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Design and Experiment

of a Prescribed-Time Trajectory
Tracking Controller for a 7-DOF
Robot Manipulator

We present an analytical design and experimental verification of trajectory tracking con-
trol of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to
the origin within a finite terminal time, also referred to as the “settling time.” A key fea-
ture of this control strategy is that the settling time is explicitly assigned by the control
designer to a value desired, or “prescribed” by the user and that the settling time is inde-
pendent of the initial conditions and of the reference signal. In order to achieve this bene-
ficial property with the controller, a scaling of the state by a function of time that grows
unbounded toward the terminal time is employed. Through Lyapunov analysis, we first
demonstrate that the proposed controller achieves regulation of all tracking errors within
the prescribed time as well as the uniform boundedness of the joint torques, even in the
presence of a matched, nonvanishing disturbance. Then, through both simulation and
experiment, we demonstrate that the proposed controller is capable of converging to the
desired trajectory within the prescribed time, despite large distance between the initial
conditions and the reference trajectory, i.e., in spite of large initial tracking errors, and

in spite of a sinusoidal disturbance being applied in each joint.
[DOI: 10.1115/1.4055023]

1 Introduction

In many applications where robot manipulators are utilized, the
convergence time of the underlying controller plays a crucial role.
In many tasks, there are strict requirements on the maximum dura-
tion of convergence, and thus a failure to achieve convergence by
the required time could lead to the inability of the robot manipula-
tor to perform its task. Convergence time also plays a role in the
planning and reliability of robot manipulators. For example, if an
accurate estimate of the convergence time is known for a certain
task, an accurate and reliable estimate of the productivity of the
robot manipulator can be made. Expanding on this point, when
multiple robot manipulators are used cooperatively, such as in an
assembly line in industrial applications, having reliable estimates
of the completion time of each individual task is crucial in order
to effectively plan the operation of each manipulator. A consider-
able amount of research has been devoted toward the development
of control methods for robot manipulators which are capable of
guaranteeing an upper bound on the convergence time (potentially
dependent on initial conditions), achieving convergence to zero
within a finite period of time.

The literature on finite-time convergence methods concerning
robot manipulators can be broadly organized into three distinct
categories: the finite-time methods [1-5], the fixed-time methods
[6-12], and the prescribed-time methods [13-25].

Finite-time methods are characterized by a finite convergence
time that is bounded by the norm of the initial condition, as well
as a function of the controller parameters. While these methods
are useful in order to obtain more consistent convergence results,
obtaining a specific desired convergence time requires determin-
ing the maximum initial conditions of the task to be completed,
then tuning the controller parameters based on this value. Thus, in
order to complete a larger set of tasks, with different initial condi-
tions and maximum allowable operation times, separate controller
parameters must be determined for each task.
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Fixed-time methods are characterized by a finite convergence
time that is bounded by a function of the controller parameters
which is independent of the initial conditions. Thus, the process
for tuning the controller parameters for a specific task is consider-
ably simplified, as one no longer needs to consider the maximum
expected initial conditions of the task, only the maximum required
completion time. However, it is important to note that this upper
bound of the convergence time is typically conservative, and thus
the robot manipulator will usually complete the task well before
the required completion time is exceeded. Additionally, depend-
ing on the implementation of the fixed-time controller, the upper
bound of the finite convergence time may not be able to be arbi-
trarily set, meaning that certain maximum completion times may
be too stringent for the controller to effectively handle.

Prescribed-time methods are characterized by a finite conver-
gence time that is explicitly prescribed as a controller parameter.
This desirable property of prescribed-time methods enables the
same set of controller parameters to be utilized for a wide variety
of tasks with different required completion times. Due to this
desirable property, the development of prescribed-time methods
has become an active research topic in recent years.

The first design of a prescribed-time stabilizing (and disturb-
ance rejecting) controller was introduced by Song et al. [13], who
employed a scaling of the state of a normal-form nonlinear system
by a function of time that grows unbounded toward the terminal
time. By stabilizing the system in the scaled representation, regu-
lation in prescribed finite time is achieved for the original state,
along with a smooth, uniformly bounded control input and the
rejection of a matched nonvanishing disturbance. Another impor-
tant class of prescribed-time controllers for robot manipulators,
introduced by Becerra et al. [15] and improved upon by Obregon-
Flores et al. [16], utilizes time base generators, which are state tra-
jectories designed such that the system state smoothly converges
to zero at the prescribed terminal time. A key feature, and argu-
ably a disadvantage, of this control method, is the explicit use of
the initial conditions in the controller structure as a feed forward
term, along with a sliding-mode control scheme to correct for a
uniformly bounded matched uncertainty. Notably, this scheme
exhibits prescribed-time convergence in the ideal case of no
matched uncertainty, and finite-time convergence when
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uncertainties are present. In a separate approach, Cao et al. [20]
utilize a scaling system transformation technique to transform the
Euler—Lagrange system considered into a new set of variables, in
which the boundedness of the variables ensures that both partial
and full state constraints will not be violated. In addition, this
transformation also ensures that for any time greater than the pre-
scribed convergence time, the remaining tracking errors will be
less than a prescribed value. This approach is notable in that the
scaling transformation utilized does not approach infinity as the
terminal time is approached, and thus numerical difficulties
caused by an unbounded gain are avoided in this method. How-
ever, a potential drawback to using this method is that the control-
ler does not allow for separate control gains for each joint,
meaning that aggressive torques are likely applied to certain joints
of the robot manipulator when there is a large difference in inertia
between joints, which is typically the case for high-DOF robot
manipulators. In another approach, Garg and Panagou [12] utilize
the concept of robust fixed-time control Lyapunov functions as
well as control barrier functions to provide a framework for ensur-
ing robustness to disturbances with fixed-time convergence to a
user-defined goal set, along with ensuring the system state
remains in a user-specified safe set throughout the operation.

In this effort, we reformulate the prescribed-time controller ini-
tially developed by Song et al. [13] in order to handle the case of
trajectory tracking with a robot manipulator. This formulation yields
convergence of the tracking errors to the origin within the prescribed
terminal time, even in the presence of model uncertainties and a
nonvanishing matched disturbance. Furthermore, in order to address
the practical issues that can arise when employing an unbounded
scaling of the state, due to factors such as measurement noise,
numerical issues when applying a large scaling to small errors, and
a finite controller frequency, we employ a gain-clipping strategy in
order to limit the scaling of the state to a sufficiently high value.
Through the experimental verification of this prescribed-time con-
trol strategy with gain clipping on Baxter, a 7-DOF redundant robot
manipulator, we demonstrate convergence of the tracking errors to a
small neighborhood of zero by the prescribed terminal time, despite
a significant initial angular position tracking error of 20 deg on each
joint, as well as a sinusoidal torque disturbance of 0.1 sin 5¢ applied
to each joint. Thus the prescribed-time control strategy studied here
is both theoretically sound and effective in practice.

The organization of this paper is as follows. In Sec. 2, we pres-
ent a brief overview of the dynamics of Baxter’s right manipula-
tor, as well as the conditions imposed on the design of the
reference trajectory. In Sec. 3, we present the design of the
prescribed-time trajectory-tracking controller. In Sec. 4, we dem-
onstrate the prescribed-time regulation of the robot manipulator
tracking errors through Lyapunov Analysis. In Sec. 5, we briefly
discuss the practical implementation of the proposed control law.
In Sec. 6, we present the simulation and experimental results of
the proposed method implemented on Baxter’s right manipulator,
achieving convergence of the tracking errors to a small neighbor-
hood of zero by the prescribed terminal time despite large initial
tracking errors and a nonvanishing matched disturbance. Finally,
in Sec. 7, we present the case that the proposed method is theoreti-
cally sound, straightforward to implement in a real system, and
ultimately effective in practice.

Notations: In the following, we use the common definitions of
class K and KL given in Ref. [26]. | - | refers to the Euclidean
norm, the matrix norm is defined accordingly, for
M e M(R)(£ € N"), as |M|=supy [Mx| and the spatial
norm is defined as follows:

Wfllp) = sup [F(1)]

t€la,b)

2 Mathematical Modeling

The redundant manipulator, which is being studied here, has
7-DOF as shown in Fig. 1. The Baxter manipulator’s
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Fig.1 The 7-DOF Baxter’s arm at DSCL

Table 1 Baxter’s Denavit—-Hartenberg Parameters

Link a; d; o qi
1 0.069 0.27035 —n/2 qQ
2 0 0 /2 ¢ +7/2
3 0.069 0.36435 —/2 q3
4 0 0 /2 g
5 0.010 0.37429 —/2 qs
6 0 0 2 g6
7 0 0.3945 0 q7

Denavit—Hartenberg parameters are shown in Table 1 provided by
the manufacturer. The Euler—Lagrange formulation leads to a set
of 7 coupled nonlinear second-order ordinary differential
equations

M(q)G +C(q,4)q +G(q) + F(q) +D(1) =< €0

where, ¢,¢,G € R’ are angles, angular velocities, and angular
accelerations of joints, respectively, and t € R indicates the vec-
tor of joints’ driving torques. Also, M(q) € R7*7 is a symmetric
mass-inertia matrix, C(q,¢) € R”*" is a matrix of Coriolis coeffi-
cients, G(q) € R is a vector of gravitational loading, F(¢) € R’
represents a vector of frictional torques, and D(7) € R is a vector
of disturbance torques with an unknown bound applied to the sys-
tem (Fig. 2).

Our verified coupled nonlinear dynamic model of the robot
[27-38] is used as the basis of the prescribed-time approach. In
order to formulate a controller that is robust to modeling uncer-
tainty, the values of the mass matrix, gravity vector, and frictional
torques derived from this dynamic model are treated as estimates,
and are denoted as M(q),G(q),F(q), respectively. We make the
following assumptions concerning the difference between our
dynamic model and the true dynamics of Baxter:

AssumpTION 1. The true and estimated values of the mass
matrix, Coriolis matrix, gravity vector, frictional torques, and the
disturbance torques satisfy the following inequalities
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Fig. 2 The joints’ configuration: (a) sagittal view and (b) top
view

M~ (q)M (q) = 1] < e (©)
M~ (q)C(g,9)d| < 2l 3)
M~ (9)(G(9) ~ G(@))] < e @)
M~ (q)(F(q) = F(@))| < cald| )
M~ (@)D (1) < es|D(7)] 6)

AssuMPTION 2. The true mass matrix M(q), and the estimated
mass matrix M (q) are symmetric and positive definite.

Furthermore, we make the following assumption regarding the
reference joint trajectories:

AssuMPTION 3. The desired joint trajectories are designed such
that q,(1), ,(1), and §,(t) € R exist and are uniformly bounded
forallt € [0,T), where T >0 is the prescribed terminal time.

3 Prescribed-Time Tracking for Robot Manipulators

We consider the following trajectory tracking system

E= £

M Y(t-C§-G—-F-D)—3, @

& E, q—4qr
E=|.|= =7 7 8
M {Ez} [q—qr ©
where E € R' is the state error vector, and ¢ € R is the vector
of joint angular position tracking errors.
In order to regulate this system in prescribed-time, we first

introduce the following monotonically increasing scaling func-
tion, as well as it’s inverse

te[0,7) ©)

v (t) = =——, t€0,7) (10)

where 7> 0 is the prescribed terminal time, with the properties
1 (0) =1, iy (T) = 400, 11(0) =1 and v(T) = 0. To achieve
prescribed-time regulation of the tracking errors, we introduce the
following change of coordinates

w(t) = u(t)e(r) (11

2(1) = w(t) + aw(r) (12)

Journal of Dynamic Systems, Measurement, and Control

we) = (1) = (13)

S —

and o« > 0. This change of coordinates results in the following for-
ward and inverse scaling transforms

1 0

w
Z_[J_H (oﬂ—mz)l I E=PuE (4
T
1/1[ 0
E=u ( 2) Z=Q0w)Z (15)
—vo—= |1 vl

where I € Ry, is the identity matrix, P(y,) € R™7 is the for-
ward scaling transform, Q(v;) € R7*7 is the inverse scaling trans-
form, and Z € R is the scaled state error vector. By taking the
time derivative of (14) and substituting the inverse transformation
(15), the dynamics of the scaled state error vector are obtained

W=z—ow (16)

R P 2 2 4 2 4 5
I=pule— av1+ale?+ﬁ w+ 1/1?—5—0(1/1 z (17)

where
i=M'"(1-C§—G—F—-D)—g, (18)

Before presenting the design of the prescribed-time control law, it
is first necessary to present several definitions concerning notions
of stability within a finite prescribed interval of time.

DeriNiTioN 1 (FT-ISS [13]). The system x = f(x,t,d) (of arbi-
trary dimensions of x and d) is said to be fixed-time input-to-state
stable in time T (FT-ISS) if there exists a class KCL function f and
a class K function v, such that, for all t € [0,T)

(D) < Bllxol, (1)) = 1) +(lldllp ) (19)

DeriNiTiON 2 (FT-ISS+C [13]). The system % = f(x,t,d) (of
arbitrary dimensions of x and d) is said to be fixed-time input-to-
state stable in time T and convergent to zero (FT-ISS+C) if there
exist class ICL functions f and f, and a class K function y, such
that, for all t € [0,T)

(D) < Br(Blxols 1 (1) = 1) +7(lldl]j ) 11 (1) = 1) (20)

As the function y,(r) — 1 starts at zero and grows monotoni-
cally to infinity as t — T, a system that is FT-ISS is also ISS, with
the additional property that in the absence of a disturbance d, it is
fixed-time globally asymptotically stable in time 7. Additionally,
a system that is FT-ISS+C is also FT-ISS, with the additional
property that the state converges to zero even in the presence of a
disturbance.

Now, we present the design of the prescribed-time control law.

THEOREM 1. Under Assumptions 1-3, consider the system (7)
with the controller

w(t) = =M (@)[(k + 0+ (§)*)=() + G, (1) + G (g) + F(4)
@D

where

W(g) =14l + 14l +1 (22)
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If the controller gains are chosen such that p,k,n > 0

1
pko® > ¥eR (23)
M

and

2
1 4 4 2
0> — - 24
_AM(a+T>+p(ac +ocT+T2) (24)

where

Ay = min Apin
q€[0,2m)

(M* @Mg) + MM (q)) )

then the closed-loop system (7) with (21) is FT-ISS+C and the
Jjoint torques t remain bounded over [0,T).

4 Lyapunov Analysis

For the purpose of the Lyapunov analysis, we propose the fol-
lowing Lyapunov function

1
=5l (26)
Taking the derivative of this function yields

V=" [—M*IM(k +0+mp)z+ MM —1)g,

“(G-G+F—-F-C4—-D)- 202
—G+F—-—F—Cq— ocZ/lJrfo]TJrTz

#(fw+ cxzxf)z} @)

First, we seek to obtain an upper bound for the 1st term of V.
Utilizing the positive definite symmetric property of the mass
matrices as stated in Assumption 2, we obtain the following
inequality

MM +MM™!
;)z > Julz)? (28)

MMz = ZT(
2

where A, is first defined in (25). )

Next, we examine the second and third terms of V. Through the
application of Assumptions 1 and 3, the following inequality can
be obtained

MM ~ 1), +M (G —G+F —F—Cq—D) <yd (29)
where

d(r) = max{ci[lg, [l + e +esIDllg g, c2,ca} (30)

Applying (28) and (29) to (27), along with Young’s inequality
yields the following inequality

V < — |z (k + 0+ nyp?) + a2

4 2
+ﬁd2+#PﬂM\ 2 (“ v +0”/1T+T2)

4 ) \w\ + plz | ( 1/1+oc1/1) 31

Through the application of (24), this inequality can be further
reduced

101005-4 / Vol. 144, OCTOBER 2022

V < —20ykV 4+ ——d* + ——|w]? (32)

4n /1 4p/1

In order to proceed with the Lyapunov analysis, it is necessary
to introduce a technical lemma from the work of Song et al. [13]

Lemma 1. If a continuously differentiable function 'V : [0,T) —
[0, 4+00) satisfies

V(o) < ~2kuv() + 40 a(y 33

for positive constants k, ., where u(t) is defined in (9), then

Il
8ki

V() < E0)*V(0) + Vi e [0,T) (34)

where & is the monotonically decreasing function
O PUCYTIO)) (35)
with the properties that £(0) = 1 and £(T) =0

Through the application of this lemma to (32), it can be seen
that

IZ(f)\Sé(f))‘Mklon : (H\fMJFH\HfM) (36)

and thus the z-system is FT-ISS with respect to the w-input with a
gain of \/_ and is also FT-ISS with respect to the d-input. In
\4

order to obtain the behavior of the w-system, one can rearrange
(12) to obtain w(r) = —aw(t) + z(¢). From this point, it is straight-
forward to obtain a bound on w

a1
(O] < Iwole™ +—[lzllj0, G7

and thus the w-system is ISS with respect to the z-input with a
gain of . L Thus by the small-gain theorem, if condition (23) is sat-
isfied, then the combined system Z is ISS with respect to d and
thus there exist constants I, 3,7 > 0 such that

Z(1)] < T|Zole™™ + ylld]]4 (38)

Through the substitution of the scaling transformation (14) into
the right side of (38), followed by the substitution of the resulting
inequality into the right side of the inverse scaling transformation
(15), the following inequality is obtained

E(0)] < vi(0)][T |Eole™ + 7 [ldlljo ] (39)
where
T =T|P(1)] max [Q(1)| (40)
1 €[0,1]
=7 max |O(11)] (41)

Due to the fact that v (T) = 0, this inequality establishes that
the closed-loop system (7) with (21) is FT-ISS+C. In order to
obtain the uniform boundedness in 7 of the joint torques t over the
interval [0, T), it is necessary to examine the structure of the con-
troller (21). This control law is a function of the joint angles ¢, the
joint velocities ¢, the reference joint accelerations ¢,, and the
scaled state z. (38), it can be observed that Z, and therefore z and
w are uniformly bounded in 7. From (39), it is similarly observed
that £, and therefore ¢, and ¢ are uniformly bounded in 7. From
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Fig. 3 Baxter tracking a desired trajectory under the prescribed-time control scheme, cor-
recting for a large initial tracking error of 20 degrees in each joint and attenuating a sinusoi-
dal torque disturbance of D(f) = 0.1sin(5{). The circles represent the reference trajectory to
be tracked, and are spaced at approximately 1s intervals.

Assumption 3, the uniform boundedness in 7 of ¢,, ¢,, and ¢, are 5 Remarks on Prescribed-Time Control Law
established. Furthermore, since ¢, &, ¢,, and ¢, are uniformly
bounded in ¢, ¢ and ¢ must also be uniformly bounded in ¢. Apply-
ing the uniform boundedness in ¢ of each of these terms to (21),
the uniform boundedness in ¢ of the input 7 is established.

Through the substitution of the scaling transform (14) to the
control law (21), it is possible to obtain an expression for the con-
trol law in terms of the joint angular position and velocity errors
¢, ¢ rather than the scaled state z

60 40 ¢
—Experimental Trajectory — Experimental Trajectory
—Simulated Trajectory 20 —Simulated Trajectory
40 -- - -Desired Trajectory ---Desired Trajectory
A 20 A
- «~-20 ¢
S >
0 N L. 40+
-20 ‘ : | -60 ‘ ‘ |
0 2 4 6 0 2 4 6
Time (sec) Time (sec)
(a) (b)
40, 120
100
"o
o
=} 80
S
= — Experimental Trajectory 60 —Experimental Trajectory
—Simulated Trajectory k-’ —Simulated Trajectory
___x' ---Desired Trajectory - --Desired Trajectory
10 : : 40 : : :
0 2 4 6 0 2 4 6
Time (sec) Time (sec)
(c) (d)

Fig. 4 The experimental, simulated, and desired joint trajectories of Baxter
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—Experimental Trajectory
—Simulated Trajectory

-40 -
— Experimental Trajectory
—Simulated Trajectory
=50+ ---Desired Trajectory

60l = |---Desired Trajectory |
0 2 4 6 0 2 4 6
Time (sec) Time (sec)
(e) (f)
60 -
—Experimental Trajectory
40 D —Simulated Trajectory
- --Desired Trajectory
o 207
5
8
~ 0 [
S
201
40 . ‘ |
0 2 4 6
Time (sec)
(9

Fig.4 (Continued)

T=—1lM

{(k+0+nl//2)(<a+,u| %)a+a) +é,.]

=1

+G + (42)

From this representation, the role of the controller parameters &,
0, n, and o can be observed. The sum k + 0 is a scaled PD gain,
and thus is the primary driver of the error signal to zero, 7 is the gain
of the nonlinear damping term v/, which aims to attenuate the effects
of uncertainties on the control law, and o is a weighting factor which
determines the ratio between the proportional and derivative gains of
the control law. Thus, implementing the proposed prescribed-time
control law control law requires the tuning of just three parameters
(treating k + 0 as one parameter), whose effect on the control law is
readily observed. Furthermore, due to the direct dependence of the
control law on the prescribed final time 7, these three controller
parameters need only be determined once for a given robot manipu-
lator, regardless of the specific tasks the manipulator needs to per-
form. Thus, the proposed control law can be readily applied to a
wide variety of tasks with different convergence time constraints.

A potential barrier to the practical application of this proposed
method is the consequences of employing an unbounded gain
u; (1). While the proposed control law guarantees boundedness of
the control torques t(7) even in the presence of nonvanishing
uncertainties, problems may still arise due to measurement noise,
numerical issues when multiplying large gains with small errors,
and a finite controller frequency. In order to combat these practi-
cal issues, one effective strategy that can be employed is gain clip-
ping. Using this strategy, we define the constants

101005-6 / Vol. 144, OCTOBER 2022

5:1—1:1,’716(0,1) (43)
Hy
1
=—=1-(€e(0,1) (44)
Hy
PO (45)
# _7] :1156 (17+OO)

and redefine g, () in (42) as

py (1) = min{ g (), 1, }

1
~ max{n (1,140} 0
T
=7 min{1, 0T}

This redefinition of (9) upper bounds the scaling gain y; by the
value i, = 1%:, ensuring that the controller gains do not grow past
the point where the previously mentioned issues begin to notice-
ably affect the closed-loop system. A consequence of this modifi-
cation is that the regulation of the tracking errors is to a small
neighborhood of zero, rather than exactly zero as when utilizing
an unbounded gain. Employing a ( that is sufficiently close to 1
can ensure that this neighborhood is negligible, achieving per-
formance that is qualitatively similar to that of utilizing an
unbounded gain.
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DO
e}

é%’iw |
810t
g
m
0 O
g
=
e Or —
=
-5 | ‘ ‘
0 2 4 6
Time (sec)

(a)

6 Simulation and Experimental Results

In order to assess the performance of the proposed prescribed-
time approach, we perform both a simulation using ODE methods
on Baxter’s dynamic Eq. (1), as well as an experiment. In both the
simulation and experiment, Baxter must track a trajectory
designed for a pick and place task in Ref. [33], while under the
influence of a torque disturbance of D(¢) = 0.1 sin(5¢) applied to
each joint. In addition, this task is purposely started from a large
initial angular position error of 20deg for each joint. Thus, this
simulation and experiment demonstrate the ability of the proposed
method to converge from a large initial condition to the desired
trajectory within the prescribed finite time, while rejecting a large

-4 —Experimental Torque|
---Simulated Torque
6 ‘ : |
0 2 4 6
Time (sec)
(@

—Experimental Torque
- --Simulated Torque

0 2 4 6
Time (sec)

()

DO
e}

[y
[S28

—
o

Tracking Error (Deg.)
[

Time (sec)
(b)

Fig. 5 The simulated (a) and experimental (b) joint tracking errors of Baxter, with D(f) = 0:1sin(51)

torque disturbance. The controller parameters used in both the
simulation and experiment are T=6,k + 0 =5, n = 0.005, =2,
and { = 0.4. Note that 2, which is employed in lieu of z2 in (42),
which would without clipping go to infinity, is as low as 2.78.
From Fig. 3 it can be observed that the prescribed-time control-
ler is successful at executing the pick-and-place task in practice.
Comparing the reference trajectory, highlighted by the green
circles in the figure, to the initial position of Baxter’s right end
effector located at the bottom of the figure, it can be seen that an
angular position error of 20deg in each joint corresponds to a
large error in Cartesian coordinates. Despite this large initial
tracking error, the prescribed-time controller is shown to be effec-
tive at quickly attenuating this tracking error, and achieving close

-6 —Experimental Torque
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(b)
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Fig. 6 The experimental and simulated joint torque input signals of Baxter
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tracking of the desired trajectory for the remainder of the opera-
tion. After only 1s of operation, the distance between the desired
trajectory and Baxter’s right end effector is significantly reduced,
and after 3 s of operation, Baxter’s right end effector appears to
coincide exactly with the desired trajectory.

The experimental, simulated and desired joint trajectories can
be seen in Fig. 4. Despite the large initial joint tracking errors, as
well as the large sinusoidal disturbance applied to the system, neg-
ligible tracking errors are achieved after around 2.5 s of operation.
Throughout the procedure, oscillations in the joint angular posi-
tions cannot be observed from this figure, indicating that the
nonlinear-damping method employed was effective at absorbing
the effect of the sinusoidal disturbance. Furthermore, minimal
overshoot is observed during the 1st 2.5 s of operation, indicating
that the proposed control law is acting neither too aggressively or
too leniently in the beginning of the task. Observing Fig. 5, it is
possible to see the convergence behavior of the proposed method
in more detail. After 2.5s of operation, roughly coinciding with
the time of (T = 2.4 seconds where the gain multiplier y; stops
increasing, the majority of the tracking errors have already been
significantly attenuated. From 2.5 s onward, the residual tracking
errors, mostly resulting from the sinusoidal torque disturbance,
are attenuated to an acceptably small value of less than 0.2 deg.

The experimental and simulated joint toque input signals can be
seen in Fig. 6. It is important to note that these torques are signifi-
cantly lower than the maximum torque output of Baxter’s joints,
which are 50 Nm for joints 14, and 15 Nm for joints 5-7. Thus,
the prescribed-time approach is able to correct for a large initial
error without producing excessive joint torques. Additionally, the
simulated torques remain smooth throughout the procedure and do
not display chattering, which can negatively affect the lifespan of
the actuators used to control the robot manipulator. Furthermore,
while the presence of noise in angular velocity measurements has

— Experimental Torque
- --Simulated Torque

0 2 4 6
Time (sec)

(e)

77 (Nm)

caused similar variations in the experimental joint torques, these tor-
ques still exhibit moderate continuity and do not appear to be affected
by chattering. An important observation regarding both the simulated
and experimental joint torques is that oscillation can be observed
throughout the procedure, which is most noticeable in joint 7. Both
the peak-to-peak difference in this observed oscillation, as well as its
frequency closely match that of the applied torque disturbance
D(t) = 0.1 sin(5¢), indicating that the proposed controller is able to”
absorb” the disturbance as the prescribed final time of 6 s is reached.

In order to verify the ability of the proposed method to reject a
torque disturbance with a nonzero mean, an additional simulation
and experiment were performed with a torque disturbance of
D(r) = 0.1sin(5¢) 4+ 0.05. In the interest of brevity, we present
only the convergence of the joint tracking errors, which can be
seen in Fig. 7. It can be observed from this figure that both the
simulated and experimental tracking errors display nearly identi-
cal behavior to Fig. 6, demonstrating that the convergence of the
proposed method is not negatively effected by a disturbance tor-
que with a nonzero mean.

7 Conclusion

In this research effort, we formulated and experimentally veri-
fied the prescribed-time trajectory tracking control of a 7-DOF
robot manipulator. In order to ensure regulation of the tracking
errors by the prescribed final time, we employed a scaling of the
state by a function of time that grows unbounded toward the ter-
minal time. Through Lyapunov analysis, we demonstrated that the
proposed controller achieves regulation of all tracking errors
within the prescribed time with a torque that is uniformly
bounded, even in the presence of a matched nonvanishing disturb-
ance. Through inspection of the control law, we demonstrated that
the choice of parameters for the proposed control law is intuitive
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Fig.6 (Continued)
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Fig. 7 The simulated (a) and experimental (b) joint tracking errors of Baxter, when subjected to a disturbance

with nonzero mean D(f) = 0.1sin(5%) + 0.05

and straightforward, and that the controller could be implemented
in a practical system with minimal modifications. Then, through
both simulation and experiment, we demonstrated that the proposed
controller is capable of converging to the desired trajectory within
the prescribed time, despite large initial conditions of the tracking
errors and a sinusoidal disturbance being applied in each joint.
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