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Abstract: We formulate a prescribed-time safety filter for the case of a redundant manipulator
performing a fixed-duration task. This quadratic programming based formulation yields a
filter that is capable of avoiding multiple obstacles in a minimally invasive manner, while
simultaneously allowing the nominal controller to converge to positions located on the boundary
of the safe set by the end of the fixed-duration task. In order to demonstrate the efficacy of the
proposed method, we performed a series of simulations and experiments on Baxter, a 7-DOF
collaborative robot manipulator. Furthermore, when compared to the exponential safety filter,
which is the state-of-the-art in current literature, our proposed method yielded consistently
lower joint jerks. Thus, for tasks with a fixed duration, the proposed PTSf offers performance
benefits over the exponential filters currently present in literature.
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1. INTRODUCTION

As the usage of robot manipulators in collaborative envi-
ronments has dramatically risen in recent years, ensuring
that a robot manipulator is able to operate safely has
become an important goal for modern control systems (Bil-
lard and Kragic (2019)). In the past several years, a large
amount of research has been devoted towards the design
of control barrier functions (CBFs) for robot manipulators
(Ames et al. (2019); Basso and Pettersen (2020); Chen
et al. (2020); Cheng et al. (2020); Cortez and Dimarogo-
nas (2020); Farras and Hatanaka (2021); Ferraguti et al.
(2020); Hsu et al. (2015); Landi et al. (2019); Lippi and
Marino (2021); Rauscher et al. (2016); Singletary et al.
(2021); Wang et al. (2022); Wang and Xu (2022)). CBFs
function as a safety filter for a potentially unsafe nominal
controller, overriding the nominal control torques when
the boundary of the safe set is approached faster than a
designed convergence rate. Typically, this override torque
is determined via a quadratic program minimizing the
difference between the nominal and override torque, and
thus CBFs can be characterized as minimally invasive.
The majority of CBFs formulated for robot manipulators
are based on the concept of exponential safety filters
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(ESfs)(Nguyen and Sreenath (2016)). Using this method,
the maximum rate of convergence to the boundary of the
safe set is limited to be exponential, and consequently the
robot manipulator can approach but will never reach the
boundary of the safe set. While ESfs are designed to be
minimally invasive, their presence can interfere with the
operation of set-duration tasks when the goal position of
the end-effector is located near the boundary of the safe
set. Under ideal conditions such as zero initial tracking
error, a trajectory-tracking nominal controller operating in
such a scenario would converge to the desired goal position
within a fixed time that is governed by the design of the
trajectory. However, when an ESf is applied to this nom-
inal controller, the rate of approach to the goal position
is limited to be exponential, and the manipulator will not
reach the desired goal position by the fixed time. A consid-
erable amount of research has been devoted towards the
development of control methods for robot manipulators
which are capable of guaranteeing an upper bound on the
convergence time. When the nominal controller is capable
of ensuring convergence within a finite-time, enforcing a
condition of exponential convergence to the boundary of
the safe set is counterproductive. Utilizing concepts from
prescribed-time stabilization, in which convergence to the
desired setpoint is achieved in a time explicitly prescribed
as a controller parameter, Abel et al. (2022) have recently
developed a prescribed time safety filter (PTSf) for a chain
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of integrators. The PTSf enforces safety for a finite period
of time that is explicitly set as a filter parameter 7. No-
tably, this procedure allows the nominal controller to reach
the boundary of the safe set by the end of the prescribed
duration T'. In order to achieve this beneficial property, a
scaling of the filter gains by a function of time that grows
unbounded towards the terminal time is employed. This
approach can be interpreted as a safety filter that becomes
less strict as the terminal time is approached, allowing the
nominal controller to converge to states that are located
on the boundary of the safe set. In this research effort,
we reformulate the PTSf initially proposed by Abel et al.
(2022) for the case of a redundant manipulator performing
a fixed-duration task. This formation yields a filter that
is capable of avoiding multiple obstacles in a minimally
invasive manner with bounded joint torques, while simul-
taneously allowing the nominal controller to converge to
positions located on the boundary of the safe set by the
end of the fixed-duration task. In order to demonstrate
the efficacy of the proposed method, we perform a se-
ries of simulations and experiments on Baxter, a 7-DOF
collaborative robot manipulator. In these simulations and
experiments, Baxter must follow a six second parabolic
trajectory as closely as possible while navigating around
a large spherical obstacle blocking its path, and place an
object precisely on the surface of a table without overshoot
by the end of the six seconds.

2. PRESCRIBED-TIME SAFETY FILTER FOR
ROBOT MANIPULATORS

The redundant manipulator, which is being studied here,
has 7-DOF. The Euler-Lagrange formulation leads to a set
of 7 coupled nonlinear second-order ordinary differential
equations:

M(q)j+C(g:4)qi+Glq) + F(q) =7 (1)
where, ¢,q,§ € R7 are angles, angular velocities and an-
gular accelerations of joints, respectively, and 7 € R” in-
dicates the vector of joints’ driving torques. Also, M (q) €
R™*7 is a symmetric mass-inertia matrix, C(q,q) € R™*7
is a matrix of Coriolis coefficients, G(q) € R” is a vector of
gravitational loading, and F(§) € R” represents a vector of
frictional torques. Our verified coupled nonlinear dynamic
model of the robot (Bagheri et al. (2018); Bertino et al.
(2021, 2022a)) is used as the basis of the prescribed-time
safety filter approach.

We consider the following state space representation of (1):

o= &)= 2

in which we define:
Qu1(t) q(t)

t) = =1 3
) [sz i) ®)
v(t) = q(t) = M~ (q)(7(t) — Cla, 9)q(t) — G(q) — F(%) )

4
The purpose of the proposed PTSF is to ensure that
Baxter’s end-effector remains within the following user-
defined safe set for the duration of the task:

H={qeR"ni(p(q)) >0, i=1,..,m} (5)

where

VpeR3 i=1

) (6)

and p(q) € R? is the position of the end-effector in
Cartesian coordinates, which is a function of the joint
angles ¢. In this formulation, the robot manipulator must
prevent collision between m obstacles, which each has
a corresponding CBF h;. This barrier is positive when
there is no collision, 0 when the robot manipulator and
the obstacle make contact, and negative when the robot
manipulator is inside of the obstacle. Thus, ensuring the
joint positions of Baxter are kept within the defined safe
set (5) is equivalent to preventing a collision between the
end-effector and an obstacle. The goal of the PTSf is
formally defined as follows:

q(t) e H Vte|0,T) (7)
where T' > 0 is the user-defined duration of the prescribed-
time task, as well as the duration of enforcement of the
PTSE. In order to allow the robot manipulator to make
contact with the barrier at time 7', we employ a scaling of
the PTSf gains by a function of time that grows unbounded
towards the time 7"

k
T
e (t) = <T—t) , te[0,T), keZy (8)
Note that the temporal derivative of this function can be
computed as:

Bt = Bpea(t), te0.T), ke, (9)

Due to the relative degree of the CBFs h; being greater
than 1, it is necessary to pursue a backstepping design
in order to enforce the invariance of (5). To this end, we
formulate the following output functions:

yi1(t) = hi(p(q(t)))

(10)
Jyi1(q(t)) .
i) = 2280 400) + cypana) (1)
where y;1(t), yi2(t) € R and ¢; € R is a design parameter
to be determined. In this formulation, if we ensure that y;;
and y;o are initially positive and remain positive for the
duration of the prescribed-time task, the condition (7) will
also be satisfied. In order for y;1(0) > 0, the system must
initially be safe. In order for y;2(0) > 0, we must choose:

2u5 024 (0)

vi1(0) (12)

c1 > max 0, —

In order to ensure that y;; and y;2 remain positive in
the interval ¢t € [0,T), it is necessary to examine their
underlying dynamics:

Yil = —C1i2¥i1 + Yi2 (13)

2 i ., . T0%a . i

Yiz = FC1psYin + C1pta agql g+q' 88321 q+ 36yq1 v

where (13) is obtained from rearranging (11), and (14) is

obtained from taking the temporal derivative of (11) and

applying (9). In order to enforce the positivity of h; and he

for ¢ € [0,T), we permit only v(t) such that the following
condition is satisfied:

Yiz + Capiayiz > 0,

(14)

i=1,..,m (15)
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where co > 0. In the next section, we will show that this
is a sufficient condition for the positivity of h; over the
duration ¢ € [0,T). Before presenting the design of the
PTSt, we first reformulate (15) in terms of the CBFs h,,
as well as the joint angles ¢ and joint velocities ¢. To this
end, we first obtain several derivatives of the CBFs with
respect to the joint angles:

Oh; Ol
9%h; 0%h; oh; .
T 2. T 7T 2 . (3 .

@ e i=d J (q) 2 J(q)g + i J(q)q (17)
in which ()
plq

=Y 1
T = (18)

where J(q) € R3*7 is the jacobian of the end-effector.
Then, we substitute (10), (11), (14), and (16)-(18) into
(15) to obtain:

blv>a;, i=1,..,m (19)
where
O%h; oh;
o T 7T ) s 7 .
ai=—q J (q) 72 J(q)q o J(q)d
2 oh; .
—C1 43 (T + 02;“) hi — (c1 + c2) 2 ap J(q)q (20)
oh;
T _ 7
b = 5@ (21)

In order to enforce safety for the prescribed duration T
in a minimally invasive manner, we apply quadratic pro-
gramming minimizing the difference in joint acceleration
caused by the filtered and nominal control torque:

Vsafe = argminHw - VnomH2 (22>
weR?
st. bjw>a;, i=1,..m (23)

where

Vnom — Mﬁl(q)(’rnom - C(Q7 q)Q(t) - G(q) - F(Q)) (24)
and Tyhom is the nominal control torque. The filtered control
torque can then be determined as:

Tsafe = M(q)ysafe + C(Q7 Q)q(t) + G(q) + F(q)

We can now state our main result.

Theorem 1. If q(0) € H, then the filtered controller (20)-
(25) ensures that q(t) € H,Vt € [0,T). Furthermore, the
filtered torque Tgate is uniformly bounded provided that the
nominal torque Tnom 18 continuous in t and Lipschitz in Q.

(25)

3. PROOF OF THEOREM 1

In order to prove the invariance of the set H during
the interval ¢t € [0,7T), it is first necessary to show that
the linear inequalities (23) always have a jointly feasible
solution. To this end, we construct the following feasible
solution:

—(e1 + e2)p2g — T (0) I (9)g (26)
where JT(q) is the Moore-Penrose pseudoinverse of J(q).
Substituting this expression into the condition (23) yields:

0>—¢'J'( )%J()'— 3+ hi  (27)
Z—q q a2 q)q — Cp3 T Cofb1 ) 1

Vfeasible =

Utilizing the property (6), we can further simplify this
inequality:

2
0> —cipus (T + cwl) h; (28)

and thus we determine that for ¢(¢) € H, (23) has a jointly
feasible solution. Next, we show that ¢(0) € H ensures
that ¢(t) € H,Vt € [0,T). Through the application of
the Comparison Lemma to (14), we obtain the following
inequality:

Yio(t) > yia(0)e2TU=m®) 5 0wt e[0,T)  (29)

Integrating (13) from 0 to ¢, and substituting this inequal-
ity yields:

t
Yt (£) = gir (0)ecr TA=m (®) 4 / T ()= () ()
0

> yin (0)eTUm®) > 0, vt e [0,T) (30)
Through applying the relationship (10), we obtain:
hi(t) >0, Yte[0,T) (31)

and thus ¢(t) € H,Vt € [0,T).

The proof of the boundedness of the filtered torque Tgafe
bears strong resemblance to the proof of Theorem 1 in
Abel et al. (2022). Thus, in the interest of brevity, this
section of the proof is not provided in this manuscript.

4. SIMULATED AND EXPERIMENTAL RESULTS

In order to assess the performance of the proposed PTSf
approach, we perform both simulations using ODE meth-
ods on Baxter’s dynamic equation (1), as well as exper-
iments. In both the simulation and experiment, Baxter
must track a six second trajectory designed for a pick and
place task, while simultaneously avoiding collision with a
large spherical obstacle blocking the trajectory, and plac-
ing its held object precisely on the surface of a table. To
highlight the ability of this method to allow convergence
to the barrier within a finite period of time, the nominal
controller utilized in both simulations and experiments is a
prescribed-time controller which we previously formulated
in Bertino et al. (2022b). As we demonstrated in this
earlier work, this prescribed-time nominal controller is
capable of achieving zero tracking errors by the end of the
six second desired trajectory. Thus, our simulations and
experiments will serve to demonstrate the ability of the
proposed PTSf method to allow convergence to the barrier
within a finite period of time. Furthermore, we compare
the performance of the PTSf method presented here to an
ESf with a high gain, as well as an ESf with a low gain to
highlight the strengths of the proposed method.

In the simulations and experiments, the CBF preventing
collision with the spherical obstacle is formulated as:

hl(p(Q)) = ||p(CI) - pSphereHz - Rgphere (32)

where Dsphere € R3 is the position of the sphere, and
Rsphere € R is the minimum safe distance between the
robot manipulator and the center of the obstacle. We
formulate the CBF preventing collision with the table as:

ha(p(q)) = p(q) - (0,0,1) — 2table (33)
where ziaple € R is the height of the table. For the PTSf,
we set the controller parameters as ¢; = ¢ = 1.2. In
order to prevent numerical issues arising from employing
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an unbounded scaling of the gain g, we clip this scaling at
a maximum value p2 max = 6.25. For our six second task,
this maximum is reached after 3.6 seconds of operation.
For the nominal controller, we utilize the same controller
parameters as in Bertino et al. (2022b), so that the
interested reader can compare the performance of the PTSf
+ nominal controller to that of the nominal controller
alone. In order to convert our formulation of a PTSf to
that of an ESf, the following expression can be utilized in
substitute of (20):

d?h; oh;
) _ T T i . 4 .
Giest = —q J ' (q) 0 J(q)d op J(q)q
oh;
—2p%h; — : j 4
p 3p o J(q)d (34)

with p > 0. For our high gain ESf, we set p = 4 so that the
high gain ESf + nominal controller can achieve negligible
tracking error at the end of the six second task. For our
low gain ESf, we instead set p = 1.5 so that the low gain
ESf begins to take evasive action at the same instance of
time as the proposed PTSf.

— Desired Trajectory
= End-Effector Trajectory
#®¢ End-Effector Position (Every 1.0s)

— Desired Trajectory
= End-Effector Trajectory
®®¢ End-Effector Position (Every 1.0s)

— Desired Trajectory
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Fig. 1. Simulations (left column) and experiments (right
column) of Baxter following a pick-and-place tra-
jectory while avoiding multiple obstacles, using a
prescribed-time safety filter (a, b), an exponential
safety filter with a high gain of p = 4 (¢, d), and an
exponential safety filter with a low gain of p = 1.5 (e,
f). At t = 3s, the end-effector trajectory takes a major
turn from moving up to moving below the spherical
obstacle.

Distance to Boundary (cm)

Distance to Boundary (cm)

0 2 4 6
Time (sec)

(a) (b)

Time (sec)

Fig. 2. The simulated (a) and experimental (b) distance
between the robot manipulator and the nearest ob-

stacle.

17sate — Tomll2 (Nm)
II7safe — momll2 (Nm)

Time (sec)

(a) (b)

Time (sec)

Fig. 3. The magnitude of the difference between the
nominal and filtered joint torques in simulation (a)
and experiment (b).

From Figure 1 it can be observed that the proposed
PTSE successfully avoids the spherical obstacle in both
simulation and experiment, while simultaneously placing
the held object precisely on the table at the end of the
six second task. Furthermore, the magnitude of the torque
applied by the PTSf gradually increases as the spherical
obstacle is approached, indicating that the control action
is smooth and that the magnitude of the joint jerks of
Baxter are not large. In comparison, the ESf with a high
gain is also successful at placing the held object precisely
on the table. However, the magnitude of the torque applied
by the PTSf increases much more rapidly as the obstacle
is approached, indicating a sharper discontinuity in the
control action as well as higher joint jerks. Conversely, the
ESf with a low gain appears to have joint jerks with a
similar magnitude as that of the proposed PTSf, but is
unable to achieve zero tracking error by the end of the
six second task. Unlike both the PTSf as well as the ESf
with a high gain, the ESf with a low gain becomes active
towards the end of the task, limiting the rate of approach
of the table to a slow exponential approach, rather than
the prescribed-time approach governed by the nominal
controller. The distance between the end-effector and the
nearest obstacle in both simulation and experiment can
be more closely observed in Figure 2. While the PTSf
and high gain ESf both are able to place the held object
precisely on the table, the low gain ESf instead holds
the object roughly 1 cm above the table by the end of
the six second task. In Figure 3, the magnitude of the
difference between the nominal and filtered joint torques,
can be seen. It can be observed from this figure that
the PTSf and the low gain ESf both become active after
around one second of operation, whereas the high gain ESf
becomes active after around two seconds of operation. In
order to avoid collision with the spherical obstacle while
reacting at a later time, the high gain ESf ramps up in
magnitude much faster than the PTSf and low gain ESf,
indicating larger joint jerks during the operation of the
robot manipulator at this time. After around four seconds
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of operation, each safety filter rapidly drops in magnitude.
This period in time corresponds with the end-effector
quickly passing under the spherical obstacle, meaning
that the obstacle is no longer blocking the end-effector
from approaching the reference trajectory. Thus, this large
change in magnitude of each safety filter is primarily due
to the shape of the obstacle CBF, as well as the nominal
controller rather than the convergence properties of the
utilized safety filter. It is important to mention that at this
instant, the safety filter with the highest experienced joint
jerks is the low gain ESf. This is due to the conservative low
gains of the ESf keeping the end-effector further from the
reference trajectory in the beginning of the task, resulting
in a larger nominal control torque to drive the system back
towards the reference trajectory. During the last 2 seconds
of the task, the low gain ESf maintains operation with a
small magnitude, while both the high gain ESf and the
PTSf do not noticably interfere with the motion of the
end-effector at this time.

[~ Desired Trajectory [~ Desired Trajectory
—PTSf

—ES (p=4)
ESf (p = 1.5)

a1 (Deg.)
8

a1 (Deg.)
5

Time (sec) Time (sec)

(a) (b)

3 (Deg.

[~ Desired Trajectory]
—PTSt
—ESf (p=4)

ESf (p = 1.5)

—Desired Trajectory]
—PTSt
—ESE (p=4)
ESf (p = 1.5)
0 2 4 6 0 2 4 6
Time (sec) Time (sec)

(c) (d)

Fig. 4. The simulated (left column) and experimental
(right column) joint trajectories of joints 1 and 3 of
Baxter. At t = 3s, the end-effector trajectory takes
a major turn from moving up to moving below the
spherical obstacle.

73 (Nm)
73 (Nm)

Time (sec)

Time (sec)

() (d)

Fig. 5. The simulated (left column) and experimental
(right column) joint torque input signals of joints 1
and 3 of Baxter. At ¢t = 3s, the end-effector trajectory
takes a major turn from moving up to moving below
the spherical obstacle.

# (Nm/s)

Time (sec)

(a) (b)

Fig. 6. The simulated joint jerks of joints 1 and 3 of Baxter,
shown when the safety filter is active. At t = 3s,
the end-effector trajectory takes a major turn from
moving up to moving below the spherical obstacle.
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. 7. Simulated (left column) and experimental (right
column) tracking errors of Baxter when using a
prescribed-time safety filter (a, b), an exponential
safety filter with a high gain of p = 4 (¢, d), and
:Em e;cponential safety filter with a low gain of p = 1.5
e, f).

The experimental, simulated, and desired joint trajectories
of joints 1 and 3 of Baxter can be seen in Figure 4. In order
to avoid the large spherical obstacle, joints 1 and 3 expe-
rience large deviations from the desired trajectory, with
the low gain ESf experiencing the largest tracking errors.
After this large deviation, the joint trajectories smoothly
converge back to the desired trajectory. Observing Figure
7, it is possible to see the convergence behavior of each
method in more detail. While the tracking errors for the
PTSf and high gain ESf reach negligible values, there is
a residual tracking error of roughly one degree on joint 2
for the low gain ESf. This joint is primarily responsible
for the height of the end-effector, and thus this tracking
error is present due to the low gain ESf limiting the rate
of approach to the table. The experimental and simulated
joint toque input signals of joints 1 and 3 of Baxter can be
seen in Figure 5. It is important to note that these torques
are significantly lower than the maximum torque output
of Baxter’s joints, which are 50 Nm for joints 1-4, and 15
Nm for joints 5-7. Thus, none of the tested methods pose
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the risk of torque saturation. The simulated joint jerks of
joints 1 and 3 of Baxter can be seen in Figure 6. In the
beginning of the task, the joint jerk from the high gain
ESf is an order of magnitude larger than either the PTSf
or the low gain ESf. As the task progresses, the jerk from
the high gain ESf becomes nearly identical to that of the
PTSt, due to the end-effector following along the surface
of the spherical obstacle. At the end of the task, both
the PTSf and the high gain ESf have a negligible joint
jerk compared to the low gain ESf, which actively limits
the rate of approach of the end-effector to the surface
of the table. Across the duration of the task, the PTSf
consistently achieves the smallest joint jerks out of the
tested methods, only increasing in magnitude due to the
influence of the shape of the obstacle and the trajectory
tracking task.

Desired Trajectory
= End-Effector Trajectory
®®e End-Effector Position (Every 1.05)

Desired Trajectory
= End-Effector Trajectory
®®e End-Effector Position (Every 1.05)

J@) Wsase — v, J(q)(Vaase — Vaom)
N Obstacle

= Obstacle

Fig. 8. Simulations of Baxter following a pick-and-place
trajectory while avoiding multiple obstacles, using a
prescribed-time safety filter. In (a), the center of the
spherical obstacle is lowered 120mm, resulting in the
end-effector going over the spherical obstacle. In (b),
the center of the spherical obstacle is lowered exactly
67 mm, resulting in the end-effector being unable to
reach its destination. Note that in this case, the end-
effector still travels along the surface of the spherical
obstacle without exiting the safe set.

It is important to note that the path of the end-effector
when utilizing a PTSf, as with CBF approaches in general,
depends on the structure of the barrier functions h;. For
example in Figure 8(a), lowering the center of the spherical
obstacle by 120mm causes the end-effector trajectory
to go over the spherical obstacle rather than below it.
Furthermore, as the quadratic programming filter strategy
(22), (23) is a local optimization scheme, it is possible for
the end-effector to get stuck on an obstacle even when
there is a valid path back to the reference trajectory. In
Figure 8(b), by lowering the spherical obstacle precisely
67 mm, the end-effector is no longer able to return to the
reference trajectory. Even in this case however, the end-
effector does not violate the safe set, and instead gently
comes into contact with the spherical obstacle at the end of
the six second task. The primary purpose of our proposed
PTSE, as well as ESfs and other CBF based approaches
is to ensure the system does not leave the safe set in a
minimally invasive manner. In the context of safety, these
approaches should not be seen as a substitute for path-
planning, but instead as an additional layer of safety,
ensuring the system remains safe even when the system
does not perfectly follow the reference trajectory, or if the
reference trajectory is not suitably designed to prevent
collision with obstacles.

5. CONCLUSION

In this research effort, we reformulated the PTSf initially
proposed by Abel et al. (2022) for the case of a redundant
manipulator performing a fixed-duration task. This for-
mation yields a filter that is capable of avoiding multiple
obstacles in a minimally invasive manner with bounded
joint torques, while simultaneously allowing the nominal
controller to converge to positions located on the boundary
of the safe set by the end of the fixed-duration task. In
order to demonstrate the efficacy of the proposed method,
we performed a series of simulations and experiments on
Baxter, a 7-DOF collaborative robot manipulator. In these
simulations and experiments, Baxter must follow a six
second parabolic trajectory as closely as possible while
navigating around a large spherical obstacle blocking its
path, and place an object precisely on the surface of a
table without overshoot by the end of the six seconds. To
highlight the ability of this method to allow convergence
to the barrier within a finite period of time, the nominal
controller utilized in both simulation and experiment is a
prescribed-time controller which we previously formulated
in Bertino et al. (2022b). The results of our simulations
and experiments demonstrated the ability of the PTSf
to enforce safety throughout the six second task, while
allowing the robot manipulator to make contact with the
table and thus achieve the desired goal position by the end
of the task. Furthermore, when compared to the ESf, which
is the state-of-the-art in current literature, our proposed
method yielded consistently lower joint jerks.
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