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Abstract

The schizophoran superfamily Ephydroidea (Diptera: Cyclorrhapha) includes eight families,

ranging from the well-known vinegar flies (Drosophilidae) and shore flies (Ephydridae), to

several small, relatively unusual groups, the phylogenetic placement of which has been par-

ticularly challenging for systematists. An extraordinary diversity in life histories, feeding hab-

its and morphology are a hallmark of fly biology, and the Ephydroidea are no exception.

Extreme specialization can lead to “orphaned” taxa with no clear evidence for their phyloge-

netic position. To resolve relationships among a diverse sample of Ephydroidea, including

the highly modified flies in the families Braulidae and Mormotomyiidae, we conducted phylo-

genomic sampling. Using exon capture from Anchored Hybrid Enrichment and transcrip-

tomics to obtain 320 orthologous nuclear genes sampled for 32 species of Ephydroidea and

11 outgroups, we evaluate a new phylogenetic hypothesis for representatives of the super-

family. These data strongly support monophyly of Ephydroidea with Ephydridae as an early

branching radiation and the placement of Mormotomyiidae as a family-level lineage sister to

all remaining families. We confirm placement of Cryptochetidae as sister taxon to a large

clade containing both Drosophilidae and Braulidae–the latter a family of honeybee ectopara-

sites. Our results reaffirm that sampling of both taxa and characters is critical in hyperdi-

verse clades and that these factors have a major influence on phylogenomic reconstruction

of the history of the schizophoran fly radiation.
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Introduction

In the vast topology of the phylogenetic tree of life, we occasionally encounter clades so unlike

any relatives that their placement remains uncertain. Many of these have specialized lifestyles

that have probably contributed to the evolution of their modified or “unusual” morphologies.

In particular, many lineages of parasites have been especially difficult to place phylogenetically

using morphological characters. Classic examples abound in the insects [1], flowering plants

[2], bacteria [3], fungi [4, 5] and other metazoans [6]. Although many of these “orphan” line-

ages have found a home in the era of molecular systematics [7–9], even large phylogenomic

data sets are sometimes unable to resolve challenging phylogenetic questions surrounding

these lineages [1]. That these puzzles persist has been variously attributed to rapid radiations,

adaptations that obscure groundplan synapomorphies and unpredictable conflict among data

types. Clearly, a general lack of corroborating evidence, along with potential problems of rate

heterogeneity, model misspecification and the effects of uneven sampling can limit the resolv-

ing power of large molecular data sets [10, 11]. These data-specific issues are further exacer-

bated by uneven taxon sampling, that in these cases is both natural–due to imbalanced

diversification and extinction through time; and operational–due to rarity and challenges of

obtaining and studying taxa with restricted geographic ranges and specialized life histories.

Among the Diptera, there are few species as enigmatic as the wingless, solifuge-like “terrible

hairy fly”, Mormotomyia hirsuta Austen [12] (Fig 1B). Formerly known only from a cave-like

rock cleft in Kenya [13, 14], this species was rediscovered in 2010 [15, 16] at the same locality

from which it was originally described and has since been found at other nearby sites [17].

These flies live in and around bats, although they have not yet been observed as attached or

riding phoretically on a bat, and they do not seem to be blood or tissue feeders. Immature

stages have been recorded and reared from bat guano, and adults are found crawling around

caves and fissures where bats are found [17]. Mormotomyia hirsuta is classified as the sole rep-

resentative of the Afrotropical family Mormotomyiidae. Although Mormotomyia is superfi-

cially similar to the common yellow dung fly, Scathophaga stercoraria (L.) (Calyptratae:

Scathophagidae; [14]), several authors have compared Mormotomyiidae to Sphaeroceridae

and Heleomyzidae [13, 18, 19], two families that are close relatives within the acalyptrate

superfamily Sphaeroceroidea [19, 20]. This relationship is perhaps suggested by the presence

of similarly modified adult features found in Heleomyzidae associated with caves or birds’

nests. McAlpine & Woodley [22], however, found no convincing similarity of Mormotomyia
with sphaerocerids and heleomyzids, and these families were combined in D.K. McAlpine’s

concept of the family Heteromyzidae, although still classified separately by most workers [19,

21].As Mormotomyia exhibits characteristics of both calyptrate and acalyptrates [14], Hennig

[22] cited instead a possible position as sister group to Calyptratae. In their more recent re-

evaluation of these flies, Kirk-Spriggs et al. [16] noted features of the female reproductive tract

consistent with inclusion in the superfamily Ephydroidea. David K. McAlpine [23] corrobo-

rated this placement based on antennal structure. These results and the availability of freshly

preserved material of Mormotomyia, together with unexpected findings from more broadly

sampled studies [20, 24], prompted a closer look at family-level relationships of Ephydroidea

using phylogenomic datasets containing hundreds of genetic loci.

The superfamily Ephydroidea also includes the species-rich families Drosophilidae (vinegar

flies, pomace flies and laboratory “fruit flies”) and Ephydridae (shore flies), along with the

small and relatively obscure families Camillidae, Curtonotidae and Diastatidae [19] (Fig 1A–

1F). The superfamily is one of only a few well-supported superfamilies of acalyptrate flies

recovered in two recent molecular analyses [20, 24], which included representatives of many

schizophoran fly families, but did not include Mormotomyiidae, or a more broadly
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representative taxon sampling within Ephydroidea. Possibly the most surprising result from

recent work is the consistently strongly supported grouping of Drosophila Fallén together with

Cryptochetum Rondani and Braula Nitzsch, the last two named representing two enigmatic

families with specialized habits, the placement of which, like that of Mormotomyia, has been

Fig 1. Representatives of the diverse adults of Ephydroidea: a) Ephydridae: Paralimna punctipennis (Wiedemann); b) Mormotomyiidae: Mormotomyia
hirsuta; c) Diastatidae: Diastata sp.; d) Cryptochetidae: Cryptochetum sp.; e) Drosophilidae: Drosophila suzukii; f) Braulidae: Braula coeca. Photographs: Fig

1A, 1C, 1E: M. Bertone; Fig 1B: R.S. Copeland; Fig 1D: A. Wild; Fig 1F: K.M. Bayless.

https://doi.org/10.1371/journal.pone.0274292.g001
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especially uncertain [19, 25] (Fig 2). Cryptochetidae are endoparasitoids of scale insects and

have been successfully deployed in biological control of cushion scale insects in California and

elsewhere [26, 27]. Braulidae, known as “beelice”, are closely associated with honeybees (Apis
mellifera L. and Apis dorsata (Fabricius). Adults of this family have highly specialized morpho-

logical features that are classically associated with external parasitism or phoresy, including

loss of eyes, reduction of antennae and wings, reduced thorax and mouthparts, comb like

claws, and dense hairs and or bristles (Fig 1F). Larvae burrow through the honeycomb feeding

on wax, honey and pollen, while the wingless adults cling to the body of worker bees and steal

regurgitated nectar [28, 29]. Both families had been included in the superfamily Carnoidea,

with filth flies (Carnidae) grass and frit flies (Chloropidae), beach flies (Canacidae) and a num-

ber of more obscure families with restricted geographic ranges [19, 30]. A relationship of Brau-

lidae and Cryptochetidae with Drosophilidae and related families has, in fact, been previously

proposed. In the case of Cryptochetidae, the evidence for this relationship comes from two

Fig 2. Alternative phylogenetic hypotheses for relationships among families of Ephydroidea: a) J.F. McAlpine (1989); b) Grimaldi (1990); c) Wiegmann et al.
(2011); d) Bayless et al. (2021).

https://doi.org/10.1371/journal.pone.0274292.g002
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obscure genera inconclusively assigned to the family, one (Phanerochaetum Hennig) a Baltic

amber fossil (37.8–33.9 MYA; [31]) and the other (Librella McAlpine) known from a handful

of female specimens from Australia [32]. Exhibiting a mosaic of characters found in Cryptoche-
tum and those found in Ephydroidea, these genera were interpreted by D.K. McAlpine [32] as

intermediate lineages linking Cryptochetum to the Ephydroidea (as Drosophiloidea). James F.

McAlpine [19], while acknowledging the affinities of these genera to Ephydroidea, disputed

any relationship with Cryptochetum. Furthermore, it has been noted [33], that the placement

of both Braula and Cryptochetum with ephydroid families is consistent with prothoracic struc-

ture as reported by Speight [34].

Another often overlooked “orphan” fly taxon is the genus Risa Becker, sometimes given sta-

tus as the family Risidae [13, 14]. Although the biology of Risa is poorly understood, Papp [35]

noted rearing records from the plant Halogeton (Amaranthaceae), with one specimen recorded

as a parasitoid reared from a caterpillar on the same plant. Originally included in Milichiidae,

Papp [36] suggested family status and a close relationship with Ephydridae. This revised view

was not accepted by J.F. McAlpine [19], who authoritatively asserted: “Certainly it is excluded

from the Ephydroidea on the basis of the different structure of its antennae, its mouth-parts,

and its frontal bristling.” Nevertheless, a position within the Ephydroidea has been suggested

by several recent authors [37–40]. Freidberg et al. [40] further proposed that Risa is indeed an

aberrant ephydrid, in or near the subfamily Discomyzinae, and its placement in Ephydridae

has been maintained in recent classifications [41].

Contrasting with these morphologically bizarre and phylogenetically enigmatic taxa, the

traditionally included ephydroid families are clearly closely related, based on multiple mor-

phological characters [19]. Monophyly of the superfamily and its main constituent families is

well supported, although with differing character interpretations in all the seminal early mor-

phology-based classificatory treatises on Cyclorrhapha [19, 22, 24]. The morphological cohe-

siveness of most ephydroid clades belies a remarkable diversity of life histories and biologies.

This is especially true of the Drosophilidae. Many species are generalized saprophages, proba-

bly feeding predominantly on microbes in rotting material, but a wide diversity of feeding hab-

its has been recorded within the family, suggesting that adaptation and ecological flexibility is

a key feature of their biology [42]. Other drosophilids are specialized as fungivores, frugivores

and leaf-miners, or have specialized breeding habits in flowers, rotting plant tissue, or sap of

flowing tree wounds [42–45]. A few species are predators or parasites of Hemiptera:: Auche-

norrhyncha and Sternorrhyncha [42, 46]. A few are predators in egg masses of spiders, frogs,

or dragonflies; kleptoparasites of solitary bees; or aquatic predators of blackfly and midge lar-

vae [42]. Three distantly related island endemic drosophilid species are known to inhabit the

microbe-rich nephric grooves, gills, or mouthparts of land crabs [47–49]. Biology of the fami-

lies Camillidae, Curtonotidae and Diastatidae are poorly known, but representatives of all

three families have been collected in or near small mammal burrows and others are known to

feed on dung or guano, generally with some degree of host specificity [50–55]. Curtonotum
has been reared from damaged locust egg pods [54, 56–58]. Larvae of Ephydridae are mostly

aquatic, feeding on algae or detritus [59]. A few genera are, however, predaceous or scavengers

in corpses of various invertebrates and several others are leaf miners in aquatic plants. A few

ephydrid species parallel the odd habits found in some Drosophilidae as predators in egg mas-

ses of spiders or frogs and one genus feeds on haemolymph of ants [59]. One of the most nota-

ble larval habitats of any insect is that of Diasemocera petrolei (Coquillett), which occurs in

pools of crude petroleum, where they scavenge dead insects [59, 60]. Given this mélange of

feeding habits, it is evident that the specialized life histories of Braulidae, Cryptochetidae and

Mormotomyiidae, although unusual, are not “out of place” in the Ephydroidea.
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Past estimates of Ephydroidea phylogeny (Fig 2A–2D) have been surprisingly incongruent,

especially regarding the sister groups of Ephydridae (or Ephydridae + Risidae) and Drosophili-

dae. James F. McAlpine [19] followed the precedents of Hennig [18] and others, in placing

Diastatidae as sister to Ephydridae [37] (Fig 2A). Griffiths [25] proposed that Diastata Meigen

should probably be included within Ephydridae and separated the remaining two diastatid

genera into the separate family Campichoetidae. Diastatidae has subsequently been treated as

separate from Ephydridae and acceptance for family status for Campichoetidae has been

equivocal [19, 37, 38, 61, 62]. The morphological phylogeny of Grimaldi [38] agreed in recog-

nizing a separate Campichoetidae and placed Camillidae as the sister to Ephydridae + Risidae,

as was suggested earlier by Hennig [63]. Grimaldi [38] proposed Curtonotidae as sister to Dro-

sophilidae, where previous authors placed Camillidae as the nearest relative of Drosophilidae

[19], or simply placed Camillidae, Curtonotidae and Drosophilidae in a single group [37, 61]

(Fig 2B). Most recently, Yassin [33] transferred two drosophilid genera, Cladochaeta Coquillett

and Diathoneura Duda,to Ephydridae based on similarities in wing venation and male termi-

nalia, although this has not been widely accepted as it would require extraordinary loss or con-

vergence in a large number of morphological features [64].

Considering the persistent phylogenetic confusion reviewed above and the intractability of

acalyptrate relationships at deeper levels, the results of Bayless et al. [20] and Wiegmann et al.
[24] for Ephydroidea were surprising (Fig 2C and 2D). In contrast to previous hypotheses,

both studies recovered Ephydridae as sister to the remaining families. They also reported con-

sistently a clade containing Curtonotidae, Camillidae and Diastatidae (including Campichoeta)

as sister to the previously mentioned grouping of Drosophilidae + Braulidae + Cryptochetidae.

Both studies raise the possibility of a paraphyletic Drosophilidae, especially with respect to the

position of Braulidae, but intrafamilial taxon sampling was too sparse to resolve relationships

at this level. In particular, Bayless et al. [20] found strong support placing Braulidae as sister to

sampled representatives of the drosophilid subfamily Steganinae (Fig 2D). Considering the

biological similarities shared between Braulidae, Cryptochetidae and many steganines (e.g.,
subtribe Acletoxenina: Acletoxenus preying upon Sternorrhyncha [65], Cacoxenus associating

with bees; [38]), the possibility of a position for these family-level clades within Drosophilidae

must be considered. The phylogeny of Drosophila and related genera (many of which are

nested within the genus Drosophila), has recently been extensively investigated through molec-

ular phylogenetic studies with larger samples of steganine and drosophiline genera [33, 66–

69]. None of these studies concerning Drosophilidae, however, have included Braulidae or

Cryptochetidae; consequently, exact delimitation of the family Drosophilidae with regard to

these aberrant relatives awaits a broadly sampled family-level analysis including representa-

tives of Braulidae, Cryptochetidae and additional ephydroid outgroups.

Nextgen phylogenomic methods, especially Anchored Hybrid Enrichment (AHE) [70] and

Ultraconserved Elements (UCE) [71], comparative transcriptomics [8, 20] and draft genome

sequencing [72] have rapidly expanded the availability of phylogenetic data useful for resolving

relationships within rapid radiations, and for investigating enigmatic relationships, such as

those described above for Ephydroidea. In Diptera, the use of Anchored Hybrid Enrichment

has yielded important data sets for large families [73–75]. A Diptera specific probe kit

(NCSU-Wiegmann), has been shown to capture hundreds of single-copy orthologous loci and

provide unprecedented resolution for phylogenetic questions at multiple levels–from super-

families to species. These data are also combinable with transcriptome and genomic data sets

that contain most of the captured loci, making the genomic resources already available for

model organisms and pest species especially valuable for increasing phylogenetic coverage

[76]. Consequently, to investigate relationships among the ephydroid families and evaluate evi-

dence for the placement of the enigmatic family Mormotomyiidae and other newly recognized
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representatives of the superfamily, we used the NCSU-Wiegmann AHE probes to generate a

large phylogenomic analysis of diverse ephydroid clades.

Materials and methods

Taxon sampling and data acquisition

Specimens used in this study were obtained from colleagues or collected by the co-authors and

preserved in 95% ethanol for genomic DNA extraction. In most cases, specimens were

extracted by homogenization of the entire body, with exoskeletons or remaining body parts

retained as vouchers where possible (Table 1). Forty-three species are sampled, including 32

from Ephydroidea and a representative diversity of non-ephydroid schizophoran Cyclorrha-

pha as outgroups. To provide a root for Ephydroidea, a range of outgroups were chosen with

due consideration to current phylogenetic uncertainty about the monophyly and relationships

of some schizophoran clades [20]. The outgroup taxa include representatives of both calyptrate

and acalyptrate schizophorans–which have been placed, although sometimes without strong

support, as close relatives of the Ephydroidea [20, 23, 24]. A representative of the enigmatic

family Nannodastiidae was also sampled, due to its occasional inclusion in Ephydridae [77]. In

all, we selected 11 outgroup taxa, including representatives of the Agromyzidae (Liriomyza
sativae Blanchard), Odiniidae (Odinia conspicua Sabrosky), Nannodastiidae (Azorastia medi-
terranea Papp); Tephritoidea: Platystomatidae (Rivellia syngenesiae (Fabricius)), Tephritidae

(Ceratitis capitata (Wiedemann)); Calyptratae, muscoid grade: Anthomyiidae (Delia radicum
(Linneaus)), Oestroidea: Tachinidae (Exorista larvarum (Linneaus)), Sarcophagidae (Sarco-
phaga bullata Parker) and Oestridae: (Cuterebra atrox Clark). Within the Ephydroidea, we

include multiple individuals for most of the constituent families: Braulidae (2), Camillidae (2),

Campichoetidae (1), Cryptochetidae (2), Curtonotidae (4), Diastatidae (2), Drosophilidae (9),

Ephydridae (9) and Mormotomyiidae (monotypic).

Transcriptome data

This study combines newly sequenced Anchored Hybrid Enrichment exon capture data

aligned with some taxa represented by transcriptomes. Transcriptome data were gathered

from the literature: Ephydra hians Say and Phortica variegata Fallén from Vicoso & Bachtrog

[78]; Chymomyza costata Zetterstedt from Poupardin et al. [79] and all others from Bayless

et al. [20]. We separately analyzed two samples of the species Braula coeca, one sequenced as a

transcriptome and one sequenced by Anchored Hybrid enrichment. Other representatives of

the family Braulidae are rare or have more restricted distributions [28], so additional sampling

was not feasible. We wanted to correct for potential biases or batch effects and thus did not

combine the data for the two Braula coeca samples.

Anchored hybrid enrichment laboratory methods

DNA extraction. Adult flies were stored in ethanol at -20˚C. For DNA extraction these

were rinsed for a few minutes in ultrapure DEPC treated distilled water and air-dried on tissue

paper. Entire specimens or thoracic muscle samples were subsequently homogenised in 1.5 ml

Eppendorf tubes and incubated on a thermoblock at 65˚C for several minutes. Total genomic

DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, CA, USA) following the

manufacturer’s instructions. Isolated DNA was quantified with a Qubit 3.0 fluorometer using

dsDNA High Sensitivity Assay Kit (Life Technologies, Inc., CA, USA) following the manufac-

turer’s instructions. In a few samples with low DNA yield, nucleic acids concentrations were

increased by whole genome amplification using the REPLI-g Mini Kit (Qiagen, CA, USA).
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Table 1. Taxa sampled for sequencing and specimen deposition information.

Family Superfamily Subfamily/Tribe Taxon Accession

Number

BioSample# Specimen LabCode Collecting Locality

Agromyzidae Phytomyzinae Liriomyza sativae n/a SAMN28901500 AG1433 -AHE California, USA

Odiniidae Odinia conspicua SRX71220804 SAMN13151330 NCSU:Odsp- transcriptome North Carolina, USA

Carnidae Carnus
hemapterus

SRX7371317 SAMN13528633 HS004-RDA003

transcriptome

Spain

Carnidae Meoneura sp. n/a SAMN28901501 MecolRG-AHE Colorado, USA

Platystomatidae Tephritoidea Rivellia
syngenesiae

n/a SAMN28901502 I6807-AHE Switzerland

Tephritidae Tephritoidea Dacinae Ceratitis capitata n/a SAMN28901503 I6808-AHE Kenya

Nannodastiidae Azorastia
mediterranea

n/a SAMN28901504 azmed3RG-AHE Israel

Anthomyiidae Muscoidea Delia radicum n/a SAMN28901505 I6805-AHE Ottawa,Canada

AgCanada

Tachinidae Oestroidea Esoristinae Exorista larvorum n/a SAMN28901506 I6806-AHE Italy lab colony

Sarcophagidae Oestroidea Sarcophaginae Sarcophaga
bullata

n/a SAMN28901507 I6803-AHE Maryland,USA lab

colony

Oestridae Oestroidea Cuterebrinae Cuterebra atrox n/a SAMN28901508 I6804-AHE Arizona, USA

Ephydridae Ephydroidea Ilytheinae:

Hyadinini

Philygria sp. n/a SAMN28901509 I4191-AHE North Carolina, USA

Ephydridae Ephydroidea Ephydrinae:

Ephydrini

Coenia palustris n/a SAMN28901510 I3850- AHE Hungary

Ephydridae Ephydroidea Ephydrinae:

Ephydrini

Ephydra hians SRX827012 SAMN03220590 2014-Female-whole body-

transcriptome

UC Berkeley, NCBI

SRA_Database Sample;

California

Ephydridae Ephydroidea Ephydrinae:

Scatellini

Scatella lacustris SRX798115 SAMN03223157 GCFE01_1-transcriptome North Carolina, USA

Ephydridae Ephydroidea Gymnomyzinae:

Gymnomyzini

Athyroglossa sp. n/a SAMN28901511 I4186—AHE North Carolina, USA

Ephydridae Ephydroidea Discomyzinae Achaetorisa sp. 1 n/a SAMN28901512 I6792-AHE Israel

Ephydridae Ephydroidea Discomyzinae Risa longirostris n/a SAMN28901513 I4192-AHE Israel

Ephydridae Ephydroidea Discomyzinae:

Psilopini

Clanoneurum sp. n/a SAMN28901514 I4188-AHE Israel

Ephydridae Ephydroidea Discomyzinae:

Psilopini

Psilopa polita n/a SAMN28901515 I6800-AHE Switzerland

Mormotomyiidae Ephydroidea Mormotomyia
hirsuta

n/a SAMN28901516 I3857-AHE Kenya

Camillidae Ephydroidea Afrocamilla
stuckenbergi

n/a SAMN28901517 camspRG-AHE South Africa

Camillidae Ephydroidea Camilla sp. n/a SAMN28901518 I3845-AHE United Kingdom

Diastatidae Ephydroidea Campichoetinae Campichoeta
punctum

n/a SAMN28901519 I6795-AHE Switzerland

Diastatidae Ephydroidea Diastatinae Diastata repleta SRX7122099 SAMN13151292 NCSU:diast-trancriptome North Carolina, USA

Diastatidae Ephydroidea Diastatinae Diastata fuscula n/a SAMN28901520 I6799-AHE Hungary

Curtonotidae Ephydroidea Curtonotum sp. SRX7122098 SAMN13111546 curtcr05-transcriptome Costa Rica

Curtonotidae Ephydroidea Curtonotum
pantherinum

n/a SAMN28901521 cupaRG-AHE Peru

Curtonotidae Ephydroidea Cyrtona sensu
lato sp.

n/a SAMN28901522 cyriRG-AHE South Africa

Curtonotidae Ephydroidea Cyrtona
“Parapsinota” sp.

n/a SAMN28901523 cyflRG-AHE South Africa

Cryptochetidae Ephydroidea Cryptochetum
sp. 04

n/a SAMN28901524 cry04-AHE Australia

(Continued)
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AHE Library construction and sequencing. For each sample, 7.9–110 ng/μL (47 ng/μL

mean) DNA in 50 μL total volume was sheared to approximately 300 bp by sonication with a

Covaris E220 Focused-ultrasonicator using Covaris microTUBES (Covaris, Inc., MA, USA).

The sheared DNA was used as input for genomic DNA library preparation and indexing using

the protocol of Meyer & Kircher [80], but modified to include a size-selection step after blunt-

end repair using SPRIselect beads (Beckman Coulter, Inc., CA, USA; 0.9 × ratio of bead to

sample volume). Each sample was then indexed and pooled together in groups of 48 samples.

We enriched each 48-sample pool using the 57, 681 tiled, custom-designed probes contained

in the Diptera AHE kit [75], an Agilent Custom SureSelect kit (Agilent Technologies, CA,

USA) that targets 559 unique loci. The Diptera probe kit design is detailed in Young et al. [75]

and is based on comparison and selection of conserved 150 bp gene regions found among

seven diverse fly genomes and 14 transcriptomes. We sequenced the pooled libraries using two

lanes of an Illumina HiSeq 2500 (Illumina, CA, USA) run (single read, 100 bp). All AHE labo-

ratory procedures and sequencing were conducted in laboratory facilities of the North Caro-

lina State University (NCSU), Department of Entomology and Plant Pathology (Wiegmann

Lab) and the NCSU Genomic Sciences Laboratory (GSL).

Data management and assembly. AHE data were assembled, processed and analysed

using methods described in Buenaventura et al. [73]. In order to do so, we demultiplexed raw

reads using cassava 1.8.2 at the NCSU Genomic Sciences Laboratory and these were trimmed

of adapters and low-quality sequences using Trimmomatic v.0.36 [81]. For each set of reads we

included a locus-by-locus cleaning step to remove non-fly sequences and low-quality reads

based on E-values reported by BLAST searched against the NCBI database. We used Trinity
v.2.4 [80] to assemble the cleaned reads.

The same transcriptome assemblies from Bayless et al. [20] were used here, except that of

the ephydrid Ephydra hians. Raw read data for that species was downloaded from SRA

Table 1. (Continued)

Family Superfamily Subfamily/Tribe Taxon Accession

Number

BioSample# Specimen LabCode Collecting Locality

Cryptochetidae Ephydroidea Cryptochetum sp. n/a SAMN28901525 I6797-AHE California, USA

Braulidae Ephydroidea Braula coeca SRX1044795 SAMN03753801 GDDH01_1-transcriptome South Africa

Braulidae Ephydroidea Braula coeca n/a SAMN28901526 I6794-AHE Australia

Drosophilidae Ephydroidea Drosophilinae:

Colocasiomyini

Chymomyza
costata

ERX986130 ERS743378 C_costata-transcriptome Hokkaido University,

NCBI SRA_Database

Sample; Japan

Drosophilidae Ephydroidea Drosophilinae:

Drosophilini

Drosophila
melanogaster

n/a SAMN28901527 I3863-AHE North Carolina, USA;

NCSU lab colony

Drosophilidae Ephydroidea Drosophilinae:

Drosophilini

Mycodrosophila
sp.

n/a SAMN2890152 I4190-AHE Ohio, USA

Drosophilidae Ephydroidea Steganinae:

Steganini

Leucophenga
varia

SRX9518250 SAMN16729689 L_varia-transcriptome Stanford Univ. NCBI

SRA Database Sample

Drosophilidae Ephydroidea Steganinae:

Steganini

Leucophenga
maculata

n/a SAMN28901529 Leucma-AHE Hungary

Drosophilidae Ephydroidea Steganinae:

Steganini

Leucophenga
albofasciata

n/a SAMN28901530 LeucalRG-AHE Australia

Drosophilidae Ephydroidea Steganinae:

Steganini

Stegana sp. SRX7122079 SAMN13151293 GIFG01-transcriptome Costa Rica

Drosophilidae Ephydroidea Steganinae:

Gitonini

Phortica variegata SRX827026 SAMN03220594 2014-F-RNAtranscriptome UC Berkeley, NCBI

SRA_Database Sample

Drosophilidae Ephydroidea Steganinae:

Gitonini

Cacoxenus
australicus

n/a SAMN28901531 cacoxRG-AHE Australia

https://doi.org/10.1371/journal.pone.0274292.t001
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(SRR1738664, SRR1738666-69, SRR1738671). These were sequenced from whole bodies and

heads for males and females and ovaries and testes by Vicoso & Bachtrog [78]. Read quality

was checked with FastQC v. 0.11.5 [82] to assess whether further trimming was necessary.

Trimmomatic v. 0.32 [81] was used to remove adapter contamination and low-quality

sequences. Trinity v2.4 [83] was used to assemble the reads into contigs. Each sequencing

experiment for Ephydra hians was assembled separately then merged with duplicate contigs

removed by dedupe.sh in the bbtools package [84].

Single-copy orthologs were confirmed for loci included in phylogenetic analyses using the

program Orthograph v.0.5.14 [85], which uses a Hidden Markov Model-based search optimi-

zation step to assign orthology of each identified sequence to known gene models. We used

the reciprocal BLAST hit criterion in Orthograph and all other default settings to assign loci

using the Diptera: Brachycera set of 6,192 single-copy nuclear gene orthologs available on the

public database OrthoDB [86] based on brachyceran genomes currently uploaded therein. In

order to be included in the ortholog set in OrthoDB, a locus must be single copy in at least

90% of included genomes and present in at least 90% of these genomes. As an additional clean-

ing step, we selected files containing very low numbers of reads to be rechecked for contamina-

tion by BLAST searching them against a custom database of microbial sequences and against

the NCBI database [87]. We followed the procedure of Andrade Justi et al. [88] to refine the

ortholog set by removing any duplicate genes and refining through broad comparison single

copy ortholog gene models from the annotated genomes in seven schizophoran Brachycera:

Ceratitis capitata, Drosophila melanogaster Meigen, Glossina austeni Newstead, Lucilia cuprina
(Wiedemann), Musca domestica Linnaeus and Stomoxys calcitrans (Linneaus). This ortholog

set we hereafter refer to as the “BrachyBase” set (available for download on dataDRYAD.org).

We retained any orthologous gene set found in 70% or more of samples for further analysis.

Multiple sequence alignments (MSAs) were carried out using MAFFT (v.7.273) with the

L-INS-I algorithm and the addfragments flag [89] on FASTA files of amino acid sequences

from each orthologous gene set. We followed the procedure of Pauli et al. [90] to assess align-

ment quality by using the addfragments algorithm in MAFFT to refine alignments through

identification of outlier sequences and removing outliers from both amino acid MSAs and

nucleotide sequences [91]. Ortholog sequences from reference species were removed from all

MSAs, and empty or X-only data columns in each alignment were removed using TrimAL

[92] with the backtranslate option to also generate corresponding nucleotide MSAs from the

trimmed amino acid MSAs. Next, we used an automated distance-based method to remove

highly divergent individual gene sequences from alignments (R scripts available on data-

DRYAD). Alignments were concatenated using custom Python scripts leveraging Biopython

[92] functions (available on dataDRYAD).

Phylogenetic analyses. Trees were reconstructed for concatenated datasets by applying

Maximum Likelihood searches in IQTREE (v. 1.4.2 and 1.4.4) [93, 94] implemented on the

CIPRES Science Gateway V 3.3 (phylo.org) or the NC State University High Performance

Computing Cluster. Our IQTree analyses were carried out with a partition-based approach

using the edge-proportional partition model to allow partitions to have evolved under different

evolutionary rates (option -ssp). Each gene locus, identified in orthology search (above) and

aligned was considered a separate partition for evolutionary model testing. Models were

assessed for optimality in the ModelFinder program incorporated into the IQTREE program

set [95, 96] and assessed for each datatype: amino acids (AA), nucleotides (NT123) and

NTcoding sites (NT12). Each search was carried out with 1000 replicate ultrafast bootstrap

replicates and a single branch SH-like approximate likelihood ratio test (SH-aLRT) to obtain

alternative support values for each node in the tree.
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ML tree search was also carried out for each locus to obtain gene tree estimates using

IQ-TREE. Multi-species coalescent species tree analysis was carried out in ASTRAL-III [97]

using gene trees (one tree search per gene) for both nucleotide (all positions) and amino acid

alignments of each locus. Statistical support in ASTRAL-III is reported as local posterior prob-

abilities (LPP) applied to each branch as a quadripartition of the tree.

Results and discussion

From the assembled loci compared against single copy gene models in the Brachybase ortholog

set, we recovered large numbers of orthologous loci retained after HMM orthology search in

Orthograph–loci recovery ranged from 5560 (Stegana Meigen) to 87 (Cacoxenus australicus
Chassagnard & Tsacas) (Table 1). Overall, for only five of 43 taxa fewer than 2/3 of the loci

used were recovered. A total of 142 (<0.013% of total gene sequences) highly divergent gene

sequences were removed from alignments. Our final concatenated dataset comprised 42 spe-

cies and 320 loci with an average length of 497 bp. Only 17% of the matrix was comprised of

missing data cells, which could indicate loci not recovered for a particular taxon or partial

marker recovery. In total, our phylogenetic data alignment comprised 478, 827 base pairs for

the NT123 set, and 159, 609 amino acids in the AA set.

The Maximum Likelihood tree recovered in IQTree for the concatenated amino acid (AA)

dataset is illustrated in Fig 3, with bootstrap and SH-aLRT values. Monophyly of Ephydroidea,

including Mormotomyia, is convincingly supported, with 100% bootstrap and SH-aLRT val-

ues, as are nearly all nodes in the tree. The general pattern of relationships among families is

also well-supported with Ephydridae, including the genus Risa, originating at the earliest split

in the tree. Mormotomyia is placed sister to a clade consisting of all other non-ephydrid Ephy-

droidea. Camillidae branches next among the remaining families. Diastatidae (including Cam-
pichoeta) is sister to Curtonotidae and this clade is sister to a clade comprised of Braulidae,

Cryptochetidae and Drosophilidae. Braulidae are strongly supported as nested within the Dro-

sophilidae, placed as sister to Steganinae. ML analysis of the NT12 dataset in IQTree yielded a

tree with identical branching patterns to that obtained for amino acids. When third position

sites are included (NT123), the topology is largely congruent, except that Camillidae appears

as the sister group of Braulidae, Cryptochetidae and Drosophilidae, and that the two sampled

Tephritoidea genera (Ceratitis Macleay and Rivellia Robineau-Desvoidy) cluster within the

Ephydroidea, disrupting the monophyly of the superfamily (S1–S3 Figs). This is likely a result

of saturation of third codon positions obscuring deeper superfamily level relationships in our

sample. Coalescent-based species trees calculated in Astral III (S4–S6 Figs) were also similar in

topology to the well-supported tree of Fig 3, and in concatenated datasets using the same data

partitions. In gene tree coalescent-based analyses relationships among schizophoran outgroup

families are not strongly supported or consistently placed. Similarly low inter-family level reso-

lution among schizophoran lineages was found by Bayless et al. [20], and is now a well-docu-

mented characteristic of the rapid radiation found in this part of dipteran phylogeny [24]. The

Astral III analysis of individual AA gene trees yields similar results to the concatenated data

result of Fig 3, except that strong support for Ephydroidea is lost, with weak support through-

out the backbone of the tree. Placements among the ephydroid families are also poorly sup-

ported with increased uncertainty in the positions of Camillidae and Cryptochetidae in

relation to the monophyly of the Drosophilidae.

Relationships within the families Drosophilidae and Ephydridae agree with previous studies

[33, 66, 67, 98, 99], although restricted taxon sampling allows only limited tests of existing esti-

mates of intrafamilial relationships. Our results confirm a deep divergence in Drosophilidae

between Drosophilinae and Steganinae, but our placement of Leucophenga Mik as sister to the
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remaining steganines contrasts with some recent studies and needs testing by a larger phyloge-

nomic study of relationships within the family. Finet et al. [67] recovered an early branching

position for Leucophenga based on analysis of 17 mitochondrial and nuclear loci. The next step

to resolve conflicting relationships and to address the limits of the richly diverse Drosophilidae

is additional studies making use of broad taxon sampling, including Braulidae and Cryptoche-

tidae and incorporating the newly available drosophilid genomic resources.

Regarding Ephydridae, our results are in general agreement with Zatwarnicki [99] in unit-

ing Ephydrinae + Ilytheinae and Discomyzinae + Gymnomyzinae, although Hydrelliinae are

not included in our sample. Risa and Achaetorisa Papp appeared as the sister to sampled

Fig 3. Phylogenetic tree based on concatenated amino acid data from 320 nuclear gene loci calculated in IQTREE. Branch support values are modified

Shimodaira-Hasegawa Likelihood Ratio Test (SH-aLRT) support / bootstrap percentage from 1000 replicate ultrafast bootstrap searches. Red dots at nodes

represent Shimodaira-Hasegawa Likelihood Ratio Test (SH-aLRT) support / bootstrap percentage of 100/100.

https://doi.org/10.1371/journal.pone.0274292.g003
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species of Discomyzinae, with strong support. These results also underscore the need for addi-

tional sampling and detailed study of relationships within Ephydridae.

Although re-evaluation of broader Schizophora relationships is not the focus of this study,

the position of Ephydroidea among schizophoran lineages differs between our results and

those of Bayless et al. [20] and Wiegmann et al. [24]. Specifically, we did not recover a sister

group relationship between Ephydroidea and Calyptratae as found in these studies with

broader scope. Instead, our sampled taxon of the little-known family Nannodastiidae is placed

in a grouping along with calyptrates and tephritoids, but with slightly lower bootstrap support.

We attribute this difference to the limited outgroup sampling included here, noting that data

sets under-sampled for either genes or taxa are highly susceptible to bias [100], and this study

was designed to address relationships among putative members of a monophyletic Ephydroi-

dea. Bayless et al. [20] found generally strong support across multiple analysis types and data-

sets in support of Ephydroidea as sister to the Calyptratae, but also showed a sizeable fraction

of conflicting signal and several analysis types that supported alternative placements. Acalyp-

trate relationships are among the most challenging in insects and detailed studies with much

more comprehensive sampling are forthcoming from a transcriptome-based study that will

address higher-level Diptera relationships and divergence times using thousands of loci (Wieg-

mann et al. in prep.).

The two most significant and novel findings of our study are the firmly supported place-

ment of Mormotomyia (Mormotomyiidae) within Ephydroidea, and the placement of Brauli-

dae within the Drosophilidae. This new phylogenomic support provides strong evidence for

the placement of these highly specialized and morphologically aberrant flies. This use of geno-

mic data to help resolve challenging morphology-based conflict is similar to results for other

“relict” species-poor fly lineages, such as the nematoceran families Deuterophlebiidae, Nym-

phomyiidae and Perissommatidae [24], the eremoneuran group Apystomyiidae [101], and the

calyptrate families Mystacinobiidae and Ulurumyiidae [102]. The aberrant, specialized, highly

reduced, or plesiomorphic morphology of these lineages confounded their phylogenetic place-

ment using traditional character sets, and molecular data have recently confirmed their posi-

tion as separate lineages outside of the main radiations of major clades.

A noteworthy aspect of multiple lineages within Ephydroidea are the multiple and indepen-

dent origins of parasitic or highly specialized feeding habits. Similar, but convergent adapta-

tions to a phoretic or ectoparasitic lifestyle seem apparent in Braulidae and Mormotomyidae,

including reduction of compound eyes, loss or reduction of wings, and modification of legs for

grasping. In fact, these attributes, as well as the characteristic “hairy” appearance of Mormoto-
myia, are common in many fly families among groups that are cavernicolous (cave-dwelling),

inquilines of rodent or birds’ nests, or restricted to life in extreme environments, such as oce-

anic islands, high elevations or shorelines, as in various genera of Drosophilidae and Ephydri-

dae [103]. Understanding how these traits are directed by the genome and shaped by selection

are major biological questions, and the proximity of Cryptochetidae and Braulidae to the

experimental model Drosophila melanogaster opens many avenues of investigation. These

studies will benefit from expansion of genomic sampling outside Drosophilidae into the non-

model ephydroid lineages. Comparative genomic studies are already being used within Droso-

philidae to understand the interaction of ecological trade-offs, behavior and gene family evolu-

tion resulting in dietary specialization in herbivorous [104], cactophilic [105], frugivorous

[106, 107] and fungivorous [108, 109] groups (see also [110]). These same methods and sys-

tems, especially when coupled with increased fieldwork aimed at more fully characterizing the

biology of these groups, will allow examination of the genomics and behavior of specialization

to parasitoid habits in comparisons between lineages of Drosophilidae, including Braulidae,

and their (now confirmed) sister family Cryptochetidae.
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Supporting information

S1 Fig. Maximum likelihood tree based on concatenated nucleotide positions 1+2. Data are

from 320 aligned nuclear gene loci, partitioned by nucleotide position and gene locus for

model selection in ModelFinder [94], and calculated in IQTREE. Branch support values are

modified Shimodaira-Hasegawa Likelihood Ratio Test (SH-aLRT) support / bootstrap per-

centage from 1000 replicate ultrafast bootstrap searches.

(TIF)

S2 Fig. Maximum likelihood tree based on concatenated nucleotide positions 1+2+3. Data

are from 320 aligned nuclear gene loci, partitioned by nucleotide position and gene locus for

model selection in ModelFinder [96], and calculated in IQTREE. Branch support values are

modified Shimodaira-Hasegawa Likelihood Ratio Test (SH-aLRT) support / bootstrap per-

centage from 1000 replicate ultrafast bootstrap searches.

(TIF)

S3 Fig. Maximum likelihood tree based on concatenated nucleotide data from 320 nuclear

gene loci. The data set is partitioned only by gene locus for model selection in ModelFinder

[96] and calculated in IQTREE. Branch support values are modified Shimodaira-Hasegawa

Likelihood Ratio Test (SH-aLRT) support / bootstrap percentage from 1000 replicate ultrafast

bootstrap searches.

(TIF)

S4 Fig. Multispecies coalescent tree (MSC) from ASTRAL-III based on nucleotides 1+2.

Maximum likelihood trees from each of 320 aligned loci each with a best-fitting model selected

in ModelFinder [96] were calculated in IQTREE and summarized under the MSC in ASTRA-

L-III. Node support values are local posterior probabilities (LPP).

(TIF)

S5 Fig. Multispecies coalescent tree (MSC) from ASTRAL-III based on nucleotides1+2+3.

Maximum likelihood trees from each of 320 aligned loci each with a best-fitting model selected

in ModelFinder [96] were calculated in IQTREE and summarized under the MSC in ASTRA-

L-III. Node support values are local posterior probabilities (LPP).

(TIF)

S6 Fig. Multispecies coalescent tree (MSC) from ASTRAL-III based on amino acid align-

ments (AA). Maximum likelihood trees from each of 320 aligned loci each with a best-fitting

model selected in ModelFinder [96] were calculated in IQTREE and summarized under the

MSC in ASTRAL-III. Node support values are local posterior probabilities (LPP).

(TIF)
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