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*
Abstract: In this paper, we present a framework to learn illumination patterns to improve the quality
of signal recovery for coded diffraction imaging. We use alternating minimization-based phase
retrieval method with fixed number of iterations as the iterative method. We represent the iterative
phase retrieval method as an unrolled network with a fixed number of layers where each layer of the
network corresponds to a single step of iteration, and we minimize the recovery error by optimizing
over the illumination patterns. Since the number of iterations/layers is fixed, the recovery has a fixed
computational cost. Extensive experimental results on a variety of datasets demonstrate that our
proposed method significantly improves the quality of image reconstruction at a fixed computational
cost with illumination patterns learned using only a small number of training images.
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1. Introduction

Coded diffraction imaging is a specific instance of Fourier phase retrieval problems.
Phase retrieval refers to a broad class of nonlinear inverse problems where we seek to
recover a complex- (or real-) valued signal from its phase-less (or sign-less) measurements
[1-4]. In practice, these problems often arise in coherent optical imaging where an image
sensor records the intensity of the Fourier measurements of the object of interest. In coded
diffraction imaging, the signal of interest gets modulated by a sequence of known illumina-
tion patterns/masks before observing the Fourier intensity at the sensor [2,4]. Applications
include X-ray crystallography [5,6], astronomy [7,8], microscopy [9-12], speech processing
and acoustics [13,14], and quantum mechanics [15,16]. Similar to other signal recovery
problems in various imaging and signal processing tasks [4,5,11,17,18], iterative methods
are also used in coded diffraction imaging. In this paper, we present a framework to design
the illumination patterns for better signal recovery for coded diffraction imaging using a
fixed-cost iterative method in a data-driven manner.

Let us denote the signal of interest as x € R" or C" that is modulated by T illumination
patterns D = {dy,...,dr}, where d; € R" or C". The amplitude of sensor measurements
for 1 illumination pattern can be written as

v = | F(d: O x)l, (1)

where F denotes the Fourier transform operator and ©® denotes an element-wise product.
We note that real sensor measurements are proportional to the intensity of the incoming
signal (i.e., square of the Fourier transform). In practice, however, solving the inverse prob-
lem with (non-square) amplitude measurements provides better results [19,20]; therefore,
we use the amplitude measurements throughout the paper.

To recover the signal x from the the observed measurements, we can solve the follow-
ing optimization problem:

T
min Y [lys — [F(de © 2)][13. @
t=1
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Figure 1. Pipeline of our proposed framework at inference time. Our framework mainly contains two
components: (1) a learnable sensing system that updates the illumination patterns during training
time, but at inference time the learned illumination patterns are fixed; (2) a fixed unrolled network
that runs phase retrieval process to recover the original signal x form measurements Y. The number
of layers in the network is fixed to K. Steps at every iteration are fixed and depicted as an unrolled
network (details can be found in Algorithm 2).

In recent years, a number of iterative algorithms have been proposed for solving the
problem in (2), which includes lifting-based convex methods, alternating minimization-
based nonconvex methods, and greedy methods [2,21-24].

Our goal is to learn a set of illumination patterns to optimize the recovery of an
alternating minimization (AltMin) algorithm for solving the problem in (2). The AltMin
method can be viewed as an unrolled gradient descent network, as shown in Fig. 1, where
we fix the steps at every iteration and the total number of iterations for AltMin. One
forward pass through the unrolled network is equivalent to K iterations of the AltMin
algorithm using given illumination patterns. We can increase or decrease the number of
iterations for better accuracy or faster run-time. To keep the computational complexity of
the recovery algorithm low, we keep the total number of iterations small (e.g., K = 50). At
the training stage, we optimize over the illumination patterns to minimize the error between
the AltMin outputs after K iterations and the ground truth training images. At the test time,
we solve the problem in (2) using K AltMin iterations with the learned illumination patterns
(equivalent to one forward pass). We evaluated our method on different image datasets
and compared against existing methods for coded diffraction imaging. We demonstrate
that our proposed method of designing illumination patterns for a fixed-cost algorithm
outperforms existing methods both in terms of accuracy and speed.

The main contributions of this paper are as follows.

* Low cost inference: We learn illumination patterns for coded diffraction imaging
using unrolled network formulation of a classical AltMin method. We show that
with our learned illumination patterns, unrolled AltMin method outperforms other
computationally complex algorithms and provides superior image reconstruction
within a much shorter time.

* Learning from small dataset: We use only a small number of training samples and
can learn illumination patterns that are highly effective for image reconstruction. It is
crucial for real life applications because finding training samples can be challenging
in practice.

*  Robust sensor design: The patterns learned on a given dataset generalize to different
datasets and provide robust reconstruction for shifted and flipped versions of the target
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samples. It does not degrade drastically under noisy measurements. Our learned
illumination patterns can also help other algorithms achieve better performance even
though they are not used for training.

2. Related Work

Phase Retrieval and Coded Diffraction Patterns. Fourier phase retrieval problem
arises in a number of imaging systems because standard image sensors can only record
intensity of the observed measurements. This problem has been extensively studied
over last five decades in optics, signal processing, and optimization [3-5,25,26]. Coded
diffraction imaging is a physically realistic setup in which we can first modulate the signal
of interest and then collect the intensity measurements [18,27]. The modulation can be
performed using a spatial light modulator or custom transparencies [10,11,28]. The recovery
problems involves solving a phase retrieval problem; the presence of modulation patterns
makes this a more tractable problem compared to classical Fourier phase retrieval [18].

The algorithms for solving phase retrieval problem can be broadly divided into non-
convex and convex methods. Classical algorithms for phase retrieval rely on solving the
underlying non-convex problem using alternating minimization. Amplitude flow [29,30],
Wirtinger flow [31,32], alternating minimization (AltMin) [22,23,33] are such methods that
solve the non-convex problem. Convex methods usually lift the nonconvex problem of
signal recovery from quadratic measurements into a convex problem of low-rank matrix
recovery from linear measurements. The PhaseLift algorithm [2] and its variations [18,21]
can be considered under this class. Other algorithms, such as PhaseMax [34,35] and
PhaseLin [36], use convex relaxation to solve non-convex phase retrieval problem without
lifting the problem to a higher dimension. We can also incorporate prior knowledge about
the signal structure (e.g., sparsity, support, or positivity) in the recovery process constraints
[22,29,32,37,38].

Data-Driven Approaches for Phase Retrieval. Recently the idea of replacing the
classical (hand-designed) signal priors with deep generative priors for solving inverse
problems has been explored in different works [39,40]. [23,26,41-44] focused specially
on solving phase retrieval problems with generative priors. Another growing trend is
learn the solution of inverse problems (including phase retrieval) in an end-to-end manner,
where deep networks are trained to learn a mapping from sensor measurements to the
signal of interest using a large number of measurement-signal pairs. A few examples
demonstrating the benefit of the data-driven approaches include robust phase retrieval
[20], Fourier ptychographic microscopy [45], holographic image reconstruction [46], and
correlography for non-line-of-sight imaging [47].

Although our method is partially driven by data, our goal is not to learn a signal
prior or a mapping from measurements to signal. We use a very small dataset (consisting
32 or 128 images only) to learn the illumination patterns for a fixed recovery algorithm.
Furthermore, the patterns we learn on one class of images provide good results on other
types of images (see Table 4). Apart from the great flexibility and generalization, our
method uses fixed number of iterations of well-defined AltMin routine, which is parameter
free during inference (except the step size) compared to end-to-end or generative prior
based approaches.

The approach we used for optimizing over AltMin routine to learn illumination
patterns is broadly known as unrolling networks. Iterative methods for solving the inverse
problems, such as AltMin or other first-order methods, can be represented as unrolled
networks. Every layer of such a network performs the same steps as a single iteration of
the original method [48-57]. Some parameters of the iterative steps can be learned from
data (e.g., step size, denoiser, or threshold parameters) but the basic structure and physical
forward model are kept intact.

Learn to Sense. Data driven deep learning methods have also been used to design
the sensing system; especially in the context of compressive sensing and computational
imaging [58-63]. The main objective in these methods is similar to ours, which is to find the
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sensor parameters to recover best possible signal /image from the sensor measurements.
The sensor parameters may involve selection of samples/frames, design of sampling
waveforms, or illumination patters as we discuss in this paper. In contrast to most of the
existing methods that learn a deep network to solve the inverse problem, our method
uses a predefined iterative method as an unrolled network while learning the illumination
patterns using a small number of training images. Unrolled network for solving non-linear
inverse problems has been used in [45,64]. [45] proposes learning sensors for Fourier
ptychographic microscopy whereas [64] designs sensing patterns for coded illumination
imaging. One might find similarity between [64] and our problem formulation. In principle,
the sensor can be treated as the first layer of the network with some physical constraints
on the parameters [64]. However, the method in [64] uses an unrolled network to learn
the sensing parameters for quantitative phase imaging problem under the “weak object
approximation”. This approximation turns the original nonlinear problem into a linear
inverse problem. This assumption is only applicable where the target objects have a small
scatter term (e.g., biological samples in closely index-matched fluid). In our setup, we do
not make any such assumptions on target object and solve the original nonlinear coded
diffraction imaging problem. This potentially makes our algorithm suitable for more
general applications than [64].

3. Proposed Method

Our proposed method for learning illumination patterns can be divided into two parts:
The first (inner) part involves solving the phase retrieval problem with given coded diffrac-
tion patterns using AltMin as an unrolled network (see block diagram in Fig. 1); Second part
is updating the illumination patterns based on backpropagating the image reconstruction
loss. These two parts provide optimized image reconstruction and illumination patterns.
Pseudocodes for both parts are listed in Algorithms 1,2.

We use N training images (x1, ..., xy) to learn T illumination patterns that provide
best reconstruction using a predefined (iterative) phase retrieval algorithm. Furthermore,
to ensure that the illumination patterns are physically realizable, we constrain their values
to be in the range [0, 1]. We use a sigmoid function over unconstrained parameters © =
{61, ...,07} to define the illumination patterns; that is, dy = sigmoid(6;) forallt =1,...,T.

Phase retrieval with alternating minimization (AltMin). Given measurements Y =
{y1,...,yr} and illumination patterns D = {dy, ..., dr}, we seek to solve the CDP phase
retrieval problem by minimizing the loss function defined in (2) as

1T
Ly = 5 Y llys — | F(dr @ x)| |13 3)
=1

Although the loss function in (3) is nonconvex and nonsmooth with respect to x, we can
minimize it using the well-known alternating minimization (AltMin) with gradient descent
[22,33]. In AltMin formulation, we define a new variable for the estimated phase of linear
measurements as p; = phase[F (d; © x)] and reformulate the loss function in (3) into

1 T
Lyp = Qt;HPt@yt—f(dt@x)ll%- (4)

The gradient with respect to x can be computed as

T
vxLx,p = Z |dt|2 ©Ox— ;f @f*(Pt @}/t)/ )
t=1

where F* denotes the inverse Fourier transform and 4} is the conjugate of pattern d;. We
can update the estimate at every iteration as

xk = xkil — k1 VxLx,]ﬂ/ (6)
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Algorithm 1 Learning illumination patterns

Input: Training set X with N images X = {x1,...,xn}.
Initialize: Initialize the optimization variables for T patterns as ©® = {64,...,07} from a
uniform distribution.

forepoch =1,2,..,Mdo > M epochs
Generate illumination patterns d; = sigmoid(6;)

forall ¢
forn=1,2,..,Ndo > N samples

Yo = Y1 YTn | Yo = |F(dr © xn)|}
xK(@®) < so1lvecDP(Y,,D)

end for

Lo = T, llxs — x5(©)|

<+ 0—-BVele > Update © with stepsize 3
end for

Output: Learned illumination patterns D = {d,...,dr | dy = sigmoid(6;)}.

Algorithm 2 solveCDP (Y, D) via alternating minimization using single-step gradient de-
scent

Input: Measurements Y = {y, ..., y:} and illumination patterns D = {dy,...,dr}.
Initialization: Zero initialization of estimate x°.
fork=1,2,..,Kdo > K iterations of AltMin
pF=1 « phase(F(d; © x~1) for all t.
Vilsp = 7 L[l 0 5 —dy 0 F*(pf ' O )]
xk ¢ xk-1 - aVyLy,p
Project x* onto feasible range.
end for
Output: Estimated signal xX.

where a;_; denotes the step size. Another way is to directly solve for x* such that V xLyp =
0. The closed-form solution is

T T
K= (P o[y df o F (i ol )
=1 =1

We compared these two strategies and found that single-step gradient descent tends to work
well in practice and the closed-form solution does not show advantage over the single-step
gradient descent. In our implementation, we used the former strategy (Algorithm 2) and
fixed a step size a for all iterations. The unrolled network has K layers that implement K
iterations of the gradient descent, and the final estimate is denoted as xK,

Choice of initialization is important, and our method can handle different types
of initialization. Zero initialization, where every pixel of the initial guess of x¥ is 0, is
the simplest and cost-free method. Many recent phase retrieval algorithms [30,31,33,35]
use spectral initialization, which tries to find a good initial estimate. However, it re-
quires computing the principal eigenvector of the following positive semidefinite matrix,
Y.L, diag(d;) F*diag(|y:|?) Fdiag(d;). In our experiments, we observed that spectral ini-
tialization does not provide a significant improvement in terms of image reconstruction,
and that our algorithm can perform very well using the overhead-free zero initialization.

Learning illumination patterns. To learn a set of illumination patterns that provide
the best reconstruction with the predefined iterative method (or the unrolled network), we
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seek to minimize the difference between the original training images and their estimates.

In this regard, we minimize the following quadratic loss function with respect to ©:

1 N
Lo=17 ) |~ (O3 ®)
n=1

where xX (®) denotes the solveCDP estimate of nth training image for the given values of

©. Note that for given real values of @ = {6y, ...,607}, we can define illumination patterns
as d; = 0(6;), where o(+) is the sigmoid function. We can define sensor measurements for
Xp as Yrn = |F(de © xn)| = pf, © F(dt ©xn) fort =1,...,Tand n = 1,...,N, where
ptn = phase[F (d; © x,)] is the phase of the original complex-valued signal.

We can use the recursive expression of the signal estimate in (6) and the gradient in (5)
to represent the estimate of x,, at iteration/layer k with the given values of © as

T T
0 (@) = (1—a ) |di*)x  (©) +a Y di © F*(pf," ©yin), )
t=1 t=1

where Plf,n = phase[F (d; ® xk(®))]. We can compute the gradient of the loss function in
(8) with respect to any 6; in a recursive manner as follows.

N
VoLo =Y Jo. (x5 (©))[xk(©) — x4], (10)

n=1

where Jy, (xX(©)) denotes the Jacobian matrix of the signal estimate with respect to 6. We
can now write the product of the Jacobian matrix with a vector u as

T
Jo, (1 (@) 1] = Jo, (x5 1 (@))[(1 — & Z% |di[?) © u]
f=

—2a|d:>® (1 —d) @28 (@) O u (11)
+ade ®(1—de) © F*(pX, @ yen) Ou
+adr ® (1 —dr) © Xy @ F*(pr © pKs © F(dr © 1)),

where Jp_(x3) = 0 for all n, 7. Here we assume initial estimate x{, = 0 and a; = « for
k=1,...,K. We also assume that the phase of the measurements or the signal estimates do
not change with small changes in ®. The overall gradient of the reconstruction loss with
respect to the parameters ® can be computed in a recursive manner (back-propagation)
using element-wise products and forward/inverse Fourier transform operations at every
iteration/layer.

We can use gradient descent to find the optimal ® using equation (10). We can update
the estimate at every iteration of gradient descent as

On =0,_1— BVele, (12)

where § denotes the learning rate for the gradient descent.

In practice, we can also compute the gradient using auto-differentiation. In our
experiments, we used Adam optimizer in PyTorch [65,66] to minimize the loss function
in (8). A summary of the algorithm for learning the illumination patterns is also listed in
Algorithm 1. Our code will be available at https://github.com/CSIPlab /learned-coded-
diffraction.

4. Experiments

Datasets. We used MNIST digits, Fashion MNIST (F. MNIST), CIFAR10, SVHN, and
CelebA datasets for training and testing in our experiments. We used 128 images from each


https://github.com/CSIPlab/learned-coded-diffraction.
https://github.com/CSIPlab/learned-coded-diffraction.
https://github.com/CSIPlab/learned-coded-diffraction.
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of the datasets for training and another 1000 images for testing. To make the tiny-image
datasets uniform, we reshaped all of them to 32 x 32 size with grayscale values. Images
in CelebA dataset have 218 x 178 pixels, we first converted all the images to grayscale,
cropped 178 x 178 region in the center, and resized to 200 x 200. We report the performance
of our method on some classical images used in [20] in the supplementary material.
Measurements. We used the amplitude of the 2D Fourier transform of the images mod-
ulated with T illumination patterns as the measurements. Unless otherwise mentioned,
we used noiseless measurements. We report results for measurements with Gaussian and
Poisson noise in Fig. 5.

Computing platform. We performed all the experiments using a computer equipped with
Intel Core i7-8700 CPU and NVIDIA TITAN Xp GPU. We learned the illumination patterns
using a PyTorch implementation, but we also implemented our algorithm in Matlab to
provide a fair runtime comparison with existing phase retrieval methods.

4.1. Setup and hyper-parameter search

The hyper-parameters include the number of iterations (K), step size &, and the number
of training samples N. We set the default value of K = 50, but we show in supplementary
material that K can be adjusted as a trade-off between better reconstruction quality and
shorter run time. We tested all methods for T = {2,3,4, 8} to evaluate cases where signal
recovery is hard, moderate, and easy. Through grid search, we found that it provides the
best results over all datasets when & = 4/T. We also studied the effect of the number of
training images and found that illumination patterns learned on 32 randomly selected
images provide good recovery over the entire dataset. The test accuracy improves slightly
as we increase the number of training samples. To be safe, we used 128 training images in
all our experiments. Unless otherwise mentioned, the images are constrained to be in [0, 1]
range for our experiments.

Table 1. PSNR (mean + std) for random and learned illumination patterns.

2 Patterns 3 Patterns 4 Patterns 8 Patterns
Random Learned Random Learned Random Learned Random  Learned
MNIST 14+6 28 +9 20+ 11 75+ 19 32+14 102 + 10 61 £19 113 £ 11
F. MNIST 17+ 4 26 6 20+ 6 49 +15 33+9 94 +13 67 £ 14 111 £ 12
CIFAR10 15+3 26 +4 20+ 3 344+ 10 30+8 86 + 18 64+15 108 +18
SVHN 17+3 28+ 6 24 +14 45+ 15 35+7 93 + 21 73+£15 118 +21
CelebA 13+2 19+3 14+4 28 +2 23+5 81+4 43 £ 8 98 + 15

Dataset

4.2. Comparison of random and learned patterns

To demonstrate the advantages of our learned illumination patterns, we compare the
performance of learned and random illumination patterns on five different datasets. We
learn a set of T = {2,3,4,8} illumination patterns on 128 training images from a dataset
and test them on 1000 test images from the same dataset. For random patterns, we draw
T independent patterns from Uniform(0,1) distribution and test their performance on the
same 1000 samples that we used for the learned case. Unless otherwise mentioned, we
repeat this process 30 times and choose the best result to compare with the results for
the learned illumination patterns. The average peak signal-to-noise ratio (PSNR) over
all 1000 test image reconstructions is presented in Table 1, which shows that the learned
illumination patterns perform significantly better than the random patterns for all values
of T. In addition to that, we can observe a transition in the performance for T = 3,
where random patterns provide poor quality reconstructions and learned patterns provide
reasonably high quality reconstructions. Furthermore, the learned patterns provide very
high quality reconstructions for T > 4.

To highlight this effect, we show a small set of reconstructed images and histograms
of PSNRs of some reconstructed images from learned and random illumination patterns
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in Fig. 2 for T = 4 patterns. The result suggests that the learned illumination patterns
demonstrate consistently better performance compared to random illumination patterns.
We demonstrate the corresponding learned illumination patterns in Fig. 2. Visually, illumi-
nation patterns learned for the same dataset look similar, and patterns learned on different

datasets look different.
[ Iﬂll‘dl ﬂﬁ 7S

9.59 12.15 26.00 23.90 19 73 28.32 21.44 22.

al BarT

93.78 99.87 91.72 9291 91 14 83.07 43.48 76A75

FME0 BaE

Random Random
Learned Learned

GT
GT

Random
Random

Learned
Learned

Hist.
Hist.

e r._.‘_ 'E; "«. ;
(a) F. MNIST (b) CIFAR10 (c) Learned patterns on (d) Learned patterns on
E. MNIST CIFAR10

Figure 2. Reconstructed images using random and learned illumination patterns (T = 4), along with

\

|
| | | I
i i

0 31 92 140 0 27 82 120

ground truth (GT) in (a-b) and corresponding learned illumination patterns (c-d). PSNR is shown on
top of every reconstruction. Below each dataset, we show the histograms of the PSNRs of all images
with random patterns (shown in blue) and learned patterns (shown in orange). The dashed vertical
line indicates the mean of all PSNRs.

Table 2. Reconstruction PSNR (mean + std) of different algorithms using random patterns and our
learned patterns (T = 4).

MNIST F. MNIST CIFAR10 SVHN CelebA
Random Learned Random Learned Random Learned Random Learned Random Learned
HIO [1] 16 +9 37+19 32+14 61 +£24 49 +20 99 + 25 60+22 114+£27 38+£5 102 +5
GS [25] 16 +9 37+19 33+15 614+24 48+20 99+25 60+22 114+27 38+4 102 +5

WirtFlow [31] 22+16 48+25 33+£14 51+19 414+£10 57+£10 41+£10 58410 20£2 39+3
AmpFlow [30] 42432 74448 64+38 109+43 86+37 138+25 97433 144+£21 4248 138+11
PhaseMax [35] 14+4 24 £8 21+4 45 4+ 20 26+ 4 97 £ 41 32+5 1154+33 3242 148 + 2
Ours - K=20 17+6 49 £8 20k 6 49+£8 21+6 49+9 26+5 55+ 11 16 £ 4 46 +£3
Ours - K=50 32+14 102+£10 33+9 94+ 13 30+8 86 + 18 35+7 93 £21 23+5 81+4
Ours - K=100 51+19 186+15 49+11 162+22 40+10 139+30 45+10 149+35 3344 132 +7
Deep Model [43] 31 +2 32+3 22+4 2244 28+3 25+3 26 +£3 28+4 2243 23+2

4.3. Comparision with existing methods

We show comparison with different existing methods using different datasets. Existing
methods can be divided into four broad categories:

1.  AltMin methods: Hybrid input output (HIO) [1] and Gerchberg-Saxton (GS) [25].

2. Non-convex, gradient-based methods: Wirtinger Flow [31] and Amplitude Flow [67].
3. Convex method: PhaseMax [35].

4.  Deep model-based method: Deep S3PR [43].

We compare the performance of our method with these methods in terms of reconstruction
quality and computation time. For algorithms in [1,25,30,31,35], we used PhasePack [27]
package. In our comparison, we used 4 illumination patterns and restricted all the illumi-
nation patterns in the range of [0, 1]. For all the PhasePack algorithms, we used the default
spectral initialization. We observed that different algorithms have different computational
complexity in each iteration. Thus, a comparison in terms of the number of maximum
iterations in all algorithms is not fair. To overcome this issue, we set the error tolerance
(tol = 107°) and customize the maximum number iterations in each algorithm to have
comparable computations or performance. Specifically, we set the maximum iterations to
be 100 for HIO and GS, and 2000 for Wirtinger Flow, Amplitude Flow, and PhaseMax. For
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our proposed method, we want to keep the number of iterations low (20, 50, 100). To make
our runtime comparable with PhasePack algorithms, we implemented our original Python
code in Matlab.

For deep generative models, we used a modified version of the publicly available code
for [43]. The code only provided pretrained DCGAN models for MNIST and F. MNIST;
therefore, we trained our DCGAN models on the other datasets. This method is noticeably
time-consuming because it optimizes over the latent vector for the deep model and uses
2000 iterations for each image where each iteration requires a forward and backward pass
through the deep model. The patterns drawn from Uniform(0,1) range did not provide
us good reconstruction with Deep Model; therefore, we tested this method using random
patterns drawn uniformly from [—1, 1] range and learned patterns that we manually scaled
to [—1,1]. The reconstruction results for the Deep Model also directly depend on the quality
of the trained generative models. In our experiments, we were not able to generate images
with PSNR higher than 30dB using the generative models.

We tested all the methods using Random illumination patterns and the Learned
illumination patterns using K = 50 in our method. For the case of Random illumination,
we selected the best PSNR from 5 independent trials and report the average computation
time for each experiment. In all the cases, we tuned the parameters that provide best
results.

The reconstruction PSNR (in dB) and run time (in seconds) per image is reported in
Table 2 and Table 3, respectively. We observe that our proposed method with learned pat-
terns performs significantly better than all other algorithms in terms of both reconstruction
quality and runtime. We also observed that if we increase the number of iterations for other
methods, their reconstruction quality improves beyond the numbers reported in Table 2,
but this happens at the expense of much longer computation time.

Table 3. Average runtime (sec) per image of different algorithms corresponding to the performance
reported in Table 2. The reported runtime corresponds to the time required for convergence of each
algorithm. } Image size for CelebA generator is 64 x64.

HIO GS Wirt- Amp- Phase- Deep Ours Ours  Ours
[1] [25]  Flow[31] Flow[30] Max[35] Model[43] K=20 K=50 K=100

Max iterations 100 100 2000 2000 2000 2000 20 50 100
Image 32 x 32 0473 0.461 0.459 0.080 0.563 8.422 0.008 0.011 0.017
size 200 x 200 | 7.353 7.269 10.90 2.377 10.84 10.55% 0.061 0.124 0.238

4.4. Generalization on different algorithms

An interesting attribute of our learned patterns is that they can be used with different
algorithms. Although we learned our illumination patterns using AltMin approach, it
performs well for other algorithms. We observe in Table 2 that our learned patterns provide
better results compared to Random patterns with almost all the phase retrieval algorithms
for all the datasets, even though the patterns were not optimized for those algorithms.
These results demonstrate the robust performance of our learned illumination patterns.

4.5. Generalization on different datasets

To explore the generalizability of our learned illumination patterns, we use patterns
learned on one dataset to recover images from another. The results are shown in Table. 4.
As we can see in the table, the diagonal numbers are generally the best, and off-diagonal
numbers are generally better than the ones with random illumination patterns.

4.6. Effect of number of iterations/layers (K)

Figure 3 shows the performance of the learned and random illumination patterns as
we increase K to 200 at test time using the patterns learned for K = 50. The number of
illumination patterns is T = 4. Random illumination patterns are selected best out of 30
trials. The learned illumination patterns are trained on 128 training images and number of
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Table 4. Reconstruction PSNR (mean =+ std) of illumination patterns learned and tested on different
datasets for K = 50. Every column corresponds to patterns learned on a fixed dataset and tested on
all. Random column reports the performance of random illumination patterns.

Test \ Train

4 Mllumination Patterns

8 Illumination Patterns

MNIST E MNIST CIFAR1I0 SVHN MNIST E MNIST CIFARI0 SVHN

MNIST 102£10 66 £ 16 34+15 48+15 113 £11 84+13 56 + 20 74 +19
F. MNIST 84 + 24 94 +13 50+20 64419 94+23 111+12 89+20 108 +21
CIFAR10 79 +27 87 +£13 86 +18 96 +17 84 + 18 88+17 108+18 113+17
SVHN 56 & 28 78 £16 72+£21 93+21 76 £ 19 95 + 12 91+24 118+21

iterations K = 50 during training. We observed that with the learned patterns the image
reconstruction process converges faster and is more stable (smaller variance) compared to
the case with random patterns. The red curve in Fig. 3 has a steeper slope and narrower
shades. Besides the default setting for K = 50, we also learn the illumination patterns for

different values of K.

Figure 4 shows that we can recover images in a small number of iterations if we use
learned illumination patterns. We also observe that we can perform better if we use more
iterations in testing than in training. We have chosen K = 50 for most of the experiments as
a trade-off between computational cost and reconstruction performance.

Random
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Figure 3. Comparison of the reconstruction quality with random (in blue) and learned (in red)
illumination patterns for different values of K =1, ...,200. We plot the average PSNR in bright color
and the PSNR of randomly selected 100 samples in light shadows.

H
I
S

H
N
5]

H
S
3

-

Reconstruction Quality (PSNR in dB)

0 25

—— CIFAR
SVHN
Fashion MNIST

e
N B
S o

-
S
S

@
S

Reconstruction Quality (PSNR in dB)
IS ©
S S

N
S

0 25

—— CIFAR
-- SVHN
— Fashion MNIST

H
I
S

60

40

Reconstruction Quality (PSNR in dB)

N
S

Fashion MNIST

50 7
Number of Steps i.e.

(a) Training K=10

of layers.

4.7. Noise response

100 125 150 175 200

50 7
Number of

100

(b) Training K=20
Figure 4. Reconstruction quality vs number of iterations (layers) at test time (i.e., K is different for
training and testing with T = 4). We show error bar of £0.25¢ for each dataset. In (a) and (b), we
fixed K (K=10, 20) and tested using different K. In (c), we trained and tested using the same number

125 150 175 200
Steps i.e. K

0

(c) Training K=Test K

25 50

Nui

100

125 150 175 200

7!
mber of Steps i.e. K

To investigate the robustness of our method to noise, we train our illumination patterns
on noiseless measurements obtained from the training datasets. We then added Gaussian
and Poisson noise at different levels to the measurements from the test datasets. Poisson
noise or shot noise is the most common in the imaging systems, which we add following
the approach in [20,68]. Let us denote the i*" element of measurement vector corresponding

to tth

illumination pattern, y; as

yi(i) = |2¢(D)] + (i), fori=1,2,...,m,

(13)

291
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where 77;(i) ~ N(0,A|z¢(7)]) and z; = F(d; ® x). We varied A to generate noise at different
signal-to-noise ratio (SNR) levels. Poisson noise affects larger values in measurements
with higher strength than the smaller values. Since the sensors can measure only positive
measurements, we kept the measurements positive by applying ReLU function after noise
addition. We expect the reconstruction to be affected by noise as we did not use any
denoiser. We observe the effect of noise in Figure 5 with illumination patterns leaned
under noiseless setup. Even though noise affects the reconstructions, we can get reasonable
reconstruction up to a certain level of noise. The relationship between noise level and
reconstruction performance also indicates that our phase retrieval system is quite stable.
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Figure 5. Reconstruction quality vs noise level of the measurements for different datasets (T = 4).
Here we show shaded error bar of £0.25¢ for each dataset.

We ran another set of experiments where we learned different set of illumination
patterns at different noise level by introducing measurement noise during training. In
Table 5, we report results for MNIST and CIFAR10 dataset at different level of Poisson noise
introduced during training and testing. We show the performance of some comparing
approaches with our learned patterns and random patterns. For random patterns, we
reported the results for the best out of 5 runs. We can observe that even under the presence
of high noise (0-20dB), the learned illumination patterns using our approach performs
reasonably well. We observe performance boost with our learned patterns for 5dB or higher
SNR.

Table 5. Reconstruction PSNR (mean + std) of different algorithms using random patterns (best out
of 5 trials) and our learned patterns (T = 4) at different Poisson noise levels for MNIST and CIFAR10
dataset.

Noise HIO [1] GS [25] WirtFlow [31] PhaseMax [35] Ours - K=50
SNR Random Learned Random Learned Random Learned Random Learned Random Learned
MNIST

0 23+13 25+15 16+9 25+15 20+16 25+15 16+5 18+6 28+16 24+3
5 17+10 19412 19411 18+12 23+19 23+18 13+3 16+6 21+13 28+5
10 22412 18+10 22+13 18+10 27420 25+16 15+5 16+5 28+12 31+5
20 18£11 23+16 20%11 22416 29420 28+22 17+5 17+6 16+11 48+13
30 22411 10£3 21+11 10£3 30+19 14£9 17£5 11£2 22413 65+21
40 20%11 11+4 17£8 11+4 31+19 24116 16+4 11£2 27413 6117
CIFAR10
0 28+26 18+16 27+27 17+15 23+20 16+14 17+12 23+22 29+6 26+9
5 28+28 20+18 26+25 19418 23+19 18+16 16+10 23+£22 28+7 30+12
10 27+25 31431 32430 33+32 23+18 23+22 16+11 29+32 29+7 38+10
20 28+25 41+42 27426 45+42 23+20 31+28 16+11 50+55 28+5 51+£10
30 28+26 47+43 27+26 47+43 23+19 30+28 17+11 48+52 30+8 68+12
40 29427 51444 29426 51444 24420 33430 18£12 58160 31+7 71£9

4.8. Mismatch in training and test images

In our final experiment, we tested illumination patterns trained on upright images
to recover shifted and rotated images. Our results in Fig. 6 and Fig. 7 show that the
learned patterns reliably recover images regardless of the position or orientation. This is
not surprising because we do not learn to represent images or solve the phase retrieval
problem using the training data; instead, we only learn the illumination patterns using a
predefined AltMin-based recovery algorithm. In contrast, data-driven methods that learn
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to solve the inverse problem may suffer if the distribution of test images differ significantly
from the training images.

£ i

‘RERER FHNCL EECPE

‘RERERN IFHNEL EEEFE
Figure 6. Test results on images shifted to bottom right by 5 pixels. From left to right: MNIST, F.
MNIST, and CIFAR10.
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g | — R AL

0o | o 9| - Ee=le=| g B R |
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Figure 7. Test results on images rotated by 90°. From left to right: MNIST, F. MNIST, and CIFARI10.

5. Conclusion

We presented a framework to learn the illumination patterns for coded diffraction
imaging by formulating an iterative phase retrieval algorithm as a fixed unrolled net-
work. We learn the illumination patterns using a small number of training images via
backpropagation. Our results demonstrate that the learned patterns provide near-perfect
reconstruction whereas random patterns fail. The number of iterations in our algorithm
provides a clear trade-off between reconstruction accuracy and run time. In addition, the
learning process of our illumination patterns is highly data efficient and requires only a
small number of training samples. The learned patterns generalize to different datasets
and algorithms that were not used during training.
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