
1.  Introduction
A solute, brought into contact with a miscible solvent, diffuses into the latter and gradually develops a dif-
fused mixed zone. Provided that there is no change in the volumes of the solute and solvent as they mix, 
the transport of the former is governed by the diffusion equation. If the solvent is flowing, one will also 
have convective mixing due to the fluctuations in the velocity field. The phenomenon is then referred to 
as hydrodynamic dispersion, or simply dispersion. If the mixing occurs in a porous medium, the velocity 
field is affected by its heterogeneity, which in turn influences the concentration profile in the mixed zone. 
Such heterogeneities often give rise to non-Fickian transport that are difficult to model. Dispersion is im-
portant to many processes of practical interest, including storage and sequestration of 2COE  in deep saline 
aquifers, enhanced recovery of oil by miscible displacement (Sahimi, 2011), seawater intrusion into aqui-
fers, risk analysis related to spreading of industrial wastes, groundwater pollution (Bear & Cheng, 2010; 
Helmig, 1997), and operation of packed-bed reactors. Thus, dispersion has been investigated for decades 
by experimental, theoretical, and computer simulation studies (see Sahimi, 2011, for a comprehensive re-
view). Dispersion in microscopically heterogeneous, but macroscopically homogeneous porous media has 
been examined by both experiments and computer simulations. In particular, beginning with the work of 
Sahimi and co-workers (Sahimi et al., 1983, Sahimi, Heiba et al., 1986; Sahimi, Hughes et al., 1986, Sahimi 
& Imdakm, 1988), pore networks have been used to study dispersion, which has continued up until recently 
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(Bijeljic & Blunt, 2006; Bijeljic et al., 2004). Modeling of porous media by pore networks and similar models 
inherently involves simplification of the pore space morphology. Thus, other computational approaches, 
such as the lattice-Boltzmann simulation (Manz et al., 2004) in images of the pore space (Meakin & Tartak-
ovsky, 2009; Maier et al., 2000) and numerical simulation of the Stokes flow in the images and superimpos-
ing diffusion on the flow field through particle tracking (Bijeljic et al., 2011, 2013; Mostaghimi et al., 2012) 
have also been used to study dispersion. Recent experimental studies of dispersion utilized imaging tech-
nologies, such as X-ray computed tomography and positron emission tomography (Hasan et al., 2020; Pini 
et al., 2016; Zahasky & Benson, 2018). Pore-scale imaging and modeling have also been used to study dis-
persion in fluid flow, both numerically and by computer simulation (Blunt et al., 2013; Manz et al., 2004; 
Zahasky & Benson, 2018).

As an alternative approach, random-walk particle-tracking (RWPT) simulation in the Cartesian coordinates 
has also been developed. Although the RWPT simulation is known to be computationally more expen-
sive than pore-network models, its computational burden was reduced considerably by the advent of a 
massively parallel computational strategy (Meakin & Tartakovsky, 2009). In this context, an open source 
for RWPT simulation, dubbed 2PARE , was proposed by Rizzo et al. (2019) that utilizes graphics processing 
units (GPUs), and was employed to study transport of solutes at field scale (Rizzo & de Barros, 2017; Rizzo 
et al., 2019).

A most important characteristic of dispersion processes is the longitudinal dispersion coefficient LE D , which 
is a measure of the speed by which the solute spreads in the pore space in the direction of macroscopic flow. 
Its estimation by the aforementioned computational methods is, however, quite time consuming. Given the 
significance of dispersion to many phenomena in geological formations, developing a rapid and accurate 
method for estimating LE D  is paramount. In this Letter, we propose a novel approach for computing LE D  based 
on a combination of the RWPT simulation and a machine-learning (ML) algorithm, with the latter having 
been shown to be an efficient alternative for computating many properties of complex systems.

Deep-learning (DL) methods (LeCun et al., 2015; Schmidhuber, 2014), such as deep convolutional neural 
networks (DCNNs), have been developed to overcome the shortcomings of the conventional ML methods 
in processing complex and large datasets. The most common category of the DL methods is supervised 
learning methods in which the input data have labels, and the DCNN is utilized for identifying the non-
linear relation between the input data and their labels, that is, the calculated data. Such algorithms are 
commonly used for regression or classification purposes. In the former case, an image is used for training 
of the network, which then produces the output. The predicted output at the beginning of training is most 
likely far from the actual data, the so-called ground truth. Therefore, the DCNN calculates a loss or cost 
function, the sum of the squares of the differences between the predicted quantities and the data, and min-
imizes it through calculating optimal values of a number of adjustable parameters. After the training, the 
DCNN with the optimal parameters is tested with a new set of data. If successful, the network generalizes 
the ability of the DCNN for making predictions for new data (see Tahmasebi et al., 2020, for a comprehen-
sive review). The approach has been used to link the morphology of a porous medium to its permeability 
(Kamrava et al., 2020), diffusivity (Wu et al., 2019), and other properties (Algahtani et al., 2020; Graczyk & 
Matyka, 2020). We describe, for the first time, a DCNN for predicting the longitudinal dispersion coefficient 

LE D  in flow through disordered porous media.

The rest of the paper is organized as follows. In the next section, we describe the methodology, and the de-
tails of flow and the RWPT simulations, through which we generated the data for training the DCNN. Next, 
the structure of the network and the computational procedure are explained. The results using the trained 
DCNN are then presented. The key outcomes of the paper are summarized in the last section.

2.  The Methodology
We first describe 2PARE , the algorithm used for generating the data needed for the DCNN, after which we 
explain the DCNN itself.
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2.1.  Random-Walk Particle Tracking

The original 2PARE  algorithm was designed for solute transport in a given velocity field with non-periodic 
boundary conditions (Rizzo et al., 2019). Thus, two changes were made for implementing it in a pore-scale 
domain. First, to ensure that the particles pass through a large enough pore space and yield representative 
dispersion coefficients, periodic boundary conditions (PBCs) were impposed in all three directions. Second, 
with the PBCs each time the particles exit from an external surface of the pore space, they should be put 
back into the pore space at the exact location on the opposite surface. However, doing so may cause the par-
ticles to get trapped in the solid space, since the pore and solid geometries at one boundary of the domain 
do not necessarily match those at the opposite boundary. To address this issue, we relocated the particles 
that exited from one external surface of the pore space to the nearest pore on the opposite surface, if there 
was no exact matching.

The trajectory of solute particle i is computed using the Ito—Taylor integration scheme (Risken, 1996):

    ( Δ ) ( ) [ ( )]Δ [ ( )] ( ) Δ ,i i i it t t t t t t tX X A X B X ξ� (1)

where E ξ is a normally distributed random variable with zero mean and unit standard deviation, ΔE t is the 
time step, and the drift vector A and the displacement matrix B are defined by,




      
1( ) ( ) ( ) ( ) ( )
( )

A x u x D x D x x
x� (2)

  T2 ( ) ( ) ( )D x B x B x� (3)

where D is the local dispersion tensor (Bear & Cheng, 2010), u is the velocity field, E  is the effective porosity, 
and T denotes the transpose operation. We consider a 3D system, so that   ( , , )E x y zx . In our analysis convec-
tion and diffusion in the pore space are both included (LaBolle et al., 1996; Salamon et al., 2006). The input 
for the 2PARE  are the fluid velocity field throughout the pore space; see Figure 1.

Dispersion simulations were carried out for 900 velocity fields, computed for 900 distinct 3D cores with di-
mensions  64Δ 64Δ 64ΔE x y z, with   Δ Δ Δ 11.2 μE x y z m. Use of larger samples is, of course, possible, 
but that would increase the computational time significantly. On the other hand, very small images would 
not represent the heterogeneity of the medium. Preliminary simulations with various image sizes indicated 
that the selected size is representative. The molecular diffusivity was  9 210 mmE D /s. The Péclet number 
Pe was computed by (Mostaghimi et al., 2012), Pe / u L D

a m
, where aE u  is the average velocity defined by, 

Figure 1.  An example of a pore space (left) and the advective velocity field used in the random-walk particle-tracking simulation with the modified 2PARE .
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u Q A
a
 /( ) , where E Q is the volume flow rate in the pore space, E A is the area perpendicular to the macro-

scopic flow direction, and E L is the characteristic length scale. A typical grain size of sandstones was used for 
E L, that is,  150 μE L m.

The average Pe over all 900 cores was 310E . In the RWPT simulation, 30,000 particles were randomly in-
itialized in each pore space at one boundary of the domain. A dimensionless time E  was defined by, 
  t t t L u

c a
/ / /( ), where cE t  is the characteristic advective time which we took it to be  22 10E s, and aE u  is the 

ensemble mean of all the average velocities. The total simulation time E T  was set to  32 10E  with the time 
step   3Δ 1 10E t , so determined to restrict the movement of particles at one time step to one voxel.

The longitudinal dispersion coefficient LE D  was computed for all the realizations by



21 ,

2
x

L
dD
dt

� (4)

where  2
xE  is the longitudinal variance of the particle displacement,


x i i

x t x t
2 2
    ( ) ( )� (5)

with ( )iE x t  being the displacement of the particle i  (  1,2, ,30000E i ) in the longitudinal direction.

The results for LE D  computed by 2PARE  had mean and standard deviations, respectively, of  65 10E  and 
 5 22 10 mE /s. The mean LE D  is of the same order of magnitude as that of the previous numerical and ex-

perimental data (Bijeljic & Blunt, 2006; Bijeljic et al., 2004; Pini et al., 2016; Sahimi, 2011; Zahasky & Ben-
son, 2018). In particular, Sahimi (2011) presented the ratio D D

L m
/  as a function of Pe for a large collection 

of data. His plot yields  6 210 mLE D /s for  3Pe 10E , consistent with our mean value of LE D .

2.2.  The Deep-Learning Algorithm

The success of DL methods is dependent upon the availability of a large data set. Other factors contributing 
to the success include progress in the learning methods, as well as efficiency of the computations with GPUs 
(Shen et al., 2017). The DCNN used in this study consists of convolutional, batch normalization, activation, 
pooling, and fully connected layers (See Tahmasebi et al., 2020 for extensive discussions of the terminology).

The convolutional layer uses learnable kernels to identify the local features at various locations in the input 
data, and to construct the feature maps. The extracted feature maps are the essential information relating 
the input data and the output, after which a nonlinear activation function is applied. In the present study 
we used the rectified linear unit defined by, ( ) max(0, )E x x , which eliminates all the negative values since 

( ) 0E x  if  0E x  and, therefore, adds a small degree of nonlinearity to the convolved feature map, hence 
allowing the network to learn more about the input data. The functions acting on the 3D input data are 
represented by





 
   

 
 1

, , 1
,

Ml l l
ijk ijk ijk l

i j k
f f w b� (6)

where l
ijkE f  is the output of layer l , l

ijkE w  is the learnable kernels applied to layer l , and lE b  is the bias.

After the convolutional and activation layers comes pooling, which downsamples the feature maps of the 
previous convolutional layers and makes the network translationally invariant. We used a pooling layer that 
computes the average value for each path on the feature map (Kamrava et al., 2020). The output of the last 
pooling layer is then converted to a 1D vector, after which regression is carried out. To minimize the loss or 
cost function and determine the optimal values of the learnable parameters—the weights and biases—we 
used Adam optimization algorithm (Kingma & Ba, 2014). In this method the first and second moments of 
the gradient estimates of the learnable parameters are used for determining their learning rates. The E nth 
moment of a learnable variable E v is defined by,  ( )n

nE m v , where E  denotes the expected value. To estimate 
the moments, the exponentially moving averages of the gradient and squared gradient at epoch t , given by,

    1 1 1 1( ) ( 1) (1 ) ( ),m t m t g t� (7)
     2

2 2 2 2( ) ( 1) (1 ) ( ),m t m t g t� (8)
were used, where 1E  and 2E  are hyperparameters for controlling the decay rates of the moving averages, 
and E g is the gradient on the mini-batch that is being studied. Trial and error were used for setting the 
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hyperparameters. For example, we initially worked with five sets of convolution, activation, and pooling 
layers. Then, we varied the number of layers to understand its effect on the predictions. The initial values 
of 1E , 2E , E V  and E W  are set to 0.9, 0.999, zero and zero, respectively. The DCNN contained 21 layers, eight 
convolutional layers with various number of filters, each of which was followed by a batch normalization, 
an activation and a pooling layer, except for the last layer that was fully connected one.

3.  The Data and Computational Procedure
The data used for the training and testing included large 3D images of two porous media, the Berea, and Mt. 
Simon sandstone (Kohanpour et al., 2020; Tahmasebi et al., 2017) with porosities, respectively, of 0.196 and 
0.25. The Berea sandstone (Raeini et al., 2014; Valvatne & Blunt, 2004) has a physical volume of 2. 3 313 mmE ,  
and has used in many studies of flow and transport in porous media as a testing ground. The Mt. Simon 
sandstone, with a physical size of 3. 3 336 mmE , was taken at a depth of 6,700 feet in verification well number 
two of a study site in Decatur, Illinois, where Illinois State Geological Survey carried out a pilot injection to 
study the feasibility of full-scale 2COE  sequestration. We extracted 900 3D images of size  64 64 64E  voxels, 
with the size of the voxels being 3 311.2 μmE . 85 percent of the data were used for the training, and the rest 
for testing the accuracy of the DCNN. About 17 percent of the training data was used as validation data to 
ensure the trained network can handle unseen information. The training of the network took about two 
GPU hours using NVIDIA Tesla V100.

As the first step the pressure and velocity fields were computed by solving the Stokes' equations in the imag-
es. The results were then used as the input to the 2PARE  algorithm for computing the dispersion coefficients, 
which were then used for the training, validation and testing of the DCNN. We also supplied the porosity 

data to the network as one of the important physical features. A Schemat-
ic of the network is shown in Figure 2.

4.  Results
Figure 3 presents the decay of the loss function during the training. Its 
value is large at the beginning, being slightly larger for the validation 
data. But as the training continues, the loss functions for both validation 
and training decrease, meeting at a plateau.

After the training, the accuracy of the DCNN was checked with the test-
ing data. Figure 4 demonstrates the capability of the network for predict-
ing the dispersion coefficient LE D , based on the 3D images of the porous 
media and their porosity, for the the data that the DCNN had not used 
during its training. The dispersion coefficients are normalized between 
0 and 1 by, D D D D

L L

m

L

M

L

m   / , where superscripts E m and E M denote 
the minimum and maximum values. The correlation coefficient between 

Figure 2.  Schematic of the convolutional neural network.

Figure 3.  Loss function for training the convolutional neural network.
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the predictions and the data is 0.94, indicating the high accuracy of the 
DCNN. Thus, the DCNN may be used readily with new images without 
carrying out any new simulations.

Note that for small values of LE D  the predictions underestimate the corre-
sponding actual values. For example, the first cluster of points in Figure 4 
appear to be below the diagonal line, while other predictions for larger LE D  
are almost evenly distributed on both side of the diagonal. This is simply 
due to smaller number of data points for such LE D  values.

One point is worth emphasizing. If we train the DCNN with the 3D im-
ages, but without utilizing explicitly the porosities of the samples as inde-
pendent input data, the predictions will not be as accurate as those pre-
sented in Figure 4. This identifies porosity as a key factor in determining 
the dispersion coefficient.

5.  Summary
Measuring or computing the dispersion coefficient LE D  in flow through 
porous media, a fundamental characteristic of transport in geological 
formations and risk analysis, is a time-consuming endeavor. Moreover, 
although LE D  is sensitive to the morphology of a pore space, a direct link 
between the two has been missing. We proposed a deep convolutional 
neural network for predicting LE D , using 3D images of porous media and 

their porosities. The accuracy of the predictions for the actual data indicates that the ability of the network 
for estimating the important flow and transport properties of porous media for new input data.

The present work was at the core scale, on the order of the physical sizes of the sandstones used in our study. 
The same approach may be used at the field scale. In that case, one generates the input data by following the 
same procedure, except that the data should be generated for models in which the permeability and porosity 
of the formation vary spatially, and represent correlated fields. Work in this direction is in progress.

Data Availability Statement
Data showing morphology of porous media samples used for training and testing the network is archived at 
https://zenodo.org/record/5120874#.YPilQuhKiUk.
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