ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 54-20 (2021) 84-89

Disturbance Attenuation Through
Real-Time Optimization of PD Gains for a

Two-Link Robot *

Alexander Bertino* Hashem Ashrafiuon **

Peiman Naseradinmousavi

kK

* Research Assistant, Dynamic Systems and_Control Laboratory,
Department of Mechanical Engineering, San Diego State University,

San Diego, California 92115, USA (e-mail: abertino6245@sdsu.edu)

koK

Department of Mechanjcal Engineering, Villanova University,

Villanova, PA 19085, USA (e-mail:"hashem.ashrafiuon@uillanova.edu)

“** Dynamic Systems and Control Laboratory, Department of
Mechanical Engineering, San Diego State University, San Diego,

California 92115, USA (e-mail: pnaseradinmousavi@sdsu.edu)

Abstract: We present disturbance attenuation through PD gains optimization using real-time
extremum seeking. The real-time gain optimization for a two-link robot as a case study, in
particular for when we deal with a challenging five time scales problem, would provide a
firm foundation to build energy-efficient multidisciplinary infrastructures from wave energy
convertors (WECs) to wind turbines subject to time-varying disturbances. To the best of
authors’ knowledge, this is the first effort for the online learning of PD gains through the
minimization of a cost function, by changing the robot’s parameters to observe the attenuation
of a set of harmonic disturbances while keeping the robot at the upright position. We also reveal
the sensitivity of the gains’ learning profiles to small changes of the disturbance and natural

frequencies.
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1. INTRODUCTION

Large-scale systems have numerous design and control
parameters, which need to be optimized in order to achieve
energy-efficient operation. The disturbances, either peri-
odic or aperiodic, add to the complexity of the multivari-
able optimization problem, which becomes highly sensitive
to the proper selection of those parameters. These factors,
among others, make the offline optimization problem chal-
lenging even in the absence of disturbances. Therefore,
tackling real-time optimization of any controller’s gains,
in the presence of disturbances, is a necessity either for
small- or large-scale systems, leading us to efficiently learn
optimal gains while yielding desirable responses.

The disturbance attenuation for linear systems has re-
ceived considerable attention by researchers. Nguyen and
Jabbari (1999) proposed a new design technique to im-
prove disturbance attenuation for systems with input satu-
ration. In another effort, Wang et al. (2017) developed vari-
ety of methods for attenuating or rejecting disturbances in
linear systems. Nguyen and Jabbari (2000) studied output
feedback controllers for disturbance attenuation of linear
systems with constraints on inputs. Masuda (2012) inves-
tigated offline PID controller tuning based on disturbance
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of the United States Government or any agency thereof.

attenuation through Fictitious Reference Iterative Tuning
(FRIT), using one-shot experimental data due to a load
change disturbance. Wei et al. (2019) addressed the prob-
lem of disturbance attenuation and rejection for a class of
switched nonlinear systems subject to input and sensor
saturations, in which exosystem generated disturbances
and Hs-norm bounded disturbances were considered. Xi-
ang et al. (2018) studied robust exponential stability and
disturbance attenuation for discrete-time switched systems
under arbitrary switching. Choi and Kwak (2001) pro-
posed a model based disturbance attenuator (MBDA) with
the conventional PD controller for robot manipulators, but
not for the real-time optimization of the controller’s gains.

Extremum seeking (ES), as a highly computationally effi-
cient optimization approach, has been broadly leveraged in
both linear and nonlinear systems with unknown dynamics
Ariyur and Krsti¢ (2003); Binetti et al. (2003); Cochran
et al. (2009a,b); Ghaffari et al. (2014); Krsti¢ (2000);
Krsti¢é and Wang (2000); Wang et al. (2000). The first
effort for multivariable extremum seeking of general time-
varying parameters was reported by Ariyur and Krsti¢
(2002), with their other works in Ghaffari et al. (2012);
Zhang et al. (2011a,b). Wang and Krstic (2000) reduced
the size of a limit cycle to a minimum leveraging a novel
analysis and a nontrivial sequence of steps involving aver-
aging and singular perturbation methods. Yu et al. (2020)
utilized extremum seeking to develop boundary control for
freeway traffic with a downstream bottleneck. Pessoa et al.
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Fig. 1. The 2-DOF robot subject to a harmonic distur-
bance.

(2019) addressed the optimal control of carbon and nitro-
gen removal, using extremum seeking, from wastewaters
in the presence of inhibition by substrates and products
by Anaerobic Digestion Model n°l. Killingsworth and
Krstic (2006) used offline extremum seeking to tune PID
controllers by minimizing a cost function that character-
izes the desired behavior of the closed-loop system. We
previously formulated (Bagheri et al. (2018a,b)) a non-
autonomous and offline joint-space trajectory optimization
for one of the arms of a 7-DOF Baxter manipulator, using
the state of the art discrete-time extremum seeking to
be compared with the global genetic algorithm (GA). We
carried out experimental work to validate the nonlinear
analytical approach examining both the actual (inefficient)
and optimal trajectories.

After a brief mathematical representation of a 2-DOF
robot manipulator being controlled here, we set up the
real-time extremum seeking to learn PD gains to attenuate
the effect of harmonic disturbances, through dealing with
a five time scales optimization problem. We examine
different frequencies for the disturbance to reveal the
high sensitivity of PD gains’ learning profiles. Through
simulation results, we disclose the capability of extremum
seeking in the attenuation of disturbances while keeping
the robot at the upright position.

2. MATHEMATICAL MODELING

We utilize a planar 2-DOF manipulator to be held at the
upright position, subject to a set of harmonic disturbances
with different frequencies. The robot model is shown in
Fig. 1 with the following ordinary differential equations of
motion (Bagheri et al. (2021, 2019); Bertino et al. (2021))
derived through the Euler-Lagrange equation:

M(q)j+ C(q,4)q + ¢(q) = T+ Tqist (1)

where, ¢, ¢, and § € R? are rotation angles, angular veloc-
ities, and angular accelerations of the joints, respectively,
7 € R? indicates the vector of joints’ driving torques to
be optimized, and 74i5t € R! stands for the harmonic
disturbance acting on the top link; 74ist = Asin(wat)
with A and wy as the amplitude and frequency of distur-
bance, respectively. Also, M(q) € R?>*2 C(q,q) € R?**2,
and ¢(q) € R? are the mass, Coriolis, and gravitational
matrices, respectively, which are functions of links’ masses
mq, ma, lengths Iy, I3, and mass moments of inertia I, I5.

Tdist Aopm=[kp1, kp2, kd1, kdo]
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Fig. 2. The real-time extremum seeking optimizing PD
gains to attenuate the harmonic disturbances.

We define the vector of error signals, e € R2, and its time
derivative, & € R?, as:

€= qdes —4q (2)
é= Qdes - q (3)
where the desired trajectories and their first and second
time derivatives, qqags Gdess Gdes € R?, exist and are

bounded for ¢t > 0. We employ a PD controller with gravity
compensation to drive the robot as follows:

7= M(0) (iges + kpe + kpé) + Cla, )i + é(a) (4)

- kp 0
kp—l 0 ,;ﬂ] (5)

N ko 0
k = ~
D [ 0 de] (6)

where Rp and kp are positive definite matrices of propor-
tional and derivative gains to be learned in real-time using
extremum seeking to attenuate the disturbances.

3. FIVE TIME SCALES OPTIMIZATION THROUGH
MULTIVARIABLE REAL-TIME EXTREMUM
SEEKING

The optimization is challenging in the sense that it is a five
time scales problem. Briefly discussing, the disturbance
has the fastest dynamics while the links (their natural
frequencies w,,’s) have fast dynamics. The cost function
J, to be defined in the sequel, has a medium dynamics
meaning that Ty, the moving window for integration,
is large relative to the natural period of oscillations of
links, and small relative to the periods of the extremum
seeking (ES) perturbation. The ES perturbation has a slow
dynamics whereas the slowest ones belong to the learned
PD gains. Dealing with such a five time scales problem
leads us to carefully select the ES parameters to not only
guarantee the convergence of PD gains’ estimates, but also
to yield a computationally efficient procedure. In summary
we have:

Tqist < Tw, <Ty <Tpert <Tpp (7)

We define the cost function to be minimized in real time
as follows:
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t

g1t / (TT (ko ) B (i) +eT7e)dt (8)

2 Ji-1,

where, t indicates the operation time, and ~, R €
R2*2 are positive definite matrices. The block diagram
of Fig. 2 illustrates the real-time learning of PD gains
using extremum seeking to be implemented in (4) and
(8). We govern the ES to optimize the gains Aopm =
(kp1, kp2, kar kgo]T € R*. Referring to the error dynamics
(2) and the controller (4), the objective is to feasibly
formulate the ES scheme to minimize the cost function
(8) without prior knowledge of the local minimum. Noting

Aopm as the current estimate of Aopm, we utilize the
following equations:

Aopm(t) = K((t) ()
$(t) = —wiC(t) + wi (J —n) M(t) (10)
n(t) =wn (J —n) (11)
Aopm(t) = Aopm (t) + S(t) (12)

In (9-12), K € R*** is a positive definite matrix, ¢ €
R%, and 7 is a scalar. Note that the high- and low-pass
filters with frequencies wy, and w; yield better performing
cost function and remove any DC gain, respectively. The
perturbation signals M (¢) and S(t) are calculated by (13-
14).

T
2 2
M(t) = | —sin(wit),- -+, — sin(wpt) (13)
a1 ap
S(t) = [ay sin(wit), -, ap sin(wyt)] (14)
where p = 4 since Aopm has four components and

ay ---ap € R are positive coefficients. Note that w,, # wy
for all distinct m,n € {1,---,p}. For a practically feasible
ES method, we choose wi,, wp,, w;, and K through (15-18).

W =aw, =0() m=1,---,p (15)
wp, = awy = aewry = O(ae) (16)
w; = awy, = aewy = O(ae) (17)
K =aK' = aeK" = O(ae) (18)

In (15-18), a and € are small positive constants, w), is a
rational number, w}, and w} are O(1) positive constants,
and K" is a diagonal matrix with O(1) positive elements.

4. SIMULATION RESULTS

Based on the brief discussion of Section 3, we select

rad

the ES perturbation frequencies (in .

) to be small
relative to the natural frequencies of the links, leading
us to utilize w; = 0.141/ﬁ, wy = 0.13 %, w3 =
0.121/%, Wy = 0.11,/%,

0.3, az = 0.6, az3 = 0.2, and a4 = 0.5, respectively.
We intentionally chose these perturbation frequencies to
effectively present the sensitivity of PD gains to the
changes of natural frequencies. We select the links’ natural

with the amplitudes of a1 =
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Fig. 3. The controlled links’ angles through the real-time
ES tuning PD gains, subject to the disturbances with

war = 38 (720) to wag = 40 (724): war = 1.5660,

wpe = 1.8083 for 0 < ¢t < 500(s), and w,; = 2.5573,
wn2 = 3.1321 for ¢ > 500(s).

frequencies (in md) wn1 = 1.5660 and w,s = 1.8083 for

0 < t < 500(s) with my; = 2(kg) and ms = 1.3(kg),
and wp1 = 2.5573 and w,a = 3.1321 for ¢t > 500(s)
with m; = 1(kg) and ms = 0.6(kg) in order ro reveal
the adaptive learning profiles of PD gains to attenuate
the disturbances. We impose three harmonic disturbances
wg2 = 39, wgs = 40, with the amplitude of A = 0.3. To
fulfill the medium dynamics for the cost function we set
T; = 16.3351(s). We choose other parameters as:

with slightly different frequencies (in m‘i), wqr = 38,
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Fig. 4. The real-time learning of PD gains subject to the

disturbances with wgy; = 38 % to wyz = 40 %)

acting on the top link; w,; = 1.5660, w,> = 1.8083
for 0 <t < 500(s), and wyp1 = 2.5573, wy2 = 3.1321
for t > 500(s).

wy =0.05 ,wh:O.l,’Y:R:IQXg,KZO.II4><4
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Figure 3 shows the links’ angles, subject to wq; = 38 to
wgs = 40, indicating the robot is stable around the upright
position through the real-time learning of PD gains. We
easily observe that the links’ small deflections are relatively
higher for the time interval 0 < ¢ < 500(s), with the
lower natural frequencies indicating higher lengths for
the links, than those of ¢ > 500(s) with the higher
natural frequencies. Although the steady state oscillations,
imposed by the algorithm, have larger amplitudes for
t > 500(s) than those of 0 < ¢ < 500(s). It is also clear that
the top link, directly subject to the harmonic disturbances,
slightly deflects more than the lower one, but both are
stable around the upright position.

Figure 4 reveals the real-time learning of PD gains for
three slightly different frequencies of the disturbance, in
addition to their smooth transitions by changing the links’
natural frequencies. Figure 4(a) shows the learning profiles
of the proportional gain for both the top and lower links.
As expected, the value of estimated proportional gain
increases by the incremental disturbance frequency for the
top link in comparison with the lower one. Although we
may not conclude a logical correlation among the incre-
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Fig. 5. The cost function subject to the disturbances with
Wd1 = 38 (%d) to wgz = 40 (%)

mental values of the proportional gain for the top link
whereas, with w,2 = 3.1321, the gain value decreases
for the frequency of wg3 = 40 despite the cases subject
to wgr = 38 and wge = 39. It is interesting to observe
that the proportional gain, for the lower link, decreases by
increasing the disturbance frequency. Figure 4(b) presents
the estimated derivative gains for the different disturbance
frequencies. Despite the cases we discussed for the propor-
tional gain, the derivative gain for the top link increases
by the incremental disturbance frequency, in particular
for wye = 3.1321. For the lower natural frequency of
wpo = 1.8083, we observe a slightly lower value of the
derivative gain for wgs = 40 than that of wyo = 39. The
lower link with w,; = 1.5660 has a smaller value of the
derivative gain for wg3 = 40 than that of wgo = 39 while,
for w,1 = 2.5573, the gains subject to wge = 39 and
wqs = 40 seem equal.
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Fig. 6. The control inputs subject to the disturbance with
wag = 40 (722).

Figure 5 presents the cost functions’ profiles subject to the
disturbances. We expectedly observe that the cost function
settles down to a lower value for a smaller disturbance
frequency. We can easily justify this behavior through the
responses shown in Figs. 3 and 4. Also our intentional
selection of the perturbation frequencies, as the functions
of the links’ natural frequencies, can be visualized through
the cost function’s dynamics. Shown in Fig. 6 are the
control inputs, optimized through the real-time learning
of PD gains, to attenuate the disturbance with wgs = 40
for both the top and lower links. It is straightforward to
conclude that the lower link needs more driving torque
than that of the top one, and the amounts of torques
decrease by reducing the disturbance frequency as shown
in Fig. 7 for the case of wy; = 38.

5. CONCLUSION

The principal results of this research work can be summa-
rized as follows:

e We examined the real-time optimization of PD gains to
keep the robot at the upright position, using extremum
seeking, in the presence of harmonic disturbances.

e A challenging five time scales optimization problem was
formulated and thoroughly discussed.

o We revealed the sensitivity of the gains’ learning profiles
to small changes of the disturbance and natural frequen-
cies.

We are currently focusing our efforts on experimenting this
controller using a 7-DOF Baxter robot to track a desired
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Fig. 7. The control inputs subject to the disturbance with

rad
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Wq1 = 38

trajectory in the presence of either periodic or aperiodic
disturbances.
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