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Ahigh-speed super-resolution computational imaging technique is introduced on the basis of classical and
quantum correlation functions obtained from photon counts collected from quantum emitters illuminated
by spatiotemporally structured illumination. The structured illumination is delocalized—allowing the
selective excitation of separate groups of emitters as the modulation of the illumination light advances.
Arecorded set of photon counts contains rich quantum and classical information. By processing photon
counts, multiple orders of Glauber correlation functions are extracted. Combinations of the normalized
Glauber correlation functions convert photon counts into signals of increasing order that contain increasing
spatial frequency information. However, the amount of information above the noise floor drops at higher
correlation orders, causing a loss of accessible information in the finer spatial frequency content that
is contained in the higher-order signals. We demonstrate an efficient and robust computational imaging
algorithm to fuse the spatial frequencies from the low-spatial-frequency range that is available in the
classical information with the spatial frequency content in the quantum signals. Because of the overlap of
low spatial frequency information, the higher signal-to-noise ratio (SNR) information concentrated in the
low spatial frequencies stabilizes the lower SNR at higher spatial frequencies in the higher-order quantum
signals. Robust performance of this joint fusion of classical and quantum computational single-pixel
imaging is demonstrated with marked increases in spatial frequency content, leading to super-resolution
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imaging, along with much better mean squared errors in the reconstructed images.

Introduction

Imaging makes use of light captured from an object to quantify
information about the structure and function of the object.
The ability to discern spatial features in optical imaging is dic-
tated by the information content contained in the light cap-
tured from the object [1]. Information content is limited by
the properties of propagating radiation when the light used
to form an image is collected in the far field. The primary
constraint imposed by light propagation is referred to as the
diffraction limit, which imposes a spatial resolution restric-
tion on the order of the optical wavelength 4. This is because
spatial frequencies higher than 1/4 decay exponentially in
amplitude when propagating away from an object. A revolu-
tion is under way in optical microscopy where the quantum
properties of light are exploited to extract additional informa-
tion from quantum correlations that are absent in the clas-
sical interpretation [2]. Such quantum information brings new
possibilities but also its own set of limitations. Here, we de-
velop a broader computational imaging approach to fuse
quantum and classical information to provide a general solu-
tion that jointly exploits both forms of information for super-
resolution microscopy.
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Over the past few decades, numerous super-resolution mi-
croscopy methods have emerged that circumvent the optical
diffraction barrier by bringing new information into the mea-
surements [3]. This new content is injected by exploiting pho-
tophysical properties such as structured illumination [4,5],
localization [6], saturated absorption [7], or coherent nonlin-
ear scattering [8,9]. These super-resolution imaging techniques
treat the total light signal collected during the image exposure
time classically, and thus, information content is consequently
restricted.

In fact, additional imaging information can be accessed on
the basis of fluctuations of the optical signals emitted by the
object or, alternatively, imparted onto the illumination (excita-
tion) beam [10,11]. Correlations in the emitted light from an
object can be exploited for scalable enhancements in imaging
resolution—provided that those temporal fluctuations can be
measured. Typically camera integration times (greater than
milliseconds) are sufficiently long such that fluctuations of the
emitted light intensity are essentially averaged to undetectable
levels under many circumstances. The temporal fluctuations
of photons detected in an optical signal depend on the nature
of the emitters, the emitter environment, the integration time,
and the detector configuration.
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We focus our attention on self-luminescent emitters, such
as fluorescent molecules, quantum dots, or color centers, such
as nitrogen vacancies in nanodiamonds. In the case of lumi-
nescent objects, the collected light lacks spatial coherence,
which means that the light emitted at distinct spatial locations
add together through an incoherent intensity sum upon detec-
tion. Single quantum emitters exhibit emission intensity fluc-
tuations on 2 relevant time scales, with classical correlations
encompassing times greater than microseconds and quantum
correlations occurring on submicrosecond times [12]. In-
tensity fluctuations can happen when the emitter is removed
from the population, either temporarily as occurs with quan-
tum dot blinking or molecular photoswitching, permanently
because of photobleaching, or during the waiting period for
re-excitation of the emitter to the excited state after photon
emission.

Specifically, on longer time scales, quantum emitters can
exhibit fluctuations (blinking) of photon emission due to inter-
mediate trapping in dark (off) states. Such classical fluctua-
tions are impacted by the local environment of the quantum
probes, and as such, the rates of these dynamics can vary by
orders of magnitude, ranging from microseconds to minutes.
The statistics of classical temporal fluctuations in photon emis-
sion are useful for computational super-resolution imaging.
To extract information from these fluctuating signals, a new
image signal is obtained by calculating correlations (or auto
and cross cumulants) between the detected signal photons.
For conventional imaging methods, the information content
from light intensity fluctuations is limited by the statistics of
classical light [10,13].

On shorter time scales (submicrosecond), the light fluctu-
ations are often quantum in nature. Recently, new approaches
have been introduced that exploit nonclassical light to enable
super-resolution imaging [2]. The essential quantum property
that is responsible for super-resolution microscopy [14] is exqui-
sitely simple: a single quantum emitter can only emit 1 photon at
a time as this emission only occurs when the emitter is in an
excited state. This key property of single-photon emission pro-
duces a decidedly nonclassical correlation in the photon state.
Correlations of detected photons from a single emitter will have
a null at zero delay between photons, a property called anti-
bunching. Such anti-bunching quantum correlations can be
exploited to distinguish between the spatial location of inde-
pendent quantum emitters. Quantum anti-bunching correlations
are particularly useful because of their robustness under exper-
imental conditions (e.g., temperature, losses, and scattering). In
contrast, classical fluctuations experienced by emitters depend
sensitively on the local environment around the emitter, resulting
in perturbations that range over orders of magnitude, depending
on the local experimental conditions.

Anti-bunching correlations are observed in all sorts of
single quantum emitters (atoms, ions, molecules, and quan-
tum dots) [12,14,15] on time scales that are short compared
to classical temporal fluctuations [12]. When more than 1
quantum emitter has a reasonable probability for detection
in the collected imaging signal, then individual emitters may
be distinguished through the anti-bunching correlation on
the basis of the Glauber correlation functions. These correla-
tion functions, given by G(k)(td =0) = <Hf:01 (n- z)> at
zero time lag ¢, = 0, can be used to build an image model that
confers super-resolution properties. Here, 7 is the number
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operator. Traditional classical information is directly provided
by the first-order correlation function GP(0) = (#), which
is simply the mean photon count recorded during the inte-
gration time of the detector.

Ultimately, the goal of anti-bunching super-resolution im-
aging is to ascertain the spatial location of the emitters by
counting photons from these emitters extracted from analyz-
ing quantum Glauber correlation functions. Quantum cor-
relation experiments are run in a photon-counting mode, and
the desired correlations can then be post-selected. The first
experimental implementation [16] used a straightforward
method for building an anti-bunching quantum imaging in-
strument that incorporated a photon-counting capable camera
combined with the pulsed excitation of single quantum emit-
ters [16]. Pulsed excitation ensures that, at most, only 1 photon
can be emitted by a quantum emitter per excitation. By re-
stricting the pump pulse frequency to the frame rate of the
camera, direct counting of photons emitted by the sample is
achieved. The magnification of the microscope was designed
such that the point spread function (PSF) was oversampled
by the sensor pixels of the camera. Such oversampling allows
adjacent pixels to serve as detectors for photons emitted simul-
taneously from different emitters within the PSE This, in turn,
enables the estimation of a quantum super-resolution anti-
bunching image so that individual emitters now appear out of
a single PSF volume. Unfortunately, imaging rates are limited
by long camera integration times due to relatively slow (~ kHz)
frame rates. Confocal detection enjoys faster (megahertz com-
pared to kilohertz) photon counting rates offered by single-
pixel photon-counting modules (SPPCM), but the illumination
and detection must be scanned across every point within the
object [17]. When SPPCMs are configured with a set of beam
splitters, second- and higher-order Glauber correlation func-
tions can be estimated, providing anti-bunching image sig-
nals. Alternately, a high-speed single-photon-sensitive camera
can be assembled from a fiber bundle arrayed with SPPCMs
[18-20] or a single-photon avalanche diode array [21]; the field of
view, but field of view, and thus imaging speed, remains limited.

A subtle limitation is evident in these experiments: the
quantum-correlation super-resolution comes at a price [16,17].
That cost is that only a fraction of the detected photon counts
can be used for image formation. The impact of such post-
selection of photon counts is that much of the collected infor-
mation is discarded for the quantum super-resolution image.
In this Article, we introduce a new computational imaging
strategy that fuses the quantum and classical information to
provide high-quality imaging that exploits the best of both
the quantum and classical worlds. This new approach uses
anti-bunching correlation images combined with classical
images derived from the same photon-count data. With this
strategy, the shortcomings of anti-bunching quantum super-
resolution microscopy techniques are averted. In addition,
we introduce a new strategy for high-speed quantum anti-
bunching super-resolution imaging by adapting a classical
imaging strategy that used spatiotemporally structured light
to illuminate an extended spatial region with a series of spa-
tial frequency projections [9,22-26]. By using high-speed
SPPCMs to allow for the extraction of quantum correlations
from structured-illumination single-pixel imaging, we intro-
duce new quantum super-resolution capabilities. Specifically,
we develop and demonstrate a computational imaging strategy
that integrates the best features of the quantum and classical
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Fig. 1. Conceptual rendering of the experiment showing a spatiotemporally modulated optical illumination by a sparse set of mutually coherent beams. Beam interference
produces the spatially structured illumination as illustrated in the main figure and insets (A) and (B). A large focal volume is achieved because each beam encompasses a
small region of spatial frequency support in the pupil plane. The center spatial frequency of the beams scans across the pupil, cycling through a set of complex illumination
patterns with spatial frequency structure the samples the full numerical aperture (NA) of the illumination objective lens throughout the full temporal modulation cycle. The
figure shows an unfolded microscope; however, epi detection is possible. Detection efficiency could be improved by combining photon coincidence counts in multiple directions.
(A) A zoomed-in example of the structured illumination light intensity at 1 time sample. The specimen is placed in the region of the slide. (B) The spatial structure of the
illumination intensity in the plane of the slide for 2 time points. (C) Examples of generalized HBT detection showing cases of 2 and 3 simultaneous photon detection events.

imaging modalities. The strategy is simple to implement be-
cause the classical and quantum signals are directly extracted
from a single data stream: the set of photon counts from high-
speed single-photon-counting detectors. To robustly fuse the
high signal-to-noise ratio (SNR) but low-spatial-frequency
information from the classical information with the lower
SNR, but higher-spatial-frequency information from the quan-
tum correlations, we developed a new computational imaging
algorithm to jointly deconvolve the data from various orders
of quantum and classical images and simultaneously improve
the image SNR across a broad spectrum of spatial frequencies.
This approach benefits from the redundancy in overlap of in-
formation across lower spatial frequency regions. In particu-
lar, the low-spatial-frequency content that is common to all
of the imaging modalities must be self-consistent. This self-
consistency requirement enforces a greater accuracy in the
image estimation of the higher spatial frequency content from
the quantum information. The result is that high-speed, super-
resolution images with high SNR can be obtained with our
fusion of computational quantum-classical image informa-
tion, which we refer to as super deconvolution imaging (SDI).

Methods

New imaging information from

nonclassical correlations

To facilitate high-speed super-resolution imaging with quantum
correlations, we combine temporally structured illumination
with single-pixel photon-counting detection for computational
imaging. A generalized Hanbury Brown-Twiss (HBT) detection
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strategy enables estimation of the number of photons emitted
by the specimen for each excitation pulse (see Fig. 1). The changes
in spatial structure of the illumination light is indexed by @,
which evolves in time, and from which the image is estimated
computationally. A set of photon counts captured from N,
excitation pulses for a given illumination light spatial structure
with time index ¢ is used to compute zero-delay Glauber cor-
relation functions. To simplify the description, we adopt the no-

tation for the correlation around ¢ of G® (td = 0) - Gf)k)(q)).

The classical image signal $”(¢) is simply the mean number
of detected photoelectrons, which is proportional to the num-

ber of detected photons <’ﬁ>((p) = G(()l)((p). Higher-order statis-

tical processing of the photon-count data to obtain correlation
functions for k > 1 reveals quantum anti-bunching correlations
that are otherwise hidden (or lost) in the photon counts. Thus,
by computing higher-order correlation functions, indexed by
k, quantum images can be extracted from the single-photon-
count dataset, as shown in Fig. 2.

As noted, anti-bunching is a distinct hallmark of single
quantum emitters that can be, and has been, exploited for
super-resolution imaging [14,16-18,27]. The essential quan-
tum computational imaging information is gleaned from the
Glauber correlation functions computed from measured pho-
ton counts from which anti-bunching effects from quantum
emitters are extracted. We are specifically interested in the
correlation function at zero delay, t; = 0. For a photon emitted
at a time t; = 0, it is not possible for another photon to be
emitted from the same emitter. The ability to detect a second
photon from this emitter is conditioned on the emitter being,
once again, promoted to the excited state. In addition, there is
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Fig. 2. lllustration of the computation of Glauber correlation functions from the number of detected photon counts after each excitation pulse. Each group of photon counts
from which the correlation functions are computed correspond to a particular spatial illumination pattern. (A) Modified HBT detection for estimating the number of detected
photons recorded during each excitation pulse cycle. (B) Monte Carlo simulation of the number of photon counts produced by 3 emitters for each excitation pulse. The
emission probability for each emitter is proportional to the spatiotemporal illumination intensity pattern at the location of that emitter. Photon emission is modeled as a
Bernoulli process with an event occurrence probability determined by the excited-state population using the photo-physical model described in the text. (C and D) Examples
of the subselection of the population of detected photons for 2 spatial patters occurring over N,;, pulses. (E) Un-normalized, zero-delay Glauber correlation functions, Gf]k)((/)),
for k = 1,2,3 are computed from the photon counts binned for consecutive sets of N, detected photon numbers centered on a structured intensity index ¢, as illustrated by
the shaded regions examples for ¢, and ¢,. (F) and (G) illustrate the 2 illumination intensity patterns, /,(x,¢), at a particular times indicated by ¢. These examples are shown
in 2 dimensions for clarity and highlight specific examples appearing in the photon counts for N, pulses. Each illumination pattern can excite a subset of the emitters. The
number of detected photons for a given excitation pulse number is modulated by the excitation probability for each illuminated emitter, the direction of photon propagation,
and losses and inefficiencies in the detectors. In (F), 3 of the emitters are partially illuminated, whereas in (G), 3 emitters are strongly illuminated. Images are constructed by

exploiting the known spatial illumination patterns at each ¢ point in the Glauber correlation functions.

a time interval that the emitter must wait before another pho-
ton is emitted after the emitter returns to the excited state. The
net time scale thus depends on the spontaneous emission rate
and the pumping rate. Consequently, at zero time delay, ¢, =
0, the normal-ordered Glauber correlation function of light
emitted by a single quantum emitter vanishes, G*(t, = 0). This
behavior is a reflection of the simple fact that the emitter is
not capable of immediately emitting another photon. Here, we
will be usinigr the normalized Glauber correlation function
g(e) = ¥t 1(G(0)),

In contrast, when photon emission can be collected from mul-
tiple quantum emitters (within a single detection volume), the
emitters emit light independently, and even if the emitters exhibit
correlations at some initial time, say during excitation, the emit-
ters dephase rapidly, which is evident in the broad emission band-
width of an uncorrelated ensemble of quantum emitters. Thus, a
large number of emitters exhibits a net emission that is completely
uncorrelated, so that the correlation function is simply the mean
photon count, g(z)(td) — 1. However, for the case where a small
number of emitters are contained within the detection volume,
the correlation function can be written as g(z)(O) = 1—-1/N, which
is simply a consequence of the fact that after 1 emitter has released
aphoton, there are (N — 1) remaining emitters that can also produce
a photon. Here, we see that in the limit of large N, g(z)('c) —1[15].
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The factors that influence the photon detection probability
are illustrated in Fig. 1 and are determined by the photon emis-
sion, p,, and photon collection, p, probabilities. As these prob-
abilities are uncorrelated, the total detection probability is
simply the product of these probabilities, p, = p, X p.. The emis-
sion probability depends on both the photophysical properties
of the emitter and by the spatial distribution of the optical illu-
mination that excites the emitter, which for our purposes will
be controlled by resonant optical excitation. In contrast, the
collection probability is determined by the size and configura-
tion of the optical detector and the collection optical system.

For incoherent light emitted by an ensemble of quantum
emitters, we may describe the probability of light detection as
the product of the total collection efficiency, #,, and with the
image transfer function probability density function, h(x,x,),
where x, and x, are the object and detection plane transverse
coordinate, respectively. The total collection efficiency is the
product of the detector quantum efficiency, the collection effi-
ciency of the optical system, and the total intensity transmission
through all optical components. The collection probability is
then obtained from the spatial integral across the spatial domain,
D, of the photodetector, leading to p.(x,) = 1, [ph(x,X,) d’x,.
The collection probability for single-pixel computational imag-
ing is determined by the experimental arrangement but can
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generally be expressed as a constant Pe(@) =N that depends
on the efficiency of collection optics and detectors. The limited
efficiency of collection does not impact the single-pixel com-
putational imaging model, so we will focus on the emission
probability.

In order for a given emitter to release a photon, the emitter
must be in the excited state, |e). In an imaging experiment, a
population of emitters in the object will be illuminated (see
Fig. 2F and G) and some fraction of those emitters will be
promoted from the ground to the excited state. Assuming
pulsed optical excitation, we may estimate the excited-state
population by solving for the population kinetics. The proba-
bility of excitation depends on the local illumination intensity,
which we write in with unit intensity magnitude as I(x,, 1),
and the excited-state population may be related to the illumi-
nation intensity through a nonlinear function, F[-], in the case
of saturated or multiphoton absorption. The illumination
intensity and physical properties of the emitter determine the
emission probability, p,(x,, ) = k,|e(x,, t)). For an emitter in
the excited state at some time ¢, the rate of photon emission
can be generally modeled with first-order rate kinetics, as an
exponentially decaying probability density with a decay time
constant of the emission rate, k,.

A model for the multiphoton state produced by a set of in-
dependent quantum emitters can readily be constructed by
assuming lossless detection. This assumption only modifies the
rate of photon counting without distorting the quantitative
forward model. If we were restricted to a single emitter, labeled
by j, then the number operator for the detected photon state is
simply 7; = @' @, The density operator for this single-photon

)

state, j = <1 —P];(XoJ)) |0?<0| +pi<xo,j> [1)(1], depends on

the probability of emission Pefor an emitter positioned at loca-
tion x,, .

In imaging, there will generally be more than 1 emitter with
a nonzero detection probability. The expected number of
detected photons is glven by ( g Tr{p n} where the total
number operator, 7 = Y ; 7, for the multimode photon state
produced by an ensembTIe of N quantum emitters descrlbed
by the density operator for the multiphoton state of 5 = ® 1 Py
With a large ensemble of excited quantum emitters, the random
fluctuations reduce to a statistical ensemble, and thus only clas-
sical correlations are observed, with all quantum correlations
obscured. We require that the number of excited states are small
enough so that the anti-bunching signal can be experimentally
discerned.

Hybrid quantum-classical computational

imaging with sinusoidally structured illumination:
forward model

A key requirement for computational imaging is the existence
of a high-quality, computationally efficient forward model. Here,
we provide the models for both the quantum anti-bunching
and classical forward imaging techniques. We focus on spatio-
temporally structured illumination with a pulsed laser source
[9]. In the typical scenario, the excitation pulses are simulta-
neously several orders of magnitude shorter than the lumines-
cence lifetime of the emitters and the period between pulses
is at least 4 to 5 times larger than this same temporal relaxation
time. These conditions ensure that, with high probability, only
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1 photon may be emitted by each emitter for each pulse. As
we have discussed, the collection probability is constant across
emitters, so that we now only need to establish a quantitative
model for the variation of the emission probability within the
spatiotemporally modulated illumination intensity.

The probability of emitted light for pulse excitation is driven
by the peak excited-state population. Following excitation of
an emitter by a pump pulse arriving at time £, with a pulse
duration, T, much shorter than the excited-state lifetime, 7,,
so that T, < 7, = (k, + k, 27", the excited-state population
decays exponentially, |e(xg,t) >— e,, exp (—[t—t,]/)z,) for t >
t,, from the peak excitation probability e,,. Here, k, is the
nonradiative decay rate. Thus, while the probability of the
excited-state population, and thus the emission probability,
decays exponentially after pulsed excitation, the total proba-
bility of emission after pulsed excitation for a single quantum
emitter is equal to the peak excited-state population, e,,.

The peak excitation probability e,, depends on the illumi-
nation intensity impinging on the emitter. We consider pulsed
illumination with a peak intensity that varies across the object
coordinate as I;(x,,¢) = I, I,(x,,¢). The global maximum
for the illumination intensity is denoted as I, so that I, is the
structured illumination intensity with the peak intensity nor-
malized to unity. The excited-state probability varies in space
and time because of the nonlinear map, F[-], from the normal-
ized illumination intensity to the emission probability e,, =
F[I1,](x,, ¢). Here, ¢ denotes a time-dependent variation on
the illumination intensity. In the case of short pulse excita-
tion considered here, the excitation function is F[-] = 1—
exp[—7,ul,(X,¢)]. The peak emission probability also scales
with the pump saturation parameter y,,, = a,(T},,/7.) and where

nax! Lap With I, denoting the emitter saturation intensity.

Because the collection geometry (see Fig. 1) is such that the
photon emission is collected uniformly from across the object
spatial distribution, the detection probability from a set of emit-
tersis ng) =P .[ em (XO,(p) Co
concentration for a 2-dimensional distribution of quantum
emitters. If we consider a discrete set of emitters located at the
points x;, then ¢(x,) = Z 8(x,—x;).

Measured photon counts may "be processed to compute the
normalized Glauber correlation functions (see Fig. 2) from
which we extract quantum correlations for super-resolution
1mag1ng Modulation pattern-dependent signals extracted from
the k"™-order signal can be adapted from previous expressions
[14,17,27] to give a signal of the form

2 .
(Xo) d"Xy where ¢, is the surface

s®(@) = () (0) yP(0), (1)

where y®(¢) is a polynomial function that depends on
the order k. These polynomial functions are easily derived
using the density matrix of the multiphoton state. The first 2
orders are y(z)((p) =1- (2)((p)and y(@)=1-(3/2) géz)((p)+
(1/2) go (9). Here, we define the zero- delay correlation func-
tions for the spatial structured 1llum1nat10n pattern indexed by

passl@) =60/ [0

Previous anti-bunching imaging experiments used the sig-
nals given in Eq. 1 as the estimates of the images. Extension
of anti-bunching super-resolution imaging to quantum com-
putational imaging requires a new approach. The recorded
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signal model is s®(p)= [ [pf;”)(xo)]k d*x,. With the pulsed
model of the excitation probability, this model can be rewritten
as S(k)((p) = (@pc)kfca(xo)Pk[In(xo,(p)] dzxo. In this new ap-
proach, we derive classical information from k = 1 and quan-
tum information from the higher orders, k > 1.

Considering a specific scenario in which a modulated line
focus with a geometry set by x, = (x, y) is employed [22,26],
with a normalized intensity given by I,(x,p) = p(»)(1 +
cos[E])¥/4, where E = . @ + 2k x@and p(y) is the intensity
distribution perpendicular to the line focus. A simplified ex-
pression can be obtained from a cosine series expansion of Fl,
so that our signal becomes

[So]

sP(py)= Y 3P(py)exp(-iw.0). (2

g=-00

The cosine expansion terms simply read
1 =] =
bfzk)(q;,y) =3 J F*[1,(x, @)] cos|q E] d=.

Classical and quantum images may now be estimated from the
set of demodulated signals

$(0) = (@)" [ e (x)U0 (07) expl=iq2mr 0],

3)
The signals shown in Fig. 2E are the extracted photon counts
collected from a sweep of the illumination modulation pattern
for a given position of a line focus illumination [9] or several
line cursors [28]. Referring to Eq. 3, we see the object that we
wish to recover is related to the signal from a set of projections
that are manifested in the signal orders g, k. Each signal term,
g, in the k™-order cosine expansion then provides additional
super-resolution orders as we previously established for clas-
sical single-pixel structured illumination [9]. Processing of the
signal traces in Fig. 2E produces a set of line images. A full
image is built from scanning the line focus, but speed is im-
proved compared to confocal imaging due to the reduced num-
ber of scan points required.

Each of the signals for a given k and g can be represented
as an estimated image from 1 photon-count dataset. The
estimated image that takes the form of a convolution,
T=c, * PSFEIk), of the desired object, ¢, with the PSF for the
given image order. The PSF for the (k, g)™ order is directly
obtained from the cosine expansion coeflicients using an
inverse Fourier transform with respect to the modulation spa-

tial frequency in the ¢ illumination pattern 7 =Kk lead-
ing to PSF(qk) (x,)= | bék)((p,y) exp (i 27 x qf,gq’)) dree).

SDI to fuse quantum and classical information

The detection of photon counts from spatiotemporally mod-
ulated illumination provides a set of images that span over a
set of indices of the photon correlation order, k, and the cosine
expansion order of the nonlinear excitation, g. It is evident
from Eq. 3 that higher resolution (higher spatial frequency
content) is contained in the higher-order (k, q) terms. In addi-
tion, we see that since @,p, < 1, the higher-order terms drop
in intensity. Thus, the resolving power of this imaging strategy
is limited by the noise as the signal drops for higher-order
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expansion terms. We have developed a computationally efficient
joint deconvolution strategy to fuse the super-resolution
imaging information from the set of quantum and classical
images that can be extracted from the signal vectors in Eq. 3.
This SDI strategy benefits from the requirement of self-
consistency of information obtained across the ranges of
spatial frequency information support that increases with
higher expansion orders. The computational imaging prob-
lem here is one where we seek to fuse the information from
both quantum and classical images that are well-modeled
by a linear convolution model to estimate the object c,.
While this can be viewed as a simple problem of minimizing
the difference between the measured data and the estimated
signal derived from the estimated object, the challenge is
that the large set of images that need to be jointly decon-
volved lead to an intractable numerical computation prob-
lem if we seek to solve the problem directly. Consequently,
we have developed a computationally efficient algorithm
that avoids the instantiation of large matrices in computer
memory that would be required for directly solving this
problem.

The data for each image are obtained from the collected
photon counts such as shown in Fig. 2B. These counts are
based on a Monte Carlo simulation of photon emission from
a set of 3 quantum emitters. Photon counts for each excitation
pulse are plotted. The set of photon counts are binned, with
Nyin = 50, and the zero-lag Glauber correlation functions,
G(0), are computed (as displayed in Fig. 2C). Using Eq. 3,
discrete signal models, y(k) —3® + e®, are obtained. All of
these vectors are obtained from btatistics extracted from each
set of N,;, detected pulse counts that are converted into the
signal terms using Eq. 1. The variable 651 is a noise vector.
Each of the noise-free demodulated signal vectors are mod-
eled as a linear correlation with the discrete PSF matrix oper-
ator, Afzk), as§® = A(qk) c. The vector c is the discrete form of
the object thaf we wish to estimate.

The set of signal data from the classical, k = 1, and quan-
tum 1 < k < K, image orders, for each of the modulation
expansion orders g € {1,...,q,,.,} leads to alarge set (J = q0x.
K..x) of images. We will index elements of this entire set with
the subscript j. To jointly solve for the underlying object esti-
mate using the full set of image data, we concatenate the sig-
nals into 1 long vector y, = {y,|--|y;}. Each signal is of length
N,, so that the total concatenated vector is J N,. Similarly, we
concatenate the convolution matrices to form A;. The goal is
to estimate the object by formulating the problem as a least
mean squared fit

o1
c* ::argmlnE(IIAT C—YT||2+|MIC”2)- (4)
>0

We make use of forms of gradient descent to solve our prob-
lem, which requires the computation of the adjoint of A.
Because of the size of A" and A, matrix computations using
these matrices are not feasible. Instead, we observe that the
adjoint of the convolution is a cross correlation and that the
operation of these large matrices can instead be efficiently
computed using fast Fourier transform operations. As the
object estimated must first be padded along the concatenation
direction, the resulting cross correlation is cropped to recover
the adjoint operation.
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Fig. 3. Results of the joint deconvolution algorithm fusing both classical and quantum information for linear absorption. Insets (A) and (D) are the highest-resolution images
using classical information (k = 1, g = 2) for a mean photon count levels 1 = 500 a) and 11 = 5 x 10° (D). Insets (B) and (E) combine both classical and quantum image
orders (k =1,2,3) also for mean photon count levels 1 = 500 (B) and 1 = 5 x 106_(E). Inset (C) and (F) show the radial averageof the Fourier transform of the reconstructions
compared to the actual image used in the simulation for photon count levels of 1 = 500 (C) and 11 = 5 x 10 (F). Scale bar is 5.

Results

Simulations of joint SDI image estimation fusing classical and
quantum information were implemented for mean photon
counts ranging 7 orders of magnitude from 77 = 5to 71 = 5 X 106,
In a photon counting regime, noise in the measurement can
be accurately described with Poissonian statistics. While
imaging resolution is often discussed as an absolute property
that is determined by the properties of an optical instrument,
that is only part of the story. The optical instrument does
determine the PSF; however, it is impossible to determine
spatial resolution without knowledge of the SNR levels. All
imaging methods exhibit an imaging resolution that is con-
strained by the SNR. Our strategy extracts more information
from a dataset than is possible with conventional imaging
strategies, because both classical and several orders of quan-
tum anti-bunching images are obtained. While each of these
images exhibits an SNR that limits imaging resolution, when
the sets of quantum and classical images are jointly decon-
volved, the new estimated images displays a vastly improved
SNR. Because we are performing simulations, the true SNR
performance may be directly validated.

In Figs. 3 and 4, we see simulated images for both low and
high mean-photon-count levels. The test image is based on
Siemens spoke test pattern, a radial grating, and a cluster of 4
points. We show the classical image at the low and high photon
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counts, along with the joint quantum-classical image for k =
2&3 Glauber correlation functions. It is evident that the joint
information extracted from the exact same dataset from the
SDI algorithm applied to the quantum and classical images is
far superior to the simple classical image. The intuition that
higher spatial frequency content is available is more readily
apparent in the radially averaged spatial frequency content
from the images that is shown in Figs. 3C and F and 4C and
E Here, we see that the simple classical image information
drops precipitously above a normalized transverse spatial fre-
quency of Af, > 2. By contrast, in the joint quantum-classical
estimated image, the transverse spatial frequency support is
maintained across the full relevant spatial frequency band.
Similar trends are observed for both the 1- and 2-photon
absorption cases; however, the 2-photon case displays better
absolute resolution as one expects [9].

Example calculations for low photon counts for 1 photon
imaging are in Fig. 4A to C and for the 2-photon case in Fig.
4A to C. The classical cases are both shown in panels A of the
figures. In the linear (1 photon absorption) excitation case,
virtually no spatial features are resolved (Fig. 3A), which can
be seen in the radially average spatial frequency trace for k =
1 in Fig. 3C. Similarly, for the low-photon-count case with
the nonlinear (2-photon absorption) excitation case, some
spatial features are resolved but are buried in the noise (Fig.
4A), and still, the radially averaged spatial frequency support
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Fig.4.Results of the joint deconvolution algorithm fusing both classical and quantum information for 2 photon absorption. Insets (A) and (D) are the highest resolution images
using classical information (k = 1, g = 4) for a mean photon count of 1 = 500 (A) and I = 5 x 10° (D). Insets (B) and (E) combine both classical and quantum image orders
(k =1,2,3) also for mean photon counts of 1 = 500 (B) and 1 = 5 x 10° (E). Inset (C) and (F) show the radial average ofthe Fourier transform of the reconstructions compared
to the actual image used in the simulation for mean photon count levels 1 = 500 (C) and 11 = 5 x 10° (F). Scale bar is 5.

is poor as shown in k = 1 in Fig. 4C. Taking the signals derived
from second- and third-order Glauber correlations to produce
quantum images (k = 2,3), along with the classical image (k =
1), the resultant application of SDI to that full set of images
produces a high-quality image with low noise as shown in Figs.
3B and 4B for the 1- and 2-photon absorption cases, respec-
tively. The improved image quality is evident in the radial
spatial support in the C panels. The lower rows in Figs. 3 and
4 show the results of SDI applied to a high average photon
count case. As expected, the noise is low in all cases, we also
see that in the classical case, image features are still poorly
resolved, whereas the joint quantum-classical reconstructions
shows high image quality with a near perfect match between
the ideal and reconstructed radially averaged spatial frequency
support.

The quality of the image obtained from the data can be
computed from the mean squared error (MSE), defined as
MSE=N"' YN (X, —Xl.*)2 where N is the total number of
elements, X is the true image, and X" is the image estimated
from the data. In Fig. 5, we provide the MSE for a wide range
of algorithm performance conditions, where we investigate
classical, quantum, and joint computational imaging strategies
for a wide range of mean photon count levels. The classical
case failed for the case of n =5, while the joint quantum-
classical SDI reconstruction still yielded an MSE of 0.0595 for
2PA and 0.0707 for 1PA, so Fig. 5 starts at n = 50. The variation
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in mean photon count also severely impacts the SNR of the
data. Because there are a wide array of possible classical images
that we can extract from the spatial frequency orders, g, to
reduce the dimensionality of the data, we report the best MSE
across all g values for the classical case. The MSE for quan-
tum-only image estimates is treated similarly, and finally the
joint deconvolution using SDI is shown.

Conclusion

In general, super-resolution microscopy techniques make use
of additional information that can be accessed with either the
manipulation of the excitation process for an imaging probe
or by exploiting the properties of the emitted light. Anti-
bunching super-resolution microscopy is a promising new
direction that exploits quantum correlation from single quan-
tum emitters [14]. Previous experimental anti-bunching imag-
ing systems suffered from low imaging rates. We introduce a
new strategy for high-speed anti-bunching super-resolution
microscopy based on the illumination of the sample with a
temporally varying sequence of spatially structured illumi-
nation light. While this spatiotemporally structured light il-
lumination strategy enjoys the benefits of the highest-speed
photon-counting detectors and faster imaging than point-by-
point confocal scanning, this quantum imaging strategy still
has the limitation of the quantum anti-bunching super-resolution
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Fig.5.MSE for image reconstructions using signal orders (k =1, k = 2,k = 3) and joint SDI of the combined quantum and classical information (k =1,2 and k = 1,2,3) for linear
(1PA) (A) and 2 photon absorption (2PA) (B) across many different photon count levels. For each correlation order, the lowest MSE across the corresponding set of images
(indexed by q) is reported. The classical case is restricted to k = 1. Quantum images are derived from k = 2, and k = 3. Thejoint SDI images are given for the sets of k-values:
k =1,2 and k = 1,2,3 which include all corresponding g values. For the linear absorption SDI case including correlation orders k = 1,2,3 there are a total of 12 images which
have been jointly deconvolved and 24 for TPA case. Using correlation orders k = 1,2 there is a total of 6 and 12 images for 1PA and 2PA respectively.

microscope: the reduced total photon counts from the post-
selected correlation functions. The lowest-order correlation
function (k = 1) is restricted to classical information and thus
cannot improve the spatial resolution by using the quantum
correlations that are present in higher-order correlation func-
tions. Unfortunately, the number of counts that contribute to
successively higher signals drops by at least an order of mag-
nitude between successive correlation signal orders k [16,17].
Thus, higher-spatial-resolution information suffers from a
reduced SNR at increasingly larger correlation orders.

The drop in SNR of high-spatial-frequency information is
an important challenge observed in anti-bunching quantum
images that are post-selected from second- and higher-order
Glauber correlation functions. This means that, while the
quantum anti-bunching images contain more information on
very small, and thus high, transverse-spatial-frequency fea-
tures, the SNR is lower than the classical counterpart that is
obtained from the first-order correlation function. We have
developed an algorithm that fuses the high SNR information
available in the quantum information with the lower SNR
information from the higher-order quantum signals. The spa-
tial frequency content from each of the set of images is jointly
deconvolved with the PSF of each of the images obtained from
the photon-count data. Because all of the images contain infor-
mation that overlaps in lower spatial-frequency ranges, and
because the same underlying object is being probed, the algo-
rithm exploits the requirement of self-consistency of the over-
lapping measured spatial frequency information to bootstrap
the lower SNR information at high spatial frequencies that is
contributed by the quantum images. Of particular utility here
is that from 1 dataset, we can derive a large number of images
from classical, and then various orders of quantum correla-
tions. Thus, our strategy is able to extract substantially more
information from a single measurement, optimizing the infor-
mation content extraction obtained from the measurement.
Notably, the fusion of classical and quantum information boosts
the SNR of the image that is retrieved from the algorithm. Our
SDI algorithm is extremely versatile as it does not require a-priori
information about the object, such as sparsity [20]. All that is
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required is the set of images extracted from the classical and
quantum information in the data to be combined with an esti-
mate of the imaging PSF for each modality. On the basis of this
set of information, our efficient SDI algorithm fuses the infor-
mation from the multiple imaging modalities. By enforcing
self-consistency between the regions of spatial frequency infor-
mation overlap, we produce a high-SNR super-resolution image
based on this synthesis of quantum and classical information.
Our algorithm only requires a set of images with known PSFs
and thus can be used in any imaging system that obtains mul-
tiple images from a set of measurements. While prior object
information is not required if such prior information does exist,
it can be used to good advantage as a regularization in the image
reconstruction algorithm.

In addition to the fusing of classical and quantum informa-
tion, our new quantum computational imaging approach uses
a previous strategy of classical super-resolution imaging method
that we demonstrated for computational single-pixel super-
resolution imaging [9,26]. As a result, we exploit 2 co-operative
mechanisms for improving the imaging resolution: anti-
bunching and nonlinear generation of addition spatial fre-
quency harmonics. These 2 resolution enhancement pathways
result in broadened spatial frequency support, as depicted in
Figs. 3 and 4. A common feature of super-resolution micros-
copies is that the higher-spatial-frequency information is
obtained at the price of reduced SNR in that information.
The fusion of both the multiple pathways for high-spatial-
frequency information enables a substantially higher SNR in
the images than would be possible by directly using a single
super-resolution image.

Another advantage brought by our approach is improved
imaging speed. Our strategy adapts a single-pixel computational
super-resolution imaging modality to exploit anti-bunching to
exploit quantum correlations for enhanced super-resolution
imaging. The single-pixel detection structured-illumination
strategy that we use here is called SPIFI (for SPatlal Frequency
modulation for Imaging) [22]. The fact that SPIFI uses spatio-
temporally structured illumination enables an extended illumi-
nation region, while being able to exploit the ~ 10'~10° x faster
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photon counting rate of single-pixel photon-counting detectors.
This development makes the best of both worlds of previous
anti-bunching imaging by simultaneously making use of spa-
tially extended illumination and high-speed photon counting.
The previous disadvantages of slow camera photon counting in
widefield illumination [16] or point detection that requires slow
scanning to form an image [17].

A further practicality of our strategy is that our approach
can be implemented in existing multiphoton laser scanning
microscopes simply with the introduction of a cylindrical lens
and a modulator disk [29] and the use of time-correlated single-
photon detection. As a result, existing laser scanning micro-
scopes can be readily upgraded to extend the imaging resolution
of those systems. The fusion algorithm that we present here
has much wider application than this particular imaging mo-
dality. The widespread utility rests on the simplicity of the
algorithm: that this provides an approach for computationally
efficient joint deconvolution of a set of images of 1 object that
are captured with a set of diverse PSFs and may be described
with a standard convolutional model of imaging [1]. Example
applications where the SDI algorithm could provide advan-
tages include SAX imaging [7] and various correlative micro-
scopies. Because of the multiple aspects where both the imaging
modality for quantum-classical single-pixel imaging and the
general strategy for obtaining an image of an object that is
probed by diverse imaging modalities, we anticipate widespread
use of the techniques demonstrated in this work.
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