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A high-speed super-resolution computational imaging technique is introduced on the basis of classical and 
quantum correlation functions obtained from photon counts collected from quantum emitters illuminated 
by spatiotemporally structured illumination. The structured illumination is delocalized—allowing the 
selective excitation of separate groups of emitters as the modulation of the illumination light advances. 
A recorded set of photon counts contains rich quantum and classical information. By processing photon 
counts, multiple orders of Glauber correlation functions are extracted. Combinations of the normalized 
Glauber correlation functions convert photon counts into signals of increasing order that contain increasing 
spatial frequency information. However, the amount of information above the noise floor drops at higher 
correlation orders, causing a loss of accessible information in the finer spatial frequency content that 
is contained in the higher-order signals. We demonstrate an efficient and robust computational imaging 
algorithm to fuse the spatial frequencies from the low-spatial-frequency range that is available in the 
classical information with the spatial frequency content in the quantum signals. Because of the overlap of 
low spatial frequency information, the higher signal-to-noise ratio (SNR) information concentrated in the 
low spatial frequencies stabilizes the lower SNR at higher spatial frequencies in the higher-order quantum 
signals. Robust performance of this joint fusion of classical and quantum computational single-pixel 
imaging is demonstrated with marked increases in spatial frequency content, leading to super-resolution 
imaging, along with much better mean squared errors in the reconstructed images.

Introduction

Imaging makes use of light captured from an object to quantify 
information about the structure and function of the object. 
The ability to discern spatial features in optical imaging is dic­
tated by the information content contained in the light cap­
tured from the object [1]. Information content is limited by 
the properties of propagating radiation when the light used 
to form an image is collected in the far field. The primary 
constraint imposed by light propagation is referred to as the 
diffraction limit, which imposes a spatial resolution restric­
tion on the order of the optical wavelength λ. This is because 
spatial frequencies higher than 1/λ decay exponentially in 
amplitude when propagating away from an object. A revolu­
tion is under way in optical microscopy where the quantum 
properties of light are exploited to extract additional informa­
tion from quantum correlations that are absent in the clas­
sical interpretation [2]. Such quantum information brings new 
possibilities but also its own set of limitations. Here, we de­
velop a broader computational imaging approach to fuse 
quantum and classical information to provide a general solu­
tion that jointly exploits both forms of information for super-
resolution microscopy.

Over the past few decades, numerous super-resolution mi­
croscopy methods have emerged that circumvent the optical 
diffraction barrier by bringing new information into the mea­
surements [3]. This new content is injected by exploiting pho­
tophysical properties such as structured illumination [4,5], 
localization [6], saturated absorption [7], or coherent nonlin­
ear scattering [8,9]. These super-resolution imaging techniques 
treat the total light signal collected during the image exposure 
time classically, and thus, information content is consequently 
restricted.

In fact, additional imaging information can be accessed on 
the basis of fluctuations of the optical signals emitted by the 
object or, alternatively, imparted onto the illumination (excita­
tion) beam [10,11]. Correlations in the emitted light from an 
object can be exploited for scalable enhancements in imaging 
resolution—provided that those temporal fluctuations can be 
measured. Typically camera integration times (greater than 
milliseconds) are sufficiently long such that fluctuations of the 
emitted light intensity are essentially averaged to undetectable 
levels under many circumstances. The temporal fluctuations 
of photons detected in an optical signal depend on the nature 
of the emitters, the emitter environment, the integration time, 
and the detector configuration.
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We focus our attention on self-luminescent emitters, such 
as fluorescent molecules, quantum dots, or color centers, such 
as nitrogen vacancies in nanodiamonds. In the case of lumi­
nescent objects, the collected light lacks spatial coherence, 
which means that the light emitted at distinct spatial locations 
add together through an incoherent intensity sum upon detec­
tion. Single quantum emitters exhibit emission intensity fluc­
tuations on 2 relevant time scales, with classical correlations 
encompassing times greater than microseconds and quantum 
correlations occurring on submicrosecond times [12]. In­
tensity fluctuations can happen when the emitter is removed 
from the population, either temporarily as occurs with quan­
tum dot blinking or molecular photoswitching, permanently 
because of photobleaching, or during the waiting period for 
re-excitation of the emitter to the excited state after photon 
emission.

Specifically, on longer time scales, quantum emitters can 
exhibit fluctuations (blinking) of photon emission due to inter­
mediate trapping in dark (off) states. Such classical fluctua­
tions are impacted by the local environment of the quantum 
probes, and as such, the rates of these dynamics can vary by 
orders of magnitude, ranging from microseconds to minutes. 
The statistics of classical temporal fluctuations in photon emis­
sion are useful for computational super-resolution imaging. 
To extract information from these fluctuating signals, a new 
image signal is obtained by calculating correlations (or auto 
and cross cumulants) between the detected signal photons. 
For conventional imaging methods, the information content 
from light intensity fluctuations is limited by the statistics of 
classical light [10,13].

On shorter time scales (submicrosecond), the light fluctu­
ations are often quantum in nature. Recently, new approaches 
have been introduced that exploit nonclassical light to enable 
super-resolution imaging [2]. The essential quantum property 
that is responsible for super-resolution microscopy [14] is exqui­
sitely simple: a single quantum emitter can only emit 1 photon at 
a time as this emission only occurs when the emitter is in an 
excited state. This key property of single-photon emission pro­
duces a decidedly nonclassical correlation in the photon state. 
Correlations of detected photons from a single emitter will have 
a null at zero delay between photons, a property called anti-
bunching. Such anti-bunching quantum correlations can be 
exploited to distinguish between the spatial location of inde­
pendent quantum emitters. Quantum anti-bunching correlations 
are particularly useful because of their robustness under exper­
imental conditions (e.g., temperature, losses, and scattering). In 
contrast, classical fluctuations experienced by emitters depend 
sensitively on the local environment around the emitter, resulting 
in perturbations that range over orders of magnitude, depending 
on the local experimental conditions.

Anti-bunching correlations are observed in all sorts of 
single quantum emitters (atoms, ions, molecules, and quan­
tum dots) [12,14,15] on time scales that are short compared 
to classical temporal fluctuations [12]. When more than 1 
quantum emitter has a reasonable probability for detection 
in the collected imaging signal, then individual emitters may 
be distinguished through the anti-bunching correlation on 
the basis of the Glauber correlation functions. These correla­
tion functions, given by G(k)

�
td = 0

�
=
�∏k−1

i=0

�
n̂ − i

��
 at 

zero time lag td = 0, can be used to build an image model that 
confers super-resolution properties. Here, n̂ is the number 

operator. Traditional classical information is directly provided 
by the first-order correlation function G(1)(0) =

⟨
n̂
⟩

, which 
is simply the mean photon count recorded during the inte­
gration time of the detector.

Ultimately, the goal of anti-bunching super-resolution im­
aging is to ascertain the spatial location of the emitters by 
counting photons from these emitters extracted from analyz­
ing quantum Glauber correlation functions. Quantum cor­
relation experiments are run in a photon-counting mode, and 
the desired correlations can then be post-selected. The first 
experimental implementation [16] used a straightforward 
method for building an anti-bunching quantum imaging in­
strument that incorporated a photon-counting capable camera 
combined with the pulsed excitation of single quantum emit­
ters [16]. Pulsed excitation ensures that, at most, only 1 photon 
can be emitted by a quantum emitter per excitation. By re­
stricting the pump pulse frequency to the frame rate of the 
camera, direct counting of photons emitted by the sample is 
achieved. The magnification of the microscope was designed 
such that the point spread function (PSF) was oversampled 
by the sensor pixels of the camera. Such oversampling allows 
adjacent pixels to serve as detectors for photons emitted simul­
taneously from different emitters within the PSF. This, in turn, 
enables the estimation of a quantum super-resolution anti-
bunching image so that individual emitters now appear out of 
a single PSF volume. Unfortunately, imaging rates are limited 
by long camera integration times due to relatively slow (∼ kHz) 
frame rates. Confocal detection enjoys faster (megahertz com­
pared to kilohertz) photon counting rates offered by single-
pixel photon-counting modules (SPPCM), but the illumination 
and detection must be scanned across every point within the 
object [17]. When SPPCMs are configured with a set of beam 
splitters, second- and higher-order Glauber correlation func­
tions can be estimated, providing anti-bunching image sig­
nals. Alternately, a high-speed single-photon-sensitive camera 
can be assembled from a fiber bundle arrayed with SPPCMs 
[18–20] or a single-photon avalanche diode array [21]; the field of 
view, but field of view, and thus imaging speed, remains limited.

A subtle limitation is evident in these experiments: the 
quantum-correlation super-resolution comes at a price [16,17]. 
That cost is that only a fraction of the detected photon counts 
can be used for image formation. The impact of such post-
selection of photon counts is that much of the collected infor­
mation is discarded for the quantum super-resolution image. 
In this Article, we introduce a new computational imaging 
strategy that fuses the quantum and classical information to 
provide high-quality imaging that exploits the best of both 
the quantum and classical worlds. This new approach uses 
anti-bunching correlation images combined with classical 
images derived from the same photon-count data. With this 
strategy, the shortcomings of anti-bunching quantum super-
resolution microscopy techniques are averted. In addition, 
we introduce a new strategy for high-speed quantum anti-
bunching super-resolution imaging by adapting a classical 
imaging strategy that used spatiotemporally structured light 
to illuminate an extended spatial region with a series of spa­
tial frequency projections [9,22–26]. By using high-speed 
SPPCMs to allow for the extraction of quantum correlations 
from structured-illumination single-pixel imaging, we intro­
duce new quantum super-resolution capabilities. Specifically, 
we develop and demonstrate a computational imaging strategy 
that integrates the best features of the quantum and classical 
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imaging modalities. The strategy is simple to implement be­
cause the classical and quantum signals are directly extracted 
from a single data stream: the set of photon counts from high-
speed single-photon-counting detectors. To robustly fuse the 
high signal-to-noise ratio (SNR) but low-spatial-frequency 
information from the classical information with the lower 
SNR, but higher-spatial-frequency information from the quan­
tum correlations, we developed a new computational imaging 
algorithm to jointly deconvolve the data from various orders 
of quantum and classical images and simultaneously improve 
the image SNR across a broad spectrum of spatial frequencies. 
This approach benefits from the redundancy in overlap of in­
formation across lower spatial frequency regions. In particu­
lar, the low-spatial-frequency content that is common to all 
of the imaging modalities must be self-consistent. This self-
consistency requirement enforces a greater accuracy in the 
image estimation of the higher spatial frequency content from 
the quantum information. The result is that high-speed, super-
resolution images with high SNR can be obtained with our 
fusion of computational quantum-classical image informa­
tion, which we refer to as super deconvolution imaging (SDI).

Methods 

New imaging information from  
nonclassical correlations
To facilitate high-speed super-resolution imaging with quantum 
correlations, we combine temporally structured illumination 
with single-pixel photon-counting detection for computational 
imaging. A generalized Hanbury Brown–Twiss (HBT) detection 

strategy enables estimation of the number of photons emitted 
by the specimen for each excitation pulse (see Fig. 1). The changes 
in spatial structure of the illumination light is indexed by φ, 
which evolves in time, and from which the image is estimated 
computationally. A set of photon counts captured from Nbin 
excitation pulses for a given illumination light spatial structure 
with time index φ is used to compute zero-delay Glauber cor­
relation functions. To simplify the description, we adopt the no­
tation for the correlation around φ of G(k)

(

td = 0
)

→ G
(k)

0
(φ). 

The classical image signal S(1)(φ) is simply the mean number 
of detected photoelectrons, which is proportional to the num­
ber of detected photons 

⟨
n̂
⟩
(φ) = G

(1)
0
(φ). Higher-order statis­

tical processing of the photon-count data to obtain correlation 
functions for k > 1 reveals quantum anti-bunching correlations 
that are otherwise hidden (or lost) in the photon counts. Thus, 
by computing higher-order correlation functions, indexed by 
k, quantum images can be extracted from the single-photon-
count dataset, as shown in Fig. 2.

As noted, anti-bunching is a distinct hallmark of single 
quantum emitters that can be, and has been, exploited for 
super-resolution imaging [14,16–18,27]. The essential quan­
tum computational imaging information is gleaned from the 
Glauber correlation functions computed from measured pho­
ton counts from which anti-bunching effects from quantum 
emitters are extracted. We are specifically interested in the 
correlation function at zero delay, td = 0. For a photon emitted 
at a time td = 0, it is not possible for another photon to be 
emitted from the same emitter. The ability to detect a second 
photon from this emitter is conditioned on the emitter being, 
once again, promoted to the excited state. In addition, there is 
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Fig. 1. Conceptual rendering of the experiment showing a spatiotemporally modulated optical illumination by a sparse set of mutually coherent beams. Beam interference 
produces the spatially structured illumination as illustrated in the main figure and insets (A) and (B). A large focal volume is achieved because each beam encompasses a 
small region of spatial frequency support in the pupil plane. The center spatial frequency of the beams scans across the pupil, cycling through a set of complex illumination 
patterns with spatial frequency structure the samples the full numerical aperture (NA) of the illumination objective lens throughout the full temporal modulation cycle. The 
figure shows an unfolded microscope; however, epi detection is possible. Detection efficiency could be improved by combining photon coincidence counts in multiple directions. 
(A) A zoomed-in example of the structured illumination light intensity at 1 time sample. The specimen is placed in the region of the slide. (B) The spatial structure of the 
illumination intensity in the plane of the slide for 2 time points. (C) Examples of generalized HBT detection showing cases of 2 and 3 simultaneous photon detection events.
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a time interval that the emitter must wait before another pho­
ton is emitted after the emitter returns to the excited state. The 
net time scale thus depends on the spontaneous emission rate 
and the pumping rate. Consequently, at zero time delay, td = 
0, the normal-ordered Glauber correlation function of light 
emitted by a single quantum emitter vanishes, G(2)(td = 0). This 
behavior is a reflection of the simple fact that the emitter is 
not capable of immediately emitting another photon. Here, we 
will be using the normalized Glauber correlation function 
g(k)(td) = G(k)(td)/(G(1)(0))k.

In contrast, when photon emission can be collected from mul­
tiple quantum emitters (within a single detection volume), the 
emitters emit light independently, and even if the emitters exhibit 
correlations at some initial time, say during excitation, the emit­
ters dephase rapidly, which is evident in the broad emission band­
width of an uncorrelated ensemble of quantum emitters. Thus, a 
large number of emitters exhibits a net emission that is completely 
uncorrelated, so that the correlation function is simply the mean 
photon count, g(2)(td) →1. However, for the case where a small 
number of emitters are contained within the detection volume, 
the correlation function can be written as g(2)(0) = 1−1/N, which 
is simply a consequence of the fact that after 1 emitter has released 
a photon, there are (N – 1) remaining emitters that can also produce 
a photon. Here, we see that in the limit of large N, g(2)(τ) →1 [15].

The factors that influence the photon detection probability 
are illustrated in Fig. 1 and are determined by the photon emis­
sion, pe, and photon collection,  pc, probabilities. As these prob­
abilities are uncorrelated, the total detection probability is 
simply the product of these probabilities, pd = pe × pc. The emis­
sion probability depends on both the photophysical properties 
of the emitter and by the spatial distribution of the optical illu­
mination that excites the emitter, which for our purposes will 
be controlled by resonant optical excitation. In contrast, the 
collection probability is determined by the size and configura­
tion of the optical detector and the collection optical system.

For incoherent light emitted by an ensemble of quantum 
emitters, we may describe the probability of light detection as 
the product of the total collection efficiency, ηt, and with the 
image transfer function probability density function, h(xd,xo), 
where xo and xd are the object and detection plane transverse 
coordinate, respectively. The total collection efficiency is the 
product of the detector quantum efficiency, the collection effi­
ciency of the optical system, and the total intensity transmission 
through all optical components. The collection probability is 
then obtained from the spatial integral across the spatial domain, 
D, of the photodetector, leading to pc(xi) = ηt ∫ D h(xd,xo) d2xd. 
The collection probability for single-pixel computational imag­
ing is determined by the experimental arrangement but can 

Fig. 2. Illustration of the computation of Glauber correlation functions from the number of detected photon counts after each excitation pulse. Each group of photon counts 
from which the correlation functions are computed correspond to a particular spatial illumination pattern. (A) Modified HBT detection for estimating the number of detected 
photons recorded during each excitation pulse cycle. (B) Monte Carlo simulation of the number of photon counts produced by 3 emitters for each excitation pulse. The 
emission probability for each emitter is proportional to the spatiotemporal illumination intensity pattern at the location of that emitter. Photon emission is modeled as a 
Bernoulli process with an event occurrence probability determined by the excited-state population using the photo-physical model described in the text. (C and D) Examples 
of the subselection of the population of detected photons for 2 spatial patters occurring over Nbin pulses. (E) Un-normalized, zero-delay Glauber correlation functions, , 
for k = 1,2,3 are computed from the photon counts binned for consecutive sets of Nbin detected photon numbers centered on a structured intensity index φ, as illustrated by 
the shaded regions examples for φa and φb. (F) and (G) illustrate the 2 illumination intensity patterns, In(x,φ), at a particular times indicated by φ. These examples are shown 
in 2 dimensions for clarity and highlight specific examples appearing in the photon counts for Nbin pulses. Each illumination pattern can excite a subset of the emitters. The 
number of detected photons for a given excitation pulse number is modulated by the excitation probability for each illuminated emitter, the direction of photon propagation, 
and losses and inefficiencies in the detectors. In (F), 3 of the emitters are partially illuminated, whereas in (G), 3 emitters are strongly illuminated. Images are constructed by 
exploiting the known spatial illumination patterns at each φ point in the Glauber correlation functions.
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generally be expressed as a constant p
j
c(�) = �c that depends 

on the efficiency of collection optics and detectors. The limited 
efficiency of collection does not impact the single-pixel com­
putational imaging model, so we will focus on the emission 
probability.

In order for a given emitter to release a photon, the emitter 
must be in the excited state, ∣e 〉. In an imaging experiment, a 
population of emitters in the object will be illuminated (see 
Fig. 2F and G) and some fraction of those emitters will be 
promoted from the ground to the excited state. Assuming 
pulsed optical excitation, we may estimate the excited-state 
population by solving for the population kinetics. The proba­
bility of excitation depends on the local illumination intensity, 
which we write in with unit intensity magnitude as In(xo, t), 
and the excited-state population may be related to the illumi­
nation intensity through a nonlinear function, F[·], in the case 
of saturated or multiphoton absorption. The illumination 
intensity and physical properties of the emitter determine the 
emission probability, pe(xo, t) = kr|e(xo, t)〉. For an emitter in 
the excited state at some time t, the rate of photon emission 
can be generally modeled with first-order rate kinetics, as an 
exponentially decaying probability density with a decay time 
constant of the emission rate, kr.

A model for the multiphoton state produced by a set of in­
dependent quantum emitters can readily be constructed by 
assuming lossless detection. This assumption only modifies the 
rate of photon counting without distorting the quantitative 
forward model. If we were restricted to a single emitter, labeled 
by j, then the number operator for the detected photon state is 
simply n̂j = â

†
j
âj. The density operator for this single-photon 

state, ̂�j =
�
1 − p

j
e

�
xo,j

��
�0⟩⟨0� + p

j
e

�
xo,j

�
�1⟩⟨1� , depends on 

the probability of emission p
j
e for an emitter positioned at loca­

tion xo,j.
In imaging, there will generally be more than 1 emitter with 

a nonzero detection probability. The expected number of 
detected photons is given by 

⟨
n̂
⟩
= Tr

{
�̂ n̂

}
, where the total 

number operator, n̂ =
∑

j n̂j, for the multimode photon state 
produced by an ensemble of N quantum emitters described 
by the density operator for the multiphoton state of  �𝜌 = ⊗N

j=1
�𝜌j. 

With a large ensemble of excited quantum emitters, the random 
fluctuations reduce to a statistical ensemble, and thus only clas­
sical correlations are observed, with all quantum correlations 
obscured. We require that the number of excited states are small 
enough so that the anti-bunching signal can be experimentally 
discerned.

Hybrid quantum-classical computational  
imaging with sinusoidally structured illumination: 
forward model
A key requirement for computational imaging is the existence 
of a high-quality, computationally efficient forward model. Here, 
we provide the models for both the quantum anti-bunching 
and classical forward imaging techniques. We focus on spatio­
temporally structured illumination with a pulsed laser source 
[9]. In the typical scenario, the excitation pulses are simulta­
neously several orders of magnitude shorter than the lumines­
cence lifetime of the emitters and the period between pulses 
is at least 4 to 5 times larger than this same temporal relaxation 
time. These conditions ensure that, with high probability, only 

1 photon may be emitted by each emitter for each pulse. As 
we have discussed, the collection probability is constant across 
emitters, so that we now only need to establish a quantitative 
model for the variation of the emission probability within the 
spatiotemporally modulated illumination intensity.

The probability of emitted light for pulse excitation is driven 
by the peak excited-state population. Following excitation of 
an emitter by a pump pulse arriving at time t0 with a pulse 
duration, Tpu much shorter than the excited-state lifetime, τe, 
so that Tpu ≪ τe = (kr + knr)

−1, the excited-state population 
decays exponentially, ∣e(xo,t) >= em exp (−[t−t0]/)τe) for t ≥ 
t0, from the peak excitation probability em. Here, knr is the 
nonradiative decay rate. Thus, while the probability of the 
excited-state population, and thus the emission probability, 
decays exponentially after pulsed excitation, the total proba­
bility of emission after pulsed excitation for a single quantum 
emitter is equal to the peak excited-state population, em.

The peak excitation probability em depends on the illumi­
nation intensity impinging on the emitter. We consider pulsed 
illumination with a peak intensity that varies across the object 
coordinate as Iill(xo,φ) = Imax In(xo,φ). The global maximum 
for the illumination intensity is denoted as Imax so that In is the 
structured illumination intensity with the peak intensity nor­
malized to unity. The excited-state probability varies in space 
and time because of the nonlinear map, F[·], from the normal­
ized illumination intensity to the emission probability em = 
F[In](xo, φ). Here, φ denotes a time-dependent variation on 
the illumination intensity. In the case of short pulse excita­
tion considered here, the excitation function is F[·] = 1−
exp[−γpuIn(xo,φ)]. The peak emission probability also scales 
with the pump saturation parameter γpu = α0(Tpu/τe) and where 
α0 = Imax/Isat, with Isat denoting the emitter saturation intensity.

Because the collection geometry (see Fig. 1) is such that the 
photon emission is collected uniformly from across the object 
spatial distribution, the detection probability from a set of emit­
ters is p

(�)

d
= pc ∫ em

(
xo,�

)
c�
(
xo
)
d2xo , where cσ is the surface 

concentration for a 2-dimensional distribution of quantum 
emitters. If we consider a discrete set of emitters located at the 
points xj, then c(xo) = ∑j δ(xo−xj).

Measured photon counts may be processed to compute the 
normalized Glauber correlation functions (see Fig. 2) from 
which we extract quantum correlations for super-resolution 
imaging. Modulation pattern-dependent signals extracted from 
the kth-order signal can be adapted from previous expressions 
[14,17,27] to give a signal of the form

where y(k)(φ) is a polynomial function that depends on 
the order k. These polynomial functions are easily derived 
using the density matrix of the multiphoton state. The first 2 
orders are y(2)(�) = 1 − g

(2)
0
(�)   and  y(3)(�)=1−(3∕2) g

(2)

0
(�)+

(1∕2) g
(3)

0
(�). Here, we define the zero-delay correlation func­

tions for the spatial structured illumination pattern indexed by 

φ as g
(k)
0

(�) = G
(k)
0
(�)∕

[
G
(1)
0
(�)

]k
.

Previous anti-bunching imaging experiments used the sig­
nals given in Eq. 1 as the estimates of the images. Extension 
of anti-bunching super-resolution imaging to quantum com­
putational imaging requires a new approach. The recorded 

(1)S(k)(�) =
⟨
n̂
⟩k
(�) y(k)(�) ,
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signal model is . With the pulsed 
model of the excitation probability, this model can be rewritten 
as S(k)(φ) = (Φ pc)

k∫cσ(xo)Fk[In(xo,φ)] d2xo. In this new ap­
proach, we derive classical information from k = 1 and quan­
tum information from the higher orders, k > 1.

Considering a specific scenario in which a modulated line 
focus with a geometry set by xo = (x, y) is employed [22,26], 
with a normalized intensity given by In(xo,φ) = ρ(y)(1 + 
cos[Ξ])2/4, where Ξ = ωc φ + 2 π κ x φ and ρ(y) is the intensity 
distribution perpendicular to the line focus. A simplified ex­
pression can be obtained from a cosine series expansion of Fk[·], 
so that our signal becomes

The cosine expansion terms simply read

Classical and quantum images may now be estimated from the 
set of demodulated signals

The signals shown in Fig. 2E are the extracted photon counts 
collected from a sweep of the illumination modulation pattern 
for a given position of a line focus illumination [9] or several 
line cursors [28]. Referring to Eq. 3, we see the object that we 
wish to recover is related to the signal from a set of projections 
that are manifested in the signal orders q, k. Each signal term, 
q, in the kth-order cosine expansion then provides additional 
super-resolution orders as we previously established for clas­
sical single-pixel structured illumination [9]. Processing of the 
signal traces in Fig. 2E produces a set of line images. A full 
image is built from scanning the line focus, but speed is im­
proved compared to confocal imaging due to the reduced num­
ber of scan points required.

Each of the signals for a given k and q can be represented 
as an estimated image from 1 photon-count dataset. The 
estimated image that takes the form of a convolution, 
ĉ = c� ∗ PSF

(k)
q , of the desired object, cσ with the PSF for the 

given image order. The PSF for the (k, q)th order is directly 
obtained from the cosine expansion coefficients using an 
inverse Fourier transform with respect to the modulation spa­
tial frequency in the φth illumination pattern f

(�)
x = � �, lead­

ing to PSF(k)q

(
xo
)
= ∫ b

(k)
q

(
�,y

)
exp

(
i 2 � x q f

(�)
x

)
df

(�)
x .

SDI to fuse quantum and classical information
The detection of photon counts from spatiotemporally mod­
ulated illumination provides a set of images that span over a 
set of indices of the photon correlation order, k, and the cosine 
expansion order of the nonlinear excitation, q. It is evident 
from Eq. 3 that higher resolution (higher spatial frequency 
content) is contained in the higher-order (k, q) terms. In addi­
tion, we see that since Φ,pc < 1, the higher-order terms drop 
in intensity. Thus, the resolving power of this imaging strategy 
is limited by the noise as the signal drops for higher-order 

expansion terms. We have developed a computationally efficient 
joint deconvolution strategy to fuse the super-resolution 
imaging information from the set of quantum and classical 
images that can be extracted from the signal vectors in Eq. 3. 
This SDI strategy benefits from the requirement of self-
consistency of information obtained across the ranges of 
spatial frequency information support that increases with 
higher expansion orders. The computational imaging prob­
lem here is one where we seek to fuse the information from 
both quantum and classical images that are well-modeled 
by a linear convolution model to estimate the object cσ. 
While this can be viewed as a simple problem of minimizing 
the difference between the measured data and the estimated 
signal derived from the estimated object, the challenge is 
that the large set of images that need to be jointly decon­
volved lead to an intractable numerical computation prob­
lem if we seek to solve the problem directly. Consequently, 
we have developed a computationally efficient algorithm 
that avoids the instantiation of large matrices in computer 
memory that would be required for directly solving this 
problem.

The data for each image are obtained from the collected 
photon counts such as shown in Fig. 2B. These counts are 
based on a Monte Carlo simulation of photon emission from 
a set of 3 quantum emitters. Photon counts for each excitation 
pulse are plotted. The set of photon counts are binned, with 
Nbin = 50, and the zero-lag Glauber correlation functions, 
G(k)(0), are computed (as displayed in Fig. 2C). Using Eq. 3, 
discrete signal models, y(k) = S̃

(k)
q + �

(k)
q , are obtained. All of 

these vectors are obtained from statistics extracted from each 
set of Nbin detected pulse counts that are converted into the 
signal terms using Eq. 1. The variable �(k)q  is a noise vector. 
Each of the noise-free demodulated signal vectors are mod­
eled as a linear correlation with the discrete PSF matrix oper­
ator, A(k)

q , as S̃(k)q = A
(k)
q c. The vector c is the discrete form of 

the object that we wish to estimate.
The set of signal data from the classical, k = 1, and quan­

tum 1 < k ≤ Kmax image orders, for each of the modulation 
expansion orders q ∈ {1,…,qmax} leads to a large set (J = qmax­
Kmax) of images. We will index elements of this entire set with 
the subscript j. To jointly solve for the underlying object esti­
mate using the full set of image data, we concatenate the sig­
nals into 1 long vector yT = {y1|⋯|yJ}. Each signal is of length 
Ns, so that the total concatenated vector is J Ns. Similarly, we 
concatenate the convolution matrices to form AT. The goal is 
to estimate the object by formulating the problem as a least 
mean squared fit

We make use of forms of gradient descent to solve our prob­
lem, which requires the computation of the adjoint of AT. 
Because of the size of AT and A, matrix computations using 
these matrices are not feasible. Instead, we observe that the 
adjoint of the convolution is a cross correlation and that the 
operation of these large matrices can instead be efficiently 
computed using fast Fourier transform operations. As the 
object estimated must first be padded along the concatenation 
direction, the resulting cross correlation is cropped to recover 
the adjoint operation.

(2)S(k)
(

�, y
)

=

∞
∑

q=−∞

S̃
(k)
q

(

�, y
)

exp
(

− i �c �
)

.
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(
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)

=
1
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(
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Results

Simulations of joint SDI image estimation fusing classical and 
quantum information were implemented for mean photon 
counts ranging 7 orders of magnitude from n = 5 to n = 5 × 106. 
In a photon counting regime, noise in the measurement can 
be accurately described with Poissonian statistics. While 
imaging resolution is often discussed as an absolute property 
that is determined by the properties of an optical instrument, 
that is only part of the story. The optical instrument does 
determine the PSF; however, it is impossible to determine 
spatial resolution without knowledge of the SNR levels. All 
imaging methods exhibit an imaging resolution that is con­
strained by the SNR. Our strategy extracts more information 
from a dataset than is possible with conventional imaging 
strategies, because both classical and several orders of quan­
tum anti-bunching images are obtained. While each of these 
images exhibits an SNR that limits imaging resolution, when 
the sets of quantum and classical images are jointly decon­
volved, the new estimated images displays a vastly improved 
SNR. Because we are performing simulations, the true SNR 
performance may be directly validated.

In Figs. 3 and 4, we see simulated images for both low and 
high mean-photon-count levels. The test image is based on 
Siemens spoke test pattern, a radial grating, and a cluster of 4 
points. We show the classical image at the low and high photon 

counts, along with the joint quantum-classical image for k = 
2&3 Glauber correlation functions. It is evident that the joint 
information extracted from the exact same dataset from the 
SDI algorithm applied to the quantum and classical images is 
far superior to the simple classical image. The intuition that 
higher spatial frequency content is available is more readily 
apparent in the radially averaged spatial frequency content 
from the images that is shown in Figs. 3C and F and 4C and 
F. Here, we see that the simple classical image information 
drops precipitously above a normalized transverse spatial fre­
quency of λ f⊥ > 2. By contrast, in the joint quantum-classical 
estimated image, the transverse spatial frequency support is 
maintained across the full relevant spatial frequency band. 
Similar trends are observed for both the 1- and 2-photon 
absorption cases; however, the 2-photon case displays better 
absolute resolution as one expects [9].

Example calculations for low photon counts for 1 photon 
imaging are in Fig. 4A to C and for the 2-photon case in Fig. 
4A to C. The classical cases are both shown in panels A of the 
figures. In the linear (1 photon absorption) excitation case, 
virtually no spatial features are resolved (Fig. 3A), which can 
be seen in the radially average spatial frequency trace for k = 
1 in Fig. 3C. Similarly, for the low-photon-count case with 
the nonlinear (2-photon absorption) excitation case, some 
spatial features are resolved but are buried in the noise (Fig. 
4A), and still, the radially averaged spatial frequency support 

Fig. 3. Results of the joint deconvolution algorithm fusing both classical and quantum information for linear absorption. Insets (A) and (D) are the highest-resolution images 
using classical information (k = 1, q = 2) for a mean photon count levels n = 500 a) and n = 5 × 106 (D). Insets (B) and (E) combine both classical and quantum image 
orders (k = 1,2,3) also for mean photon count levels n = 500 (B) and n = 5 × 106 (E). Inset (C) and (F) show the radial averageof the Fourier transform of the reconstructions 
compared to the actual image used in the simulation for photon count levels of n = 500 (C) and n = 5 × 106 (F). Scale bar is 5λ.

D
ow

nloaded from
 https://spj.science.org on January 05, 2023

https://doi.org/10.34133/icomputing.0003


Bartels et al. 2022 | https://doi.org/10.34133/icomputing.0003 8

is poor as shown in k = 1 in Fig. 4C. Taking the signals derived 
from second- and third-order Glauber correlations to produce 
quantum images (k = 2,3), along with the classical image (k = 
1), the resultant application of SDI to that full set of images 
produces a high-quality image with low noise as shown in Figs. 
3B and 4B for the 1- and 2-photon absorption cases, respec­
tively. The improved image quality is evident in the radial 
spatial support in the C panels. The lower rows in Figs. 3 and 
4 show the results of SDI applied to a high average photon 
count case. As expected, the noise is low in all cases, we also 
see that in the classical case, image features are still poorly 
resolved, whereas the joint quantum-classical reconstructions 
shows high image quality with a near perfect match between 
the ideal and reconstructed radially averaged spatial frequency 
support.

The quality of the image obtained from the data can be 
computed from the mean squared error (MSE), defined as 
MSE = N−1 ∑N

i=1

�
Xi−X∗

i

�2 where N is the total number of 
elements, X is the true image, and X∗ is the image estimated 
from the data. In Fig. 5, we provide the MSE for a wide range 
of algorithm performance conditions, where we investigate 
classical, quantum, and joint computational imaging strategies 
for a wide range of mean photon count levels. The classical 
case failed for the case of n = 5, while the joint quantum-
classical SDI reconstruction still yielded an MSE of 0.0595 for 
2PA and 0.0707 for 1PA, so Fig. 5 starts at n = 50. The variation 

in mean photon count also severely impacts the SNR of the 
data. Because there are a wide array of possible classical images 
that we can extract from the spatial frequency orders, q, to 
reduce the dimensionality of the data, we report the best MSE 
across all q values for the classical case. The MSE for quan­
tum-only image estimates is treated similarly, and finally the 
joint deconvolution using SDI is shown.

Conclusion
In general, super-resolution microscopy techniques make use 
of additional information that can be accessed with either the 
manipulation of the excitation process for an imaging probe 
or by exploiting the properties of the emitted light. Anti-
bunching super-resolution microscopy is a promising new 
direction that exploits quantum correlation from single quan­
tum emitters [14]. Previous experimental anti-bunching imag­
ing systems suffered from low imaging rates. We introduce a 
new strategy for high-speed anti-bunching super-resolution 
microscopy based on the illumination of the sample with a 
temporally varying sequence of spatially structured illumi­
nation light. While this spatiotemporally structured light il­
lumination strategy enjoys the benefits of the highest-speed 
photon-counting detectors and faster imaging than point-by-
point confocal scanning, this quantum imaging strategy still 
has the limitation of the quantum anti-bunching super-resolution 

Fig. 4. Results of the joint deconvolution algorithm fusing both classical and quantum information for 2 photon absorption. Insets (A) and (D) are the highest resolution images 
using classical information (k = 1, q = 4) for a mean photon count of n = 500 (A) and n = 5 × 106 (D). Insets (B) and (E) combine both classical and quantum image orders 
(k = 1,2,3) also for mean photon counts of n = 500 (B) and n = 5 × 106 (E). Inset (C) and (F) show the radial average ofthe Fourier transform of the reconstructions compared 
to the actual image used in the simulation for mean photon count levels n = 500 (C) and n = 5 × 106 (F). Scale bar is 5λ.
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microscope: the reduced total photon counts from the post-
selected correlation functions. The lowest-order correlation 
function (k = 1) is restricted to classical information and thus 
cannot improve the spatial resolution by using the quantum 
correlations that are present in higher-order correlation func­
tions. Unfortunately, the number of counts that contribute to 
successively higher signals drops by at least an order of mag­
nitude between successive correlation signal orders k [16,17]. 
Thus, higher-spatial-resolution information suffers from a 
reduced SNR at increasingly larger correlation orders.

The drop in SNR of high-spatial-frequency information is 
an important challenge observed in anti-bunching quantum 
images that are post-selected from second- and higher-order 
Glauber correlation functions. This means that, while the 
quantum anti-bunching images contain more information on 
very small, and thus high, transverse-spatial-frequency fea­
tures, the SNR is lower than the classical counterpart that is 
obtained from the first-order correlation function. We have 
developed an algorithm that fuses the high SNR information 
available in the quantum information with the lower SNR 
information from the higher-order quantum signals. The spa­
tial frequency content from each of the set of images is jointly 
deconvolved with the PSF of each of the images obtained from 
the photon-count data. Because all of the images contain infor­
mation that overlaps in lower spatial-frequency ranges, and 
because the same underlying object is being probed, the algo­
rithm exploits the requirement of self-consistency of the over­
lapping measured spatial frequency information to bootstrap 
the lower SNR information at high spatial frequencies that is 
contributed by the quantum images. Of particular utility here 
is that from 1 dataset, we can derive a large number of images 
from classical, and then various orders of quantum correla­
tions. Thus, our strategy is able to extract substantially more 
information from a single measurement, optimizing the infor­
mation content extraction obtained from the measurement. 
Notably, the fusion of classical and quantum information boosts 
the SNR of the image that is retrieved from the algorithm. Our 
SDI algorithm is extremely versatile as it does not require a-priori 
information about the object, such as sparsity [20]. All that is 

required is the set of images extracted from the classical and 
quantum information in the data to be combined with an esti­
mate of the imaging PSF for each modality. On the basis of this 
set of information, our efficient SDI algorithm fuses the infor­
mation from the multiple imaging modalities. By enforcing 
self-consistency between the regions of spatial frequency infor­
mation overlap, we produce a high-SNR super-resolution image 
based on this synthesis of quantum and classical information. 
Our algorithm only requires a set of images with known PSFs 
and thus can be used in any imaging system that obtains mul­
tiple images from a set of measurements. While prior object 
information is not required if such prior information does exist, 
it can be used to good advantage as a regularization in the image 
reconstruction algorithm.

In addition to the fusing of classical and quantum informa­
tion, our new quantum computational imaging approach uses 
a previous strategy of classical super-resolution imaging method 
that we demonstrated for computational single-pixel super-
resolution imaging [9,26]. As a result, we exploit 2 co-operative 
mechanisms for improving the imaging resolution: anti-
bunching and nonlinear generation of addition spatial fre­
quency harmonics. These 2 resolution enhancement pathways 
result in broadened spatial frequency support, as depicted in 
Figs. 3 and 4. A common feature of super-resolution micros­
copies is that the higher-spatial-frequency information is 
obtained at the price of reduced SNR in that information. 
The fusion of both the multiple pathways for high-spatial-
frequency information enables a substantially higher SNR in 
the images than would be possible by directly using a single 
super-resolution image.

Another advantage brought by our approach is improved 
imaging speed. Our strategy adapts a single-pixel computational 
super-resolution imaging modality to exploit anti-bunching to 
exploit quantum correlations for enhanced super-resolution 
imaging. The single-pixel detection structured-illumination 
strategy that we use here is called SPIFI (for SPatIal Frequency 
modulation for Imaging) [22]. The fact that SPIFI uses spatio­
temporally structured illumination enables an extended illumi­
nation region, while being able to exploit the ∼ 107−109 × faster 

Fig. 5. MSE for image reconstructions using signal orders (k = 1, k = 2, k = 3) and joint SDI of the combined quantum and classical information (k = 1,2 and k = 1,2,3) for linear 
(1PA) (A) and 2 photon absorption (2PA) (B) across many different photon count levels. For each correlation order, the lowest MSE across the corresponding set of images 
(indexed by q) is reported. The classical case is restricted to k = 1. Quantum images are derived from k = 2, and k = 3. Thejoint SDI images are given for the sets of k-values: 
k = 1,2 and k = 1,2,3 which include all corresponding q values. For the linear absorption SDI case including correlation orders k = 1,2,3 there are a total of 12 images which 
have been jointly deconvolved and 24 for TPA case. Using correlation orders k = 1,2 there is a total of 6 and 12 images for 1PA and 2PA respectively.
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photon counting rate of single-pixel photon-counting detectors. 
This development makes the best of both worlds of previous 
anti-bunching imaging by simultaneously making use of spa­
tially extended illumination and high-speed photon counting. 
The previous disadvantages of slow camera photon counting in 
widefield illumination [16] or point detection that requires slow 
scanning to form an image [17].

A further practicality of our strategy is that our approach 
can be implemented in existing multiphoton laser scanning 
microscopes simply with the introduction of a cylindrical lens 
and a modulator disk [29] and the use of time-correlated single-
photon detection. As a result, existing laser scanning micro­
scopes can be readily upgraded to extend the imaging resolution 
of those systems. The fusion algorithm that we present here 
has much wider application than this particular imaging mo­
dality. The widespread utility rests on the simplicity of the 
algorithm: that this provides an approach for computationally 
efficient joint deconvolution of a set of images of 1 object that 
are captured with a set of diverse PSFs and may be described 
with a standard convolutional model of imaging [1]. Example 
applications where the SDI algorithm could provide advan­
tages include SAX imaging [7] and various correlative micro­
scopies. Because of the multiple aspects where both the imaging 
modality for quantum-classical single-pixel imaging and the 
general strategy for obtaining an image of an object that is 
probed by diverse imaging modalities, we anticipate widespread 
use of the techniques demonstrated in this work.
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