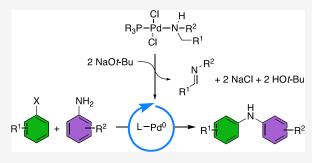
ORGANOMETALLICS

pubs.acs.org/Organometallics Article

Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency

Jordan K. Pierce, Lindsey D. Hiatt, James R. Howard, Huaiyuan Hu, Fengrui Qu, and Kevin H. Shaughnessy*

Cite This: Organometallics 2022, 41, 3861–3871


ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Palladium-catalyzed cross-coupling reactions between C-X/C-H bonds and nucleophilic reagents remain a staple in organic synthesis. These reactions rely on the in situ generation of an active LPd^0 species. Air-stable palladium(II) precatalysts that readily form the LPd^0 species under catalytic conditions have been identified as effective precatalysts. The alkyl amine ligand can serve as potential reducing ligands for palladium(II) complexes in the presence of a base through a sequence of β -hydrogen elimination and base-promoted reductive elimination of the resulting palladium hydride. A series of air-stable (${}^tBu_2PNp)Pd(amine)Cl_2$ (Np = neopentyl) complexes were synthesized with a range of structurally different primary and secondary amine

ligands. These complexes allowed the effect of the amine ligand structure on the catalyst performance in cross-coupling of aryl halides and aniline derivatives to be analyzed. The identity of the amine ligand has a significant effect on catalyst activity and lifetime. Precatalysts with primary n-alkylamine ligands afford the most active catalysts. Reactions using (${}^tBu_2PNp)Pd(n$ -butylamine) Cl_2 as the precatalyst provide excellent yields at room temperature under 1 h. Moreover, ($Np_3P)Pd(n$ -butylamine) Cl_2 was synthesized and exhibited promising activity for sterically demanding aniline derivatives and aryl chlorides. Preliminary mechanistic studies show that the structure of the amine ligand has a significant effect on the selectivity for palladium(0) formation that correlates with the activity of the precatalysts.

■ INTRODUCTION

Palladium-catalyzed cross-coupling reactions between C–X/C–H bonds and nucleophilic reagents have been extensively studied due to their efficiency in forming C–C and C-heteroatom bonds.¹ The functional group tolerance and generality of these reactions allow for the synthesis of agrochemicals, pharmaceuticals, and natural products.² Early work focused on identifying privileged classes of ligands that provide effective cross-coupling catalysts. These privileged ligand classes include bulky trialkylphosphines,³ 2-biarylphosphines,⁴ and *N*-heterocyclic carbene (NHC) ligands.⁵ The electron-donating nature of these ligands promotes oxidative addition of unreactive bonds. Additionally, the steric bulk promotes low coordination numbers, which further promotes oxidative addition.

Cross-coupling reactions with modern ligands rely on the generation of an active LPd⁰ species. Traditional methods involving in situ catalyst formation from the free ligand and palladium precursor provide limited control over the speciation of the active species. Recent research has shown that the improved catalyst performance can be achieved by the generation of the active LPd⁰ species through the use of preformed palladium—ligand complexes with the desired 1:1

L/Pd ratio.⁸ Palladium(II) complexes are often preferred due to their higher stability than palladium(0) complexes. Examples of palladium(II) precatalysts include (allyl)Pd(L) Cl complexes (1 and 2),⁹ Buchwald palladacycle precatalysts (3 and 4),¹⁰ palladium aryl halide complexes (5),¹¹ and pyridine-enhanced precatalyst purification stabilization and initiation (PEPPSI) complexes (6).¹² A key design feature in complexes 1–5 is a ready path to reduction to the LPd⁰ in the presence of basic and/or nucleophilic reagents typically present in cross-coupling reactions.

Nolan first reported the use of $(\eta^3$ -allyl)Pd(NHC)Cl precatalysts (1) in cross-coupling reactions. ^{9a,13} Shaughnessy and Colacot later reported phosphine palladium allyl complexes. ^{9b,14} These complexes have been applied to a variety of C–C and C-heteroatom coupling reactions. Activation occurs by

Received: October 21, 2022 Published: December 15, 2022

reductive coupling of the nucleophile with the allyl ligand. ^{13a,15} During the activation process, the active LPd⁰ species can comproportionate with the remaining palladium(II) allyl complex to form catalytically inactive μ -allyl dipalladium(I) complexes. ^{9c,14a} The comproportionation reaction can be inhibited by substitution on the allyl ligand. ^{9b,c} Hazari developed 1-(t Bu)indenyl complexes (2) that do not undergo this comproportionation reaction, which results in higher activity catalysts. ¹⁶

N,C-Palladacycle precatalysts developed by Buchwald, known as G1–G4 precatalysts (3,4), have become widely used. These complexes are primed to undergo reductive elimination upon deprotonation of a coordinated amine. Of these precatalysts, the G3 complex is the most widely used, although the carbazole byproduct can act as a catalyst inhibitor in some cases. Arylpalladium complexes (5), so-called oxidative addition catalysts (OACs), have been shown to be effective precatalysts for cross-coupling reactions. These species can be activated by the reaction with the nucleophilic coupling partner in reactions, although this results in a small amount of byproduct derived from the original aryl group on the precatalyst.

The PEPPSI complexes (6) reported by Organ are convenient palladium(II) NHC precatalysts that are effective in a wide range of palladium-catalyzed reactions. ^{12b,19} 3-Chloropyridine serves as a weakly coordinating ligand that occupies the fourth coordination site on palladium and is also thought to stabilize the LPd⁰ active species. Unlike the other precatalysts in Figure 1, the PEPPSI complexes require an

Figure 1. Examples of palladium(II) precatalysts.

external reductant to generate the LPd⁰ species. These precatalysts are often employed in cross-coupling reactions between aryl halides and organometallic reagents where the organometallic reagent acts as the reducing agent.^{12b}

In cases where the coupling partners do not provide effective reduction pathways, external reducing agents can be used to activate the catalyst. For example, Organ found that the PEPPSI catalyst system required elevated temperatures in the coupling of aryl chlorides with arylthiolates. Addition of LiOi-Pr or morpholine significantly improved catalyst activity. A precatalyst incorporating morpholine as a ligand in place of 3-chloropyridine proved to be a superior catalyst for these reactions. The role of morpholine in the activation was hypothesized to involve β -hydrogen elimination followed by base-mediated HX reductive elimination to give the LPd species (Scheme 1). In the course of preparing this manuscript, Nicasio reported a (ArPR₂)Pd(morpholine)Cl₂ complex as an effective catalyst for coupling of aryl bromides and aniline

Scheme 1. Proposed Amine Activation Pathway for Mixed Ligand Amine Palladium(II) Complexes

derivatives, which presumably operates by a similar mechanism. 22

Our group has studied the use of simple, air-stable $[LPdCl_2]_2$ complexes ($L={}^tBu_2PNp$ and PNp_3 and Np= neopentyl) as catalyst precursors in cross-coupling reactions. These complexes are effective catalysts for Suzuki couplings, where the boronic acid coupling partner reduces the palladium(II) precatalyst to the active species. 23 The palladium(II) dimers require high temperatures to catalyze the coupling of aryl halides and aniline derivatives, however. In this case, there is no effective reduction pathway. Additives such as isopropanol and enolizable ketones serve as effective reductants and provide active catalysts under mild conditions for these reactions. 24

To provide more effective catalysts, we sought to prepare monophosphine complexes containing a ligand that could act as an internal reductant under cross-coupling conditions. Inspired by Organ's (NHC)Pd(morpholine)Cl₂ precatalyst,²⁰ we chose to explore amines as activating ligands. We hypothesized that these complexes would undergo base-mediated reduction to LPd⁰, as shown in Scheme 1. Organ²⁰ and Nicasio²² explored only morpholine complexes as precatalysts. The effect of the amine structure on catalyst activation has not been studied in these systems, however. Herein, we report the first study of a range of phosphine palladium(II) amine complexes to determine the optimal structure for the amine activator. The identity of the amine ligand was found to play a critical role in determining the catalytic activity in these systems.

■ RESULTS AND DISCUSSION

Synthesis and Characterization of Palladium Amine Complexes. ('Bu₂PNp)Pd(amine)Cl₂ complexes (7-13) were synthesized by the reaction of two equivalents of amine with the previously reported [('Bu₂PNp)PdCl₂]₂ (Scheme 2).²³ The isolated precatalysts are indefinitely air stable at ambient temperature. Target complexes were isolated in moderate-to-high yields with varying degrees of purity. Complexes 7-10 were isolated as pure solids. Complexes 11-13 were isolated as mixtures containing 15-37% palladacycle 14 byproduct, as determined by ³¹P NMR spectroscopy. Attempts to further purify complexes 11-13 by recrystallization were unsuccessful due to co-crystallization of the amine complexes and palladacycles. Our group has previously reported the base-promoted C-H activation of ^tBu₂PNp complexes, resulting in the formation of a $(\kappa^2$ P,C-^tBu₂PCH₂CMe₂CH₂) palladacycle (14).^{23,25}

Crystals of complexes 7–13 suitable for X-ray crystallography were grown through slow evaporation of hexane solutions of the complexes (Figure 2). All complexes crystallized with slightly distorted *trans*-square planar geometries, in which the chloride ligands were deflected away

Scheme 2. Synthesis of ('Bu₂PNp)Pd(amine)Cl₂ Complexes^a

^aIsolated as inseparable mixtures with 14. Yield of complex 11–13 based on the molar ratio with 14 determined by ³¹P NMR (value in parentheses).

from the sterically demanding phosphine ligand. Each complex contains one N–H bond that is aligned with one Pd–Cl bond with H–N–Pd–Cl dihedral angles, ranging from 8 to 15° (Table S2). The aligned H and Cl show close H···Cl contact distances of 2.54–2.67 Å (Table S1) that are significantly shorter than the sum of the van der Waals radii (2.95 Å). Cyclohexylamine complex 11 and cyclic secondary amine complexes 8 and 9 have the shortest NH–Cl distances and smallest N–Pd–Cl angles (82.8–83.7°) for the chlorine involved in the intramolecular H···Cl contact. Complexes 7 and 10–13 have complementary intermolecular PdCl···HN short contact interactions in the solid state (H····Cl = 2.49–2.65 Å; Table S1; Figures S75, S79, S81, S83, S85). This intermolecular interaction is not observed in the morpholine (8) and piperidine (9) complexes.

Comparison of Precatalysts 7-13 in the Arylation of **Aniline.** Complexes 7–13 were applied to the Buchwald– Hartwig cross-coupling of 4-bromoanisole and aniline at room temperature to explore their potential as precatalysts (Scheme 3). This model reaction was chosen to include a deactivated aryl bromide and amine substrate that will not act as an efficient reductant of Pd(II). Therefore, the alkylamine ligand must reduce the palladium to the active species for the reaction to proceed. The reactions were followed by gas chromatography (GC) over a 1 h period to generate a reaction profile for each precatalyst (Figure 3). To account for palladacycle impurities, the catalyst loading for complexes 11-13 was adjusted to ensure that 1 mol % of the amine complex was present in each case. The P₂C-palladacycle has previously been shown to be inactive in Buchwald-Hartwig amination reactions.²³ Therefore, residual palladacycle impurities in complexes 11-13 were not expected to have a positive or negative impact on the catalyst efficiency.

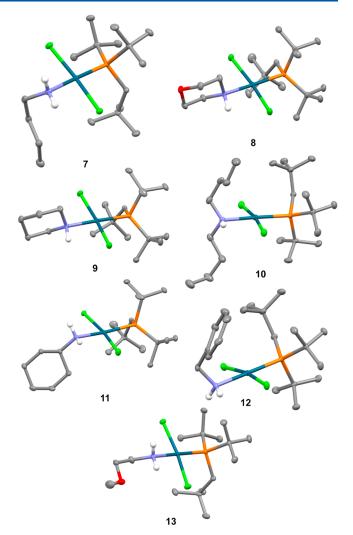


Figure 2. Thermal ellipsoid plots of complexes 7–13 determined by X-ray crystallography (50% probability). Hydrogen atoms except for those on nitrogen have been omitted for clarity.

Scheme 3. Cross-Coupling of 4-Bromoanisole and Aniline Using Precatalysts 7–13

Initially, the precatalyst efficiency was compared for complexes 7–9 (Figure 3). The reactions catalyzed by butylamine complex 7 exhibited a significantly higher initial rate and overall conversion to product than complexes 8 or 9. Within 15 min at ambient temperature, 98% conversion was observed. Morpholine precatalyst 8 was also effective; however, the reaction required 60 min to reach completion and resulted in slightly lower yield. The reactions employing piperidine complex 9 exhibited poor catalyst activity and minimal conversion. Using [(*Bu₂PNp)PdCl₂]₂ with no amine ligand under the same reaction conditions afforded only 5% conversion after 24 h, which matched previous reports from our group. These results suggest that the identity of the amine ligand has a significant impact on the catalyst performance.

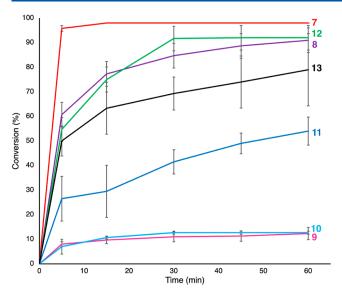


Figure 3. Reaction profiles for the coupling of 4-bromoanisole and aniline using precatalysts 7-13 under conditions in Scheme 3. Reactions with 11-13 were run with 1 mol % of the amine complex, taking into account the presence of palladacycle 14. Data points are the average of three independent trials.

The initial results indicated that primary alkyl amines are effective activating ligands. Interestingly, morpholine gave significantly better results than the structurally similar piperidine ligand. The higher activity with the morpholine ligand could potentially be due to the inductive electron-withdrawing effect of the oxygen. Based on these initial results, additional palladium amine complexes were studied in this reaction. Complex 10 containing an acyclic secondary amine gave similarly low activity to that seen with piperidine complex 9.

The efficiency of additional primary amine ligands was then explored. Reactions using cyclohexylamine precatalyst 11 exhibited moderate activity giving 54% yield after 60 min. The more sterically hindered β -carbon may inhibit the β -hydrogen elimination process with this complex. To confirm that the palladacycle impurity does not decrease the catalyst performance with these complexes, the reaction using complex 7 was performed with addition of 14 (7/14 = 5:1, 1 mol % 7). No change to the reaction profile was observed for catalyst 7 with the added 14.

Reactions employing benzylamine precatalyst 12 gave a reactivity profile comparable to that of morpholine complex 8 but less active than butylamine complex 7. We hypothesized that β -hydrogen elimination might be faster for this amine since it would result in a more stable conjugated imine product. The slower initial rate would suggest that this is not the case, however. Benzylamine and benzaldehyde imines are known to be prone to the formation of N,C-palladacycles, which could serve as a potential catalyst deactivation pathway in this system.

Morpholine complex 8 performed well despite bearing a secondary amine ligand, whereas piperidine complex 9 was much less active. The catalyst efficiency could be a result of the inductive electron-withdrawing effect of the oxygen. This observation motivated us to synthesize complex 13 with a 2-methoxyethylamine ligand. The 2-methoxyethylamine ligand appeared promising as a linear primary alkyl amine bearing an electron-withdrawing methoxy substituent. Precatalyst 13

provided moderate activity but was less effective than butylamine complex 7, morpholine complex 8, and benzylamine complex 12.

Based on these results, $({}^tBu_2PNp)Pd(n\text{-butylamine})Cl_2$ (7) was identified as the optimal amine precatalyst for Buchwald–Hartwig amination reactions. The morpholine (8) and benzylamine (12) were also effective precatalysts but gave lower activity compared to complex 7. The results suggest that primary amines with sterically unhindered β -carbons provide superior results. The lone exception to this trend is morpholine.

Precatalyst 7 was also compared to the other known catalyst systems. A direct comparison was made between complex 7 and the previously reported in situ ^tBu₂PNp/Pd₂(dba)₃ system²⁸ using the model reaction with 0.5 mol % Pd loading (Scheme 3). The reactions using complex 7 reached completion within 15 min and resulted in 98% conversion (Figure S66). Reactions catalyzed by ^tBu₂PNp/Pd₂(dba)₃ exhibited a slower initial rate and required 60 min to reach 90% conversion. At 0.25 mol % Pd loading, precatalyst 7 gave slow conversion with 77% yield achieved after 24 h (Figure S67). Reactions catalyzed by ${}^tBu_2PNp/Pd_2(dba)_3$ with 0.25 mol % Pd loading exhibited significantly lower activity with 37% conversion observed after 24 h. Complex 7 is also more active than $(\eta^3$ -allyl)Pd($(t-Bu)_2$ PNp)Cl $(1, L = {}^tBu_2$ PNp). The $(\eta^3$ -allyl)Pd((tBu_2PNp)Cl precatalyst gave 82% conversion after 15 min and 90% after 30 min, 14a in comparison to 96% after 5 min and 98% at 15 min for complex 7 under the same

Application of (^tBu₂PNp)Pd(*n*-butylamine)Cl₂ in Buchwald–Hartwig Amination Reactions. Complex 7 was applied to the coupling of a range of aryl halides and amines (Scheme 4). The reactions proceeded efficiently at ambient temperature with 0.5 mol % catalyst. Excellent yields were obtained for para- and ortho-substituted aryl bromides. Aryl bromides bearing an electron-rich or neutral parasubstituent (15a–15b) provided comparable yields to previously reported ^tBu₂PNp/Pd₂(dba)₃ systems.²⁸

A similar trend was observed for aryl bromides bearing an electron-withdrawing para-substituent (15c-15d). Electronrich and neutral ortho-substituents were also well tolerated (15e-15f). Product 15f was isolated in a higher yield using complex 7 (91%) than that with the ^tBu₂PNp/Pd₂(dba)₃ system (79%).²⁸ An ortho-chloride substituent was tolerated (15g); however, the reaction required 24 h to reach completion. No competition between the activation of Br and Cl was observed, as determined by GC-MS analysis of the reaction mixture. The reason for the slower reaction for this substrate is unclear. Since chloride and methyl substituents have similar steric parameters, the slower conversion of 15g is presumably not purely a steric effect.²⁹ Possible chelation with the proximal chloride could play a role, although this is not seen with the methoxy group in 15e. 1-Bromonaphthalene efficiently coupled with aniline to afford product 15h in an excellent vield.

The $^tBu_2PNp/Pd_2(dba)_3$ system requires elevated temperatures $(50-140\ ^\circ C)$ to couple aryl halides with two orthosubstituents. Complex 7 gave a trace amount of product using 2-bromomesitylene at room temperature. Heating the reaction did not improve the yield likely due to competitive catalyst deactivation by palladacycle formation. Precatalyst 7 also failed to couple heterocyclic aryl bromides (15j-151) and

Scheme 4. Coupling of Aryl Halides and Amines Using Precatalyst 7^a

$$R_{n} \xrightarrow{\text{I}} \begin{array}{c} Br \\ + & HNR^{1}R^{2} \end{array} \xrightarrow{\begin{array}{c} \textbf{7 (0.5 mol \%)} \\ NaO^{t}Bu \\ toluene, rt, 1h \end{array}} R_{n} \xrightarrow{\text{I}} \begin{array}{c} NR^{1}R^{2} \\ \hline \end{array}$$

"Reactions performed under conditions illustrated unless otherwise noted. Equivalent yields were obtained with 0.5 mol % catalyst loading compared to 1 mol %. Isolated yields reported as the average of two independent trials. GC yields reported in parentheses. ^bReaction time extended to 24 h.

bulky amines (15m). ¹Bu₂PNp/Pd₂(dba)₃ systems also exhibit poor reactivity for bulky aniline derivatives.³⁰

Complex 7 successfully coupled 4-bromoansiole and morpholine to afford product **15n** in a moderate yield at room temperature. Precatalyst 7 failed to couple 4-bromoanisole with bulkier secondary amines, such as dibutylamine and dicyclohexylamine. The in situ $^t\mathrm{Bu_2PNp/Pd(OAc)_2}$ system affords significantly better yields at 80 °C for the coupling of 4-bromoanisole with morpholine (79%) and dibutylamine (86%). ²⁸

Synthesis and Application of (PNp₃)Pd(*n*-butylamine)Cl₂ in Buchwald–Hartwig Amination Reactions. The sterically demanding and relatively rigid ¹Bu₂PNp ligand provides ineffective catalysts for coupling of sterically demanding substrates. In contrast, the more flexible PNp₃ ligand provides catalysts that efficiently catalyze cross-coupling reactions across a range of sterically demanding aryl halides and amines. ^{11a,30} To see if the use of butyl amine could be translated to other catalyst systems, (PNp₃)Pd(*n*-butylamine)Cl₂ (16) was synthesized (Scheme 5).

Scheme 5. Synthesis of (PNp₃)Pd(n-butylamine)Cl₂

Precatalyst 16 was applied to the coupling of a range of aryl halides and amines (Scheme 6). The PNp₃ ligand is less prone

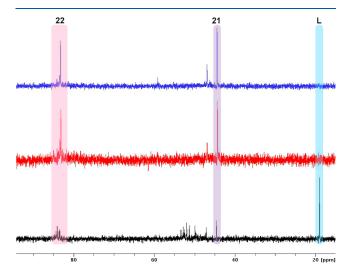
Scheme 6. Coupling of Aryl Halides and Amines Using Precatalyst 16^a

"Reactions performed with aryl bromides at 80 °C unless noted. Isolated yields reported as the average of two independent trials. GC yields reported in parentheses. b Reactions performed using the aryl chloride at 100 °C. 'Reaction time extended to 24 h.

to cyclometallation, which allows catalytic reactions to be performed at higher temperatures than was possible with the $^f\mathrm{Bu_2}\mathrm{PNp}$ system. Coupling of aryl bromides with 2,6-diisopropylaniline occurs efficiently at 80 °C with 0.5 mol % 16. Good yields were obtained for para- and ortho-substituted aryl bromides. Substantially, lower yields were observed in reactions performed at ambient temperature and 40 °C. Aryl bromides bearing an electron-rich or neutral substituent (17a–17b) provided comparable yields to the $\mathrm{PNp_3/Pd_2(dba)_3}$ systems. Aryl bromides containing electron-withdrawing para-substituents were well tolerated (17c–17d). The coupling of 1-bromo-2-chlorobenzene and 2,6-diisopropylaniline proceeded slowly, as seen with 7, and resulted in a moderate yield of product 17e. There was no competition

between the activation of Br and Cl. Complex 16 successfully coupled 2-bromomesitylene with 2,6-diisopropylaniline to afford 17f. However, the bulky aryl bromide could not be coupled with less sterically demanding amines, such as aniline (17i). This matches previous results with the PNp₃/Pd catalyst system. Presumably, the aniline coordinates to the active species and accelerates palladacycle formation. Complex 16 was unable to couple heterocycles (17g–17h).

Notably, para-substituted aryl chlorides were successfully coupled with 2,6-diisopropylaniline when reacted at 100 $^{\circ}$ C. The corresponding products 17a and 17c were isolated in moderate-to-good yields. Product 17a was isolated in a significantly higher yield using complex 16 (93%) in comparison to the PNp₃/Pd₂(dba)₃ system (83%).³⁰


The tolerance of the amine coupling partner was briefly investigated. Reactions with 2,6-diisopropylaniline provided moderate-to-good yields across a range of aryl bromides (17a–17f). Morpholine and dibutylamine gave good yields of arylated products (17j–17k). However, complex 16 failed to couple more sterically demanding secondary amines, such as dicyclohexylamine (17l).

Precatalyst Activation Studies. As seen in Figure 3, the identity of the amine ligand significantly impacts the catalyst efficiency. Primary amines with sterically accessible β -carbons provide the most active catalysts. We hypothesize that the amine adduct is deprotonated to give palladium amido intermediate 18 with loss of chloride to open a site for the β -hydrogen on the amine ligand to coordinate. β -Hydrogen elimination would produce palladium hydride 19 and the corresponding imine (Scheme 7). Intermediate 19 is expected

Scheme 7. Plausible Activation Mechanism for Complex 7

to undergo base-promoted reductive elimination to produce the (${}^tBu_2PNp)Pd^0$ active species (20). In the absence of aryl halide, complex 20 would undergo disproportionation to (${}^tBu_2PNp)_2Pd^0$ (21) and unligated Pd^0 . Alternatively, metalation of the tBu_2PNp ligand potentially promoted by the amine ligand of 7 or the amido ligand in 18 to generate palladacycle 22 can occur. Palladacycle formation would represent a catalyst deactivation pathway. Once generated, the active species (20) should have the same activity independent of the identity of the precatalyst. Therefore, differences in the effectiveness of these precatalysts are likely due to the rate or selectivity of generating the (${}^tBu_2PNp)Pd^0$ active species.

In order to determine the effect of the amine ligand on catalyst activation, we studied the activation process of complexes 7–9 under catalytic conditions (Scheme 3) by ³¹P NMR spectroscopy. Reactions were performed with 5 mol % precatalyst to provide sufficient sensitivity in the ³¹P NMR spectrum. Kinetic profiles of the activation process could not be determined due to the fast rate of consumption of 7–9, which was largely complete within 5 min at room temperature. However, some mechanistic insights were obtained through observation of the phosphorus-containing species formed during the cross-coupling of 4-bromoanisole and aniline using precatalysts 7–9 (Figure 4). Peaks of interest included

Figure 4. ³¹P NMR analysis of the catalytic reaction using precatalysts 7–9 (5 mol %) after 5 min at room temperature. Complex 7 (blue), complex 8 (red), and complex 9 (black). Integrated spectra provided in the Supporting Information (Figures S68–S73).

palladacycle complexes (14, 83 ppm), unreacted amine precatalysts (7–9, 59 ppm), L₂Pd⁰ species (21, 44 ppm), uncoordinated ^tBu₂PNp ligands (19 ppm), and [(^tBu₂PNp)-Pd(Ar)Br]₂ (52 ppm). ²³

Analysis of the reaction mixture catalyzed by complex 7 after 5 min showed nearly complete consumption of the starting complex (Figure 4). The major species present were (¹Bu₂PNp)₂Pd⁰ (21, 44%) and a palladacycle species (22, 32%), plus an unidentified peak at 47 ppm that is in the region of palladium(II) complexes of ¹Bu₂PNp (Table 1). Analysis of this system after 20 min showed a decrease in (¹Bu₂PNp)₂Pd⁰

Table 1. Product Distributions from Complexes 7–9 under Catalytic Conditions^a

		integrated ratio ^b				
complex	time (min)	22	7/8/9	21	L^c	other ^d
7	5	32	2	44	0	22
7	20	47	4	27	5	17
8	5	41	8	37	0	14
8	20	34	5	25	8	28
9	5	27	0	5	27	41
9	20	19	0	2	22	57

^aComplex 7–9 (0.025 mmol), 4-bromoanisole (0.5 mmol), NaO^tBu (0.75 mmol), aniline (0.6 mmol), toluene (1.5 mL), rt. ^bIntegration ratio from ³¹P{¹H} NMR spectrum. ^cFree ^tBu₂PNp. ^dTotal relative integrated area of unidentified species in the 47–55 ppm region.

(21, 27%) and a corresponding increase in the palladacycle (47%) (Figure S69). A small amount of free ligand was also present, presumably from decomposition of complex 21.

The activation of complex 8 was analyzed in the same way as complex 7. At 5 min, the amount of (^tBu₂PNp)₂Pd⁰ was lower (37%) than that for complex 7, and there was a larger amount of palladacycle 22 (Table 1). At 20 min, the spectrum appeared similar but with a larger percentage of species in the 47–55 ppm range (Figure S71). In contrast to the results with complex 7 and 8, complex 9 gave only a small amount of palladium(0) complex 21 (5%) after 5 min. A large number of phosphorus-containing species were observed from 47 to 55 ppm, which comprised the majority of the phosphorus present. The other species present were with several resonances in the palladacycle region and significant amount (27%) of free ^tBu₂PNp that was not seen with complexes 7 or 8. No major change was noted after 20 min (Figure S73), although the signal for the palladium(0) species (21) had decreased slightly (2%).

Further confirmation of the proposed activation pathway (Scheme 7) could be achieved by observation of the imine byproduct through ¹H NMR analysis. The HC=N proton should be readily observed as it would appear in a region with no competing resonances from the starting materials and products. Evidence for the imine byproduct was not observed, however. It is possible that the imine undergoes further reactions under the strongly basic reaction conditions preventing it from being observed.

The selectivity with which the palladium(0) species is generated from these complexes correlates with their effectiveness as precatalysts in the N-arylation reaction. Complex 7, which provides the most active catalyst, shows the highest selectivity for the generation of palladium(0) complex 21. The major competing reaction is the known cyclometallation of the ^tBu₂PNp ligand. Complex 8, which also provides an effective catalyst, also generates the palladium(0) complex, although less efficiently than complex 7. In contrast, complex 9, which does not generate an effective catalyst, primarily appears to undergo decomposition under the reaction conditions to give a large number of other products, including free ligand. Only trace amounts of LPd⁰ are formed with this system. The inability to generate the palladium(0) active species accounts for the poor activity seen using precatalyst 9.

CONCLUSIONS

Air stable mixed palladium(II) complexes bearing an amine ligand and neopentyl-substituted phosphine ligand have been shown to efficiently catalyze the Buchwald-Hartwig amination reactions. The identity of the amine ligand significantly impacts catalyst efficiency and lifetime. Precatalysts derived from linear primary alkyl amines exhibit superior activity with fast initial rates. In contrast, piperidine or di(n-butyl)amine were ineffective activating ligands. (*Bu₂PNp)Pd(n-butylamine)Cl₂ (7) was identified as the optimal amine precatalyst. Complex 7 shows an increased coupling rate for aryl bromides with aniline at ambient temperature in comparison to the catalyst generated in situ from ^tBu₂PNp and Pd₂(dba)₃. (PNp₃)Pd(nbutylamine)Cl₂ (16) efficiently catalyzed cross-coupling reactions across a range of sterically demanding aryl halides and amines. Notably, complex 16 provided satisfactory yields when coupling electron-rich and electron-deficient aryl chlorides.

³¹P NMR analysis of reaction mixtures demonstrates that the catalyst efficiency is correlated to the propensity of the precatalysts to undergo side reactions during the catalyst activation process. Butylamine complex 7 most efficiently generates the active LPd⁰ species and undergoes minimal side reactions when compared to less effective precatalysts 8 and 9. In particular, the piperidine complex (9) provides little LPd⁰ species according to ³¹P NMR analysis of catalytic reaction mixtures

These results suggest that *n*-butylamine is particularly effective as an activating ligand. This may be due to a more efficient β -hydrogen elimination pathway on the sterically accessible alkyl chain. The major catalyst deactivation pathway in these systems is cyclometallation of the neopentyl ligand, which we have previously observed. The amine ligand appears to promote cyclopalladation in the ^tBu₂PNp system (7) at elevated temperatures, which limits the ability to use this precatalyst at higher temperature. In contrast, cyclometallation of PNp3 occurs less readily allowing complex 16 to be used at higher temperature. It is possible that the poor performance of secondary amine complexes (9 and 10) is due to the increased basicity of the secondary nitrogen, which would be expected to accelerate ligand cyclometallation. The morpholine complex (8) is an exception to this trend, which may be due to the lower basicity of morpholine compared to piperidine or dibutylamine.

The cyclometallation deactivation pathway occurs readily in neopentyl ligands and may not be observed with other ligands that are less prone to metalation. Efforts are currently underway to study other $\mathrm{LPdCl_2}(\mathrm{amine})$ precatalyst systems to determine whether similar structural effects on the ability of the amine to act as an activating ligand will be seen.

EXPERIMENTAL SECTION

General Procedures and Materials. Reagents were purchased from commercial suppliers and used as received, except when noted. Toluene was refluxed over sodium and freshly distilled prior to use. Di-tert-butylneopentylphosphine was donated by FMC Lithium. Trineopentylphosphine, bis(acetonitrile)dichloropalladium(II), [(tBu2PNp)PdCl2]2, [(TNpP)PdCl2]2, and palladacycle 14 were synthesized following reported methods.²³ Air sensitive reactions were performed under nitrogen using double-manifold inertatmosphere techniques. GC samples were measured using a Shimadzu GC-2014 Gas Chromatograph using a 10 °C/min increasing rate from 100 to 250 °C. NMR spectra were acquired on a Brüker 500 MHz spectrometer. C₆D₆ was used as the solvent for NMR characterization of complexes 7-13. Dissolving these complexes in more polar solvents, such as CDCl3, results in dissociation of the amine ligand to give an equilibrium mixture of 7-13, the free amine, and $[(^tBu_2PNp)PdCl_2]_2$.

General Procedure for Synthesis of Mixed Palladium(II) Precatalysts. In a 3 dram vial in air, $[({}^tBu_2PNp)PdCl_2]_2$ (0.15 mmol) was dissolved in 3 mL of dichloromethane prior to the dropwise addition of the amine (0.30 mmol). The mixture was stirred at 22 °C for 24 h and concentrated to remove dichloromethane. The resulting solid was washed with 3 × 5 mL of hexane and dried under vacuum to give spectroscopically pure material. X-ray quality crystals were obtained by slow evaporation of methylene chloride/hexane solutions.

[(${}^{t}Bu_{2}PNp)Pd(CH_{3}(CH_{2})_{3}NH_{2})CI_{2}$] (7). Using the general procedure, [(${}^{t}Bu_{2}PNp)PdCI_{2}$] (118.4 mg, 0.1504 mmol) and n-butylamine (32 μ L, 0.32 mmol) were reacted to produce the target complex as an air-stable orange solid (130.2 mg, 93%). ${}^{t}H$ NMR (500 MHz, $C_{6}D_{6}$): δ 2.58 (ttd, J = 7.2, 3.4 Hz, 2H), 2.16 (d, J = 13.4 Hz, 2H), 1.96 (br s, 2H), 1.52 (d, J = 14.2 Hz, 18H), 1.46 (d, J = 1.1 Hz, 9H), 1.11 (pent, J = 7.4 Hz, 2H), 0.94 (sext, J = 7.4 Hz, 2H), 0.69 (t, J = 7.3 Hz, 3H).

¹³C NMR (125 MHz, C_6D_6): δ 43.3 (d, J_{C-P} = 2.6 Hz), 37.1 (d, J_{C-P} = 17.9 Hz), 34.1 (d, J_{C-P} = 2.5 Hz), 34.0 (d, J_{C-P} = 14.3 Hz), 33.9 (d, J_{C-P} = 6.1 Hz), 31.5 (d, J_{C-P} = 3.3 Hz), 31.1 (d, J_{C-P} = 2.9 Hz), 20.1, 14.0. ³¹P{¹H} NMR (202.5 MHz, C_6D_6): δ 57.5.

[(¹Bu₂PNp)Pd(O(CH₂CH₂)₂NH)Cl₂] (8). Using the general procedure, [(¹Bu₂PNp)PdCl₂]₂ (111.0 mg, 0.1410 mmol) and morpholine (26 μL, 0.30 mmol) were reacted to produce the target complex as an air-stable yellow solid (131.2 mg, 97%). ¹H NMR (500 MHz, C_6D_6): δ 3.43 (dddd, J = 3.6, 12.6, 12.6, 12.6 Hz, 2H), 3.21 (d, J = 12.0 Hz, 2H), 3.16 (br s, 1H), 2.68 (m, 2H), 2.42 (d, J = 13.3 Hz, 2H), 2.16 (d, J = 13.4 Hz, 2H), 1.51 (d, J = 13.4 Hz, 18H), 1.46 (d, J = 1.0 Hz, 9H). ¹³C NMR (125 MHz, C_6D_6): δ 66.5 (d, $J_{C-P} = 3.0$ Hz), 46.3 (d, $J_{C-P} = 2.9$ Hz), 35.8 (d, $J_{C-P} = 17.8$ Hz), 32.9 (d, $J_{C-P} = 14.1$ Hz), 32.5 (d, $J_{C-P} = 6.2$ Hz), 30.3 (d, $J_{C-P} = 3.4$ Hz), 29.7 (d, $J_{C-P} = 2.8$ Hz). ³¹P{¹H} NMR (202.5 MHz, C_6D_6): δ 60.6.

[('Bu₂PNp)Pd((CH₂)₅NH)Cl₂] (9). Using the general procedure, [('Bu₂PNp)PdCl₂]₂ (116.8 mg, 0.1484 mmol) and piperidine (32 μ L, 0.32 mmol) were reacted to produce the target complex as an airstable yellow solid (133.9 mg, 94%). ¹H NMR (500 MHz, C₆D₆): δ 3.12 (m, 3H), 2.98 (m, 2H), 2.17 (d, J = 13.4 Hz, 2H), 1.53 (d, J = 13.3 Hz, 18H), 1.47 (s, 9H), 1.06 (m, 3H), 0.90 (m, 1H), 0.79 (m, 2H). ¹³C NMR (125 MHz, C₆D₆): δ 48.7 (d, J_{C-P} = 3.0 Hz), 37.0 (d, J_{C-P} = 17.5 Hz), 34.1 (d, J_{C-P} = 13.8 Hz), 33.9 (d, J_{C-P} = 6.2 Hz), 31.4 (d, J_{C-P} = 3.2 Hz), 31.2 (d, J_{C-P} = 2.9 Hz), 27.8 (d, J_{C-P} = 3.2 Hz), 24.0. ³¹P{¹H} NMR (202.5 MHz, C₆D₆): δ 57.7. Elemental analysis: calcd for C₁₈H₄₀Cl₂NPPd: C, 45.15; H, 8.42; N, 2.93. Found: C, 45.08; H, 8.54; N, 3.30.

[(t Bu₂PNp)Pd([(CH₃(CH₂)₃)₂]NH)Cl₂] (10). Using the general procedure, [(t Bu₂PNp)PdCl₂]₂ (127.0 mg, 0.1613 mmol) and dibutylamine (55 μ L, 0.33 mmol) were reacted to produce the target complex as an air-stable orange solid. The crude product was recrystallized from slow evaporation of hexane to afford the pure product (149.5 mg, 89%). 1 H NMR (500 MHz, C₆D₆): δ 3.27 (m, 3H), 2.37 (m, 2H), 2.28 (d, J = 13.4 Hz, 2H), 2.05 (m, 2H), 1.93 (m, 2H), 1.62 (d, J = 13.6 Hz, 18H), 1.56 (d, J = 1.0 Hz, 9H), 1.48 (m, 2H), 1.33 (m, 2H), 1.05 (t, J = 7.4 Hz, 6H). 13 C NMR (125 MHz, C₆D₆): δ 51.6 (d, J_{C-P} = 2.5 Hz), 36.8 (d, J_{C-P} = 17.3 Hz), 33.7 (d, J_{C-P} = 13.8 Hz), 33.5 (d, J_{C-P} = 6.0 Hz), 31.7, 31.2 (d, J_{C-P} = 3.3 Hz), 30.7 (d, J_{C-P} = 2.9 Hz), 20.5, 13.9. 31 P{ 1 H} NMR (202.5 MHz, C₆D₆): δ 58.2. Elemental analysis: calcd for C₂₁H₄₈Cl₂NPPd: C, 48.24; H, 9.25; N, 2.68. Found: C, 48.37; H, 9.34; N, 2.66.

[(1 Bu₂PNp)Pd(2 C₆H₁₁NH₂)Cl₂] (11). Using the general procedure, [(1 Bu₂PNp)PdCl₂]₂ (118.1 mg, 0.1500 mmol) and cyclohexylamine (34 μ L, 0.30 mmol) were reacted to produce the target complex as an air-stable yellow solid (138.4 mg). Analysis by 3 P NMR spectroscopy showed this material to be a 63:37 mol/mol ratio of 11/14. Further attempts to purify this material by recrystallization were unsuccessful. Based on this ratio, the yield of 11 was 99 mg (67%). X-ray quality crystals were obtained by slow evaporation from a saturated hexane solution. 1 H NMR (500 MHz, 2 C₆D₆): δ 3.01 (m, 1H), 2.18 (d, 2 J = 14.3 Hz, 2H), 2.08 (br s, 2H), 1.94 (m, 2H), 1.54 (d, 2 J = 13.3 Hz, 18H), 1.47 (d, 2 J = 1.0 Hz), 1.43 (m, 2H), 1.16 (br s, 1H), 1.00 (m, 2H), 0.81 (m, 3H). 1 C NMR (125 MHz, 2 C₆D₆): δ 51.8 (d, 2 C_{-P} = 2.0 Hz), 36.7 (d, 2 C_{-P} = 17.9 Hz), 35.1 (d, 2 C_{-P} = 2.3 Hz), 33.6, 33.5 (d, 2 C_{-P} = 6.2 Hz), 31.1 (d, 2 C_{-P} = 3.3 Hz), 30.7 (d, 2 C_{-P} = 2.8 Hz), 25.2, 24.8. 3 P 1 H 2 NMR (202.5 MHz, 2 C₆D₆): δ 57.6.

[(¹Bu₂PNp)Pd($C_6H_5CH_2NH_2$)Cl₂] (12). Using the general procedure, [(¹Bu₂PNp)PdCl₂]₂ (122.1 mg, 0.1551 mmol) and benzylamine (35 μ L, 0.32 mmol) were reacted to produce the target complex as an air-stable orange solid (138.2 mg). Analysis by ³¹P NMR spectroscopy showed this material to be a 79:21 mol/mol ratio of 12/14. Further attempts to purify this material by recrystallization were unsuccessful. Based on this ratio, the yield of 12 was 116 mg (75%). X-ray quality crystals were obtained by slow evaporation from a saturated hexane solution. Some aromatic peaks were obscured by C_6D_6 . ¹H NMR (500 MHz, C_6D_6): δ 6.97 (m, 3H), 6.81 (m, 2H), 3.83 (m, 2H), 2.83 (br s, 2H), 2.16 (d, J = 13.4 Hz, 2H), 1.52 (d, J = 15.8 Hz, 18H), 1.46 (d, J = 1.0 Hz, 9H). ¹³C NMR (125 MHz, C_6D_6): δ 138.9 (d, J_{C-P} = 3.2 Hz), 128.6, 47.1 (d, J_{C-P} = 2.6 Hz), 37.7 (d, J_{C-P} = 18.1 Hz), 33.7

(d, J_{C-P} = 14.3 Hz), 33.4 (d, J_{C-P} = 6.1 Hz), 31.0 (d, J_{C-P} = 3.4 Hz), 30.7 (d, J_{C-P} = 2.8 Hz). ³¹P{¹H} NMR (202.5 MHz, C₆D₆): δ 58.9.

 $[(^tBu_2PNp)Pd(CH_3OCH_2CH_2NH_2)CI_2]$ (13). Using the general procedure, [('Bu₂PNp)PdCl₂]₂ (124.3 mg, 0.1579 mmol) and 2methoxyethylamine (28 μ L, 0.32 mmol) were reacted to produce the target complex as an air-stable orange solid (99.4 mg). Analysis by ³¹P NMR spectroscopy showed this material to be an 85:15 mol/mol ratio of 13/14. Further attempts to purify this material by recrystallization were unsuccessful. Based on this ratio, the yield of 13 was 87 mg (59%). A small amount of X-ray quality crystals was obtained by slow evaporation from a saturated hexane solution. Crystals from this process gave suitable elemental analysis. ¹H NMR (500 MHz, C_6D_6): δ 2.94 (s, 3H), 2.90 (t, J = 5.0 Hz, 2H), 2.76 (m, 2H), 2.23 (br s, 2H), 2.16 (d, J = 13.5 Hz, 2H), 1.52 (d, J = 13.4 Hz, 18H), 1.46 (d, J = 1.1 Hz, 9H). ¹³C NMR (125 MHz, C₆D₆): δ 71.2 (d, $J_{C-P} = 2.4 \text{ Hz}$), 57.8, 42.5 (d, $J_{C-P} = 2.6 \text{ Hz}$), 36.5 (d, $J_{C-P} = 18.0$ Hz), 33.5 (d, J_{C-P} = 14.3 Hz), 33.4 (d, J_{C-P} = 6.1 Hz), 30.9 (d, J_{C-P} = 3.4 Hz), 30.6 (d, J_{C-P} = 2.8 Hz). ³¹P{¹H} NMR (202.5 MHz, C_6D_6): δ 57.8. Elemental analysis: calcd for $C_{16}H_{38}Cl_2NOPPd$: C, 40.99; H, 8.17; N, 2.99. Found: C, 41.03; H, 8.09; N, 2.98.

Synthesis of [(TNpP)Pd(CH₃(CH₂)₃NH₂)Cl₂]₂ (16). In a 3 dram vial in air, $[(TNpP)PdCl_2]_2$ (68.2 mg, 0.0809 mmol) was dissolved in 3 mL of dichloromethane prior to the dropwise addition of *n*-butylamine (17.5 μL, 0.177 mmol). The mixture was stirred at 22 °C for 24 h and concentrated to remove dichloromethane. The target complex was obtained as a spectroscopically pure yellow oil (75.9 mg, 95%). ¹H NMR (500 MHz, C_6D_6): δ 2.82 (ttd, J = 3.2, 7.2, 7.2 Hz, 2H), 2.35 (m, 2H), 2.09 (d, J = 12.7 Hz, 6H), 1.53 (pentet, J = 7.5 Hz, 2H), 1.28 (sext, J = 7.5 Hz, 2H) 1.27 (s, 27H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, C_6D_6): δ 42.5 (d, J_{C-P} = 2.6 Hz), 36.9 (d, J_{C-P} = 24.9 Hz), 33.2 (d, J_{C-P} = 2.7 Hz), 32.2 (d, J_{C-P} = 6.3 Hz), 31.4 (d, J_{C-P} = 4.2 Hz), 18.8, 12.7. ³¹P{¹H} NMR (202.5 MHz, C_6D_6): δ 13.1.

General Procedure for Buchwald–Hartwig Amination Reaction Profiles. The palladium precatalyst (5.0 μ mol, 1 mol % Pd–amine complex) was measured into a 1 dram vial in air. For complexes 11–13, which contained palladacycle impurities, the amount of complex was adjusted to ensure that 1 mol % of complex 11–13 was present. The vial was placed into a nitrogen-filled glovebox where sodium *tert*-butoxide (0.75 mmol) was added. The vial was sealed with a Teflon septum. Upon removal, 4-bromoanisole (0.50 mmol), 1.5 mL of toluene, and aniline (0.60 mmol) were added. The reaction was stirred at 22 °C for 1 h. Conversion was monitored by GC.

General Procedure for Buchwald–Hartwig Amination Using Precatalyst 7. Precatalyst 7 (2.5 μ mol, 0.5 mol %) was measured into a 1 dram vial in air. The vial was placed into a nitrogenfilled glovebox where sodium *tert*-butoxide (0.75 mmol) was added. The vial was sealed with a Teflon septum. Upon removal, the aryl halide (0.50 mmol), 1.5 mL of toluene, and arylamine (0.60 mmol) were added. The reaction was stirred at 22 °C for 1 h, except when noted. Upon completion as judged by GC, the reaction mixture was filtered through a plug of celite and rinsed with dichloromethane. The filtrate was concentrated and purified through silica gel column chromatography (5–10% ethyl acetate/hexane).

General Procedure for Buchwald–Hartwig Amination Using Precatalyst 16. A 1 dram vial was placed into a nitrogen-filled glovebox where sodium *tert*-butoxide (0.75 mmol) was added. The vial was sealed with a Teflon septum. Upon removal, the aryl halide (0.50 mmol), 0.25 mL of precatalyst 16 (2.5 μmol in 0.01 M solution with toluene), 1.25 mL of toluene, and arylamine (0.50–0.60 mmol) were added. The reaction was stirred in a pre-heated oil bath set to 80 °C for 1 h, except when noted. Upon completion as judged by GC, the reaction mixture was filtered through a plug of celite and rinsed with dichloromethane. The filtrate was concentrated and purified through silica gel column chromatography (5–10% ethyl acetate/hexane).

Analysis of Catalyst Activation under Catalytic Conditions. The precatalyst (5 mol %) was measured into a 1 dram vial in air. The vial was placed into a nitrogen-filled glovebox where sodium *tert*-

butoxide (0.75 mmol) was added. The vial was sealed with a Teflon septum. Upon removal, 4-bromoanisole (0.50 mmol), 1.5 mL of toluene, and aniline (0.60 mmol) were added. The reaction was stirred at 22 $^{\circ}$ C and analyzed by 31 P NMR spectroscopy.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.2c00518.

NMR spectra (1 H, 13 C(1 H), 31 P(1 H)) for complexes 7–13, characterization data and NMR spectra (1 H, 13 C-(1 H)) for compounds, reaction profiles for complex 7 and Pd₂(dba)₃/ t Bu₂PNp, NMR spectra from the catalyst activation studies, and X-ray crystal data for complexes 7–13 (PDF)

Accession Codes

CCDC 2213818–2213824 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request/cif, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Kevin H. Shaughnessy – Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States; orcid.org/0000-0002-1375-5563; Email: kshaughn@ua.edu

Authors

Jordan K. Pierce – Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States

Lindsey D. Hiatt – Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States

James R. Howard – Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States

Huaiyuan Hu – Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States

Fengrui Qu − Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States; oorcid.org/0000-0002-9975-2573

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.2c00518

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Experimental data were obtained on an X-ray diffractometer (CHE-1828078) and an NMR spectrometer (CHE-1919906) purchased with support from the NSF MRI program. A donation of $^t\mathrm{Bu}_2\mathrm{PNp}$ from FMC Lithium Corporation is gratefully acknowledged.

REFERENCES

(1) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical

Contextual Perspective to the 2010 Nobel Prize. Angew. Chem., Int. Ed. 2012, 51, 5062-5085.

- (2) (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem., Int. Ed. 2005, 44, 4442-4489. (b) Corbet, J.-P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 2006, 106, 2651-2710. (c) McGlacken, G. P.; Fairlamb, I. J. S. Palladium-Catalysed Cross-Coupling and Related Processes: Some Interesting Observations That Have Been Exploited in Synthetic Chemistry. Eur. J. Org. Chem. 2009, 4011-4029. (d) Torborg, C.; Beller, M. Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027-3043. (e) Magano, J.; Dunetz, J. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011, 111, 2177-2250. (f) Heravi, M. M.; Hashemi, M. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron 2012, 68, 9145-9178. (g) Gildner, P. G.; Colacot, T. J. Reactions of the 21st Century: Two Decades of Innovative Catalyst Design for Palladium-Catalyzed Cross-Couplings. Organometallics 2015, 34, 5497-5508. (h) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564-12649.
- (3) Shaughnessy, K. H. Monodentate Trialkylphosphines: Privileged Ligands in Metal-catalyzed Crosscoupling Reactions. *Curr. Org. Chem.* **2020**, *24*, 231–264.
- (4) (a) Surry, D. S.; Buchwald, S. L. Dialkylbiaryl phosphines in Pdcatalyzed amination: a user's guide. *Chem. Sci.* **2011**, *2*, 27–50. (b) Ingoglia, B. T.; Wagen, C. C.; Buchwald, S. L. Biaryl monophosphine ligands in palladium-catalyzed C-N coupling: An updated User's guide. *Tetrahedron* **2019**, *75*, 4199–4211.
- (5) Nelson, D. J.; Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. *Chem. Soc. Rev.* **2013**, 42, 6723–6753.
- (6) (a) Christmann, U.; Vilar, R. Monoligated Palladium Species as Catalysts in Cross-Coupling Reactions. Angew. Chem., Int. Ed. 2005, 44, 366-374. (b) Jimeno, C.; Christmann, U.; Escudero-Adán, E. C.; Vilar, R.; Pericas, M. A. Studies on the Amination of Aryl Chlorides with a Monoligated Palladium Catalyst: Kinetic Evidence for a Cooperative Mechanism. Chem.—Eur. J. 2012, 18, 16510-16516. (c) Vikse, K.; Naka, T.; McIndoe, J. S.; Besora, M.; Maseras, F. Oxidative Additions of Aryl Halides to Palladium Proceed through the Monoligated Complex. ChemCatChem 2013, 5, 3604-3609. (d) Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E. C.; Welch, C. J.; Chen, H. Capture of Reactive Monophosphine-Ligated Palladium(0) Intermediates by Mass Spectrometry. J. Am. Chem. Soc. 2015, 137, 14035-14038. (e) Lau, S. H.; Chen, L.; Kevlishvili, K.; Davis, I.; Liu, P.; Carrow, B. Capturing the Most Active State of a Palladium(0) Cross-Coupling Catalyst. ChemRxiv 2021, DOI: 10.26434/chemrxiv-2021-477kn.
- (7) Li, H.; Johansson Seechurn, C. C. C.; Colacot, T. J. Development of Preformed Pd Catalysts for Cross-Coupling Reactions, Beyond the 2010 Nobel Prize. ACS Catal. 2012, 2, 1147–1164.
- (8) (a) Hazari, N.; Melvin, P. R.; Beromi, M. M. Well-Defined Nickel and Palladium Precatalysts for Cross-Coupling. *Nat. Rev. Chem.* **2017**, *1*, 0025. (b) Shaughnessy, K. H. Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species. *Isr. J. Chem.* **2020**, *60*, 180–194.
- (9) (a) Marion, N.; Nolan, S. P. Well-Defined N-Heterocyclic Carbenes—Palladium(II) Precatalysts for Cross-Coupling Reactions. *Acc. Chem. Res.* **2008**, *41*, 1440—1449. (b) Johansson Seechurn, C. C. C.; Parisel, S. L.; Colacot, T. J. Air-Stable Pd(R-allyl)LCl (L= Q-Phos, P(t-Bu)3, etc.) Systems for C-C/N Couplings: Insight into the Structure-Activity Relationship and Catalyst Activation Pathway. *J. Org. Chem.* **2011**, *76*, 7918—7932. (c) Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset, M. Insight into the Efficiency of Cinnamyl-Supported Precatalysts for the Suzuki-Miyaura Reaction: Observation of Pd(I) Dimers with Bridging Allyl Ligands During Catalysis. *J. Am. Chem. Soc.* **2014**, *136*, 7300—7316.

- (10) (a) Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. A New Class of Easily Activated Palldium Precatalysts for Facile C-N Cross-Coupling Reactions and the Low Temperature Oxidative Addition of Aryl Chlorides. J. Am. Chem. Soc. 2008, 130, 6886–6887. (b) Kinzel, T.; Zhang, Y.; Buchwald, S. L. A New Palladium Precatalyst Allows for the Fast Suzuki-Miyaura Coupling Reactions of Unstable Polyfluorophenyl and 2-Heteroaryl Boronic Acids. J. Am. Chem. Soc. 2010, 132, 14073–14075. (c) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and Preparation of New Palladium Precatalysts for C-C and C-N Cross-Coupling Reactions. Chem. Sci. 2013, 4, 916–920. (d) Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. N-Substituted 2-Aminobiphenylpalladium Methanesulfonate Precatalysts and Their Use in C-C and C-N Cross-Couplings. J. Org. Chem. 2014, 79, 4161–4166.
- (11) (a) Hu, H.; Qu, F.; Gerlach, D. L.; Shaughnessy, K. H. Mechanistic Study of the Role of Substrate Steric Effects and Aniline Inhibition on the Bis(trineopentylphosphine)palladium(0)-Catalyzed Arylation of Aniline Derivatives. ACS Catal. 2017, 7, 2516–2527. (b) Ingoglia, B. T.; Buchwald, S. L. Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands. Org. Lett. 2017, 19, 2853–2856. (c) Xu, J.; Liu, R. Y.; Yeung, C. S.; Buchwald, S. L. Monophosphine Ligands Promote Pd-Catalyzed C-S Cross-Coupling Reactions at Room Temperature with Soluble Bases. ACS Catal. 2019, 9, 6461–6466. (d) Hu, H.; Burlas, C. E.; Curley, S. J.; Gruchala, T.; Qu, F.; Shaughnessy, K. H. Effect of Aryl Ligand Identity on Catalytic Performance of Trineopentylphosphine Arylpalladium Complexes in N-Arylation Reactions. Organometallics 2020, 39, 3618–3627.
- (12) (a) Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. The Development of Bulky Palladium NHC Complexes for the Most-Challenging Cross-Coupling Reactions. *Angew. Chem., Int. Ed.* **2012**, *51*, 3314–3332. (b) Valente, C.; Pompeo, M.; Sayah, M.; Organ, M. G. Carbon-Heteroatom Coupling Using Pd-PEPPSI Complexes. *Org. Process Res. Dev.* **2014**, *18*, 180–190.
- (13) (a) Viciu, M. S.; Germaneau, R. F.; Navarro-Fernandez, O.; Stevens, E. D.; Nolan, S. P. Activation and Reactivity of (NHC)Pd-(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes in Cross-Coupling Reactions. Organometallics 2002, 21, 5470-5472. (b) Viciu, M. S.; Germaneau, R. F.; Nolan, S. P. Well-defined, air-stable (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) catalysts for the arylation of ketones. Org. Lett. 2002, 4, 4053-4056. (c) Chartoire, A.; Lesieur, M.; Falivene, L.; Slawin, A. M. Z.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P. [Pd(IPr*)(cinnamyl)Cl]: An Efficient Pre-catalyst for the Preparation of Tetra-ortho-substituted Biaryls by Suzuki-Miyaura Cross-Coupling. Chem.—Eur. J. 2012, 18, 4517-4521. (d) Bastug, G.; Nolan, S. P. [Pd(IPr*OMe)(cin)Cl] (cin = Cinnamyl): A Versatile Catalyst for C-N and C-C Bond Formation. Organometallics 2014, 33, 1253-1258. (e) Shi, S.; Nolan, S. P.; Szostak, M. Well-Defined Palladium(II)-NHC Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective N-C/O-C Cleavage. Acc. Chem. Res. 2018, 51, 2589-2599.
- (14) (a) Hill, L. L.; Crowell, J. L.; Tutwiler, S. L.; Massie, N. L.; Hines, C. C.; Griffin, S. T.; Rogers, R. D.; Shaughnessy, K. H.; Grasa, G. A.; Johansson Seechurn, C. C. C.; Li, H.; Colacot, T. J.; Chou, J.; Woltermann, C. J. Synthesis and X-ray Structure Determination of Highly Active Pd(II), Pd(I), and Pd(0) Complexes of Di(tert-butyl)neopentylphosphine (DTBNpP) in the Arylation of Amines and Ketones. *J. Org. Chem.* 2010, 75, 6477–6488. (b) DeAngelis, A. J.; Gildner, P. G.; Chow, R.; Colacot, T. J. Generating Active "L-Pd(0)" via Neutral or Cationic π-Allylpalladium Complexes Featuring Biaryl/Bipyrazolylphosphines: Synthetic, Mechanistic, and Structure-Activity Studies in Challenging Cross-Coupling Reactions. *J. Org. Chem.* 2015, 80, 6794–6813.
- (15) (a) Fantasia, S.; Nolan, S. P. A general synthetic route to mixed NHC-phosphane palladium(0) complexes (NHC = N-heterocyclic carbene). *Chem.—Eur. J.* **2008**, *14*, 6987–6993. (b) Melvin, P. R.; Balcells, D.; Hazari, N.; Nova, A. Understanding Precatalyst Activation in Cross-Coupling Reactions: Alcohol Facilitated Reduction from Pd(II) to Pd(0) in Precatalysts of the Type (η 3-

- allyl)Pd(L)(Cl) and (η 3-indenyl)Pd(L)(Cl). ACS Catal. 2015, 5, 5596–5606. (c) Ortiz, D.; Blug, M.; Le Goff, X. F.; Le Floch, P.; Mézailles, N.; Maître, P. Mechanistic Investigation of the Generation of a Palladium(0) Catalyst from a Palladium(II) Allyl Complex: A Combined Experimental and DFT Study. Organometallics 2012, 31, 5975–5978.
- (16) Melvin, P. R.; Nova, A.; Balcells, D.; Dai, W.; Hazari, N.; Hruszkewycz, D. P.; Shah, H. P.; Tudge, M. T. Design of a Versatile and Improved Precatalyst Scaffold for Palladium-Catalyzed Cross-Coupling: $(\eta 3$ -1-tBu-indenyl)2 $(\mu$ -Cl)2Pd2. *ACS Catal.* **2015**, *S*, 3680–3688.
- (17) Lee, H. G.; Milner, P. J.; Buchwald, S. L. An Improved Catalyst System for the Pd-Catalyzed Fluorination of (Hetero)Aryl Triflates. *Org. Lett.* **2013**, *15*, 5602–5605.
- (18) Chen, L.; Francis, H.; Carrow, B. P. An "On-Cycle" Precatalyst Enables Room-Temperature Polyfluoroarylation Using Sensitive Boronic Acids. ACS Catal. 2018, 8, 2989–2994.
- (19) (a) O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Easily Prepared Air- and Moisture-Stable Pd-NHC (NHC=N-Heterocyclic Carbene) Complexes: A Reliable, User-Friendly, Highly Active Palladium Precatalyst for the Suzuki-Miyaura Reaction. Chem.—Eur. J. 2006, 12, 4743-4748. (b) Organ, M. G.; Abdel-Hadi, M.; Avola, S.; Hadei, N.; Nasielski, J.; O'Brien, C. J.; Valente, C. Biaryls made easy: PEPPSI and the Kumada-Tamao-Corriu reaction. Chem.—Eur. J. 2007, 13, 150-157. (c) Organ, M. G.; Çalimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Pd-PEPPSI-IPent: An Active, Sterically Demanding Cross-Coupling Catalyst and Its Application in the Synthesis of Tetra-Ortho-Substituted Biaryls. Angew. Chem., Int. Ed. 2009, 48, 2383-2387. (d) Nasielski, J.; Hadei, N.; Achonduh, G.; Kantchev, E. A. B.; O'Brien, C. J.; Lough, A.; Organ, M. G. Structure-Activity Relationship Analysis of Pd-PEPPSI Complexes in Cross-Couplings: A Close Inspection of the Catalytic Cycle and the Precatalyst Activation Model. Chem.—Eur. J. 2010, 16, 10844-10853. (e) Atwater, B.; Chandrasoma, N.; Mitchell, D.; Rodriguez, M. J.; Organ, M. G. Pd-PEPPSI-IHeptCl : A General-Purpose, Highly Reactive Catalyst for the Selective Coupling of Secondary Alkyl Organozincs. Chem.—Eur. J. 2016, 22, 14531-14534.
- (20) Sayah, M.; Organ, M. G. Carbon-Sulfur Bond Formation of Challenging Substrates at Low Temperature by Using Pd-PEPPSI-IPent. *Chem.—Eur. J.* **2011**, *17*, 11719—11722.
- (21) Farmer, J. L.; Pompeo, M.; Lough, A. J.; Organ, M. G. [(IPent)PdCl2(morpholine)]: A Readily Activated Precatalyst for Room-Temperature, Additive-Free Carbon-Sulfur Coupling. *Chem.—Eur. J.* **2014**, *20*, 15790–15798.
- (22) Santamaría, N.; Velasco, C.; Marin, M.; Maya, C.; Nicasio, M. C. LPdCl₂(amine) complexes supported by terphenyl phosphanes: applications in aryl amination reactions. *Dalton Trans.* **2022**, *51*, 15734–15740.
- (23) Barnett, K. L.; Howard, J. R.; Treager, C. J.; Shipley, A. T.; Stullich, R. M.; Qu, F.; Gerlach, D. L.; Shaughnessy, K. H. Air-Stable [(R3P)PdCl2]2Complexes of Neopentylphosphines as Cross-Coupling Precatalysts: Catalytic Application and Mechanism of Catalyst Activation and Deactivation. *Organometallics* **2018**, *37*, 1410–1424.
- (24) Hu, H.; Gilliam, A. M.; Qu, F.; Shaughnessy, K. H. Enolizable Ketones as Activators of Palladium(II) Precatalysts in Amine Arylation Reactions. ACS Catal. 2020, 10, 4127–4135.
- (25) Lauer, M. G.; Headford, B. R.; Gobble, O. M.; Weyhaupt, M. B.; Gerlach, D. L.; Zeller, M.; Shaughnessy, K. H. A Trialkylphosphine-Derived Palladacycle as a Catalyst in the Selective Cross-Dimerization of Terminal Arylacetylenes with Terminal Propargyl Alcohols and Amides. ACS Catal. 2016, 6, 5834–5842.
- (26) Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441-451.
- (27) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. Kinetics and mechanism of ortho-palladation of ring-substituted NN-dimethylbenzylamines. *J. Chem. Soc., Dalton Trans.* **1985**, 2629–2638. (28) Hill, L. L.; Moore, L. R.; Huang, R.; Craciun, R.; Vincent, A. J.; Dixon, D. A.; Chou, J.; Woltermann, C. J.; Shaughnessy, K. H. Bulky

Alkylphosphines with Neopentyl Substituents as Ligands in the Amination of Aryl Bromides and Chlorides. *J. Org. Chem.* **2006**, *71*, 5117–5125.

- (29) Belot, V.; Farran, D.; Jean, M.; Albalat, M.; Vanthuyne, N.; Roussel, C. Steric Scale of Common Substituents from Rotational Barriers of N-(o-Substituted aryl)thiazoline-2-thione Atropisomers. *J. Org. Chem.* **2017**, *82*, 10188–10200.
- (30) Raders, S. M.; Moore, J. N.; Parks, J. K.; Miller, A. D.; Leißing, T. M.; Kelley, S. P.; Rogers, R. D.; Shaughnessy, K. H. Trineopentylphosphine: A Conformationally Flexible Ligand for the Coupling of Sterically Demanding Substrates in the Buchwald-Hartwig Amination and Suzuki-Miyaura Reaction. *J. Org. Chem.* **2013**, 78, 4649–4664.
- (31) Lauer, M. G.; Thompson, M. K.; Shaughnessy, K. H. Controlling Olefin Isomerization in the Heck Reaction with Neopentyl Phosphine Ligands. *J. Org. Chem.* **2014**, *79*, 10837–10848.

☐ Recommended by ACS

Structure-Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings

Samuel H. Newman-Stonebraker, Abigail G. Doyle, et al.

OCTOBER 17, 2022

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Emerging Trends in Cross-Coupling: Twelve-Electron-Based $L_1Pd(0)$ Catalysts, Their Mechanism of Action, and Selected Applications

Sharbil J. Firsan, Thomas J. Colacot, et al.

OCTOBER 03, 2022

CHEMICAL REVIEWS

READ 🗹

Cation-Controlled Olefin Isomerization Catalysis with Palladium Pincer Complexes

Alexandra H. Farquhar, Alexander J. M. Miller, et al.

OCTOBER 28, 2022

ORGANOMETALLICS

READ 🗹

In Silico Investigation of Ligand-Regulated Palladium-Catalyzed Formic Acid Dehydrative Decomposition under Acidic Conditions

Chaoren Shen, Xinxin Tian, et al.

JANUARY 31, 2022

ORGANOMETALLICS

READ 🗹

Get More Suggestions >