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Abstract: In this paper, we present a framework to learn illumination patterns to improve the quality 1

of signal recovery for coded diffraction imaging. We use alternating minimization-based phase 2

retrieval method with fixed number of iterations as the iterative method. We represent the iterative 3

phase retrieval method as an unrolled network with a fixed number of layers where each layer of the 4

network corresponds to a single step of iteration, and we minimize the recovery error by optimizing 5

over the illumination patterns. Since the number of iterations/layers is fixed, the recovery has a fixed 6

computational cost. Extensive experimental results on a variety of datasets demonstrate that our 7

proposed method significantly improves the quality of image reconstruction at a fixed computational 8

cost with illumination patterns learned using only a small number of training images. 9

Keywords: Phase retrieval; coded diffraction imaging; learned sensors 10

1. Introduction 11

Coded diffraction imaging is a specific instance of Fourier phase retrieval problems. 12

Phase retrieval refers to a broad class of nonlinear inverse problems where we seek to 13

recover a complex- (or real-) valued signal from its phase-less (or sign-less) measurements 14

[1–4]. In practice, these problems often arise in coherent optical imaging where an image 15

sensor records the intensity of the Fourier measurements of the object of interest. In coded 16

diffraction imaging, the signal of interest gets modulated by a sequence of known illumina- 17

tion patterns/masks before observing the Fourier intensity at the sensor [2,4]. Applications 18

include X-ray crystallography [5,6], astronomy [7,8], microscopy [9–12], speech processing 19

and acoustics [13,14], and quantum mechanics [15,16]. Similar to other signal recovery 20

problems in various imaging and signal processing tasks [4,5,11,17,18], iterative methods 21

are also used in coded diffraction imaging. In this paper, we present a framework to design 22

the illumination patterns for better signal recovery for coded diffraction imaging using a 23

fixed-cost iterative method in a data-driven manner. 24

Let us denote the signal of interest as x 2 Rn or Cn that is modulated by T illumination
patterns D = {d1, . . . , dT}, where dt 2 Rn or Cn. The amplitude of sensor measurements
for tth illumination pattern can be written as

yt = |F (dt � x)|, (1)

where F denotes the Fourier transform operator and � denotes an element-wise product. 25

We note that real sensor measurements are proportional to the intensity of the incoming 26

signal (i.e., square of the Fourier transform). In practice, however, solving the inverse prob- 27

lem with (non-square) amplitude measurements provides better results [19,20]; therefore, 28

we use the amplitude measurements throughout the paper. 29

To recover the signal x from the the observed measurements, we can solve the follow-
ing optimization problem:

min
x

T

Â
t=1
kyt � |F (dt � x)|k2

2. (2)
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Figure 1. Pipeline of our proposed framework at inference time. Our framework mainly contains two
components: (1) a learnable sensing system that updates the illumination patterns during training
time, but at inference time the learned illumination patterns are fixed; (2) a fixed unrolled network
that runs phase retrieval process to recover the original signal x form measurements Y. The number
of layers in the network is fixed to K. Steps at every iteration are fixed and depicted as an unrolled
network (details can be found in Algorithm 2).

In recent years, a number of iterative algorithms have been proposed for solving the 30

problem in (2), which includes lifting-based convex methods, alternating minimization- 31

based nonconvex methods, and greedy methods [2,21–24]. 32

Our goal is to learn a set of illumination patterns to optimize the recovery of an 33

alternating minimization (AltMin) algorithm for solving the problem in (2). The AltMin 34

method can be viewed as an unrolled gradient descent network, as shown in Fig. 1, where 35

we fix the steps at every iteration and the total number of iterations for AltMin. One 36

forward pass through the unrolled network is equivalent to K iterations of the AltMin 37

algorithm using given illumination patterns. We can increase or decrease the number of 38

iterations for better accuracy or faster run-time. To keep the computational complexity of 39

the recovery algorithm low, we keep the total number of iterations small (e.g., K = 50). At 40

the training stage, we optimize over the illumination patterns to minimize the error between 41

the AltMin outputs after K iterations and the ground truth training images. At the test time, 42

we solve the problem in (2) using K AltMin iterations with the learned illumination patterns 43

(equivalent to one forward pass). We evaluated our method on different image datasets 44

and compared against existing methods for coded diffraction imaging. We demonstrate 45

that our proposed method of designing illumination patterns for a fixed-cost algorithm 46

outperforms existing methods both in terms of accuracy and speed. 47

The main contributions of this paper are as follows. 48

• Low cost inference: We learn illumination patterns for coded diffraction imaging 49

using unrolled network formulation of a classical AltMin method. We show that 50

with our learned illumination patterns, unrolled AltMin method outperforms other 51

computationally complex algorithms and provides superior image reconstruction 52

within a much shorter time. 53

• Learning from small dataset: We use only a small number of training samples and 54

can learn illumination patterns that are highly effective for image reconstruction. It is 55

crucial for real life applications because finding training samples can be challenging 56

in practice. 57

• Robust sensor design: The patterns learned on a given dataset generalize to different 58

datasets and provide robust reconstruction for shifted and flipped versions of the target 59
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samples. It does not degrade drastically under noisy measurements. Our learned 60

illumination patterns can also help other algorithms achieve better performance even 61

though they are not used for training. 62

2. Related Work 63

Phase Retrieval and Coded Diffraction Patterns. Fourier phase retrieval problem 64

arises in a number of imaging systems because standard image sensors can only record 65

intensity of the observed measurements. This problem has been extensively studied 66

over last five decades in optics, signal processing, and optimization [3–5,25,26]. Coded 67

diffraction imaging is a physically realistic setup in which we can first modulate the signal 68

of interest and then collect the intensity measurements [18,27]. The modulation can be 69

performed using a spatial light modulator or custom transparencies [10,11,28]. The recovery 70

problems involves solving a phase retrieval problem; the presence of modulation patterns 71

makes this a more tractable problem compared to classical Fourier phase retrieval [18]. 72

The algorithms for solving phase retrieval problem can be broadly divided into non- 73

convex and convex methods. Classical algorithms for phase retrieval rely on solving the 74

underlying non-convex problem using alternating minimization. Amplitude flow [29,30], 75

Wirtinger flow [31,32], alternating minimization (AltMin) [22,23,33] are such methods that 76

solve the non-convex problem. Convex methods usually lift the nonconvex problem of 77

signal recovery from quadratic measurements into a convex problem of low-rank matrix 78

recovery from linear measurements. The PhaseLift algorithm [2] and its variations [18,21] 79

can be considered under this class. Other algorithms, such as PhaseMax [34,35] and 80

PhaseLin [36], use convex relaxation to solve non-convex phase retrieval problem without 81

lifting the problem to a higher dimension. We can also incorporate prior knowledge about 82

the signal structure (e.g., sparsity, support, or positivity) in the recovery process constraints 83

[22,29,32,37,38]. 84

Data-Driven Approaches for Phase Retrieval. Recently the idea of replacing the 85

classical (hand-designed) signal priors with deep generative priors for solving inverse 86

problems has been explored in different works [39,40]. [23,26,41–44] focused specially 87

on solving phase retrieval problems with generative priors. Another growing trend is 88

learn the solution of inverse problems (including phase retrieval) in an end-to-end manner, 89

where deep networks are trained to learn a mapping from sensor measurements to the 90

signal of interest using a large number of measurement-signal pairs. A few examples 91

demonstrating the benefit of the data-driven approaches include robust phase retrieval 92

[20], Fourier ptychographic microscopy [45], holographic image reconstruction [46], and 93

correlography for non-line-of-sight imaging [47]. 94

Although our method is partially driven by data, our goal is not to learn a signal 95

prior or a mapping from measurements to signal. We use a very small dataset (consisting 96

32 or 128 images only) to learn the illumination patterns for a fixed recovery algorithm. 97

Furthermore, the patterns we learn on one class of images provide good results on other 98

types of images (see Table 4). Apart from the great flexibility and generalization, our 99

method uses fixed number of iterations of well-defined AltMin routine, which is parameter 100

free during inference (except the step size) compared to end-to-end or generative prior 101

based approaches. 102

The approach we used for optimizing over AltMin routine to learn illumination 103

patterns is broadly known as unrolling networks. Iterative methods for solving the inverse 104

problems, such as AltMin or other first-order methods, can be represented as unrolled 105

networks. Every layer of such a network performs the same steps as a single iteration of 106

the original method [48–57]. Some parameters of the iterative steps can be learned from 107

data (e.g., step size, denoiser, or threshold parameters) but the basic structure and physical 108

forward model are kept intact. 109

Learn to Sense. Data driven deep learning methods have also been used to design 110

the sensing system; especially in the context of compressive sensing and computational 111

imaging [58–63]. The main objective in these methods is similar to ours, which is to find the 112
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sensor parameters to recover best possible signal/image from the sensor measurements. 113

The sensor parameters may involve selection of samples/frames, design of sampling 114

waveforms, or illumination patters as we discuss in this paper. In contrast to most of the 115

existing methods that learn a deep network to solve the inverse problem, our method 116

uses a predefined iterative method as an unrolled network while learning the illumination 117

patterns using a small number of training images. Unrolled network for solving non-linear 118

inverse problems has been used in [45,64]. [45] proposes learning sensors for Fourier 119

ptychographic microscopy whereas [64] designs sensing patterns for coded illumination 120

imaging. One might find similarity between [64] and our problem formulation. In principle, 121

the sensor can be treated as the first layer of the network with some physical constraints 122

on the parameters [64]. However, the method in [64] uses an unrolled network to learn 123

the sensing parameters for quantitative phase imaging problem under the “weak object 124

approximation”. This approximation turns the original nonlinear problem into a linear 125

inverse problem. This assumption is only applicable where the target objects have a small 126

scatter term (e.g., biological samples in closely index-matched fluid). In our setup, we do 127

not make any such assumptions on target object and solve the original nonlinear coded 128

diffraction imaging problem. This potentially makes our algorithm suitable for more 129

general applications than [64]. 130

3. Proposed Method 131

Our proposed method for learning illumination patterns can be divided into two parts: 132

The first (inner) part involves solving the phase retrieval problem with given coded diffrac- 133

tion patterns using AltMin as an unrolled network (see block diagram in Fig. 1); Second part 134

is updating the illumination patterns based on backpropagating the image reconstruction 135

loss. These two parts provide optimized image reconstruction and illumination patterns. 136

Pseudocodes for both parts are listed in Algorithms 1,2. 137

We use N training images (x1, . . . , xN) to learn T illumination patterns that provide 138

best reconstruction using a predefined (iterative) phase retrieval algorithm. Furthermore, 139

to ensure that the illumination patterns are physically realizable, we constrain their values 140

to be in the range [0, 1]. We use a sigmoid function over unconstrained parameters Q = 141

{q1, . . . , qT} to define the illumination patterns; that is, dt = sigmoid(qt) for all t = 1, . . . , T. 142

Phase retrieval with alternating minimization (AltMin). Given measurements Y =
{y1, . . . , yT} and illumination patterns D = {d1, . . . , dT}, we seek to solve the CDP phase
retrieval problem by minimizing the loss function defined in (2) as

Lx =
1
2

T

Â
t=1
kyt � |F (dt � x)|k2

2. (3)

Although the loss function in (3) is nonconvex and nonsmooth with respect to x, we can
minimize it using the well-known alternating minimization (AltMin) with gradient descent
[22,33]. In AltMin formulation, we define a new variable for the estimated phase of linear
measurements as pt = phase[F (dt � x)] and reformulate the loss function in (3) into

Lx,p =
1
2

T

Â
t=1
kpt � yt �F (dt � x)k2

2. (4)

The gradient with respect to x can be computed as

rxLx,p =
T

Â
t=1

|dt|2 � x� d⇤t �F ⇤(pt � yt), (5)

where F ⇤ denotes the inverse Fourier transform and d⇤t is the conjugate of pattern dt. We
can update the estimate at every iteration as

xk = xk�1 � ak�1rxLx,p, (6)
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Algorithm 1 Learning illumination patterns

Input: Training set X with N images X = {x1, . . . , xN}.
Initialize: Initialize the optimization variables for T patterns as Q = {q1, . . . , qT} from a
uniform distribution.
for epoch = 1, 2, ..., M do . M epochs

Generate illumination patterns dt = sigmoid(qt)
for all t

for n = 1, 2, ..., N do . N samples
Yn = {y1,n, . . . , yT,n | yt,n = |F (dt � xn)|}
xK

n (Q) solveCDP(Yn,D)
end for
LQ = ÂN

n=1 kxn � xK
n (Q)k2

2
Q Q� brQLQ . Update Q with stepsize b

end for
Output: Learned illumination patterns D = {d1, . . . , dT | dt = sigmoid(qt)}.

Algorithm 2 solveCDP(Y, D) via alternating minimization using single-step gradient de-
scent

Input: Measurements Y = {y1, . . . , yt} and illumination patterns D = {d1, . . . , dT}.
Initialization: Zero initialization of estimate x0.
for k = 1, 2, ..., K do . K iterations of AltMin

pk�1
t  phase(F (dt � xk�1) for all t.
rxLx,p = 2

T ÂT
t=1[|dt|2 � xk�1 � d⇤t �F ⇤(pk�1

t � yt)]
xk  xk�1 � arxLx,p
Project xk onto feasible range.

end for
Output: Estimated signal xK.

where ak�1 denotes the step size. Another way is to directly solve for xk such thatrxLx,p =
0. The closed-form solution is

xk = (
T

Â
t=1

|dt|2)�1 � [
T

Â
t=1

d⇤t �F ⇤(pk�1
t � yt)]. (7)

We compared these two strategies and found that single-step gradient descent tends to work 143

well in practice and the closed-form solution does not show advantage over the single-step 144

gradient descent. In our implementation, we used the former strategy (Algorithm 2) and 145

fixed a step size a for all iterations. The unrolled network has K layers that implement K 146

iterations of the gradient descent, and the final estimate is denoted as xK. 147

Choice of initialization is important, and our method can handle different types 148

of initialization. Zero initialization, where every pixel of the initial guess of x0 is 0, is 149

the simplest and cost-free method. Many recent phase retrieval algorithms [30,31,33,35] 150

use spectral initialization, which tries to find a good initial estimate. However, it re- 151

quires computing the principal eigenvector of the following positive semidefinite matrix, 152

ÂT
t=1 diag(d⇤t )F ⇤diag(|yt|2)Fdiag(dt). In our experiments, we observed that spectral ini- 153

tialization does not provide a significant improvement in terms of image reconstruction, 154

and that our algorithm can perform very well using the overhead-free zero initialization. 155

Learning illumination patterns. To learn a set of illumination patterns that provide
the best reconstruction with the predefined iterative method (or the unrolled network), we
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seek to minimize the difference between the original training images and their estimates.
In this regard, we minimize the following quadratic loss function with respect to Q:

LQ =
1
2

N

Â
n=1
kxn � xK

n (Q)k2
2, (8)

where xK
n (Q) denotes the solveCDP estimate of nth training image for the given values of 156

Q. Note that for given real values of Q = {q1, . . . , qT}, we can define illumination patterns 157

as dt = s(qt), where s(·) is the sigmoid function. We can define sensor measurements for 158

xn as yt,n = |F (dt � xn)| = p⇤t,n � F (dt � xn) for t = 1, . . . , T and n = 1, . . . , N, where 159

pt,n = phase[F (dt � xn)] is the phase of the original complex-valued signal. 160

We can use the recursive expression of the signal estimate in (6) and the gradient in (5)
to represent the estimate of xn at iteration/layer k with the given values of Q as

xk
n(Q) = (1� a

T

Â
t=1

|dt|2)xk�1
n (Q) + a

T

Â
t=1

d⇤t �F ⇤(pk�1
t,n � yt,n), (9)

where pk
t,n = phase[F (dt � xk

n(Q))]. We can compute the gradient of the loss function in
(8) with respect to any qt in a recursive manner as follows.

rqt LQ =
N

Â
n=1

Jqt(xK
n (Q))[xK

n (Q)� xn], (10)

where Jqt(xK
n (Q)) denotes the Jacobian matrix of the signal estimate with respect to qt . We

can now write the product of the Jacobian matrix with a vector u as

Jqt (xK
n (Q))[u] = Jqt (xK�1

n (Q))[(1� a
T

Â
t=1

|dt|2)� u]

� 2a|dt |2 � (1� dt)� xK�1⇤
n (Q)� u (11)

+ adt � (1� dt)�F ⇤(pK
t,n � yt,n)� u

+ adt � (1� dt)� xn �F ⇤(pt,n � pK⇤
t,n �F (dt � u)),

where Jqt (x0
n) = 0 for all n, t. Here we assume initial estimate x0

n = 0 and ak = a for 161

k = 1, . . . , K. We also assume that the phase of the measurements or the signal estimates do 162

not change with small changes in Q. The overall gradient of the reconstruction loss with 163

respect to the parameters Q can be computed in a recursive manner (back-propagation) 164

using element-wise products and forward/inverse Fourier transform operations at every 165

iteration/layer. 166

We can use gradient descent to find the optimal Q using equation (10). We can update
the estimate at every iteration of gradient descent as

Qm = Qm�1 � brQLQ, (12)

where b denotes the learning rate for the gradient descent. 167

In practice, we can also compute the gradient using auto-differentiation. In our 168

experiments, we used Adam optimizer in PyTorch [65,66] to minimize the loss function 169

in (8). A summary of the algorithm for learning the illumination patterns is also listed in 170

Algorithm 1. Our code will be available at https://github.com/CSIPlab/learned-coded- 171

diffraction. 172

4. Experiments 173

Datasets. We used MNIST digits, Fashion MNIST (F. MNIST), CIFAR10, SVHN, and 174

CelebA datasets for training and testing in our experiments. We used 128 images from each 175

https://github.com/CSIPlab/learned-coded-diffraction.
https://github.com/CSIPlab/learned-coded-diffraction.
https://github.com/CSIPlab/learned-coded-diffraction.
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of the datasets for training and another 1000 images for testing. To make the tiny-image 176

datasets uniform, we reshaped all of them to 32⇥ 32 size with grayscale values. Images 177

in CelebA dataset have 218⇥ 178 pixels, we first converted all the images to grayscale, 178

cropped 178⇥ 178 region in the center, and resized to 200⇥ 200. We report the performance 179

of our method on some classical images used in [20] in the supplementary material. 180

Measurements. We used the amplitude of the 2D Fourier transform of the images mod- 181

ulated with T illumination patterns as the measurements. Unless otherwise mentioned, 182

we used noiseless measurements. We report results for measurements with Gaussian and 183

Poisson noise in Fig. 5. 184

Computing platform. We performed all the experiments using a computer equipped with 185

Intel Core i7-8700 CPU and NVIDIA TITAN Xp GPU. We learned the illumination patterns 186

using a PyTorch implementation, but we also implemented our algorithm in Matlab to 187

provide a fair runtime comparison with existing phase retrieval methods. 188

4.1. Setup and hyper-parameter search 189

The hyper-parameters include the number of iterations (K), step size a, and the number 190

of training samples N. We set the default value of K = 50, but we show in supplementary 191

material that K can be adjusted as a trade-off between better reconstruction quality and 192

shorter run time. We tested all methods for T = {2, 3, 4, 8} to evaluate cases where signal 193

recovery is hard, moderate, and easy. Through grid search, we found that it provides the 194

best results over all datasets when a = 4/T. We also studied the effect of the number of 195

training images and found that illumination patterns learned on 32 randomly selected 196

images provide good recovery over the entire dataset. The test accuracy improves slightly 197

as we increase the number of training samples. To be safe, we used 128 training images in 198

all our experiments. Unless otherwise mentioned, the images are constrained to be in [0, 1] 199

range for our experiments. 200

Table 1. PSNR (mean ± std) for random and learned illumination patterns.

Dataset 2 Patterns 3 Patterns 4 Patterns 8 Patterns
Random Learned Random Learned Random Learned Random Learned

MNIST 14 ± 6 28 ± 9 20 ± 11 75 ± 19 32 ± 14 102 ± 10 61 ± 19 113 ± 11
F. MNIST 17 ± 4 26 ± 6 20 ± 6 49 ± 15 33 ± 9 94 ± 13 67 ± 14 111 ± 12
CIFAR10 15 ± 3 26 ± 4 20 ± 3 34 ± 10 30 ± 8 86 ± 18 64 ± 15 108 ± 18

SVHN 17 ± 3 28 ± 6 24 ± 4 45 ± 15 35 ± 7 93 ± 21 73 ± 15 118 ± 21
CelebA 13 ± 2 19 ± 3 14 ± 4 28 ± 2 23 ± 5 81 ± 4 43 ± 8 98 ± 15

4.2. Comparison of random and learned patterns 201

To demonstrate the advantages of our learned illumination patterns, we compare the 202

performance of learned and random illumination patterns on five different datasets. We 203

learn a set of T = {2, 3, 4, 8} illumination patterns on 128 training images from a dataset 204

and test them on 1000 test images from the same dataset. For random patterns, we draw 205

T independent patterns from Uniform(0,1) distribution and test their performance on the 206

same 1000 samples that we used for the learned case. Unless otherwise mentioned, we 207

repeat this process 30 times and choose the best result to compare with the results for 208

the learned illumination patterns. The average peak signal-to-noise ratio (PSNR) over 209

all 1000 test image reconstructions is presented in Table 1, which shows that the learned 210

illumination patterns perform significantly better than the random patterns for all values 211

of T. In addition to that, we can observe a transition in the performance for T = 3, 212

where random patterns provide poor quality reconstructions and learned patterns provide 213

reasonably high quality reconstructions. Furthermore, the learned patterns provide very 214

high quality reconstructions for T � 4. 215

To highlight this effect, we show a small set of reconstructed images and histograms 216

of PSNRs of some reconstructed images from learned and random illumination patterns 217
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in Fig. 2 for T = 4 patterns. The result suggests that the learned illumination patterns 218

demonstrate consistently better performance compared to random illumination patterns. 219

We demonstrate the corresponding learned illumination patterns in Fig. 2. Visually, illumi- 220

nation patterns learned for the same dataset look similar, and patterns learned on different 221

datasets look different. 222
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Figure 2. Reconstructed images using random and learned illumination patterns (T = 4), along with
ground truth (GT) in (a-b) and corresponding learned illumination patterns (c-d). PSNR is shown on
top of every reconstruction. Below each dataset, we show the histograms of the PSNRs of all images
with random patterns (shown in blue) and learned patterns (shown in orange). The dashed vertical
line indicates the mean of all PSNRs.

Table 2. Reconstruction PSNR (mean ± std) of different algorithms using random patterns and our
learned patterns (T = 4).

MNIST F. MNIST CIFAR10 SVHN CelebA
Random Learned Random Learned Random Learned Random Learned Random Learned

HIO [1] 16 ± 9 37 ± 19 32 ± 14 61 ± 24 49 ± 20 99 ± 25 60 ± 22 114 ± 27 38 ± 5 102 ± 5
GS [25] 16 ± 9 37 ± 19 33 ± 15 61 ± 24 48 ± 20 99 ± 25 60 ± 22 114 ± 27 38 ± 4 102 ± 5

WirtFlow [31] 22 ± 16 48 ± 25 33 ± 14 51 ± 19 41 ± 10 57 ± 10 41 ± 10 58 ± 10 20 ± 2 39 ± 3
AmpFlow [30] 42 ± 32 74 ± 48 64 ± 38 109 ± 43 86 ± 37 138 ± 25 97 ± 33 144 ± 21 42 ± 8 138 ± 11
PhaseMax [35] 14 ± 4 24 ± 8 21 ± 4 45 ± 20 26 ± 4 97 ± 41 32 ± 5 115 ± 33 32 ± 2 148 ± 2

Ours - K=20 17 ± 6 49 ± 8 20 ± 6 49 ± 8 21 ± 6 49 ± 9 26 ± 5 55 ± 11 16 ± 4 46 ± 3
Ours - K=50 32 ± 14 102 ± 10 33 ± 9 94 ± 13 30 ± 8 86 ± 18 35 ± 7 93 ± 21 23 ± 5 81 ± 4

Ours - K=100 51 ± 19 186 ± 15 49 ± 11 162 ± 22 40 ± 10 139 ± 30 45 ± 10 149 ± 35 33 ± 4 132 ± 7
Deep Model [43] 31 ± 2 32 ± 3 22 ± 4 22 ± 4 28 ± 3 25 ± 3 26 ± 3 28 ± 4 22 ± 3 23 ± 2

4.3. Comparision with existing methods 223

We show comparison with different existing methods using different datasets. Existing 224

methods can be divided into four broad categories: 225

1. AltMin methods: Hybrid input output (HIO) [1] and Gerchberg-Saxton (GS) [25]. 226

2. Non-convex, gradient-based methods: Wirtinger Flow [31] and Amplitude Flow [67]. 227

3. Convex method: PhaseMax [35]. 228

4. Deep model-based method: Deep S3PR [43]. 229

We compare the performance of our method with these methods in terms of reconstruction 230

quality and computation time. For algorithms in [1,25,30,31,35], we used PhasePack [27] 231

package. In our comparison, we used 4 illumination patterns and restricted all the illumi- 232

nation patterns in the range of [0, 1]. For all the PhasePack algorithms, we used the default 233

spectral initialization. We observed that different algorithms have different computational 234

complexity in each iteration. Thus, a comparison in terms of the number of maximum 235

iterations in all algorithms is not fair. To overcome this issue, we set the error tolerance 236

(tol = 10�6) and customize the maximum number iterations in each algorithm to have 237

comparable computations or performance. Specifically, we set the maximum iterations to 238

be 100 for HIO and GS, and 2000 for Wirtinger Flow, Amplitude Flow, and PhaseMax. For 239
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our proposed method, we want to keep the number of iterations low (20, 50, 100). To make 240

our runtime comparable with PhasePack algorithms, we implemented our original Python 241

code in Matlab. 242

For deep generative models, we used a modified version of the publicly available code 243

for [43]. The code only provided pretrained DCGAN models for MNIST and F. MNIST; 244

therefore, we trained our DCGAN models on the other datasets. This method is noticeably 245

time-consuming because it optimizes over the latent vector for the deep model and uses 246

2000 iterations for each image where each iteration requires a forward and backward pass 247

through the deep model. The patterns drawn from Uniform(0,1) range did not provide 248

us good reconstruction with Deep Model; therefore, we tested this method using random 249

patterns drawn uniformly from [�1, 1] range and learned patterns that we manually scaled 250

to [�1, 1]. The reconstruction results for the Deep Model also directly depend on the quality 251

of the trained generative models. In our experiments, we were not able to generate images 252

with PSNR higher than 30dB using the generative models. 253

We tested all the methods using Random illumination patterns and the Learned 254

illumination patterns using K = 50 in our method. For the case of Random illumination, 255

we selected the best PSNR from 5 independent trials and report the average computation 256

time for each experiment. In all the cases, we tuned the parameters that provide best 257

results. 258

The reconstruction PSNR (in dB) and run time (in seconds) per image is reported in 259

Table 2 and Table 3, respectively. We observe that our proposed method with learned pat- 260

terns performs significantly better than all other algorithms in terms of both reconstruction 261

quality and runtime. We also observed that if we increase the number of iterations for other 262

methods, their reconstruction quality improves beyond the numbers reported in Table 2, 263

but this happens at the expense of much longer computation time. 264

Table 3. Average runtime (sec) per image of different algorithms corresponding to the performance
reported in Table 2. The reported runtime corresponds to the time required for convergence of each
algorithm. ‡ Image size for CelebA generator is 64⇥64.

HIO
[1]

GS
[25]

Wirt-
Flow[31]

Amp-
Flow[30]

Phase-
Max[35]

Deep
Model[43]

Ours
K=20

Ours
K=50

Ours
K=100

Max iterations 100 100 2000 2000 2000 2000 20 50 100
Image

size
32⇥ 32 0.473 0.461 0.459 0.080 0.563 8.422 0.008 0.011 0.017

200⇥ 200 7.353 7.269 10.90 2.377 10.84 10.55‡ 0.061 0.124 0.238

4.4. Generalization on different algorithms 265

An interesting attribute of our learned patterns is that they can be used with different 266

algorithms. Although we learned our illumination patterns using AltMin approach, it 267

performs well for other algorithms. We observe in Table 2 that our learned patterns provide 268

better results compared to Random patterns with almost all the phase retrieval algorithms 269

for all the datasets, even though the patterns were not optimized for those algorithms. 270

These results demonstrate the robust performance of our learned illumination patterns. 271

4.5. Generalization on different datasets 272

To explore the generalizability of our learned illumination patterns, we use patterns 273

learned on one dataset to recover images from another. The results are shown in Table. 4. 274

As we can see in the table, the diagonal numbers are generally the best, and off-diagonal 275

numbers are generally better than the ones with random illumination patterns. 276

4.6. Effect of number of iterations/layers (K) 277

Figure 3 shows the performance of the learned and random illumination patterns as 278

we increase K to 200 at test time using the patterns learned for K = 50. The number of 279

illumination patterns is T = 4. Random illumination patterns are selected best out of 30 280

trials. The learned illumination patterns are trained on 128 training images and number of 281
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Table 4. Reconstruction PSNR (mean ± std) of illumination patterns learned and tested on different
datasets for K = 50. Every column corresponds to patterns learned on a fixed dataset and tested on
all. Random column reports the performance of random illumination patterns.

4 Illumination Patterns 8 Illumination PatternsTest \ Train MNIST F. MNIST CIFAR10 SVHN Random MNIST F. MNIST CIFAR10 SVHN Random
MNIST 102 ± 10 66 ± 16 34 ± 15 48 ± 15 32 ± 14 113 ± 11 84 ± 13 56 ± 20 74 ± 19 61 ± 19

F. MNIST 84 ± 24 94 ± 13 50 ± 20 64 ± 19 33 ± 9 94 ± 23 111 ± 12 89 ± 20 108 ± 21 67 ± 14
CIFAR10 79 ± 27 87 ± 13 86 ± 18 96 ± 17 30 ± 8 84 ± 18 88 ± 17 108 ± 18 113 ± 17 64 ± 15

SVHN 56 ± 28 78 ± 16 72 ± 21 93 ± 21 35 ± 7 76 ± 19 95 ± 12 91 ± 24 118 ± 21 73 ± 15

iterations K = 50 during training. We observed that with the learned patterns the image 282

reconstruction process converges faster and is more stable (smaller variance) compared to 283

the case with random patterns. The red curve in Fig. 3 has a steeper slope and narrower 284

shades. Besides the default setting for K = 50, we also learn the illumination patterns for 285

different values of K. 286

Figure 4 shows that we can recover images in a small number of iterations if we use 287

learned illumination patterns. We also observe that we can perform better if we use more 288

iterations in testing than in training. We have chosen K = 50 for most of the experiments as 289

a trade-off between computational cost and reconstruction performance. 290

(a) MNIST (b) F. MNIST (c) CIFAR10 (d) CelebA
Figure 3. Comparison of the reconstruction quality with random (in blue) and learned (in red)
illumination patterns for different values of K = 1, . . . , 200. We plot the average PSNR in bright color
and the PSNR of randomly selected 100 samples in light shadows.

(a) Training K=10 (b) Training K=20 (c) Training K=Test K
Figure 4. Reconstruction quality vs number of iterations (layers) at test time (i.e., K is different for
training and testing with T = 4). We show error bar of ±0.25s for each dataset. In (a) and (b), we
fixed K (K=10, 20) and tested using different K. In (c), we trained and tested using the same number
of layers.

4.7. Noise response 291

To investigate the robustness of our method to noise, we train our illumination patterns
on noiseless measurements obtained from the training datasets. We then added Gaussian
and Poisson noise at different levels to the measurements from the test datasets. Poisson
noise or shot noise is the most common in the imaging systems, which we add following
the approach in [20,68]. Let us denote the ith element of measurement vector corresponding
to tth illumination pattern, yt as

yt(i) = |zt(i)|+ ht(i), for i = 1, 2, . . . , m, (13)
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where ht(i) ⇠ N (0, l|zt(i)|) and zt = F (dt � x). We varied l to generate noise at different 292

signal-to-noise ratio (SNR) levels. Poisson noise affects larger values in measurements 293

with higher strength than the smaller values. Since the sensors can measure only positive 294

measurements, we kept the measurements positive by applying ReLU function after noise 295

addition. We expect the reconstruction to be affected by noise as we did not use any 296

denoiser. We observe the effect of noise in Figure 5 with illumination patterns leaned 297

under noiseless setup. Even though noise affects the reconstructions, we can get reasonable 298

reconstruction up to a certain level of noise. The relationship between noise level and 299

reconstruction performance also indicates that our phase retrieval system is quite stable. 300

(a) Gaussian (b) Poisson
Figure 5. Reconstruction quality vs noise level of the measurements for different datasets (T = 4).
Here we show shaded error bar of ±0.25s for each dataset.

We ran another set of experiments where we learned different set of illumination 301

patterns at different noise level by introducing measurement noise during training. In 302

Table 5, we report results for MNIST and CIFAR10 dataset at different level of Poisson noise 303

introduced during training and testing. We show the performance of some comparing 304

approaches with our learned patterns and random patterns. For random patterns, we 305

reported the results for the best out of 5 runs. We can observe that even under the presence 306

of high noise (0-20dB), the learned illumination patterns using our approach performs 307

reasonably well. We observe performance boost with our learned patterns for 5dB or higher 308

SNR.

Table 5. Reconstruction PSNR (mean ± std) of different algorithms using random patterns (best out
of 5 trials) and our learned patterns (T = 4) at different Poisson noise levels for MNIST and CIFAR10
dataset.

Noise
SNR

HIO [1] GS [25] WirtFlow [31] PhaseMax [35] Ours - K=50
Random Learned Random Learned Random Learned Random Learned Random Learned

MNIST
0 23±13 25±15 16±9 25±15 20±16 25±15 16±5 18±6 28±16 24±3
5 17±10 19±12 19±11 18±12 23±19 23±18 13±3 16±6 21±13 28±5
10 22±12 18±10 22±13 18±10 27±20 25±16 15±5 16±5 28±12 31±5
20 18±11 23±16 20±11 22±16 29±20 28±22 17±5 17±6 16±11 48±13
30 22±11 10±3 21±11 10±3 30±19 14±9 17±5 11±2 22±13 65±21
40 20±11 11±4 17±8 11±4 31±19 24±16 16±4 11±2 27±13 61±17

CIFAR10
0 28±26 18±16 27±27 17±15 23±20 16±14 17±12 23±22 29±6 26±9
5 28±28 20±18 26±25 19±18 23±19 18±16 16±10 23±22 28±7 30±12
10 27±25 31±31 32±30 33±32 23±18 23±22 16±11 29±32 29±7 38±10
20 28±25 41±42 27±26 45±42 23±20 31±28 16±11 50±55 28±5 51±10
30 28±26 47±43 27±26 47±43 23±19 30±28 17±11 48±52 30±8 68±12
40 29±27 51±44 29±26 51±44 24±20 33±30 18±12 58±60 31±7 71±9 309

4.8. Mismatch in training and test images 310

In our final experiment, we tested illumination patterns trained on upright images 311

to recover shifted and rotated images. Our results in Fig. 6 and Fig. 7 show that the 312

learned patterns reliably recover images regardless of the position or orientation. This is 313

not surprising because we do not learn to represent images or solve the phase retrieval 314

problem using the training data; instead, we only learn the illumination patterns using a 315

predefined AltMin-based recovery algorithm. In contrast, data-driven methods that learn 316
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to solve the inverse problem may suffer if the distribution of test images differ significantly 317

from the training images. 318

89.50 81.12 89.45 89.18 94.54 89.25 82.76 89.03 85.37 84.19

Sh
ift

Re
c.

80.10 96.04 61.68 88.50 86.11

Figure 6. Test results on images shifted to bottom right by 5 pixels. From left to right: MNIST, F.
MNIST, and CIFAR10.

100.22 88.24 113.96 90.60 104.90 82.04 71.62 76.16 65.23 71.06 82.39 70.91 87.74 88.42 91.69

Ro
ta
te

Re
c.

Figure 7. Test results on images rotated by 90�. From left to right: MNIST, F. MNIST, and CIFAR10.

5. Conclusion 319

We presented a framework to learn the illumination patterns for coded diffraction 320

imaging by formulating an iterative phase retrieval algorithm as a fixed unrolled net- 321

work. We learn the illumination patterns using a small number of training images via 322

backpropagation. Our results demonstrate that the learned patterns provide near-perfect 323

reconstruction whereas random patterns fail. The number of iterations in our algorithm 324

provides a clear trade-off between reconstruction accuracy and run time. In addition, the 325

learning process of our illumination patterns is highly data efficient and requires only a 326

small number of training samples. The learned patterns generalize to different datasets 327

and algorithms that were not used during training. 328
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