective of
juggling can be achieved by stabilizing a hybrid orbit. The
impulse controlled Poincaré map (ICPM) approach, recently
proposed for stabilization of continuous-time orbits of
underactuated systems, is extended to achieve asymp-
totic stabilization of the hybrid orbit. The applicability of
the ICPM approach to devil-stick juggling is demonstrated
through numerical simulations.

Index Terms—Devil-stick, hybrid orbit, orbital stabiliza-
tion, impulsive control, juggling, Poincaré map, underactu-
ated system.

I. INTRODUCTION

THE CONTROL problem of juggling an object in air has
been investigated in the literature but these investigations

have primarily focused on ball-juggling [2], [17]–[19], [21]. In
one of the earliest studies [21], a ball was juggled by applying
impulsive forces intermittently using a table with one degree-
of-freedom. The approach was later extended [2] to develop a
feedback control method for hybrid mechanical systems and
simulations were used to demonstrate ball-juggling using a
two degree-of-freeedom manipulator. The control problem of
juggling a devil-stick is more challenging than that of juggling
a ball since the orientation of the devil-stick has to be included
in the dynamic model; in contrast, the ball has no orientation
since it is modeled as a point mass.

Two hand-sticks are typically used to juggle a devil-stick
and several different modes of juggling have been docu-
mented [5], [9]. Earlier works [15], [20] have proposed control
designs for the mode of juggling known as airplane-spin
or propeller; in this mode, a single hand-stick is used to
rotate the devil-stick about a virtual horizontal axis using
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continuous-time inputs. For a human juggler, the simplest
mode of juggling is top-only idle; it requires application of
intermittent impulsive forces and is the subject of investigation
of this letter. For top-only idle mode of juggling, a two-step
control design was presented in [9]. In this work, a dead-beat
controller was first designed to convert the nonlinear system
into a controllable linear system. Depending upon initial condi-
tions, the dead-beat controller may require a large input at the
initial time and failure to apply the desired input may render
the linear controller ineffective. To overcome this limitation,
the control problem of top-only idle juggling is revisited here.

For top-only idle mode of juggling, the devil-stick model
represents an underactuated system with three generalized
coordinates and two control inputs. Importantly, it belongs to
a special class of underactuated systems, that has received
less attention, where the control inputs are purely impulsive
and applied intermittently. The juggling task can be posed
as a problem in orbital stabilization but a majority of the
control methods developed for orbital stabilization use con-
tinuous inputs and are therefore rendered inapplicable. A new
approach was recently proposed for orbital stabilization of a
general class of underactuated systems [8]. In this approach,
known as the Impulse Controlled Poincaré Map (ICPM),
impulsive inputs are intermittently applied on a Poincaré sec-
tion for stabilization of continuous-time orbits. Here, the ICPM
approach is extended to stabilization of hybrid orbits in the
context of the devil-stick juggling problem.

This letter is organized as follows. The control problem
associated with the top-only idle mode of juggling is described
in Section II. The recently developed mathematical model of
the devil-stick [9] is presented in abridged form in Section III.
The control design is presented in Section IV; it is based on
linearization of the Poincaré map and is a perfect utilization of
the ICPM approach. Numerical simulation results are provided
in Section V. Section VI contains concluding remarks and
future research directions.

II. PROBLEM DESCRIPTION

A devil-stick that moves freely in a vertical plane has three
degrees-of-freedom. The generalized coordinates associated
with these degrees-of-freedom are shown in Fig. 1. They are
comprised of the Cartesian coordinates of the center-of-mass
G ≡ (hx, hy), and orientation of the stick θ , measured counter-
clockwise with respect to the horizontal. The stick is assumed
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Fig. 1. A three degree-of-freedom devil-stick.

Fig. 2. Symmetric configurations of the devil-stick in Fig. 1.

to have length ", mass m, and mass moment of inertia J about
G. The objective is to juggle the stick between the symmet-
ric configurations (θ∗, h∗

x , h∗
y) and (π − θ∗,−h∗

x , h∗
y) shown

in Fig. 2, where θ∗ ∈ (0,π/2). Impulsive forces are applied
perpendicular to the devil-stick when its orientation is θ = θ∗

or θ = π − θ∗. A juggler is typically ambidextrous and the
control actions at θ = θ∗ and θ = π − θ∗ are applied by hand
sticks held in the right and left hands of the juggler. The con-
trol inputs are the pair (I, r), where I, I ≥ 0, is the impulse of
the impulsive force and r is the distance of the point of appli-
cation of the force from G. The value of r is considered to be
positive if the angular impulse of the impulsive force about
G is positive when θ = θ∗, and negative when θ = π − θ∗.
The steady-state values of the control inputs that juggle the
stick between the symmetric configurations are denoted by
the pair (I∗, r∗).

III. DEVIL-STICK MATHEMATICAL MODEL

A. Hybrid Dynamics
The dynamics of the devil-stick is described by the six-

dimensional state vector X, where

X =
[
θ ω hx vx hy vy

]T
, ω ! θ̇, vx ! ḣx, vy ! ḣy

Let tk, k = 1, 2, 3, . . . , denote the instants of time when the
impulsive inputs are applied. Furthermore, let k = (2n − 1),
n = 1, 2, . . . , denote the instants of time when the impulsive
inputs are applied by the hand stick held in the right hand;
and k = 2n, n = 1, 2, . . . , denote the instants of time when
the impulsive inputs are applied by the hand stick held in
the left hand. If t−k and t+k denote the instants of time imme-
diately before and after application of the impulsive inputs,

the linear and angular impulse-momentum relationships can
be used to describe the impulsive dynamics1 [9]. We have for
k = 1, 3, 5, . . .:

X(t+k ) = X(t−k ) +





0
(Ik rk/J)

0
−(Ik/m) sin θ∗

0
(Ik/m) cos θ∗




(1)

and for k = 2, 4, 6, . . .

X(t+k ) = X(t−k ) +





0
−(Ik rk/J)

0
(Ik/m) sin θ∗

0
(Ik/m) cos θ∗




(2)

where (Ik, rk) denote the control inputs at time tk.
For t ∈ [t+k , t−k+1], k = 1, 2, . . . , the devil-stick under-

goes torque-free motion under gravity and its continuous-time
dynamics is described by the differential equation [9]:

Ẋ =
[
ω 0 vx 0 vy − g

]T (3)

where the initial condition X(t+k ) can be obtained from (1)
or (2), depending on whether k is odd or even.

B. Half-Return Maps for Ambidextrous Juggler
For the hybrid dynamical system in Section III-A, we define

two Poincaré sections Sr and Sl as follows [9]:

Sr : {X ∈ R6|θ = θ∗}
Sl : {X ∈ R6|θ = π − θ∗} (4)

Without loss of generality, it is assumed that the initial con-
ditions are such that the trajectory of the devil-stick intersects
Sr at t = t1. Any point on Sr and Sl can be described by the
vector Y:

Y =
[
ω hx vx hy vy

]T (5)

The map Pr : Sr → Sl can be determined from (1) and (3) as
follows [9]:

Y(t−k+1) = A Y(t−k ) + Br (6)

where the expressions for A and Br can be found in [9] and
k = (2n − 1), n = 1, 2, . . . Similarly, the map Pl : Sl → Sr
can be determined from (2) and (3) as follows [9]

Y(t−k+1) = A Y(t−k ) + Bl (7)

where the expressions for Bl can be found in [9] and k = 2n,

1Control designs for underactuated mechanical systems exploiting impul-
sive inputs can be found in [6]–[10], [14].
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Fig. 3. (a) Ambidextrous juggler standing at P and applying control
actions with both hands, (b) right-handed juggler standing at P and
applying control action with right hand, (c) right-handed juggler standing
at Q and applying control action with right hand.

n = 1, 2, . . . Both Pr and Pl in (6) and (7) can be viewed as
half-return maps [1], [4] since their composition are the return
maps Pr ◦ Pl : Sl → Sl and Pl ◦ Pr : Sr → Sr.

C. Single Return Map for Right-Handed Juggler
Let z = 0 denote the plane in which the devil-stick is jug-

gled - see Fig. 3. An ambidextrous juggler stands at a point
on the positive z axis, P in Fig. 3(a), and applies a control
action with the right hand when θ = θ∗, and with the left
hand when θ = π − θ∗. Instead of applying control actions
using both right and left hands, the juggler can choose to apply
all control actions using the right hand. This right-handed jug-
gler will apply the control action standing at P when θ = θ∗ -
see Fig. 3(b), and apply the next control action after changing
location to Q when θ = π − θ∗ - see Fig. 3(c). It can be
shown [9] that the Poincaré sections Sl and Sr are identical in
the reference frame of the right-handed juggler, and equal to

S : {X ∈ R6|θ = θ∗} (8)

The half-return maps, Pr and Pl in (6) and (7), are also identi-
cal [9]. This implies that the hybrid dynamics of the devil-stick
is described by a single return map P : S → S, which is given
below [9]:

ω(t−k+1) = −ω(t−k ) − (Ikrk/J) (9a)

hx(t−k+1) = −hx(t−k ) −
[
vx(t−k ) − (Ik/m) sin θ∗]δk (9b)

vx(t−k+1) = −vx(t−k ) + (Ik/m) sin θ∗ (9c)

hy(t−k+1) = hy(t−k ) − (1/2)g δ2
k

+
[
vy(t−k ) + (Ik/m) cos θ∗]δk (9d)

vy(t
−
k+1) = vy(t

−
k ) + (Ik/m) cos θ∗ − g δk (9e)

where δk ! (t−k+1 − t−k ), k = 1, 2, . . . , is the time of flight
between two consecutive control actions. During this time
duration, the devil-stick rotates by a net angle π − 2θ∗.
Since the angular velocity of the stick remains constant in
the interval [t+k , t−k+1], δk is given as follows

δk = &θ

ω(t−k ) + (Ik rk/J)
, &θ ! (π − 2θ∗) (10)

Let Ȳ denote the state vector Y in the reference frame of
the right handed juggler. Since δk in (10) is a function of state
variables, the Poincaré map P in (9) can be written as

Ȳ(k + 1) = P
[
Ȳ(k), I(k), r(k)

]

Ȳ(k) ! Ȳ(t−k ), I(k) ! Ik, r(k) ! rk (11)

The control design for juggling is presented next.

IV. CONTROL DESIGN

A. Steady-State Dynamics
It is clear from the discussion in Section III-C that the hybrid

dynamics of the devil-stick can be described by the single
Poincaré map P in the reference frame of the right-handed jug-
gler. If the devil-stick undergoes the desired juggling motion,
the system trajectories must pass through a fixed point on the
Poincaré section S. If Ȳ∗ ! [ω∗ h∗

x v∗
x h∗

y v∗
y ]T is the fixed

point, it satisfies the relation

Ȳ∗ = P(Ȳ∗, I∗, r∗) (12)

where (I∗, r∗) denote the steady-state values of the control
inputs, defined in Section II. Using (9) and (10), the steady
state values of the states and control inputs can be obtained
as follows [9]:

ω∗ = −&θ/δ∗, h∗
x = gδ∗2 tan θ∗/4

v∗
x = g tan θ∗δ∗/2, v∗

y = −g δ∗/2

I∗ = mgδ∗/ cos θ∗, r∗ = 2J cos θ∗&θ/(mgδ∗2) (13)

where δ∗ denotes the steady-state value of δ and can be chosen
by the user. For a given value of δ∗, the value of h∗

y can be
chosen arbitrarily.

The desired juggling motion of the devil-stick is repetitive
and can be described by the following hybrid orbit:

O∗ = {X ∈ R6|Ȳ(k) = Ȳ∗, I(k) = I∗, r(k) = r∗} (14)

In the next section, we discuss the problem of stabilization
of the orbit O∗, which implies stabilization of the juggling
motion.

B. Stable Juggling - Stabilization of the Hybrid Orbit O∗

The control inputs I∗ and r∗ ensure desired juggling motion
of the devil-stick provided Ȳ(t−1 ) = Ȳ∗, i.e., the devil-stick
configuration is at the fixed point at the time of the first con-
trol action. If this is not the case, the control inputs I∗ and
r∗ may not converge the devil-stick trajectory to the desired
orbit O∗. Therefore, it is important to investigate the stability
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Fig. 4. Schematic of the ICPM approach to devil-stick juggling.

characteristics of O∗. We first define an ε-neighborhood of
O∗ by

Uε = {X ∈ R6 : dist(X,O∗) < ε}
dist(X,O∗) ! inf

Z∈O∗
‖X − Z‖

We now define stability of the orbit O∗ from [11].
Definition 1: The orbit O∗ in (14) is
• stable, if for every ε > 0, there is a δ > 0 such that

X(0) ∈ Uδ =⇒ X(t) ∈ Uε, ∀t ≥ 0.
• asymptotically stable if it is stable and δ can be chosen

such that limt→∞ dist(X(t),O∗) = 0.
The stability characteristics of the hybrid orbit O∗ can be

studied by investigating the stability properties of the fixed
point Ȳ∗ in (12), this follows from the following theorem,
which is an abridged version of results in the literature -
see [3], [16].

Theorem 1: The hybrid orbit O∗ is asymptotically stable if
the fixed point Ȳ∗ is asymptotically stable.

Proof: See the proof of [3, Th. 1], or [16, Th. 2.1 and
Corollary 3.2].

The ICPM approach [8] was developed for stabilization of
continuous-time orbits of underactuated systems but it can be
readily applied to stabilize the hybrid orbit O∗ as it relies
on stabilization of the fixed point Ȳ∗ through application
of impulsive inputs. The idea behind the ICPM approach
is explained with the help of Fig. 4. The desired hybrid
orbit O∗, shown in red, first intersects the Poincaré section
S at Ȳ∗. The application of (I∗, r∗) produces a discontinu-
ous change in the trajectory that lies on S. For a trajectory
not on O∗, the discrete-time states Ȳ(k) = Ȳ(t−k ) jump to
Ȳ(t+k ) due to application of the inputs I(k) and r(k) at time
tk. Hereafter, the devil-stick undergoes torque-free motion
under gravity and the next intersection of the continuous-
time trajectory with S is denoted by Ȳ(k + 1) = Ȳ(t−k+1). The
control inputs I(k) and r(k) are designed such that they con-
verge to I∗ and r∗ and Ȳ(k) converges to Ȳ∗ asymptotically
as k → ∞.

To apply the ICPM approach, we linearize the map P given
by (9) about Ȳ = Ȳ∗, I = I∗ and r = r∗ as follows:

e(k + 1) = A e(k) + B u(k)

e(k) ! Ȳ(k) − Ȳ∗, u(k) !
[
I(k) − I∗ r(k) − r∗]T (15)

where the matrices A and B are defined as follows:

A !
[
∇ȲP(Ȳ, I, r)

]
Ȳ=Ȳ∗,I=I∗,r=r∗

B !
[
∇IP(Ȳ, I, r) ∇rP(Ȳ, I, r)

]
Ȳ=Ȳ∗,I=I∗,r=r∗ (16)

The matrices A and B in (16) can be analytically obtained
from (9) as follows:

A =





−1 0 0 0 0
−gδ∗3s∗/(2&θc∗) − 1 − δ∗ 0 0

0 0 − 1 0 0
gδ∗3/(2&θ) 0 0 1 δ∗

gδ∗2/&θ 0 0 0 1





B =





−2&θc∗/(mgδ∗2) − (δ∗gm)/(Jc∗)
0 − mg2δ∗4s∗/(2&θJc∗2)

s∗/m 0
2δ∗c∗/m mg2δ∗4/(2&θJc∗)
3c∗/m mg2δ∗3/(&θJc∗)




(17)

where s∗ ! sin θ∗ and c∗ ! cos θ∗. It can be verified that
all eigenvalues of A have a magnitude of unity; this indicates
that Ȳ∗ is marginally stable for u(k) = 0. To asymptotically
stabilize Ȳ∗, i.e., to asymptotically stabilize O∗, we present a
control design with the help of the following theorem:

Theorem 2: The hybrid orbit O∗ is asymptotically stable
under the following discrete feedback

u(k) = Ke(k) (18)

where the matrix K is chosen such that (A+BK) is Hurwitz.
Proof: Since δ∗ > 0 and θ∗ ∈ (0,π/2), it can be shown that

{A,B} is controllable. Thus K can be chosen such that (A +
BK) is Hurwitz. The choice of control u(k) in (18) guarantees
asymptotic stability of Ȳ∗, and using Theorem 1 we claim
asymptotic stability of O∗.

Remark 1: The ICPM approach was first proposed for
orbital stabilization of underactuated mechanical systems
in [8] where linearization of the Poincaré map was carried
out numerically. Here, for the devil-stick juggling problem, a
linearized Poincaré map is obtained analytically. This enables
us to verify the controllability of the system analytically.

Remark 2: For the control design in (18), the devil-stick
rotates by an angle of (π − 2θ∗) between two control actions.
Without loss of generality, the control design can be mod-
ified such that the stick rotates multiple times during the
flight phase; this can be accomplished by simply changing
&θ = (π − 2θ∗) to &θ = (qπ − 2θ∗), q = 1, 2 . . . in (10).

V. SIMULATIONS

In SI units, the physical parameters of the devil-stick are:

m = 0.1, " = 0.5, J = 0.0021 (19)

By choosing θ∗ = π/6 rad and δ∗ = 0.5 sec and using (19)
in (13), we get

ω∗ = −4.18 rad/s h∗
x = 0.353 m v∗

x = 1.414 m/s

v∗
y = −2.45 m/s I∗ = 0.565 Ns r∗ = 0.030 m (20)

and the value of h∗
y is chosen arbitrarily as

h∗
y = 3.0 m (21)
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Fig. 5. State variables and control inputs of the devil-stick at sampling
instants k , k = 1, 2, . . . , 15 for the initial conditions in (22) and gain
matrix in (23).

We assume θ(0) = θ∗ = π/6 rad and the initial values of
the states variables are chosen as:

ω(0) = 0, hx(0) = 0.53, vx(0) = 2.0

hy(0) = 1.0, vy(0) = −2.0 (22)

It should be noted that the choices in (19), (20) and (21)
are identical to that in [9]. The discrete impulsive feedback
in (18) is designed by placing the poles of the closed loop
system at 0.10, 0.12, 0.30, −0.40 and 0.50; this results in the
gain matrix:

K =
[−0.001 0.226 0.183 0.003 − 0.012
−0.003 − 0.021 − 0.015 − 0.003 − 0.002

]
(23)

The simulation results are shown in Fig. 5. The discrete
state variables Ȳ on the Poincaré section S are shown in
Figs. 5(a)–(e); the control inputs Ik and rk are shown in
Fig. 5(f). The steady-state values of the states and control
inputs, given in (20) and (21), are shown with the help of
dotted lines in their respective figures. It can be seen that
the state variables and control inputs converge to their steady-
state values in approximately k = 15 steps. It is clear from the
simulation results that the ICPM approach stabilizes the fixed
point Ȳ∗, which implies that the control objective of juggling
the devil-stick is achieved.

For visualization, the trajectory of the center-of-mass of the
devil stick is shown in Fig. 6. Under the action of gravity, the
center-of-mass moves in a parabolic trajectory between control
actions and eventually gets juggled between the symmetric
configurations (h∗

x , h∗
y) and (−h∗

x , h∗
y).

Remark 3: A two-step control design for devil-stick jug-
gling was proposed in [9]. To stabilize the fixed point of the
Poincaré map in (9), a dead-beat design was first utilized
to converge ω to ω∗. This resulted in feedback lineariza-
tion of the residual system and linear control techniques
were subsequently used for stabilization of the fixed point.
Depending upon initial conditions, the dead-beat controller

Fig. 6. Trajectory of the center of mass (hx , hy ) of the devil-stick.

Fig. 7. Comparison of the control input rk , k = 1, 2, . . . , 25,
obtained using the (a) ICPM approach, proposed here, and (b) approach
proposed in [9].

may require a large initial control action. Due to constraint
on the input, dead-beat convergence may not occur and con-
sequently the linear controller may be rendered ineffective.
The ICPM approach proposed here does not suffer from this
limitation.

To demonstrate the limitation of the control design in [9],
we considered a large value of the initial angular velocity
of the devil-stick. In particular, we chose ω(0) = −80 rad/s
while keeping all other initial conditions the same as in (22).
Furthermore, the controller parameters were not altered. Due
to the dead-beat nature of the control design in [9], the con-
troller required r1 = r(1) = 0.26 m, which violates the input
constraint r(k) < "/2 = 0.25. In contrast, the ICPM approach-
based control design, presented here, stabilized the desired
juggling motion without violating the input constraint. The
plots of r(k), obtained using both approaches, are presented
in Fig. 7.

To demonstrate robustness of the closed-loop system, we
introduced parameter uncertainty, sensor noise and error in the
measurement of devil-stick orientation, simultaneously. For the
initial conditions and controller gains in (22) and (23), the sim-
ulation results are shown in Fig. 8. The values of the length
" and inertia J were chosen to be 2.5% and 6.25% less than
the values provided in (19) but the steady-state values in (20)
were left unchanged. All state variable measurements were
corrupted by random noise in the range of ±2.5%; addition-
ally, we introduced a ±2.0 degree error in the measurement of
the orientation of the devil-stick. The simulations, which were
carried out over a longer duration, indicate stable behavior
with ultimate boundedness of the state trajectories.

VI. CONCLUSION

Juggling a devil-stick is a form of non-prehensile manipu-
lation [12], [13] as it involves manipulation without grasping.
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Fig. 8. State variables and control inputs of the devil-stick at sampling
instants k , k = 1, 2, . . . , 30 in the presence of parameter uncertainty,
sensor noise, and error in the measurement of devil-stick orientation.

Typically, a juggler manipulates the devil-stick by applying
intermittent impulsive forces using two hand-sticks. Several
different modes of juggling have been documented and top-
only idle is the simplest mode for a human juggler. In top-only
idle, a devil-stick is juggled between two symmetric configura-
tions about the vertical. With the goal of robotic juggling, we
consider the control problem where the impulse of the impul-
sive force and its point of application are modeled as control
inputs. The devil stick represents an underactuated system and
its control problem is nontrivial since the inputs are applied
intermittently; at all other times, the devil-stick is uncontrolled
and undergoes torque-free motion under gravity.

The dynamics of the devil-stick is described by a Poincaré
map and stable juggling is equivalent to stabilization of a
hybrid orbit, which can be accomplished through stabilization
of the fixed point of the Poincaré map. The ICPM approach,
recently developed for stabilization of continuous-time orbits
of underactuated systems, is a natural choice for control design
since the control inputs for the devil-stick are purely impulsive
in nature. Utilizing the ICPM approach, the Poincaré map is
linearized about the fixed point; this results in a controllable
linear discrete-time system. Asymptotic stabilization of the
fixed point is achieved using pole-placement. The simplicity
and effectiveness of the ICPM approach and its robustness are
demonstrated through simulations. Our future work will focus
on experimental validation; this includes design of experimen-
tal hardware and motion planning and control of the robot
end-effector for generating the desired impulsive forces to be
applied to the devil-stick.
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