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Abstract— We study communication in the presence of a jam-
ming adversary where quadratic power constraints are imposed
on the transmitter and the jammer. The jamming signal is allowed
to be a function of the codebook, and a noncausal but noisy
observation of the transmitted codeword. For a certain range
of the noise-to-signal ratios (NSRs) of the transmitter and the
jammer, we are able to characterize the capacity of this channel
under deterministic encoding or stochastic encoding, i.e., with
no common randomness between the encoder/decoder pair. For
the remaining NSR regimes, we determine the capacity under
the assumption of a small amount of common randomness (at
most 2 log(n) bits in one sub-regime, and at most () bits in
the other sub-regime) available to the encoder-decoder pair. Our
proof techniques involve a novel myopic list-decoding result for
achievability, and a Plotkin-type push attack for the converse in
a subregion of the NSRs, both of which may be of independent
interest. We also give bounds on the strong secrecy capacity
of this channel assuming that the jammer is simultaneously
eavesdropping.

Index Terms— Channel coding, communication channels, chan-
nel capacity, channel state information, Gaussian channels,
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system security.

I. INTRODUCTION AND PRIOR WORK

ONSIDER a point-to-point communication system where
a transmitter, Alice, wants to send a message to a
receiver, Bob, through a channel distorted by additive noise.
She does so by encoding the message to a length-n codeword,
which is fed into the channel. Much of traditional commu-
nication and information theory has focused on the scenario
where the noise is independent of the transmitted signal and
the coding scheme. We study the case where communication
takes place in the presence of a malicious jammer (whom we
call James) who tries to ensure that Bob is unable to recover
the transmitted message. The channel is a discrete-time, real-
alphabet channel, and the codeword transmitted by Alice is
required to satisfy a quadratic power constraint. It is assumed
that the coding scheme is known to all three parties, and James
also observes a noisy version of the transmitted signal (hence
the term myopic). The jamming signal is required to satisfy a
separate power constraint, but otherwise can be a noncausal
function of the noisy observation and the coding scheme.
This problem is part of the general framework of arbitrarily
varying channels (AVCs), introduced by Blackwell et al. [3].
The quadratically constrained AVC (also called the Gaussian
AVC) was studied by Blachman [4], who gave upper and lower
bounds on the capacity of the channel under the assumption
that James observes a noiseless version of the transmitted
codeword (a.k.a. the omniscient adversary). The lower bound
used a sphere packing argument similar to the one used to
prove the Gilbert-Varshamov (GV) bound for binary linear
codes. The upper bound was based on Rankin’s upper bound
on the number of non-intersecting spherical caps that can
be placed on a sphere [5]. The quadratically constrained
AVC is closely related to the sphere-packing problem where
the objective is to find the densest arrangement of identical
n-dimensional balls of radius vnN subject to the constraint
that the center of each ball lies within a ball of radius v/nP.
An exact characterization of the capacity of this problem
is not known, though inner [4] and outer bounds [6], [7]
are known. At the other end of the spectrum, Hughes and
Narayan [8], and later Csiszar and Narayan [9], studied the
problem with an “oblivious” James, who knows the codebook,
but does not see the transmitted codeword. They consider
the regime when P > N (it can be shown that no positive
throughput is possible when P < N). They showed that under
an average probability of error metric, the capacity of the
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oblivious adversarial channel is equal to that of an additive
white Gaussian noise (AWGN) channel whose noise variance
is equal to the power constraint imposed on James. These
omniscient and oblivious cases are two extreme instances of
the general myopic adversary that we study in this paper.

The oblivious vector Gaussian AVC was studied by Hughes
and Narayan [10], and later Thomas and Hughes [11] derived
bounds on the error exponents for the oblivious Gaussian AVC.
Sarwate and Gastpar [12] showed that the randomized coding
capacity of the oblivious channel is the same under average
and maximum error probability constraints.

This work builds on [1], which characterized the capacity
of this channel under the assumption that James knows a
noisy version of the transmitted signal, but Alice’s codebook
is shared only with Bob. This can be interpreted as a myopic
channel with an unlimited amount of common randomness
(or shared secret key, CR) between Alice and Bob. A related
model was studied by Haddadpour et al. [13], who assumed
that James knows the message, but not the exact codeword
transmitted by Alice. In this setup, Alice has access to private
randomness which is crucially used to pick a codeword for
a given message. However, Alice and Bob do not share
any common randomness. Game-theoretic versions of the
problems have also been considered in the literature, notably
by Médard [14], Shafiee and Ulukus [15] and Baker and
Chao [16]. Shafiee and Ulukus [15] considered a more general
two-sender scenario, while Baker and Chao [16] studied
a multiple antenna version of the problem. More recently,
Hosseinigoki and Kosut [17] derived the list-decoding capacity
of the Gaussian AVC with an oblivious adversary. Zhang
and Vatedka [18] derived bounds on achievable list-sizes for
random spherical and lattice codes. Pereg and Steinberg [19]
have analyzed a relay channel where the observation of the
destination is corrupted by a power-constrained oblivious
adversary. Beemer et al. [20] studied a related problem of
authentication against a myopic adversary, where the goal
of the decoder is to correctly either decode the message or
detect adversarial interference. Zhang et al. [21] also studied
a quadratically constrained two-way interference channel with
a jamming adversary, where proof techniques similar to ours
were used to obtain upper and lower bounds on the capac-
ity. Budkuley et al. [22] gave an improved symmetrization
(known as CP-symmetrization where CP is for completely
positive) bound for myopic AVCs over discrete alphabets.
The result expands the parameter region where the capacity
(without common randomness) is zero. The proof is based on a
significant generalization of the Plotkin bound in classical cod-
ing theory which is proved by Wang et al. [23]. Dey et al. [24]
studied, among others, the binary erasure-erasure myopic
adversarial channels and gave nontrivial achievability schemes
beating the Gilbert—Varshamov bound in the insufficiently
myopic regime.

Communication in the presence of a myopic jammer has
also received considerable attention in the discrete-alphabet
case (see [25] and references therein, and the recent [26], [27]
on covert communication with myopic jammers). We would
like to draw connections to the bit-flip adversarial problem
where communication takes place over a binary channel, and
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James observes the codeword through a binary symmetric
channel (BSC) with crossover probability ¢q. He is allowed
to flip at most np bits, where 0 < p < 1/2 can be interpreted
as his “jamming power.” Dey et al. [25] showed that when
James is sufficiently myopic, i.e., ¢ > p, the capacity is equal
to 1 — H(p). In other words, he can do no more damage than
an oblivious adversary. As we will see in the present article,
this is not true for the quadratically constrained case. We will
show that as long as the omniscient list-decoding capacity for
Bob is greater than the AWGN channel capacity for James, the
capacity is equal to a certain myopic list-decoding capacity
for Bob. In this regime, James cannot uniquely determine the
transmitted codeword among exponentially many. As a result
no attack strategy by James that “pushes” the transmitted
codeword to the nearest other codeword is as bad as in the
omniscient case since the nearest codeword in general will be
different for different choices of the transmitted codeword.

Recent works have also considered communication with
simultaneous active and passive attacks [28]-[34]. However,
in these works, the eavesdropper and jammer are assumed
to be independent entities and the jammer is assumed to be
an oblivious adversary. In this work, we derive lower bounds
on the capacity of the myopic adversarial channel with an
additional wiretap secrecy [35] constraint, treating the jammer
as an eavesdropper at the same time.

Let us now describe the problem we address in this paper.
The setup is illustrated in Fig. 1. Alice wants to send a message
m to Bob. The message is assumed to be uniformly chosen
from {0, 1}"%, where R > 0 is a parameter called the rate.
Alice and Bob additionally have ny., bits of shared secret key,
k (nikey could be zero — indeed, some of the major results in
this work derive AVC capacity for some NSR regimes when
Nkey = 0). This key is kept private from James. Alice encodes
the message m (using k) to a codeword x € R", which is
transmitted across the channel. Let C denote the set of all
possible codewords (the codebook). In this work, we study
three types of encoding:

e Deterministic encoding: nyey = 0 and x is a deterministic
function of m

e Stochastic encoding: nyey = 0, but X is a function of m
and private random bits known only to Alice

e Randomized encoding: nyey > 0, and x can be a function
of the shared key k and random bits known only to Alice.

If the code is non-deterministic, then the codebook rate
Reode := %1og |C| could be different from the message rate
R (which we sometimes simply refer to as the rate). The
codebook must satisfy a power constraint of P > 0, i.e.
lz]l2 < V/nP for all z € C. James sees z = x+s., where s,
is an AWGN with mean zero and variance o2. He chooses
a jamming vector s € R™ as a noncausal function of z,
the codebook C, and his private randomness. The jamming
vector is also subject to a power constraint: |[s|ls < VN
for some N > (. Bob obtains y = x + s, and decodes this
to a message m. The message is said to have been conveyed
reliably if m = m. The probability of error, P,, is defined
as the probability that m # m, where the randomness is
over the message m, the private randomness that Alice uses,
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Fig. 1.

The setup studied in this paper: Alice wants to transmit nR-bit message m to Bob. Across the channel, she transmits a codeword x, which is a

function of m (and potentially a shared key k of nyey bits, though we also study the scenario when nye, = 0). The collection of codewords C is called the
codebook, and every codeword in the codebook must satisfy a power constraint of v/nP. The jammer James observes z corresponding to the output of an
AWGN channe with variance 2. He then chooses a jamming/state sequence s (satisfying a power constraint of v/nN) as a noncausal function of s, and C.
On observing y = x + s, Bob must output his estimate 1 of the message m such that the probability of error (averaged over m and s) vanishes.

the random noise s., the key k, and the private random
bits available to James.! In all our code constructions,” we
will assume that Alice and Bob may share a secret key,
but the mapping from (m,k) to x is deterministic. In other
words, Alice does not possess any source of additional private
randomness. Conversely, all our impossibility results are robust
to the presence of private randomness at the encoder (since in
some AVC scenarios, private randomness is known to boost
capacity — e.g. [36]) We study the problem with different
amounts of common randomness shared by Alice and Bob
but unknown to James, and present results in each case.

We say that a rate R > 0 is achievable if there exists
a sequence (in increasing n) of codebooks for which the
probability of error® goes to zero as n — co. The supremum
of all achievable rates is called the capacity of the channel.

We say that a rate R > 0 is achievable with (wiretap)
secrecy if there exists a sequence (in increasing n) of code-
books for which the probability of error and the mutual
information I(m;z) both go to zero as n — oo. This is
commonly referred to as the strong secrecy requirement in

'An averaging argument shows that the rate cannot be improved even if
Bob uses additional private random bits for randomized decoding.

2An exception is Appendix C, where we show that private randomness
does not increase the capacity of the omniscient adversarial channel. However,
we have reason to believe (albeit unsupported by formal proof) that additional
private randomness may increase the achievable rate — this is part of our
ongoing investigation.

3See Sec. V for a formal definition.

the literature. The supremum of all achievable rates is called
the secrecy capacity of the channel.

A. Organization of the Paper

We give a summary of our results and proof techniques
in Sec. II. The formal statements of the results are presented
in Sec. VI. The main results are also compactly summarized in
Table I and the results with secrecy are tabulated in Table II.
We then discuss the connection between our work and several
closely related prior works in Sec. III. Notation and prelimi-
naries are described in Sec. IV and Sec. V, respectively. This,
as mentioned, is followed by ideas and details of the proof
techniques in Sec. VI. In Sec. VII, we describe the results for
infinite common randomness and give a formal proof of the
converse. Sec. VIII contains the main ideas required to prove
our results with linear and logarithmic amounts of common
randomness. Our results on list-decoding are described in
Sec. VIII-A, with Theorem 14 giving the main result. Coming
to the no-common randomness regime, we present a technical
yet high-level proof sketch of the achievability and a full
proof of the symmetrization converse in Sec. IX. Sec. X
contains a detailed proof of Theorem 11, and Sec. XI gives
the proof of Theorem 14. Appendix C has a note on why
private randomness does not improve the capacity if James
is omniscient. We transcribe a rigorous proof of a folklore
theorem regarding list-decoding in Euclidean space against
an omniscient adversary in Sec. D. Some of the technical
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details of proofs appear in the other appendices (specifically
Appendix B and Appendices E-H). Frequently used notation is
summarized in Table III in Appendix A. Fig. 21 is a flowchart
outlining steps involved in the proof.

II. OVERVIEW OF RESULTS AND PROOF TECHNIQUES
A. Overview of Results

We now briefly describe our results and proof techniques.
It is helpful to visualize our results in terms of the noise-
to-signal ratio (NSR), using a N/P (adversarial NSR to
Bob) versus 02/P (random NSR to James) plot similar to
the one shown in Fig. 8.4 In [1], it was shown that with
an infinite amount of common randomness, the capacity

is Rip = %log% in the red region, and Rrp myop =
2
s log ((PJ”T )(PJrN])V;.QZP v N(P+02)> in the blue region. The

capacity is zero in the grey region.

In this article, while the major results are for the case when
nkey = 0, along the way we prove anciliary results for the
regimes where nyey, = ©(n) and nye, = O(logn).

o List-Decoding: We prove a general result for
list-decoding in the presence of a myopic adversary. For
an omniscient adversary, the list-decoding capacity is
Rip = %log %. This is a folklore result, but we give a
proof of this statement in Appendix D for completeness.
When the adversary is myopic, and the encoder-decoder
pair shares O(n) bits of common randomness, we give
achievable rates for list-decoding. This is equal to
Ryp for "—Pz < % — 1, and is larger than Ryp in a
certain regime (depel12ding on the amount of common
randomness) where % > % — 1. The achievable rates
are illustrated in Fig. 7. With no common randomness,
we can achieve Ryp and Rip,myop in the red and blue
regions of Fig. 7a respectively. If Alice and Bob share
Nkey bits, then Rr.p myop i achievable in a larger region.
For instance, if nye, = 0.2n, then the blue region can
be expanded to give Fig. 7b.

o Linear CR: When common randomness is present,
we combine our list-decoding result with [37, Lemma
13] to give achievable rates over the myopic adversarial
channel. Let us first discuss the case the amount of
common randomness is linear in n, i.e., Niey = Nfkey for
some Ryey > 0. If Riey > 2log (14 L&) — Rup myop:
then we are able to give a complete characterization of the
capacity of the channel for all values of the NSRs. We can
achieve everything in Fig. 8. If Rye, < % log (1 + U—Pz) -
R1D, myop, then we are able to characterize the capacity
in only a sub-region of the NSRs — This is illustrated in
Fig. 6¢ and Fig. 6d for different values of Ricy. In the
dotted regions, we only have nonmatching upper and
lower bounds. It is worth pointing out that no fixed Ryey
will let us achieve Rrp myop in the entire blue region
of Fig. 8. However, for every point in the blue region,

4Our parameterization makes the parameter regions of interest compact and
concentrated in a bounded region around the origin (rather than scattered or
shooting infinitely far away) in the two-dimensional plane spanned by o2 /P
and N/P.
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there exists a finite value of Ry, such that Ryp myop 18
achievable at that point. In other words, an nyey, = Q(n)
is sufficient to achieve Rpp myop at every point in the
interior of the blue region in Fig. 8.

o Logarithmic CR: For the nie.y = ©(logn) case, we are
able to find the capacity in the red and blue regions in
Fig. 6b. In the dotted regions, we have nonmatching upper
and lower bounds.

e No CR: For ny,, = 0, we require a more involved
approach to find the capacity. We use some of the results
on myopic list-decoding in our bounds for the probability
of error. We find the capacity in the red, blue and grey
regions in Fig. 6a, but only have nonmatching upper and
lower bounds in the dotted green and white regions.

o Sufficiency of Deterministic Encoding Against Omniscient
Adversaries: We show that if James is omniscient, then
private randomness at the encoder does not help improve
the capacity. This is based on a similar observation made
by Dey et al. [36] for the bit-flip adversarial channel. See
Appendix C for details.

o Wiretap Secrecy: We use the above results to derive
achievable rates under strong secrecy constraints. Specif-
ically, we want to ensure that the mutual information to
James, I(m;z) = o(1) in addition to Bob being able to
decode m reliably. Since the proof of reliability uses a
random spherical code construction, we are able to obtain
strong secrecy using random binning by ensuring that the
code corresponding to each bin is a good resolvability
code [38] for the AWGN channel from Alice to James.

The variation of the regions of the noise-to-signal ratios (NSR)
where we can obtain achievable rates is illustrated in Fig. 9.
As seen in the figure, even O(logn) bits of common ran-
domness is sufficient to ensure that the red and blue regions
are expanded. An additional ©(n) bits can be used to expand
the blue region even further, eventually achieving everything
in Fig. 8. The rates derived in this paper are compared with
prior work in Table 1.

B. Proof Techniques for Converse Results

We begin by outlining the proof techniques used in our
converse results. At first sight, it might seem that geomet-
ric/sphere packing bounds such as in [6] may be used when
Bob’s NSR N/P is higher than James’s NSR o2/P, since
whenever Bob can hope to decode Alice’s message, so can
James. If Alice’s encoder is deterministic, James can therefore
infer Alice’s transmitted codeword, and thereby “push” it to
the nearest codeword. However, such a reasoning applies only
to deterministic codes, i.e., when Alice does not use any
private or common randomness. We therefore highlight two
converse techniques that apply even when Alice’s encoder is
not deterministic.

5Mamy prior works (for example [1], [14] etc.) also consider additional
random noise, independent of the jamming noise introduced by James, on the
channel from Alice to Bob. In principle the techniques in this paper carry
over directly even to that setting, but for ease of exposition we choose not to
present those results.
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1) Scale-and-Babble: The scale-and-babble attack is a strat-
egy that reduces the channel from Alice to Bob into an
AWGN channel. James expends a certain amount of power
in cancelling the transmitted signal, and the rest in adding
independent Gaussian noise. Since the capacity of the AWGN
channel cannot be increased using common randomness, the
scale-and-babble attack gives an upper bound that is valid for
all values of nye,. This technique gives us the rate region
illustrated in Fig. 10. The capacity is upper bounded by Rpp
in the red region, R1p myop in the blue region, and is zero in
the grey region.

We remark that the scale-and-babble attack is not an original
idea of this work. This proof was suggested by Sarwate [1],
and is an application of a more general technique proposed by
Csiszar and Narayan [39] to convert an AVC into a discrete
memoryless channel. Nevertheless we give a complete proof
to keep the paper self-contained.

2) Symmetrization Attacks: Symmetrization attacks give us
upper bounds on the throughput when Alice and Bob do not
share a secret key, but hold regardless of whether Alice’s
encoder uses private randomness or not. We give two attacks
for James:

o A z-aware symmetrization attack: James picks a code-
word x’ from Alice’s codebook uniformly at random and
independently of z. He transmits (x' — z)/2 — since
z = x+s, for some vector s, with NV'(0, 0%) components,
therefore Bob receives (x + x' —s.)/2. If x # %/,
then Bob makes a decoding error with nonvanishing
probability. This attack is inspired by a technique used
to prove the Plotkin bound for bit-flip channels. The
symmetrizatic;n attack lets us prove that the capacity is
zero when % < ﬁ — 2 (Fig. 1lc). The z-aware
attack is novel in the context of myopic channels, but is
also inspired by similar ideas in [40].

o A z-agnostic symmetrization argument: This lets us show
that the capacity is zero for N > P (Fig. 11b). James
picks a codeword x’ as before but instead transmits
s = x'. Bob receives x + x’ and we can show that the
probability of error is nonvanishing. The z-agnostic sym-
metrization attack was used by Csiszar and Narayan [9]
to show that the capacity of the oblivious adversarial
channel is zero for N > P.

The scale-and-babble attack holds for all values of ey
since it involves reducing the channel into an equivalent
AWGN channel, and the capacity of the AWGN channel
cannot be increased using common randomness. On the
other hand, the symmetrization arguments are not valid when
Nkey > 0. Indeed, we will show that strictly positive rates can
be achieved in the symmetrizable regions with even 2(logn)
bits of common randomness.

Combining the three techniques give us the upper bounds
in Fig. 12.

C. Proof Techniques for Achievability Results

The achievability proofs for the three regimes of nyey
outlined above involve some common techniques. We now
give a high-level description of some of the ideas. Fundamental
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to the achievability proofs is the concept of list-decoding.
In all the achievability proofs, we use random spherical codes
C = {z(mk) :1 < m < 2" 1 < k < 2™}, where
each z(m, k) is sampled independently and uniformly from
the sphere S"~ (0, v/nP) in R™ centred at 0 and comprising
of vectors of magnitude v/nP.

1) Myopic List-Decoding: This is a central idea in our
proofs, and a novel contribution of this work. The broad
idea is to use myopia to ensure that James is unable to
uniquely recover the transmitted codeword. We show that if the
codebook rate is sufficiently large, then there are exponentially
many codewords that from James’s perspective Alice could
plausibly have transmitted. Due to this confusion, no attack
strategy (by pushing the transmitted x in the direction of the
nearest other codeword x’, since the nearest codeword will
in general be different directions for different x) by James
is as bad as the one he could instantiate in the omniscient
case. We study the list-decoding problem, where instead of
recovering the transmitted message uniquely, Bob tries to out-
put a poly(n) sized list that includes the transmitted codeword.
Since James is myopic, we could hope to achieve rates greater
than the omniscient list-decoding capacity Rrp. Even with
Nnkey = 0, we can achieve a higher rate, equal to Ri,p myops
in the blue region in Fig. 7a. The blue region can be expanded
with a larger amount of common randomness, as seen in
Fig. 7b. We will in fact show that the list-decoding capacity is
equal to Cryyop,rand (see Eqn. (VI.1) for its definition) if niey
is large enough.

Let us briefly outline the proof techniques. We show that
conditioned on z, the transmitted codeword lies in a strip
(informally denoted by Str for now) approximately at a
distance Vno? to z. See Fig. 2 for an illustration. If the
codebook rate exceeds 3log (1+ L), then this strip will
contain exponentially many codewords. All these codewords
are roughly at the same distance to z and are therefore
nearly indistinguishable from the one actually transmitted.
We operate under the assumption of a more powerful adversary
who has, in addition to z, access to an oracle. This is a matter
of convenience and will greatly simplify our proofs. The
oracle reveals an exponential sized subset of the codewords
(that includes x) from the strip. We call this the oracle-given
set (OGS). We prove that for most codewords in the OGS,
no attack vector s can eventually force a list-size greater than
poly(n) as long as the rate is less than Clyop rand. TO prove
this result, we obtain a bound on the typical area of the decod-
ing region S"~1(0,v/nP) N B"(x +s,vVnN). We will show
that for certain regimes of the noise-to-signal ratios (NSRs),
the volume of the decoding region is typically much less than
the worst-case scenario (i.e., had James known x). This gives
us an improvement over the omniscient list-decoding capacity.

2) Reverse List-Decoding: This technique, along with
myopic list-decoding outlined above, is used to obtain achiev-
able rates in the case where Alice and Bob do not share any
common randomness. Given an attack vector s, we say that x’
confuses z if 2’ lies within B™(z + s, \/n_N) In list-decoding,
we attempt to find the number of codewords that could
potentially confuse the transmitted codeword. Our goal in the
list-decoding problem is to keep the number of confusable
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Fig. 2. Illustration of the strip and the oracle-given set (OGS). All codewords
in the strip (the collection of red, blue and green points) are roughly at the
same distance from z, and hence approximately have the same likelihood of
being transmitted. The OGS (illustrated as red and green points) is a randomly
chosen subset of the codewords in this strip.

codewords to a minimum. In reverse list-decoding, we ask the
opposite question: Given a potentially confusing codeword,
how many codewords in the strip could this confuse?

For every codeword z’ and attack vector s, we could define
the reverse list-size as |[{z € Str: ||z + 5 — 2’|l < VnN}|.
In other words, this is the number of codewords in the strip
which when translated by s, are confusable with z’. Our goal
is to keep this as small as possible (in fact, poly(n)) for all
possible attack vectors s. We show that small reverse list-sizes
are guaranteed as long as 2 log & > Llog (1 + L), i.e. in the
red and blue regions of Fig. 13.

3) Going From List-Decoding to Unique Decoding: Obtain-
ing results for unique decoding uses two different approaches
that depends on the amount of common randomness.

o Linear/logarithmic amount of common randomness:
Langberg [41] gave a combinatorial technique to convert
any list-decodable code (with no common randomness)
for a binary channel into a uniquely decodable code of
the same rate with Q(log n) bits of common randomness.
This was later generalized by Sarwate [37] to arbitrary
AVCs, and [42] recently showed that only (1 + ¢)logn
bits suffices (where ¢ denotes the difference between the
list-decoding capacity and the transmission rate). This
combined with our result on myopic list-decoding will
give us an achievable rate for reliable communication
over the myopic channel.

e No common randomness: The ideas in myopic
list-decoding can be used to show that there are at
most poly(n) codewords that can potentially confuse
the exponentially many codewords in the OGS. Using
reverse list-decoding, we can conclude that each
codeword outside the OGS can confuse at most poly(n)
codewords in the OGS. Using this, and a “grid argument”
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along the lines of [25], we can show that the probability
of decoding error is vanishingly small.

4) Two Uses of the Common Randomness: When Alice and
Bob have only O(log n) bits of common randomness, k is only
used to find the true message from the list using the approach
proposed in [37], [41]. However, when Alice and Bob have
Q(n) bits o