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Abstract

Diffusion is a significant driver of isotope fractionation at high temperatures, but its precise role
is difficult to evaluate in many situations due to the sparsity of data on the isotopic mass
dependence of the diffusion coefficient. Such data are lacking particularly for diffusion in minerals.
The ratio of diffusion coefficients of two isotopes of the same element in the same material can be
characterized as the inverse mass ratio raised to an empirical exponent f, but experiments to
determine S are challenging and few measurements have been reported. Here, a method is
developed to empirically determine £ based on numerical modelling of the diffusion-controlled
elemental and isotopic redistribution between minerals during slow subsolidus cooling, and
comparison of the results to data from natural mineral pairs. The method is applied to the Ca
redistribution between orthopyroxene (opx) and clinopyroxene (cpx), where the elemental
partitioning equilibrium as a function of temperature has been well characterized experimentally
and Ca isotope fractionation data are available in natural samples that experienced slow cooling.

We show that the Ca isotope fractionation during cooling is insensitive to the initial temperature,
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cooling rate or grain size over a broad range of conditions, provided that diffusion is sufficient to
re-homogenize opx grains at near-peak temperatures during early cooling. Furthermore, we find
that the Ca isotope fractionation established during cooling is much more strongly dependent on
the value of f in opx than the value of f in cpx, as long as cpx dominates the Ca budget in the
system. Transient heating events produce fractionation in the opposite sense to that developed
during cooling, which can diminish or reverse the isotope fractionation for samples that
experienced such events after cooling. Based on the largest Ca isotope fractionation that has been
documented between opx and cpx in natural samples, it is inferred that for Ca, fopx = 0.04(1).
Despite the relatively small inferred value of Sqpx, diffusive fractionation of Ca isotopes between opx and
cpx is significant over a broad range of cooling rates. Similar behavior during sub-solidus cooling is
anticipated for other elements with temperature-dependent inter-mineral partition coefficients, and the

method developed here has the potential to be used to place constraints on f for many elements, even in

minerals where experimental measurements are not feasible.

Keywords: Isotope fractionation; Mass dependence of isotope diffusion; Subsolidus redistribution;

Cooling rate; Closure temperature

1. Introduction

Isotopes of the same element generally diffuse at slightly different rates, due to their different
masses. This dependence of the diffusivity on isotope mass can lead to significant isotope
separation when there is net transport of an element via chemical diffusion: faster-diffusing light
isotopes become concentrated in the region that an element diffuses toward, leaving behind a
region that becomes relatively enriched in heavy isotopes. In contrast to equilibrium isotope
fractionation, which diminishes rapidly as temperature increases (Urey 1947; Bigeleisen and

Mayer, 1947), diffusive isotope separation persists at high temperatures (e.g. Richter et al., 2009,
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2017; Van Orman and Krawczynski, 2015), and therefore may be particularly important for high

temperature metamorphic and magmatic processes.

In order to evaluate the contribution of diffusion and make full use of diffusive isotope
fractionation as a geochemical tool, it is critical to understand how strongly the diffusion
coefficient depends on the mass of the isotope. An empirical function that is commonly used to
describe the isotopic mass dependence of the diffusion coefficients in a particular phase is (Richter

et al., 1999):
Dy _ Mmu\p
Dy (mL) (D)

where Dr and Dy are the diffusion coefficients of the isotopes of mass mr and mu, and S is a
dimensionless parameter. This equation is analogous to the one derived from the kinetic theory of
an ideal gas, for which f = 72 (Lasaga, 1998). In liquids and solids there is no simple theory for
the value of S, although it is generally expected to have a value less than or equal to 2. Instead,
for each particular element in each mineral or liquid, the value of § must either be determined by
experimental measurements (e.g., Richter et al., 2008; 2014; 2017; Watkins et al., 2009; 2011;
Mueller et al., 2014; Fortin et al., 2017; Sio et al., 2018), calculated by theoretical simulations
(Goel et al., 2012; Van Orman and Krawczynski, 2015), or constrained by empirical observations

in natural samples (Sio et al., 2013; Oeser et al., 2015).

In minerals, it is often difficult to determine the f value experimentally because the diffusion
profiles that can be generated in reasonable times are often too short to allow high-precision
isotopic measurements along the diffusion profile. To date, experimental studies to determine S in
minerals have been restricted to systems with relatively fast diffusion, including He in olivine and

pyroxene (Trull and Kurz, 1993); C in iron (Miiller et al., 2014); Li in pyroxenes (Richter et al.,
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2014) and olivine (Richter et al., 2017); Fe and Ni in Fe-Ni alloys (Watson et al., 2016); and Fe in
olivine (Sio et al., 2018). The value of  in a mineral depends on the statistics of the atomic jump
sequence that leads to diffusion, and can be estimated based on information from independent
experiments and/or first principles calculations (Van Orman and Krawczynski, 2015). However,
there are few cases where sufficient information exists to make such estimates, and even fewer
examples where these have been tested by experiments. Estimates of f from natural samples are
also sparse, and have mainly been restricted to olivine phenocrysts in magmatic systems with well-
defined thermal histories, where S and fr. in olivine have been estimated by fitting Fe and Mg

isotopic profiles (Sio et al., 2013; Oeser et al., 2015).

Here, we develop a new method to determine f from natural samples, based on numerical modeling
of isotopic diffusion profiles developed between two minerals during slow cooling. The method is
applied to Ca isotopes in pyroxenes, where Ca is redistributed between high- and low-Ca pyroxene
during subsolidus cooling, but has the potential to be applied to many other systems where the

equilibrium distribution of an element between minerals is strongly temperature dependent.
2. Model description

We consider a system composed of orthopyroxene (opx) and clinopyroxene (cpx) grains that
undergo subsolidus chemical and isotopic exchange during cooling (or heating). Because opx and
cpx grains are commonly equant and there is little evidence for diffusional anisotropy (Cherniak
and Dimanov, 2010), they are approximated as isotropic spheres. It is also assumed that the
surfaces of opx and cpx maintain chemical and isotopic equilibrium at all times. Because opx and
cpx grains are not in physical contact across their entire surfaces in an actual rock, this assumption
implies the existence of a fast grain boundary network capable of accommodating the diffusive

fluxes across the mineral surfaces to and from the grain interiors (e.g. Eiler et al., 1992). Although
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this “fast grain boundary” assumption is clearly a simplification, it seems reasonable to assume
that grain boundaries can maintain efficient transport of Ca between opx and cpx surfaces given
that (a) grain boundary diffusion in silicates (Farver et al., 1994; Dohmen and Milke, 2010) is
many orders of magnitude faster than volume diffusion in pyroxenes (Cherniak and Dimanov,
2010; Zhang et al., 2010; Cherniak and Liang, 2022), and (b) Ca partitions strongly into grain

boundaries (Hiraga et al., 2004), correspondingly increasing their transport capacity.

In our model, the system of opx and cpx grains begins in chemical and isotopic equilibrium and
then undergoes subsolidus cooling, which disturbs the equilibrium. As the system cools, the
concentrations at the mineral surfaces shift to maintain surface equilibrium, and this sets up
concentration gradients within the mineral grains that lead to diffusional transfer of Ca and its
isotopes from opx to cpx. Because diffusion slows as the temperature decreases, the system may
move from a high-temperature regime in which bulk equilibrium is maintained and each grain is
homogeneous in composition, through a disequilibrium regime in which the diffusional flux
between opx and cpx is insufficient to achieve full equilibrium, to a final frozen regime where
diffusional exchange has ceased. We consider the exchange of two different isotopes of Ca, 4°Ca
and #*Ca, which have slightly different diffusion rates due to their difference in mass. The mass
dependence of the diffusion coefficients is characterized by the parameter S, as described above
(Eq. 1). Temperature in the cooling simulations is assumed to decrease linearly from the initial
temperature (75) to the final temperature (7). We also performed simulations (not shown) in which
temperature exponentially decreases with time, which yield similar results when the cooling rate

is the same at the Ca exchange closure temperature.

As introduced above, we assume an equilibrium distribution of Ca isotopes between opx and cpx

when cooling begins (=0), with each grain internally homogeneous:
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Cjn(rj' O) = G 0

IA
Non}
IA
)

j (2)
Conpx,o = Kz?px—cpx Ccnpx,o 3)

where C is the concentration of Ca isotope n (n=40 represents “°Ca and n=44 represents **Ca), the
subscript j refers to the phase (opx or cpx), r is distance from the center of the grain, R is the outer
radius of the spherical grain, and K is the partition coefficient between opx and cpx, which depends
on temperature and isotope mass. For #°Ca, we use the partition coefficient for Ca described by the
thermodynamic model of Brey and Kohler (1990) (Table 1). We consider here isobaric cooling at
a pressure of 1.5 GPa. At this pressure, the temperature dependence of *°Ca partitioning between

opx and cpx can be expressed as:
INK gy —cpx(T) = 2.76 X 10°/T? — 1.16 x 10*/T + 3.84 4)

For *Ca, we use the equilibrium isotope exchange equation determined by Wang et al. (2017).
The authors found that the equilibrium Ca isotope fractionation between opx and cpx depends on
the Ca concentration in opx (Wang et al., 2017), which is temperature-dependent. Including the
effect of Ca concentration was found to have a negligible effect on the Ca isotope fractionation in
our modeling (Fig. S1), so we assume the equilibrium Ca isotope fractionation between opx and

cpx is only a function of temperature (Wang et al., 2017):
INK g5y —cpx(T) = 6.46 X 103 /T? + InKy_ cpx (T) (5)
We also assume that the grain boundary region is homogeneous, and that the cpx/grain boundary

partition coefficient is equal to one, so that the initial Ca isotope concentration in the grain

boundary (denoted by subscript b) is equal to that in the cpx:

Clgl,o = Ccnpx,o (6)
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The assumption that the cpx/grain boundary partition coefficient is equal to one is arbitrary and
has no influence on the results, because we set the grain boundary volume to be so small that its

contribution to the Ca budget in the system is negligible.

The cpx rim (at outer radius R) is assumed to maintain chemical and isotopic equilibrium with the

opx rim and with the grain boundary at all times:
Conpx (R' t) = Konpx—cpx (T) Cglpx (t) (7)
Copx(R, 1) = G (1) ®)

As temperature changes, the equilibrium concentrations at the interface also change, and this sets

up the concentration gradients that drive diffusion in the grain interiors.

The isotopic concentration within each grain of opx and cpx follows Fick’s second law in spherical

coordinates (Crank, 1975):

act a%¢™ 5 act
—L =Dpr J 4 2
ot DA(TX( or} + T OT; ©)

where the parameter D is the diffusion coefficient, which is a function of the temperature and
hence is a function of time during cooling. The temperature dependence of the diffusion coefficient
for each isotope in each mineral is given by an Arrhenius equation:

E

D;(T) = Dy e " (10)

where Dy is the pre-exponential factor, R is the ideal gas constant, and E is the activation energy.
Although it has been found that Ca diffusivity in cpx is slightly anisotropic (e.g., Dimanov and
Ingrin, 1995; Dimanov and Jaoul, 1998; Zhang et al., 2010), we assume here for simplicity that Ca

diffusion in both opx and cpx is isotropic, and we adopt the Arrhenius parameters experimentally
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determined by Zhang et al. (2010) for cpx. The diffusion coefficient for Ca in opx is described

using the Arrhenius relationship recently measured by Cherniak and Liang (2022) (Tablel).

The Ca diffusion parameters discussed above are applied to “°Ca, the most abundant isotope. The

diffusivity of **Ca is then determined by the exponent f3:

ﬁ.
44 _ 40 [40\FJ
Di* =D (%) (11)

Because £ for Ca diffusion has not been determined for either opx or cpx, we examine a full range
of values in our modeling. Although f may depend on temperature (Van Orman and Krawczynki,
2015), this dependence is expected to be small and we assume here that £ is constant in the
temperature interval considered in this work. With respect to Eq. 10, this means that the isotopic
mass dependence only appears in the pre-exponential factor, and that the activation energies are

identical for both isotopes.

A mass balance constraint is implemented at each time step:
d Rj
= (%N, J,0 am? Cldry + V€ ) = 0 (12)

where N, represents the number of grains of each mineral j, the integral is over each grain’s entire
radius from the center (» =0) to the rim (» = R), and V} is the volume of the grain boundary network,
which is designated to be small enough that the grain boundaries make a negligible contribution
to the Ca budget of the system. It was verified that changing V5, below this small value has no
influence on the results. Equation (12) states that the bulk Ca isotope concentrations remain
constant at all times in the closed system considered in our model. This mass balance equation is
applied along with the interface equilibrium conditions (Eq. 4-8) in order to set the boundary

condition at the surface of each cpx and opx grain at each time step. With this boundary condition,
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and the diffusion equations (Eq. 9-11), the Ca isotope concentrations at the surface of each grain

are calculated simultaneously with the radial distributions within each grain at each time step.

For simplicity, we assume that the modal proportions and grain radii (Ropx, Repx) of opx and cpx
remain constant during cooling. In real cooling systems, the equilibrium proportions of opx and
cpx do change during subsolidus cooling. However, this change is not large and, as discussed
below, we find that the simulation results are insensitive to the modal proportions over a wide
range as long as cpx dominates the Ca budget. Our primary focus is on systems with a substantial
fraction of cpx, because such systems are the ones that have been investigated in terms of Ca
isotope fractionation (Huang et al., 2010; Kang et al., 2016, 2020; Zhao et al., 2017; Chen et al.,
2018; 2019; Dai et al., 2020). For most of the model results presented below, we assume opx:cpx
proportions of 7:3, typical of lherzolites, but a wider range of phase proportions is also explored

(Table 1). We assume that opx and cpx have the same grain size.

For a chosen cooling rate (d7/df), initial temperature (7;) and grain size (R), the isotopic
concentration at position 7 within a grain at time ¢, represented by C"(r, ), is calculated by solving
Eqgs. 2-12 using a Crank-Nicholson finite difference formulation programmed with Matlab. The
accuracy of the calculations depends on the number of radial grid points and time steps, with a
denser sampling mesh requiring a longer computation time. For the simulations reported here, we
use 500 radial grid points and 500 time steps, which yields nearly identical results to those obtained

with finer sampling meshes.
The isotopic ratio profiles in opx and cpx grains at each time step are represented by:

ctrrn/ciorn

44/40
5]. Ca(r,t) =|[( ci2 /o0

) — 1] * 1000 (13)

where C*/C* is the bulk isotope ratio of the whole system.
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The bulk isotopic compositions in opx and cpx at time ¢ (M™(t)) are calculated by integrating the

concentration over each grain:
M) = [Fanr2 C(r, )d 14
1) = [y 4mr® G (1, Dy, (14)
and the magnitude of Ca fractionation between opx and cpx at a given time is represented as:

M0/ M3
M (0)/M38,(0)

AMA0Ca,, . epe(t) = 1000 * In ( ) (15)

3. Results

The redistribution of Ca and its isotopes between opx and cpx depends on the grain size and the
cooling rate, and may also depend on the initial temperature. Because the distance (xp) an atom
diffuses is proportional to the square root of time (xp « +/t), changing the grain radii in the model
is equivalent to changing the cooling rate squared. For example, doubling the grain radii while
keeping all other parameters constant yields exactly the same results as increasing the cooling rate
by a factor of four. For the purpose of illustration, we keep the grain radii constant (1 mm) in the
results shown below, and vary the cooling rate over a wide range. The results can be translated
easily to different grain radii, by considering their proportionality with the square of the cooling

rate.
3.1 Cooling driven element and isotope redistribution

An example of the model Ca concentration and isotope fractionation profiles generated in opx and
cpx grains during cooling is shown in Fig. 1. At the highest temperatures, the diffusivity is fast
enough that the system is capable of developing a new chemical equilibrium, as shown by the
homogeneous elemental distribution profiles in the coexisting crystals during the early stage of

cooling (Fig. 1a). However, as cooling progresses and diffusion becomes slower, opx and cpx fail
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to fully re-equilibrate, and diffusional zoning profiles develop as Ca is transferred from opx to cpx.
Eventually, the diffusivity becomes so slow that the concentrations in coexisting grains no longer
change with further cooling. The time evolution is depicted in Fig. 1b, where the real model
temperature (7rear) is plotted alongside the apparent equilibrium temperature (7spp) recorded by the
40Ca distribution between opx and cpx. Initially the apparent temperature tracks the real
temperature, and finally the apparent temperature becomes frozen-in as Ca is no longer
redistributed between the opx and cpx grains. This final “frozen” apparent temperature can be
defined as the closure temperature for the “°Ca redistribution between opx and cpx, and the closure
time is the time along the cooling path that this temperature corresponds to. For the example shown

in Fig. 1, the closure temperature for 4°Ca exchange between opx and cpx is ~850 °C.

As Ca is transferred from opx to cpx during cooling, Ca isotopes separate due to their mass-
dependent diffusivity. An example of the resulting isotope fractionation is shown in Fig. 1(c, d),
where it is assumed that £=0.05 for both opx and cpx. Similarly to the Ca elemental exchange,
the Ca isotope distribution between opx and cpx initially follows the equilibrium isotope exchange
curve, deviates from it at lower temperature, and finally plateaus when diffusional exchange
between the minerals ceases. Because Ca is transferred from opx to cpx during cooling, heavier
Ca isotopes are preferentially retained in the opx due to their slower diffusivity. Hence, diffusive
fractionation produces opx with a heavier Ca isotopic composition, and cpx with a lighter Ca
isotopic composition. The measured isotope fractionation primarily reflects the deviation of
5*¥40Caypx from that of the bulk. Because cpx contains most of the Ca, §*/4°Cacpx= §***°Capui;
opx, the minor phase in terms of the Ca distribution, controls the diffusive fractionation.
Accordingly, as discussed below, we find that the isotope fractionation of Ca is relatively

insensitive to the values of /3 for cpx, but strongly dependent on the value of /3 for opx.
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3.2 Effects of cooling rate/diffusion rate/grain size and initial temperature

In a petrological system undergoing cooling, the closure temperature has a strong dependence on
the cooling rate and grain size (Dodson, 1973; Eiler et al., 1992) and may also depend on the initial
temperature (Ganguly and Tirone, 1999). Hence, one might anticipate that the diffusive isotope
fractionation during cooling also depends significantly on these parameters. To examine the
relationship between the diffusive isotope fractionation and the cooling rate, we performed a series
of model runs with cooling rate varying over a wide range, between 1 °C/Myr and 1x107 °C/Myr.
As above, these models consider opx and cpx grains 1 mm in radius, with an initial temperature of
1200 °C and with £=0.05 assumed for both opx and cpx. The results are summarized in Fig. 2,
which shows the Ca isotope fractionation between opx and cpx during cooling as a function of the
apparent temperature (i.e. the temperature inferred from the bulk 4°Ca distribution between opx
and cpx, if the distribution reflected chemical equilibrium). The minimum apparent temperature at
the end of each curve represents the closure temperature. Perhaps surprisingly, we find that the
final isotope fractionation is insensitive to the cooling rate (and to the closure temperature)
between 1 °C/Myr and 10? °C/Myr, with a nearly constant value of A**40Cagpy.cpx~1.52%o at the
end of simulations at these cooling rates. At faster cooling rates, the degree of Ca isotope
fractionation does depend significantly on the cooling rate: A*4°Cagpx.cpx results are calculated to

be 1.4%o0 and 0.31%o, at 10° °C/Myr and 107 °C/Myr, respectively.

It is important to note that the behavior of Ca isotopes during cooling differs from that of oxygen
isotopes, where the final isotope distribution between minerals always depends strongly on the
cooling rate (Eiler et al., 1992; Giletti, 1985). The fundamental difference is that the oxygen
elemental concentrations in silicate minerals do not change appreciably with temperature, so there

is no significant chemical diffusion of oxygen. Because the net elemental oxygen fluxes between



266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

minerals are negligible, diffusive fractionation of O isotopes during sub-solidus cooling is
anticipated to be small. Although O isotope diffusion gradients must develop during cooling, and
diffusive fractionation must occur if O diffusion is mass-dependent, these gradients are small and
are not expected to produce large diffusive fractionation effects as in the case of Ca where there is
significant chemical diffusion. Instead, the oxygen isotope distribution after cooling simply
reflects the closure temperature, which depends on the cooling rate. In contrast, Ca undergoes
substantial chemical exchange between minerals during cooling, which can result in strong
diffusive isotope fractionation. Our results demonstrate that when isotope fractionation is primarily
a result of chemical diffusion, there is not necessarily a strong dependence on cooling rate (or grain
size), as there is for oxygen isotope fractionation, or for temperature-dependent elemental
distributions. Furthermore, when there is significant diffusive fractionation of isotopes, the final
isotopic composition may not reflect equilibrium at any temperature that the rock actually

experienced on its cooling path.

The magnitude of diffusive isotope fractionation is expected to be proportional to the diffusional
flux of Ca within the disequilibrium temperature interval. In Fig. 3a, the total mass transfer of Ca
from the opx to the cpx, within the disequilibrium interval, is plotted as a function of the cooling
rate. The disequilibrium temperature range considered in these calculations extends from the
temperature (73) at which the Ca exchange temperature begins to deviate from the actual
temperature (by greater than 0.1%), to the final temperature (7%), at which the Ca exchange is
frozen. The disequilibrium Ca flux first increases with cooling rate, because the disequilibrium
interval shifts to higher temperatures where a larger mass transfer of Ca from opx to cpx is required
to establish equilibrium. Beyond a cooling rate of ~10% °C/Myr the Ca flux decreases with cooling

rate, as the freezing temperature of the Ca exchange rises and approaches the initial temperature.
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Similar to the flux, the diffusive Ca isotope fractionation (blue circles in Fig. 3b) first increases
and then decreases with cooling rate, with a peak at ~10? °C/Myr. This suggests that the Ca flux,
in the disequilibrium regime, is the primary control on the extent of diffusive Ca isotope
fractionation. The total diffusive isotope fractionation at the end of the simulation (pink circles in
Fig. 3b) also includes the effect of the equilibrium isotope fractionation curve. With increasing
cooling rate, the diffusive isotope fractionation curve departs from the equilibrium curve at
progressively higher temperatures, i.e. from a progressively lower starting point. This has the effect
of modulating the variation in isotope fractionation due to the changing Ca flux, keeping the
isotope fractionation nearly constant at slow cooling rates. Because other isotope systems, and
other mineral pairs, have broadly similar features — with equilibrium isotope fractionation
diminishing with temperature, and with concave-downward solvus curves — we would expect
broadly similar behavior in other systems, with a low sensitivity of the isotope fractionation to
cooling rate at slow cooling rates. In detail, however, the behavior is not expected to be exactly

the same in every system, and needs to be considered on a case by case basis.

The time evolution of the isotope profiles in opx (Fig. 4) also provides insight on the effect of
cooling rate. At cooling rates between 1°C/Myr and 10? °C/Myr (shown in Fig. 4a-c), the primary
change is the temperature interval over which diffusive isotope fractionation occurs. For example,
as shown in Fig. 1(d), at 10 °C/Myr, diffusive fractionation develops between ~1070 °C and ~690
°C, whereas at 1 °C/Myr and 10? °C/Myr, diffusive fractionation develops in the temperature range
of ~950 °C - ~650 °C, and ~1190 °C - ~750 °C, respectively (Fig. S2). However, during these
disequilibrium temperature intervals the Ca isotope profiles developed in the opx are very similar,
with high §**40Ca at the center of the opx grain becoming progressively lighter toward the rim

(Fig. 4a-c). The isotope fractionation is sensitive to the cooling rate/grain size only when the
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cooling rate is fast enough to limit diffusive fractionation at the center of the grain (Fig. 4d-h). At
cooling rates greater than 10° °C/Myr, the temperature (74) at which Ca isotope fractionation
departs from the equilibrium fractionation path is higher than the initial temperature (1200 °C),
which leads to the failure of opx to develop a homogenous isotopic profile at the highest
temperatures when cooling begins. As a result, the isotopic profiles develop a humped shape with
the largest fractionations near the rim instead of centered at the core of the opx grain. With
increasing cooling rate, less of the opx interior is affected by diffusive isotope fractionation, and
the hump in the isotopic profile shifts further toward the rim, affecting less and less of the grain
interior (Fig. 4e-h). The bulk isotopic fractionation between opx and cpx correspondingly

decreases, as seen in Fig. 2.

The model results presented above suggest that the initial temperature may play an important role
in the diffusive isotope fractionation at high cooling rates. To better understand this dependence,
we calculated the extent of Ca isotope fractionation as a function of cooling rate and initial
temperature (Fig. 5). As above, the radii of opx and cpx grains are 1mm, and $=0.05 is used for
both opx and cpx. Together, the results in Fig. 5a and 5b show that the isotope fractionation is
insensitive to the initial temperature and to the cooling rate, as long as the closure temperature is
substantially below the initial temperature (by ~150 °C or more for an initial temperature of 1000
°C, and by ~300 °C for an initial temperature of 1400 °C). We find, similarly to Ganguly and Tirone
(1999), that the closure temperature depends on the initial temperature when the cooling rate is
rapid, and/or the initial temperature is low. Further, we find that the regime where the closure
temperature is independent of the initial temperature closely coincides with the regime where the
diffusive isotope fractionation between opx and cpx is independent of the initial temperature and

the cooling rate.
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The results shown in Fig. 5 are critical for interpreting the isotope fractionation preserved in natural
opx:cpx pairs that have undergone monotonic cooling. They demonstrate that if the closure
temperature indicated by the elemental Ca distribution is sufficiently below the initial temperature,
the diffusive isotope fractionation is independent of the cooling rate. In these cases, it is not
essential to know the precise cooling rate the sample experienced in order to interpret the Ca

isotope fractionation between opx and cpx.

It is important to emphasize that the insensitivity to cooling rate of Ca diffusive isotope
fractionation between opx and cpx does not necessarily extend to other isotope systems or to other
mineral pairs. Diffusive isotope fractionation during cooling-driven sub-solidus exchange depends
on the diffusion parameters in the minerals and on the temperature dependence of element and
isotope partitioning. The sensitivity to cooling rate must be examined by detailed modeling on a

case by case basis.

3.3 Influence of S and modal proportions of opx and cpx

The examples shown above demonstrate that strong diffusive Ca isotope fractionation can be
produced during cooling even when the isotope mass dependence of diffusion is quite small
(=0.05). In order to understand how the isotope fractionation depends on the mass dependence
of the diffusion coefficient, we performed a set of simulations in which the f values for opx and
cpx were varied over the full range that is physically relevant (i.e. from 0 to 0.5), while holding
other parameters constant. We also examined systems with different proportions of opx:cpx,
ranging from 9:1 to 1:9. These simulations were all performed in the “slow cooling” regime where
the diffusive isotope fractionation is insensitive to the cooling rate, initial temperature or grain size.
The results are shown in Fig. 6, for opx:cpx proportions of 7:3 and 3:7, and in Fig. S3 for

proportions of 9:1 and 1:9.
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The results in Fig. 6 show that the Ca isotope fractionation between opx and cpx is far more
sensitive to fopx than to fepx, particularly when the fraction of cpx is large. These results can be
understood in terms of the example shown in Fig. 1: because the bulk of the Ca in the system
resides in the cpx, most of the isotope fractionation develops in the opx. The larger the cpx fraction,
the less leverage it has on the isotopic fractionation. For opx:cpx proportions of 3:7, A**Capx-cpx
is nearly independent of Scpx. These results indicate that fopx can be best constrained in systems
with large fractions of cpx (e.g. websterites and wehrlites). In systems with smaller cpx abundances,
such as lherzolites or harzburgites, the Ca isotope fractionation that develops between opx and cpx
during cooling would depend significantly on fScpx as well, and hence constraints on Sopx would

have larger uncertainty (absent independent knowledge of Scpx).
3.4 Diffusive isotope fractionation during heating

The temperature dependence of Ca partitioning between opx and cpx implies that diffusive isotope
fractionation can be induced not only by cooling but also by heating. Because many mantle
samples (xenoliths, for example) may have experienced transient heating, it is important to
examine its effects. We performed simulations with temperature linearly increasing from 600 °C
to a peak temperature of 1200 °C. For simplicity, and to illustrate the effects of heating in isolation,
we assumed Ca to be homogeneously distributed in opx and cpx, and in chemical and isotopic

equilibrium at the onset of heating.

Model results for a wide range of heating rates are shown in Fig. 7a. During the early period of
heating, the diffusivity is not fast enough to allow Ca transfer, and hence no diffusive isotopic
fractionation develops. At higher temperatures where Ca diffusion is significant, Ca is transferred

from cpx to opx, because Kg,x_cpx has a positive temperature dependence. The faster diffusivity

of the light isotope results in a progressively lighter isotopic composition in opx and a heavier
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isotopic composition in cpx, and thus a decreasing A***°Cagpx.cpx. As the temperature continues to
increase, the diffusivity becomes faster, and may ultimately be fast enough to achieve an
equilibrium isotope fractionation at high temperatures, depending on the peak temperature reached
and the heating rate (Fig. 7a). Similar to the cooling process, the magnitude of Ca isotope
fractionation along the heating path is controlled primarily by the isotope mass dependence of

diffusion in opx (Fig. 7b).

Because heating produces isotope fractionation in the opposite direction to that produced during
cooling, it could diminish or reverse the fractionation that developed during cooling. To estimate
Popx from natural samples, it is important to avoid samples that may have experienced late transient
heating, and to consider samples with the maximum A*4°Cagpx.cpx, Which are likely to most

faithfully preserve the isotope fractionation generated during slow cooling.
4. Discussion
4.1 Inference of #for Ca in orthopyroxene from natural samples

The results presented above show that diffusive exchange during cooling can fractionate Ca
isotopes significantly between two pyroxenes, and that the fractionation is controlled primarily by
diffusion in orthopyroxene. When cooling is sufficiently slow, the diffusive fractionation for Ca
isotopes between opx and cpx is further shown to be insensitive to the cooling rate, grain size and
initial temperature, and to depend primarily upon the mass dependence of isotope diffusion (/) for
Ca in opx. Hence, it is possible to place constraints on fpx based on the comparison of our model
results to published Ca isotope data for slowly-cooled natural samples that contain two pyroxenes.
The ideal samples for this purpose are those that (1) have cooled slowly enough that their frozen

Ca exchange temperatures are well below their initial temperatures, so that the isotope
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fractionation is nearly independent on the cooling rate; (2) have not experienced any re-heating,
which could diminish or reverse the isotope fractionation that developed during cooling; and (3)
contain a relatively large fraction of cpx, so that cpx dominates the Ca budget and the observed
isotope fractionation is sensitive only to fopx With a negligible influence of fp«. It is also essential
that the minerals analyzed are pure, without inclusions that could affect their Ca isotopic
compositions. Ideally, the zoning of Ca isotopic composition within the mineral grains would also
be characterized, or Ca isotope data would be restricted to the cores of mineral grains where
concentration gradients are negligible. Calcium isotope analyses have instead been performed
primarily on opx and cpx mineral separates after crushing and sieving. Despite the lack of spatial

context, published data still provide useful constraints on fypx, as discussed below.

Data on Ca isotopes in coexisting opx and cpx have been published for mantle peridotite xenoliths
(Huang et al., 2010; Kang et al., 2016, 2020; Zhao et al., 2017; Chen et al., 2018; Dai et al., 2020)
and samples from the mantle section of an ophiolite massif (Chen et al. 2019). The data are
summarized in Fig. 8, where the Ca isotope fractionation between opx and cpx is plotted against
the apparent equilibrium temperature recorded by the Ca elemental distribution. The samples span
AHCagpe.cpx values that are both above and below the equilibrium isotope fractionation curve.
Most of the samples with relatively low apparent equilibrium temperatures (<900 °C) have values
of A**9Cagpx-cpx above the equilibrium fractionation curve, consistent with diffusive isotope
fractionation during slow sub-solidus cooling. In contrast, many of the samples with high Ca
exchange temperatures have A*#0Cagpy.cpx values that lie below the equilibrium isotope
fractionation curve. These low values have been suggested to result from mineral-melt interactions
during melt infiltration (e.g. Chen et al., 2018; Zhao et al., 2017). We note, however, that heating

produces similar effects (see Fig. 7), and that the observed fractionation could potentially be
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produced strictly by heating during melt infiltration, without accompanying mineral-melt

interactions.

For the purpose of placing empirical constraints on fopx, our focus is on samples with a simple
slow cooling history, and with Ca exchange temperatures extending well below the initial
temperatures of the samples. Websterites and lherzolites from the Balmuccia massif (BM) in the
Ivrea zone of the Italian Alps (Chen et al. 2019) are inferred to have these properties. The BM
lherzolites and websterites formed in the subcontinental lithospheric mantle (Mukasa and Shervais,
1999), with the websterites forming dykes that crystallized from pyroxene-saturated melts at high
temperatures. The BM massif was then tectonically emplaced in the lower crust where it cooled
slowly, over a period of at least 70 Myr (Peressini et al., 2007, and references therein), implying
cooling rates of 10 °C/Myr or less. With crystallization temperatures for the websterites >1200 °C
(Mazzucchelli et al., 2009), and opx-cpx Ca distributions reflecting equilibrium at ~840-900 °C
(Fig. 8), it is clear that the BM samples cooled slowly enough to be in the cooling-rate-insensitive
regime with respect to diffusive Ca isotope fractionation. The BM samples include two websterites
with opx:cpx ~3:7, and two lherzolites with opx:cpx ~2:1. Our focus is on the websterites because
their high proportion of cpx means that isotope fractionation is sensitive only to fpx, whereas the
lherzolites have some sensitivity to fFpx (Fig. 6). In principle it is possible that Ca exchange with
other phases could also contribute to the Ca isotope fractionation exhibited by the opx:cpx pair.
However, the other minerals in the BM websterites (olivine and spinel) contain negligible Ca
compared to opx and cpx. Hence, while diffusional Ca exchange with these minerals could have a
strong influence on Ca isotope fractionation in olivine (or spinel), it would have negligible

influence on the Ca isotopic compositions of opx and cpx.
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Because the BM websterites (BM11-12 and BM11-14) studied by Chen et al. (2019) were
collected from the same layer (Wang and Becker, 2015) and have a common thermal history, they
should have similar extents of Ca isotope fractionation between opx and cpx. However, the inter-
mineral Ca isotope fractionation of BM11-12 and BM11-14 are analyzed to be 0.72%o and 1.29%o,
respectively (Fig. 8; Chen et al., 2019). Although Ca isotope zoning in opx grains is expected for
slowly-cooled samples, with lower values near the rim (see Fig. 4), zoning is an unlikely
explanation for this difference because each powder sample analyzed by Chen et al. (2019)
integrated many grain fragments (they reported using 0.5-1 mm mineral grain separates, with 10-
20 mg powdered for each analysis). Contamination of the opx separate with a small amount of cpx
is one possible way to lower the measured isotope fractionation. The inclusion of ~1.5% cpx to
the opx separate could explain the difference in isotopic composition between the two samples. To
estimate fopx we focus on the websterite sample with the largest opx-cpx fractionation (1.29%o),

because it is more likely to record the true isotope fractionation that developed during cooling.

Assuming that the measured isotopic compositions for opx and cpx correspond to the bulk values
integrated over entire grains, we can estimate the value of Bopx that produces A**°Cagpx-cpx = 1.29%o.
This gives a value of Sopx = 0.04(1), where the estimated uncertainty takes the full range of fcpx (0-
0.5) into account. This estimate of fopx = 0.04(1) could be considered a lower bound because it is
possible that reheating could have reduced the Ca isotope fractionation developed during cooling,
or that cpx inclusions in the opx analyzed by Chen et al. (2019) could have reduced the measured

Ca isotope fractionation even in the sample with the largest measured isotope fractionation.
4.2 Comparison with other estimates for £ in minerals

Although no prior experimental or theoretical study has estimated the isotopic mass dependence

of Ca diffusion rates in orthopyroxene, f values have been determined in a few cases for other
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elements in silicate minerals. On Fig. 9 our estimate of § for Ca in opx is compared to published
data for He, Li, Mg and Fe in olivine and clinopyroxene. The data are plotted against the diffusion

coefficient of the element at 1200 °C.

In crystals, the isotopic mass dependence of the diffusion coefficient depends on the sequence of
atomic jumps and on the coupling of the diffusing atom to the vibrations of other atoms during a
single jump, as given by the following expression (LeClaire, 1966; Van Orman and Krawczynski,

2015),

1
(3 1)/| Gy - 1] = <2 .
where f'is the correlation coefficient, and K is the coupling constant, which typically has values
close to one. Because simple interstitial diffusion is expected to have little to no correlation of
successive atomic jumps, such that f'has a value close to one, atoms that diffuse interstitially are
expected to have strong isotopic mass dependence (large ), as well as relatively large diffusivity.
On the other hand, diffusion by a vacancy mechanism, or by more complicated mechanisms
involving interstitial and other sites, is often correlated (f < 1), which leads to a correspondingly
smaller isotopic mass dependence. The data for Li and He shown in Fig. 9 (aside from He in
clinopyroxene) generally appear to be consistent with diffusion by an interstitial mechanism. Mg
and Fe in olivine have been inferred to diffuse by a vacancy mechanism (e.g. Dohmen et al., 2007)

and consistent with this independent inference, have smaller values of S.

The small value we find for ,ngx suggests that Ca diffusion in orthopyroxene involves significant
correlation of successive atomic jumps. This is surprising because Ca is expected to diffuse more
slowly than Mg, the predominant occupant of cation sites in orthopyroxene, and hence to have

little to no correlation in the direction of successive jumps (f = 1) if diffusion occurs by a vacancy
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mechanism (Van Orman and Krawczynski, 2015). Correlation in the vacancy mechanism occurs
when an atom makes back-and-forth exchanges with the same vacancy before the vacancy
repositions itself around the atom. The higher frequency of Mg-vacancy exchanges, relative to Ca,
would tend to randomize the position of a vacancy adjacent to the Ca atom before a Ca-vacancy
exchange could occur, which would make diffusion by a vacancy mechanism nearly uncorrelated.
The low value of ﬁg{,‘x suggests that Ca might not diffuse by a simple vacancy mechanism, but
instead may have a more complicated sequence of atomic jumps, perhaps involving interstitial
sites, that deviates significantly from an uncorrelated random walk. If Ca diffusion were
uncorrelated, as expected for a vacancy mechanism with a slow-diffusing solute atom, the value

of ,ngx would be expected to be significantly larger — similar to Li — and Ca would be expected to

develop much larger isotope fractionation between orthopyroxene and clinopyroxene during

subsolidus cooling than has been observed in natural samples.
4.3 Potential applications of the approach to determine £ in other systems

The approach demonstrated here has the potential for broad application to place empirical
constraints on the isotopic mass dependence of diffusion for many elements in many different
minerals. In general, the equilibrium partitioning of an element between two minerals is
temperature-dependent, and isotope fractionation may develop due to chemical diffusion during
cooling. The approach outlined here can be applied when the temperature-dependent chemical
equilibrium has been well calibrated, the isotopic equilibrium exchange has been well-calibrated
or can be inferred to be small, the elemental diffusion coefficients in the minerals have been
characterized as functions of temperature, and data are available on the inter-mineral isotope
fractionation in samples that have a simple, monotonic slow-cooling history. The method is

particularly powerful when one of the two minerals is a minor host of the element under
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consideration - as opx is for Ca when the opx:cpx ratio is not too large. In this case, the diffusive
isotope fractionation between the two minerals is insensitive to the isotopic mass dependence of
diffusion in the phase that is the primary host of the element. We have shown that the diffusive Ca
isotope fractionation between opx and cpx is sensitive only to ﬁg{,‘x - and insensitive to the cooling
rate, grain size or initial temperature — when the cooling rate is slow enough to allow a stage of
equilibrium exchange early in the cooling history, and the cpx fraction is large enough for it to
dominate the Ca budget. The insensitivity we find to cooling rate/grain size has not been
demonstrated for other element exchanges, and it may depend on the precise temperature

dependence of the equilibrium elemental exchange and other factors.

One example where the method outlined here appears to have significant potential is for the rare
earth elements (REEs). The temperature dependence of the equilibrium REE exchange between
opx and cpx has been well calibrated by Liang et al. (2013). Furthermore, the diffusion rates of
REEs in opx (Cherniak and Liang, 2007) and cpx (Van Orman et al., 2001) have been measured
experimentally. To our knowledge, equilibrium isotope fractionation has not been explicitly
characterized through either experiments or theoretical calculations, but because the REEs have
large atomic masses, it can be expected that the extent of equilibrium isotope fractionation of the
REEs between opx and cpx is quite small (Bigeleisen and Mayer, 1947; Dauphas et al., 2018; Hu
etal., 2021). Hence, the basis exists to estimate the isotopic mass dependence of the diffusivity for
REEs in opx by modelling their diffusive isotope fractionation between opx and cpx during slow
cooling, and comparing to their isotopic compositions in natural samples, which to our knowledge
have not yet been determined. The method may also be applicable to sub-solidus exchange of REE

for other mineral pairs, such as cpx and plagioclase/garnet.

4.4 Do inter-mineral isotope distributions in high-temperature rocks reflect equilibrium?
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Many studies have used natural samples to try to constrain equilibrium isotope fractionation
between minerals at high temperatures (e.g. Chen et al., 2019; Williams et al., 2005). A critical
underlying assumption in such studies is that the minerals (a) equilibrated isotopically at some
temperature and then experienced negligible isotope exchange during cooling, or (b) experienced
isotope exchange during cooling, but with a final distribution that reflects equilibrium at the
closure temperature. We have shown that diffusion can produce strong disequilibrium isotope
effects when there is significant elemental exchange between minerals due to temperature-
dependent partitioning. These disequilibrium effects can be significant even when the mass
dependence of isotope diffusion is fairly small, and are most apparent in minerals with low
abundances of the element under consideration. Our modeling results show that for systems where
the element partitioning between minerals depends significantly on temperature, isotope
fractionation is likely to deviate significantly from equilibrium at the closure temperature, due to
mass-dependent isotope diffusion. These disequilibrium effects would be avoided only if the
elemental flux between minerals and/or the mass-dependence of isotope diffusion were negligible.
Our results also show that disequilibrium diffusive fractionation can be significant even when

cooling and/or heating rates are quite rapid.
5. Conclusions

A method was developed to estimate the isotope mass dependence of diffusion rate in crystals by
modelling the diffusive redistribution between two minerals during slow sub-solidus cooling and
comparing the results to the documented isotope fractionation in natural mineral pairs. The extent
of diffusive Ca isotope fractionation between orthopyroxene and clinopyroxene is sensitive only
to the isotopic mass dependence of the Ca diffusion coefficient in orthopyroxene, provided that

clinopyroxene dominates the Ca budget and the Ca two-mineral exchange closure temperature is
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well below the initial temperature at the onset of cooling. Heating can diminish or reverse the
isotope fractionation developed during cooling. Comparison of the model results to published Ca

isotope fractionation data from orthopyroxene:clinopyroxene pairs, S5y is estimated to be 0.04(1).

Even with this relatively small inferred value of ﬁoc;}x , diffusive Ca isotope fractionation during

slow subsolidus cooling is substantial, and in general the preservation of a high-temperature
equilibrium isotope distribution is expected only if cooling is quite rapid. Similar effects are
anticipated for other minor and trace elements that have temperature-dependent inter-mineral
partition coefficients, and the method demonstrated in this study has the potential to be applied to
estimate the mass dependence of isotope diffusion for a broad range of elements in a broad range

of minerals.
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Table 1. Model Parameters

K Do,opxb Do,cpxb Eopxb Ecpxb R T; B ODX:CDX Cooling rate ~ Heating rate
(m?/s) (m*s)  (kJ/mol) (kJ/mol) (mm) ©°C) pX:cp (°C/Myr) (°C/Myr)
A40 A44 B C
x10%)  (x10)  (x10*
(107)  (x10%) (x107) 1171010 1.99x10% 240 318.8 1 900-1400 0-05 1:9-9:1  10°- 10 10°- 10°

27635 27699 -1.16 3.84

@ Parameters in opx/cpx partition coefficient. The temperature dependence of the partition coefficient (K) is expressed as: InK (T) =A/T>+B/T+C. The parameters
(A%, B, C) describing the temperature dependence of KgJ,_.,, are based on the study of Brey and Kohler (1990). The parameters (A*, B, C) describing

Ky cpx (T) are derived from the studies of Brey and Kohler (1990) and Wang et al. (2017).

® Arrhenius parameters for diffusion coefficient (D(T) = Dyexp (— %)). The temperature dependences of Ca diffusion coefficients in opx and cpx are described

using the Arrhenius relationships experimentally determined by Cherniak and Liang (2022) and Zhang et al. (2010), respectively.



Figure captions

Figure 1. Example model results for Ca exchange and isotope fractionation between opx and cpx, in a system with 1
mm radius grains cooling from 1200 °C (T3) to 600 °C (T%) at 10 °C/Myr. (a) Ca concentration profiles in opx and cpx
(the inset shows Ca concentration profiles in cpx on a finer linear scale, so that the variation with temperature is
evident). (b) Temperature and apparent temperature vs. time. The dashed line shows the actual temperature evolution
considered in the model, and the solid curve shows the apparent temperatures recorded by the Ca elemental distribution
between opx and cpx, where the Ca concentrations are integrated across the opx and cpx grains. (c) Ca isotope
fractionation profiles across opx and cpx. The mass dependence of Ca isotope diffusivity is assumed to correspond to
= 0.05 for both opx and cpx. (d) Isotope fractionation between opx and cpx (integrated across the opx and cpx grains)
as a function of temperature during cooling.

Figure 2. The magnitude of diffusive Ca isotope fractionation between 1 mm opx and cpx grains, calculated as the
system cools from 1200 °C to 600 °C at different cooling rates (fopx = Fepx = 0.05). Tapp is the apparent temperature
reflected by the elemental distribution of Ca between opx and cpx, along the cooling path. The results show that, when
the system cools from 1200 °C, the magnitude of diffusive Ca isotope fractionation between opx and cpx is insensitive
to the cooling rate, except when the cooling rate exceeds a threshold value. For 1 mm grains, the diffusive fractionation
is insensitive to cooling rate below 1x10° °C/Myr.

Figure 3. (a) Ca flux out of opx from the departure temperature (74), where the Ca exchange temperature deviates
from the actual temperature by 0.1%, to the final temperature (7%), as a function of cooling rate. (b) Ca isotope
fractionation between opx and cpx as a function of cooling rate. The blue circles show the diffusive isotope
fractionation generated between 7y and Tt, and the magenta circles show the total isotope fractionation from the initial
temperature (7i) to the final temperature (7%). Note that the difference between the blue and magenta circles at each
cooling rate reflects the equilibrium Ca isotope fractionation at the departure temperature.

Figure 4. The evolving Ca isotope profile in opx generated by diffusion, when system cools from 1200 °C at different
cooling rates, (a-d) 10° °C/Myr -103 °C/Myr; (e-h) 10* °C/Myr-107 °C/Myr. The dashed line represents the initial Ca
isotopic composition in opx when cooling begins (1200 °C). Solid curves denote the Ca isotope profiles in opx at
different temperatures as cooling proceeds. The navy curve represents the 5*#*Caqpx profile in opx at the Ca diffusive
exchange closure temperature.

Figure 5. The dependences of (a) the Ca isotope fractionation between opx and cpx, at the end of cooling; and (b) the
Ca closure temperature, on the initial temperature at the onset of cooling. Opx and cpx grain radii are 1 mm and $=0.05
is used for both minerals.

Figure 6. The extent of Ca isotope fractionation, calculated as a function of the isotope mass dependences of the
diffusion rates in opx and cpx (f in Eq. 11). The solid curves are for simulations with opx:cpx proportions of 7:3, and
the dashed curves are for proportions of 3:7. The results are obtained using a cooling rate of 10 °C/Myr and grain radii
of 1 mm.

Figure 7. Ca isotope fractionation between opx and cpx during heating, as a function of (a) heating rate and (b) isotope
mass dependence of the diffusion rate in opx and cpx. In (b) the shaded regions for each value of fpx show the results
obtained for fepx in the range 0-0.25.

Figure 8. Previously published data on the Ca isotope fractionation in opx-cpx pairs A***°Cagps-cpx plotted against the
apparent equilibrium temperature recorded by Ca in opx. The Tca-in-opx 0f Kang et al. (2016) and Kang et al. (2020) are
the values given in those publications, and Tca-in-opx of Huang et al. (2010), Zhao et al. (2017), Chen et al. (2018, 2019),
and Dai et al. (2020) are calculated using the Ca-in-opx thermometer of Brey and Koéhler, 1990. In the equilibrium



temperature calculations, the pressure is assumed to be 1.5 GPa. We note that a 0.5 GPa difference in pressure leads
to a ~20 °C difference in temperature.

Figure 9. Our estimate of § for Ca in opx compared to published data for other elements in other silicate minerals.
The p values are plotted against the diffusion coefficient of the chemical species at 1200 °C. These diffusion
coefficients were obtained using the Arrhenius relationships determined in the following studies: He in olivine (ol)
and diopside (cpx): Trull and Kurz (1993); Li in olivine: Dohmen et al. (2010); Li in diopside: Coogan et al. (2010);
Mg and Fe in olivine: Dohmen and Chakraborty. (2007); Ca in orthopyroxene: Cherniak and Liang (2022). The
difference between the diffusion rates of Fe and Mg in olivine in the studies of Sio et al. (2013) and Oeser et al. (2015)
is accounted for by the different forsterite contents in their olivine samples.
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