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each other and produces model predictions that are more consistent with un-

Handling Editor: Carl Boettiger for some variables getting worse. This is particularly common when combining
data sources with very different sample sizes. Such unbalanced model-data fu-
sion efforts are becoming increasingly common, for example when combining
manual and automated measurements.

2. Here we use a series of simulated virtual data experiments that aim to dem-
onstrate and disentangle the underlying cause of issues that can occur when
calibrating models with multiple unbalanced constraints in combination with
systematic errors in models and data. We propose a diagnostic tool to help iden-
tify whether a calibration is failing due to these factors. We also test the utility
of adding terms representing uncertainty in systematic model/data systematic
error in calibrations.

3. We show that unbalanced data by itself is not the problem—when fitting sim-
ulated data to the ‘true’ model, we can correctly recover model parameters
and the true dynamics of latent variables. However, when there are system-
atic errors in the model or the data, we cannot recover the correct parameters.
Consequently, the modelled dynamics of the low data volume variables departs
significantly from the true values. We demonstrate the utility of the diagnostic
tool and show that it can also be used to identify the extent of the imbalance
before the calibration starts to ignore the more sparse data. Finally, we show

that representing uncertainty in model structural errors and data biases in the
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1 | INTRODUCTION

Calibrating a model with multiple constraints means that we use
data on several model outputs, often at similar organizational lev-
els of the modelled system, to constrain uncertainties about model
structure or parameters. The value of this approach has long been
recognized: from a theoretical perspective, models that make mul-
tiple predictions are considered to be ‘efficient’ as they are often
supported by multiple lines of evidence and can be tested against
different types of observations (Grimm & Railsback, 2012; Marquet
et al,, 2014). From a practical perspective, scientists are increasingly
reliant on complex process-based models (Fisher et al., 2018; Fisher
& Koven, 2020), together with methods to combine models and data,
to generate precise forecasts and improve system understanding
(Dietze et al., 2018; Van Oijen, 2020). In both cases, the use of multi-
ple constraints is important when alternative competing hypotheses
or models are compatible with a single set of observations. While it
is often not hard for complex models to get a single ‘right’ answer for
the wrong reasons, it is much harder to hit multiple benchmarks at
the same time, and careful comparisons to multiple data constraints
can help isolate incorrect assumptions (Grimm & Railsback, 2012;
Medlyn et al., 2015).

The value of multiple data constraints is not limited to model
testing, but extends equally, if not more so, to model calibration.
Issues of equifinality (i.e. multiple alternative parameter combina-
tions producing the same model output) and parameter identifiabil-
ity are common when complex models are constrained by a single
type of data, making it easy for models to get the right answer for the
wrong reason (Williams et al., 2009). In principle, the process of con-
straining model uncertainties via calibration (a.k.a. inverse modelling
or model-data fusion, e.g. Hartig et al., 2012) is relatively straight-
forward. The idea is to infer model parameters that produce outputs
that agree with the observed data. This can be achieved via informal
calibration or optimization procedures (e.g. Aber & Federer, 1992;
Parton et al., 1993), but as increasingly more data have become avail-
able in the recent years (Farley et al., 2018; Hampton et al., 2013;
LaDeau et al.,, 2017), the field has moved towards formal statistical
calibration methods based on likelihood or Bayesian statistics (Fer
et al., 2018; Hilborn & Mangel, 1997; Van Oijen et al., 2005).

calibration can greatly improve the model fit to low-volume data, and improve
coverage of uncertainty estimates.

4. We conclude that the underlying issue is not one of sample size or informa-
tion content per se, despite the popularity of ad hoc approaches that focus on
‘weighting’ datasets to achieve balance. Our results emphasize the importance
of considering model structural deficiencies and data systematic biases in the

calibration of process-based models.

Bayesian inference, inverse modelling, model calibration, model discrepancy, multiple
constraints, predictive uncertainty, structural model error, systematic data bias

Technically, combining multiple, heterogeneous data sources
within a statistical calibration is straightforward. Provided that
measurement errors associated with the data are uncorrelated and
hence independent, we can combine them by multiplying the sta-
tistical likelihoods (the probability of observing a dataset under any
particular set of proposed model parameters) for the individual data
streams (Van Oijen, 2020). In practice however, the statistical cali-
bration of complex models can be challenging, especially when data
sources differ greatly in volume (e.g. Medvigy et al., 2009; Ricciuto
etal.,, 2011; Richardson et al., 2010). Unbalanced calibration datasets
are now common as low volumes of manually collected field data are
frequently combined with high volumes of automatically collected
data from in situ sensors or remote sensing. Since each data point
is usually modelled as an independent piece of information in a sta-
tistical likelihood, sparse observations can often be overwhelmed
by the higher volume of data. This is undesirable as the low-volume
data often constrain parts of the system with high uncertainties that
are crucial for future projections (e.g. soil carbon and nitrogen), and
require higher labour costs to collect. As increasingly more data be-
come available, this issue of unbalanced datasets is likely to worsen
significantly. For example, NASA's earth observation system is ex-
pected to grow by an order of magnitude, from an already over-
whelming ~5 PB/year in 2018-2020 to a staggering ~50PB/year, as
soon as 2022 (https://earthdata.nasa.gov/eosdis/cloud-evolution).

Since the apparent issue is the imbalance in data volume, exist-
ing approaches often try to correct that balance by thinning-out,
aggregating or reweighing the calibration datasets so that they have
a more balanced influence on the calibration. Common examples in-
clude, reweighting different datasets so they count equally (Cailleret
et al., 2020; Keenan et al., 2013; Medvigy et al., 2009; Richardson
et al., 2010) or weighting by inverse sample size (Thum et al., 2017).
In fisheries, Maunder et al. (2017) and Carvalho et al. (2017) have
suggested that in likelihood-based statistical procedures used to
assess stock measurements, the down weighting or elimination of
data is often used (e.g. Kell et al., 2014; Siddeek et al., 2017) to deal
with data conflicts arising from model misspecification. Maunder
et al. (2017) suggest that model misspecification is a main cause of
sensitivity of calibration results to data weighting, and that down-
weighting data are not necessarily appropriate because it may not
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resolve model misspecification (Wang et al., 2015). The main pur-
pose of these ad hoc approaches is to down-weigh the high-volume
data so that its influence on the calibration is more balanced.

Unfortunately, such ad hoc approaches have no basis in proba-
bility theory; indeed, it makes no logical sense that the information
content of a dataset in the calibration should be determined by the
presence of another more sparse dataset. The significance of a data-
set in the calibration should be determined by the reliability of that
dataset alone. By arbitrarily changing the reliability of the calibra-
tion data, we are also throwing away potentially useful information
that can be used to improve models. In reweighting the data, we
introduce subjective control over the calibration by some measure of
how close we want the model to fit the different data streams after
calibration. A better option would be to develop solutions based on
the underlying causes that lead to poor outcomes when calibrating
models with unbalanced data.

Oberpriller et al. (2021) showed that the calibration problem
with unbalanced data streams in not due the imbalance per se, but
because the model cannot fit both data sources when structural
error is present. The calibration will favour the high-volume data,
at the expense of worse model predictions for the low-volume data,
because the former has a higher weight in the likelihood.

Here we investigate this problem in more detail, using several
virtual experiments to illuminate the underlying reasons for the
issues discussed. Second, we propose a diagnostic tool to help re-
searchers identify whether issues that they are facing during calibra-
tion can be attributed to the interaction of imbalanced calibration
data with model/data error rather than some other cause. Finally, we
illustrate, as simply as possible, that including uncertainty in model
structural error and data systematic bias in the likelihood improves
model predictions and provides a quantification of uncertainty that

has greater utility than using ad-hoc methods such as reweighting.

2 | MATERIALS AND METHODS
2.1 | Verysimple ecosystem model

To illustrate the issues of model calibration to multiple constraints,
we developed the very simple ecosystem model (VSEM). The model
was designed to be as simple as possible, yet resemble more compli-
cated, process-based ecosystem models that are commonly used in
terrestrial ecosystem modelling.

In essence, the model calculates the daily accumulation of car-
bon in the plant and soil from the growth of the plant via photosyn-
thesis and senescence to the soil, which respires carbon back to the
atmosphere. While we rely on a terrestrial carbon budget model for
this example, the underlying issues are general to any model that
predicts multiple outputs (e.g. species, life-history stages, biogeo-
chemical pools and fluxes). These issues apply to wide classes of
models in routine use across marine, freshwater and terrestrial sys-
tems that are used to describe physiological, population, community,
ecosystem and evolutionary processes.

The VSEM requires only one input dataset to drive the model,
daily photosynthetically active radiation (PAR, MJ m=2day~1).

Since we are interested in virtual experiments, we
simulated PAR input data using a sinusoidal function,
PAR = (|sin(Days /365 x ) + € x 0.25]) x 10

e ~N(,1),

where e represents Gaussian random noise and Days is a vector of
integers from 1 to the number of days in the simulation (2048 in
this case).

The model calculates gross primary productivity (GPP) using a
very simple light-use efficiency (LUE) formulation multiplied by light
interception. Light interception is calculated via Beer's law with a
constant light extinction coefficient, KEXT, operating on Leaf Area
Index, which itself is calculated based on vegetation foliar carbon
(C,) and leaf area ratio (LAR). A respiration parameter (GAMMA) de-
termines the fraction of GPP that is autotrophic respiration, giving
the net primary productivity (NPP).

GPP  =PARXLUE X (1-exp(-KETARC) )
NPP =(1-GAMMA)xGPP

There are three state equations representing the change in vegetation
(C,), root (C,) and soil (C,) carbon pools over time. The NPP is allocated
to above (vegetation) and below (root) ground carbon pools via a fixed
allocation fraction (A,). Carbon is lost from the plant pools to a sin-
gle soil pool via fixed vegetation and root turnover rates (r, and z,).

Heterotrophic respiration in the soil is determined via a soil turnover

rate (z,).
dC, C
v =A,xNPP -
ddCt ¢
roo_ _ _r
o =(1.0-A,)xNPP -
dC, _G,G C.
dt T, o1, T
2.2 | Bayesian calibration

We use a Bayesian approach to model calibration, though we note
that the issues we raise, and their solutions, are not limited to
Bayesian approaches but extend equally to other forms of statistical
model calibration (e.g. Maximum Likelihood). In Bayesian Calibration
(BC), our aim is to quantify the posterior probability of the model
parameters (f). The posterior probability P(6 | D) is calculated using

Bayes' equation,

P(6| D) « P(6)L(D| 6),

where P(9) and L(D|6) are the prior and likelihood, respectively.

Since it is not possible to calculate the posterior distribution for
VSEM analytically, we estimate it with Markov Chain Monte Carlo
sampling, using the DREAMzs algorithm (Vrugt et al., 2009) imple-
mented in the R package BayesianTools (Hartig et al., 2019).
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2.21 | Prior

We used simple uniform priors (Table 2) since our aim is to identify
the issues associated with multiple constraints using a simple and
easy to interpret modelling approach. We focus the calibration on
a subset of the parameters in Table 1 because we manipulated the
values for two parameters, allocation to vegetation (Av) and initial
root pool (Cr), as part of the simulated data experiments described
below. Since the root pool is not part of the model with the error in
these experiments, we also exclude tauR from the calibration. The
parameters LAR and GAMMA were removed from the calibration
to avoid non-identifiability issues. During calibration, tauR, LAR
and GAMMA were fixed to the ‘true’ values used when generating

simulated data.

2.2.2 | Likelihood

For the likelihood, we use a univariate Gaussian distribution. This
is a typical choice and as we simulated the calibration data under

the same assumptions (see Section 2.3.1), we know this form of the

TABLE 1 Very simple ecosystem model (VSEM) model
parameters

Variable
Parameter name Default Units
Light extinction coeff. KEXT 0.5 m? ground area/m?
leaf area
Leaf area ratio LAR 1.5 m? leaf area/kg
aboveground
vegetation
Light use efficiency LUE 0.002 kg CMJPAR
Ratio of autotrophic resp. GAMMA 0.4 —
to GPP
Vegetation turnover rate tauVv 1440 Days
Soil decomposition rate tauS 27,370 Days
Root turnover rate tauR 1440 Days
Allocation fraction to Av 0.5 —
vegetation
Initial vegetation pool size Cv 3 kg Cm™
Initial soil pool size Cs 15 kg Cm™
Initial root pool size Cr 3 kg Cm™

Abbreviation: GPP, gross primary productivity.

TABLE 2 Uniform priors ranges used for model calibration
experiments

Parameter Min Max
KEXT 0.2 1.0
LUE 0.0002 0.004
tauV 200 3000
tauS 4000 50,000
Cv 0.0 400

Cs 0.0 1000

likelihood to be appropriate. In Section (2.4), we discuss modifica-
tions to this simple likelihood to represent model structural error
and data systematic bias. Because heteroskedasticity is a common
feature of carbon cycle data, each 62 was modelled as proportional
to the variable in question (net ecosystem exchange [NEE], soil car-
bon, vegetation carbon) via a single coefficient of variation param-
eter, included in the calibration.

2.3 | Experiments with virtual data from VSEM

To illustrate the impacts of relative data volume (balanced vs. unbal-
anced) and different sources of model and data errors on the outcome
of calibrating models to multiple data constraints, we designed a se-
ries of calibration experiments. Specifically, we simulated data from
VSEM assuming a Gaussian observation error and then calibrated the
model to these pseudo-observations for one flux, NEE, and two pools,
vegetative carbon and soil carbon, that represent likely real-world
data constraints. Model assessment focused on both the quantitative
ability to recover the ‘true’ model parameters and the ability of the
calibrated models to reconstruct the observed time series. The experi-

ments described below are summarized in Table 3.

2.3.1 | Perfect model

A central theme that we consider here is the significance of a ‘per-

fect’” model structure where all the processes are represented

TABLE 3 Summary of computational experiments. Model
structure indicates whether the model used for calibration was
identical to that used to simulate the data (perfect) or contained
a structural error. Data volume indicates whether all three data
constraints had the same sample size (balanced) or whether
vegetative carbon data were sparse (unbalanced). Data error
indicates whether the observation errors were uncorrelated
random Normal noise or whether soil carbon observations included
a multiplicative bias. Likelihood indicates whether the statistical
likelihood was a Normal or a Normal (N) with an additional linear
bias correction. Not all model experiment permutations were
needed to identify the patterns of model calibration error

Model
Experiment structure Datavolume Data errors Likelihood
Pb Perfect  balanced random Normal
Pu Perfect  unbalanced random Normal
Eb Error balanced random Normal
Eu Error unbalanced  random Normal
PbB Perfect  balanced Bias + random  Normal
PuB Perfect  unbalanced  Bias+random Normal
EuB Error unbalanced  Bias + random  Normal
EulL Error unbalanced  random N+ Linear
PuBL Perfect  unbalanced  Bias + random N+ Linear
EuBL Error unbalanced  Bias + random  N+Linear
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correctly. The only way to ensure such a perfect model is to take the
output from the VSEM and consider this as virtual data in the BC. In
the first experiment (Pb), the observations are available for the full
2048 day length of the VSEM simulation. For the second experiment
(Pu), which isolates the impact of relative data volume, we create a
sparse dataset for vegetative carbon to simulate having an imbal-
ance between observations available for vegetative carbon, soil car-
bon and NEE. The sparse dataset has six observations for days 2,
404,780, 1100, 1500 and 1840.

2.3.2 | Model with known structural error

To simulate a model with a known structural error, we consider a
situation where a major model process/structure is unknown and
therefore missing in the calibrated model (but not the pseudodata).
Here we remove the root pool completely from the VSEM to simu-
late a major structural error. This was done by initializing the root
pool to zero and setting the root allocation fraction to zero so that all
the NPP is now allocated to the vegetation pool. This also shuts off
any senescence from the root pool to the soil. This gave the model a
structural error as we might have in a real situation while being suf-
ficiently simple that we can still interpret the influence of the error.
This experiment was run both with balanced data (Eb) and unbal-
anced data (Eu).

2.3.3 | Observational data with known bias

In addition to considering model structural error, we also investi-
gated the influence of observations with systematic biases since all
observational data will to a greater or lesser extent contain biases.
Here we multiplied the soil data by 0.8 to represent a considerable
multiplicative bias in the observations of soil carbon. The observation
bias experiment was repeated for the perfect model/balanced data
case (PbB), for the case where data were unbalanced (PuB), and when

there is both unbalanced data and a model structural error (EuB).

2.4 | Modified likelihood to represent structural
errors in the model and systematic biases in the data

Here we address the question of whether modifications to the likeli-
hood function can help compensate for the errors introduced above
(model structural errors, biased observational errors). A general prin-
ciple in modelling is to begin with the simplest approach and only
move on to more complicated solutions if the simple approach fails.
We adopt that approach here, representing model structural error
and data systematic bias via very simple multiplicative («4) and addi-

tive (ag) corrections to the model outputs (i.e. a linear bias correction),

L(D| 6) = N(ag + a3 VSEM(8), 62).

We add terms for each of the three outputs for which we have calibration
data, and therefore have six additional parameters to represent additive
and multiplicative errors for each of NEE, soil carbon and vegetative car-
bon (modaddNEE, modmultNEE, modaddCs, modmultCs, modaddCv
and modmultCv). The priors for each of these are given in Table 4.

3 | RESULTS
3.1 | Identifying the underlying issue

Here, we investigate the underlying issues when calibrating a model
with unbalanced data (experiments Pb-EuB, Table 3). The follow-
ing sections refer to posterior marginal parameter plots in Figure 1
and time series plots in Figure 3. Plots of the coefficient of variance

(Section 2.2.2) are shown in the Supplementary Material.

3.1.1 | Perfect model and balanced data (Pb)

For the initial case where the data are balanced and the model is
perfect, the ‘true’ parameters are recaptured by the calibration
and the uncertainty versus the prior has reduced significantly. The
model outputs for NEE, Cv and Cs are also centred around the truth
(Figure 2), the posterior uncertainty is small, and the predictive in-
terval matches the uncertainty in the data. This first calibration can

be considered a control for all subsequent calibrations.

3.1.2 | Perfect model and unbalanced data (Pu)

When we have a large imbalance in the calibration data (Cv reduced
from 2048 to six observations, Section 2.3.1), the parameters are
still largely centred on the ‘truth’ line. For KEXT, tauV and Cyv, there
has been an increase in marginal uncertainty but this would be ex-
pected since we have included less information in the calibration
(Figure 1). For Cs and Cy, there is little change from experiment Pb
(Figure 3, top row). For the remaining calibrations, we do not include
further plots of NEE as the plot does not show much change from
that shown previously for Pb. Overall, these results show that unbal-
anced data, by itself, does not cause an issue in the calibration other
than to increase the uncertainty.

TABLE 4 Uniform priors ranges used for the systematic bias
parameters

Parameter name Min Max
modmultNEE 0.1 2.0
modmultCs 0.1 2.0
modmultCv 0.1 2.0
modaddNEE -0.01 0.01
modaddCs -1.0 1.0
modaddCv -1.0 1.0
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FIGURE 1 Ridge plots of model
posterior parameter distributions for
each of the experiments in Table 3. The
‘true’ value for each parameter (Table 1)
is indicated by a green vertical line.
Positive and negative biases in parameter
estimates are coloured red and blue,
respectively, and indicate the prior range.
Biases in the model or data frequently
result in parameter estimates that are
confidently wrong (do not overlap with
the true value), while the inclusion of a
linear bias correction often result in an
increase in parameter uncertainty.

FIGURE 2 Experiment Pb: Perfect
model, balanced data (NEE, Cv, Cs:
2048 obs). Observations included in the
calibration marked with a ‘+. Green line
is the ‘true’ model output. Dark brown
shading 2.5% 97.5% quantile posterior
distribution. Light brown shading 2.5%
97.5% predictive interval. Experiment
names in parentheses are not shown
but are qualitatively equivalent to Pb.
Complete set of figures available as
Supplementary Material.
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FIGURE 5 Each pointin the three
graphs (net ecosystem exchange [NEE],
vegetative carbon and soil carbon)
represents the root mean square (RMS)
difference between the very simple
ecosystem model (VSEM) model and
virtual observations run with different
maximum a posteriori (MAP) vectors
obtained from a calibration where the
quantity of data included for NEE and soil
carbon increases along the x-axis and the
quantity of vegetative carbon data is held
fixed at six points. The VSEM model used
has a known error relative to the virtual
observations that were derived from it
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3.1.3 | Model with error and balanced data (Eb)

Here we created a known significant structural error in the model by
effectively removing the root pool from the model (Section 2.3.2).
After calibration, a number of parameters are now quite far away
from their ‘true’ values. This is especially dramatic for tauV, where the
rate of turnover of the vegetation pool has now more than doubled
to compensate for the lack of root allocation and turnover. The large
departures of the parameters from their ‘true’ values ‘absorb’ some
of the model structural error, resulting in model outputs that have
not changed significantly from the perfect model run (Figures S5 and
S6). These results illustrate that model performance can still be ac-
ceptable, even when significant model errors are present, so long as

parameter trade-offs can absorb the influence of the error.

3.1.4 | Model with error and unbalanced data (Eu)

When combining the influences of unbalanced data and model error,
parameter changes versus the Eb calibration are significant but not
huge. KEXT increased and LUE decreased slightly, compensating for
each other, while parameters Cs, tauS and tauV are now closer to
their ‘true’ value than in Eb. In general, the change in parameters
to compensate for the model structural error is less than for Eb.
Looking at the time series (Figure 3), the model does well for Cs (and
NEE, not shown) but drifts away significantly from the six vegetation
measurements. Consistent with the issues raised in the Introduction,
this example illustrates a common behaviour for calibrations with
a large data imbalance, where the sparsely measured parts of the
system are ignored at the expense of the parts of the system with

many observations.

3.1.5 | Perfect model and balanced data with a
multiplicative bias (PbB)

We investigate the influence of data bias on the calibration by mul-
tiplying the soil carbon pool by 0.8 (Section 2.3.3). Similarly to when
there is a model structural error (Eb), parameters in the calibration
do not all recover their ‘true’ values and hence ‘absorb’ the influ-
ence of data error, particularly for the below-ground parameters.
The initial Cs and tauS both decrease, increasing the turnover and
decreasing the soil carbon pool to match the erroneous data. As be-
fore, these departures of the parameters from their ‘true’ value allow
there to be a reasonably close match between the model outputs
after calibration and the data (Figure S9 and S10).

3.1.6 | Perfect model and unbalanced data with a
multiplicative bias (PuB)

Adding the effect of unbalanced data to the calibration with data
bias, KEXT is now larger than its true value, increasing the carbon

input into the system, but this is counteracted by a lower LUE. Cv
is smaller and tauV larger, which has the combined effect of pass-
ing on less carbon to the soil. Belowground, taus is slightly closer
to its true value than PbB and Cs has increased versus the PbB
calibration, pushing it back towards its true value. Similar to Eu, the
model diverges from the vegetation observations, while similar to
PbB the model is ‘steered’ towards fitting the many erroneous soil
carbon observations. These results show there can also be issues
calibrating with unbalanced datasets, even if the model is correct,

if there are systematic biases in the observations.

3.1.7 | Model with error and unbalanced data with a
multiplicative bias (EuB)

Combining the model structural error with the data bias for the un-
balanced calibration causes the two errors to reinforce each other.
The erroneous increase in the vegetation pool, due to the missing
root pool model error, adds to the issue of trying to match the er-
roneously low soil carbon observations. The combined effect of the
two errors pushes the model prediction even further away from the
six Cv observations (513 and S14).

3.2 | How to diagnose the issue in real
applications

3.21 | Comparing model output with virtual data
as truth

Modellers typically neither know the true model parameters nor the
model structural error. Therefore, they cannot be sure if calibrations
have the issues demonstrated in Section 3.1.

Here we develop a tool to help diagnose the presence of such
issues. Calibrations are made with perfect and imperfect models
where the quantity and imbalance of data increase with each cal-
ibration. Here we chose an increasing power series (23,24 211)
for the quantity of calibration data, running eight calibrations in
all. In the balanced data case, quantities of NEE, vegetative car-
bon and soil carbon data included in the calibration all increased
in tandem in each subsequent calibration. For the unbalanced BC
case, NEE and soil carbon data increased as before, but the quan-
tity of vegetative carbon data included in the BC was held fixed
at six data points. After running the calibrations, the VSEM was
rerun with the maximum a posteriori (MAP) vector and the root
mean square (RMS) difference with the ‘true’ data was calculated
and plotted (Figure 4).

For most variables and experiments, we observe the expected
pattern, whereby the RMS difference decreases as the quantity of
data increases, with the perfect model getting closer to the data
than the model with the error. Furthermore, for NEE and soil car-
bon with an imperfect model, the unbalanced calibration gets closer
to the data than the balanced calibration, especially as the quantity
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of calibration data increases. However, when the model has an error
and there is unbalanced data, the vegetative carbon RMS difference
increases as the quantity of calibration data increases. This signature
of increasing RMS difference diagnoses when unbalanced data starts
to become an issue. In this case, it is after the calibration exceeds 32
data points, but this will be different for each model, likelihood and
dataset used in calibrations.

3.2.2 | Comparing model output against
‘observations’

The diagnosis made in Section 3.2.1 had access to the ‘true’ data
and a perfect model, which is never the case for real-world ecolog-
ical model calibrations. Here we repeat the previous analysis, but
focus just on the imperfect model and the unbalanced calibration,
but with RMS differences now calculated against the ‘pseudo-
observed’ data (Figure 5). While there are differences in the RMS
values, the broad-scale signature of increasing RMS difference for
vegetative carbon and decreasing RMS difference for NEE and soil

carbon is retained.

3.3 | Changes to the Likelihood to represent
model and data errors

The results from Section 3.1 demonstrate that the underlying issue
with including unbalanced data in the calibration is not the imbal-
ance itself but systematic errors in the model structure, data or both
affecting the calibration. As presented in Section (2.4), we aim to
introduce linear bias-correction terms in the likelihood which repre-
sent our uncertainty about what these systematic errors could be.
Since we would not normally know the error present in the model or
the data, these terms are not designed to address the specific errors
present in the model and data here but rather as a simple linear cor-
rection to the model outputs.

We now repeat calibrations Eu, PuB and EuB but with the new
likelihood. For all three experiments (EuL, PuBL and EuBL), the un-
certainty has increases significantly for a number of parameters
(KEXT, LUE, tauV, Cs and Cv; Figure 2 also Figures S15-S17) so
that in general they are now closer to the parameter's ‘true’ value.
An outlier is tauS where the uncertainty has increased but centre
of the distribution is further away from the true value. Looking at
the output time series (Figure 3), the influence of the error has not
been removed, but there has been a significant improvement in the
predictions, versus Eu, and EuB (PuB), with the centre of the pos-
terior now much closer to the ‘truth’ line, especially for Cv. In addi-
tion, the uncertainty has increased so that, in general, data points
are now inside the posterior predictive interval. The linear terms
introduced have not completely removed the influence of the error,
but there is a much greater sense that the sparse Cv data are influ-

encing the calibration.

4 | DISCUSSION

4.1 | Unbalanced data in model calibration:
Identifying the underlying issue

Our aim was to identify as cleanly as possible the underlying causes
behind issues for model calibration caused by unbalanced data. First,
we demonstrated that unbalanced data by itself is not the problem—
there was no issue with including very unbalanced data so long
as the observation error in the data was unbiased and the model
was perfect. This finding runs counter to the hypothesis implicit in
weighting data streams, which is that poor fits reflect an imbalance
in information content, and thus that this imbalance needs to be cor-
rected by reweighting.

Second, if we introduce a very significant model error or data
bias, but keep the data streams balanced, the model predictions
after calibration remain close to the data. In real-world calibra-
tions, where we do not know the extent of the systematic model
and data errors present, nor the ‘true’ settings of the parameters,
these calibrations with balanced data would be considered a suc-
cessful calibration. Given that we had access to the true parameter
settings, however, we found that after calibration the parameters
were far from their true values with high confidence. ‘From the
perspective of the calibration’, the goal is to diminish the model-
data difference. The likelihood cannot distinguish between model-
data difference due to parameter error, model structural error or
observation error, and has no means to change the structure of
the model, so model-data difference is reduced solely by the pa-
rameters departing significantly from their true values. In this way,
the calibration ‘absorbs’ the model and data errors into wrong set-
tings of the parameters such that the model delivers fair perfor-
mance on all data streams it is calibrated to. Other outputs from
the model may still be very poor but there is no data available to
assess this.

Third, it is only when we combine unbalanced data with a sys-
tematic error in either the model or data that the model predictions
against the more sparse calibration data become poor and we iden-
tify an issue in the calibration. Because most real-world calibrations
against multiple data constraints involve unbalanced data, it is easy
to wrongly attribute the issue to unbalanced data. Indeed, while the
model predictions were poorer after calibration with the unbalanced
data (Eu, PuB), the parameters were if anything closer to their true

values and less confidently wrong.

4.2 | Diagnostic tool

Our (Figures 4 and 5) aim in developing a diagnostic tool was first
to identify the characteristic behaviour, or signature, that model
or data errors are causing issues when calibrating with unbalanced
datasets. We illustrated with a perfect model (Figure 4) that the RMS
difference goes down for all model outputs when the quantity of
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data in the calibration increases, regardless of whether the data are
balanced. However, when a model error is present (Figure 4), the
RMS difference increases for the sparse data output as the data im-
balance increases. This is the signature behaviour that diagnoses the
influence of the model discrepancy (or data bias) on the calibration.
We showed that this diagnostic plot could also be created where the
true model and data are unknown (Figure 5); hence, this tool can be
used in real-world calibrations. In addition, the diagnostic figure can
also be used to identify what size of imbalance in the data leads to
a significant problem. This could be used to estimate how severely
model and data errors are detrimentally influencing a calibration
with unbalanced data and which variables are most effected, which
may give clues about the underlying model and data systematic er-

rors at issue.

4.3 | Therole of data autocorrelation when
calibrating with unbalanced datasets

Another class of potentially important errors in observations is due
to autocorrelation. Accounting for autocorrelation in observations
is an important way to discriminate between raw sample size and
information content of the data to generate a more appropriate
weighting among data constraints. Sample size and contribution of
the data stream in the likelihood are not the same thing as contribu-
tion can be lowered, for example, by higher variance, or by data with
a high degree of autocorrelation present. Nevertheless, we have
shown here that the fundamental problem with data imbalance in
model calibrations is not one of differences in information content/
weight, but one of systematic errors in the model and/or data. So
while it would be ‘best practice’ to incorporate autocorrelation into
calibration we have shown that it will not solve the problem that we

have identified here.

4.4 | Addressing underlying causes rather
than symptoms

We argued in the Introduction that using ad-hoc methods, such as
reweighting the calibration data to give a more balanced dataset,
was logically the wrong approach. The virtual data experiments that
we have conducted in this study provide another reason to avoid ad-
hoc methods. In general, it is much preferable to ‘treat’ the underly-
ing cause of a problem rather than try and mitigate the symptoms.
Therefore, it is better to address model and data errors directly
rather than trying to mitigate the symptoms by reweighing the data
to arbitrarily adjust its reliability. Ideally, the best approach would be
to make changes to the model and the data collection to eradicate
the damaging systematic and structural errors. In reality, all models
are approximations and data are also imperfect so it is only possible
to achieve this to some extent. For example, in our terrestrial carbon
flux example, there are known issues with eddy covariance data due
to a lack of closure of the energy budget (Wilson et al., 2002); it

is not possible to fully match such data with models that conserve
mass and energy. As a solution, Maunder et al. (2017) state that ide-
ally model misspecification would be eliminated but that this is often
difficult to diagnose (Carvalho et al., 2017; Maunder & Piner, 2017).
Hence, this study provides further evidence that calibration without
any explicit recognition of model discrepancy (systematic error) is
potentially ‘dangerous’ (Brynjarsdottir & O'Hagan, 2014). It can lead
to model parameters ‘absorbing’ the errors present in the model and
data, as we have illustrated herein, causing poor posterior inference
of model parameters and hence poor predictions (Brynjarsdoéttir
& O'Hagan, 2014). In agreement with Brynjarsdéttir and O'Hagan
(2014), we suggest that model discrepancy and biases in the data
should be accounted for. More widely the same conclusions have
been found in other research areas. In climate modelling, Sexton
et al. (2012) showed that calibrating models without recognizing
discrepancy increased the risk of making predictions that were
overconfident. In fisheries modelling, Maunder and Piner (2017)
and Carvalho et al. (2017) argue that down-weighing or eliminat-
ing conflicting data may not be appropriate as it may not resolve
model misspecification. Stewart and Monnahan (2017) state that
‘analysts should be aware that they cannot weigh their way out of a
misspecified model’. They further suggest that inclusion of ‘process
variation’, and not excessive down-weighing of data, is more likely to
provide robust estimation. In Bayesian inference of soil respiration
models, Elshall et al. (2019) suggest that there is often an assumption
of independent, normally distributed and homoscedastic residuals.
Furthermore, they suggest not accounting for these may not result
in biased predictions and parameter estimates however, it will lead
to underestimated posterior uncertainties and poorer predictions.

4.5 | Model and data discrepancy modelling
recommendations

Given the complexities of many mechanistic models and the pro-
cesses that we are aiming to model, it will often be very challenging
to find a good discrepancy model. In many cases, the discrepancy
may be highly nonlinear. Indeed, given the very large variation in
models and processes and hence in model discrepancies it is not
possible to offer a general approach that will work in most circum-
stances. Brynjarsdéttir and O'Hagan (2014) and others (Oberpriller
et al., 2021; Van Oijen, 2020) have advocated the use of a Gaussian
Process (GP) as a flexible and powerful approach to discrepancy
modelling and indeed this may be a good approach for many but it
can have significant downsides. Brynjarsdottir and O'Hagan (2014)
show that such an approach can only avoid possible identifiabil-
ity issues between model parameters and model error, finding the
true parameter values and hence be useful for extrapolation pre-
dictions if good prior information is known on the GP parameters
which they acknowledge will in many cases be very challenging. In
addition, using GPs ignores physical mechanisms and can often be
very expensive computationally because it involves the inversion of
a potentially large covariance matrix. In general, in modelling, it is
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good practise to try simple solutions first and only to progress to
more complex solutions such as GP when needed. This motivated
our choice of simple linear bias correction term in the calibration to
represent our uncertainty about model structural errors and data
systematic biases. Similar approaches have been used to correct
for systematic biases in greenhouse gas emission measurement and
modelling by Van Oijen et al. (2011) and biases in soil respiration
data by Fer et al. (2018). With this simple discrepancy model, we
were able to illustrate that the linear bias correction increased the
uncertainty in the joint posterior parameter distribution, making it
more likely that the true parameter value was somewhere in the joint
posterior distribution and that the model included the ‘true’ system
in the posterior predictions. This facilitated a significant improve-
ment of the fit of model predictions to the data even with very un-
balanced datasets. Although even in this very simple case the linear
discrepancy model did not fully recapture all the true model param-
eter settings. Indeed, in many real-world calibrations, a simple linear
modelling approach may be found to be too simplistic; nevertheless,
it has been usefully employed here to illustrate the importance of
addressing model discrepancy and data bias in model calibration;
especially where large calibration data imbalances are present. The
topic of identifying and creating good statistical models of model
discrepancy (and data bias) is not straightforward, and is an impor-
tant area for future research and tool development (Chandler, 2013;
Van Qijen, 2020). Nevertheless, as in all modelling, we advocate be-
ginning with simple approaches, as we have followed here, and add-

ing complexity incrementally.

5 | CONCLUSIONS

The virtual data calibrations presented here demonstrate cleanly
that the underlying issue calibrating models with multiple constraint
unbalanced data is not the unbalance in the data, but that models
and data have systematic errors that remain hidden when we cali-
brate with balanced datasets, but whose influence is only seen in
poor predictions after calibration with unbalanced datasets. This
issue is likely even more rampant in the common case of calibrat-
ing models against a single constraint, but it only becomes apparent
when such models are tested against additional types of observa-
tions. By addressing the underlying cause and including terms in the
calibration for systematic error (discrepancy), we demonstrated that
the model fit to low-volume data can be greatly improved with a
quantification of uncertainty that has sufficient coverage to include

the true system.
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