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Abstract— We study communication in the presence of a jam-
ming adversary where quadratic power constraints are imposed
on the transmitter and the jammer. The jamming signal is allowed
to be a function of the codebook, and a noncausal but noisy
observation of the transmitted codeword. For a certain range
of the noise-to-signal ratios (NSRs) of the transmitter and the
jammer, we are able to characterize the capacity of this channel
under deterministic encoding or stochastic encoding, i.e., with
no common randomness between the encoder/decoder pair. For
the remaining NSR regimes, we determine the capacity under
the assumption of a small amount of common randomness (at
most 2 log(n) bits in one sub-regime, and at most Ω(n) bits in
the other sub-regime) available to the encoder-decoder pair. Our
proof techniques involve a novel myopic list-decoding result for
achievability, and a Plotkin-type push attack for the converse in
a subregion of the NSRs, both of which may be of independent
interest. We also give bounds on the strong secrecy capacity
of this channel assuming that the jammer is simultaneously
eavesdropping.

Index Terms— Channel coding, communication channels, chan-
nel capacity, channel state information, Gaussian channels,
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multiuser channels, time-varying channels, communication
system security.

I. INTRODUCTION AND PRIOR WORK

CONSIDER a point-to-point communication system where
a transmitter, Alice, wants to send a message to a

receiver, Bob, through a channel distorted by additive noise.
She does so by encoding the message to a length-n codeword,
which is fed into the channel. Much of traditional commu-
nication and information theory has focused on the scenario
where the noise is independent of the transmitted signal and
the coding scheme. We study the case where communication
takes place in the presence of a malicious jammer (whom we
call James) who tries to ensure that Bob is unable to recover
the transmitted message. The channel is a discrete-time, real-
alphabet channel, and the codeword transmitted by Alice is
required to satisfy a quadratic power constraint. It is assumed
that the coding scheme is known to all three parties, and James
also observes a noisy version of the transmitted signal (hence
the term myopic). The jamming signal is required to satisfy a
separate power constraint, but otherwise can be a noncausal
function of the noisy observation and the coding scheme.

This problem is part of the general framework of arbitrarily
varying channels (AVCs), introduced by Blackwell et al. [3].
The quadratically constrained AVC (also called the Gaussian
AVC) was studied by Blachman [4], who gave upper and lower
bounds on the capacity of the channel under the assumption
that James observes a noiseless version of the transmitted
codeword (a.k.a. the omniscient adversary). The lower bound
used a sphere packing argument similar to the one used to
prove the Gilbert-Varshamov (GV) bound for binary linear
codes. The upper bound was based on Rankin’s upper bound
on the number of non-intersecting spherical caps that can
be placed on a sphere [5]. The quadratically constrained
AVC is closely related to the sphere-packing problem where
the objective is to find the densest arrangement of identical
n-dimensional balls of radius

√
nN subject to the constraint

that the center of each ball lies within a ball of radius
√

nP .
An exact characterization of the capacity of this problem
is not known, though inner [4] and outer bounds [6], [7]
are known. At the other end of the spectrum, Hughes and
Narayan [8], and later Csiszár and Narayan [9], studied the
problem with an “oblivious” James, who knows the codebook,
but does not see the transmitted codeword. They consider
the regime when P > N (it can be shown that no positive
throughput is possible when P < N ). They showed that under
an average probability of error metric, the capacity of the
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oblivious adversarial channel is equal to that of an additive
white Gaussian noise (AWGN) channel whose noise variance
is equal to the power constraint imposed on James. These
omniscient and oblivious cases are two extreme instances of
the general myopic adversary that we study in this paper.

The oblivious vector Gaussian AVC was studied by Hughes
and Narayan [10], and later Thomas and Hughes [11] derived
bounds on the error exponents for the oblivious Gaussian AVC.
Sarwate and Gastpar [12] showed that the randomized coding
capacity of the oblivious channel is the same under average
and maximum error probability constraints.

This work builds on [1], which characterized the capacity
of this channel under the assumption that James knows a
noisy version of the transmitted signal, but Alice’s codebook
is shared only with Bob. This can be interpreted as a myopic
channel with an unlimited amount of common randomness
(or shared secret key, CR) between Alice and Bob. A related
model was studied by Haddadpour et al. [13], who assumed
that James knows the message, but not the exact codeword
transmitted by Alice. In this setup, Alice has access to private
randomness which is crucially used to pick a codeword for
a given message. However, Alice and Bob do not share
any common randomness. Game-theoretic versions of the
problems have also been considered in the literature, notably
by Médard [14], Shafiee and Ulukus [15] and Baker and
Chao [16]. Shafiee and Ulukus [15] considered a more general
two-sender scenario, while Baker and Chao [16] studied
a multiple antenna version of the problem. More recently,
Hosseinigoki and Kosut [17] derived the list-decoding capacity
of the Gaussian AVC with an oblivious adversary. Zhang
and Vatedka [18] derived bounds on achievable list-sizes for
random spherical and lattice codes. Pereg and Steinberg [19]
have analyzed a relay channel where the observation of the
destination is corrupted by a power-constrained oblivious
adversary. Beemer et al. [20] studied a related problem of
authentication against a myopic adversary, where the goal
of the decoder is to correctly either decode the message or
detect adversarial interference. Zhang et al. [21] also studied
a quadratically constrained two-way interference channel with
a jamming adversary, where proof techniques similar to ours
were used to obtain upper and lower bounds on the capac-
ity. Budkuley et al. [22] gave an improved symmetrization
(known as CP-symmetrization where CP is for completely
positive) bound for myopic AVCs over discrete alphabets.
The result expands the parameter region where the capacity
(without common randomness) is zero. The proof is based on a
significant generalization of the Plotkin bound in classical cod-
ing theory which is proved by Wang et al. [23]. Dey et al. [24]
studied, among others, the binary erasure-erasure myopic
adversarial channels and gave nontrivial achievability schemes
beating the Gilbert–Varshamov bound in the insufficiently
myopic regime.

Communication in the presence of a myopic jammer has
also received considerable attention in the discrete-alphabet
case (see [25] and references therein, and the recent [26], [27]
on covert communication with myopic jammers). We would
like to draw connections to the bit-flip adversarial problem
where communication takes place over a binary channel, and

James observes the codeword through a binary symmetric
channel (BSC) with crossover probability q. He is allowed
to flip at most np bits, where 0 < p < 1/2 can be interpreted
as his “jamming power.” Dey et al. [25] showed that when
James is sufficiently myopic, i.e., q > p, the capacity is equal
to 1−H(p). In other words, he can do no more damage than
an oblivious adversary. As we will see in the present article,
this is not true for the quadratically constrained case. We will
show that as long as the omniscient list-decoding capacity for
Bob is greater than the AWGN channel capacity for James, the
capacity is equal to a certain myopic list-decoding capacity
for Bob. In this regime, James cannot uniquely determine the
transmitted codeword among exponentially many. As a result
no attack strategy by James that “pushes” the transmitted
codeword to the nearest other codeword is as bad as in the
omniscient case since the nearest codeword in general will be
different for different choices of the transmitted codeword.

Recent works have also considered communication with
simultaneous active and passive attacks [28]–[34]. However,
in these works, the eavesdropper and jammer are assumed
to be independent entities and the jammer is assumed to be
an oblivious adversary. In this work, we derive lower bounds
on the capacity of the myopic adversarial channel with an
additional wiretap secrecy [35] constraint, treating the jammer
as an eavesdropper at the same time.

Let us now describe the problem we address in this paper.
The setup is illustrated in Fig. 1. Alice wants to send a message
m to Bob. The message is assumed to be uniformly chosen
from {0, 1}nR, where R > 0 is a parameter called the rate.
Alice and Bob additionally have nkey bits of shared secret key,
k (nkey could be zero — indeed, some of the major results in
this work derive AVC capacity for some NSR regimes when
nkey = 0). This key is kept private from James. Alice encodes
the message m (using k) to a codeword x ∈ Rn, which is
transmitted across the channel. Let C denote the set of all
possible codewords (the codebook). In this work, we study
three types of encoding:

• Deterministic encoding: nkey = 0 and x is a deterministic
function of m

• Stochastic encoding: nkey = 0, but x is a function of m
and private random bits known only to Alice

• Randomized encoding: nkey > 0, and x can be a function
of the shared key k and random bits known only to Alice.

If the code is non-deterministic, then the codebook rate
Rcode := 1

n log |C| could be different from the message rate
R (which we sometimes simply refer to as the rate). The
codebook must satisfy a power constraint of P > 0, i.e.
‖x‖2 ≤

√
nP for all x ∈ C. James sees z = x + sz , where sz

is an AWGN with mean zero and variance σ2. He chooses
a jamming vector s ∈ Rn as a noncausal function of z,
the codebook C, and his private randomness. The jamming
vector is also subject to a power constraint: ‖s‖2 ≤

√
nN

for some N > 0. Bob obtains y = x + s, and decodes this
to a message m̂. The message is said to have been conveyed
reliably if m̂ = m. The probability of error, Pe, is defined
as the probability that m̂ &= m, where the randomness is
over the message m, the private randomness that Alice uses,
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Fig. 1. The setup studied in this paper: Alice wants to transmit nR-bit message m to Bob. Across the channel, she transmits a codeword x, which is a
function of m (and potentially a shared key k of nkey bits, though we also study the scenario when nkey = 0). The collection of codewords C is called the
codebook, and every codeword in the codebook must satisfy a power constraint of

√
nP . The jammer James observes z corresponding to the output of an

AWGN channe with variance σ2. He then chooses a jamming/state sequence s (satisfying a power constraint of
√

nN) as a noncausal function of sz and C.
On observing y = x + s, Bob must output his estimate m̂ of the message m such that the probability of error (averaged over m and sz) vanishes.

the random noise sz , the key k, and the private random
bits available to James.1 In all our code constructions,2 we
will assume that Alice and Bob may share a secret key,
but the mapping from (m,k) to x is deterministic. In other
words, Alice does not possess any source of additional private
randomness. Conversely, all our impossibility results are robust
to the presence of private randomness at the encoder (since in
some AVC scenarios, private randomness is known to boost
capacity — e.g. [36]) We study the problem with different
amounts of common randomness shared by Alice and Bob
but unknown to James, and present results in each case.

We say that a rate R > 0 is achievable if there exists
a sequence (in increasing n) of codebooks for which the
probability of error3 goes to zero as n → ∞. The supremum
of all achievable rates is called the capacity of the channel.

We say that a rate R > 0 is achievable with (wiretap)
secrecy if there exists a sequence (in increasing n) of code-
books for which the probability of error and the mutual
information I(m; z) both go to zero as n → ∞. This is
commonly referred to as the strong secrecy requirement in

1An averaging argument shows that the rate cannot be improved even if
Bob uses additional private random bits for randomized decoding.

2An exception is Appendix C, where we show that private randomness
does not increase the capacity of the omniscient adversarial channel. However,
we have reason to believe (albeit unsupported by formal proof) that additional
private randomness may increase the achievable rate — this is part of our
ongoing investigation.

3See Sec. V for a formal definition.

the literature. The supremum of all achievable rates is called
the secrecy capacity of the channel.

A. Organization of the Paper

We give a summary of our results and proof techniques
in Sec. II. The formal statements of the results are presented
in Sec. VI. The main results are also compactly summarized in
Table I and the results with secrecy are tabulated in Table II.
We then discuss the connection between our work and several
closely related prior works in Sec. III. Notation and prelimi-
naries are described in Sec. IV and Sec. V, respectively. This,
as mentioned, is followed by ideas and details of the proof
techniques in Sec. VI. In Sec. VII, we describe the results for
infinite common randomness and give a formal proof of the
converse. Sec. VIII contains the main ideas required to prove
our results with linear and logarithmic amounts of common
randomness. Our results on list-decoding are described in
Sec. VIII-A, with Theorem 14 giving the main result. Coming
to the no-common randomness regime, we present a technical
yet high-level proof sketch of the achievability and a full
proof of the symmetrization converse in Sec. IX. Sec. X
contains a detailed proof of Theorem 11, and Sec. XI gives
the proof of Theorem 14. Appendix C has a note on why
private randomness does not improve the capacity if James
is omniscient. We transcribe a rigorous proof of a folklore
theorem regarding list-decoding in Euclidean space against
an omniscient adversary in Sec. D. Some of the technical
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details of proofs appear in the other appendices (specifically
Appendix B and Appendices E–H). Frequently used notation is
summarized in Table III in Appendix A. Fig. 21 is a flowchart
outlining steps involved in the proof.

II. OVERVIEW OF RESULTS AND PROOF TECHNIQUES

A. Overview of Results

We now briefly describe our results and proof techniques.
It is helpful to visualize our results in terms of the noise-
to-signal ratio (NSR), using a N/P (adversarial NSR to
Bob) versus σ2/P (random NSR to James) plot similar to
the one shown in Fig. 8.4 In [1], it was shown that with
an infinite amount of common randomness, the capacity
is RLD := 1

2 log P
N in the red region, and RLD,myop :=

1
2 log

(
(P+σ2)(P+N)−2P

√
N(P+σ2)

Nσ2

)
in the blue region. The

capacity is zero in the grey region.
In this article, while the major results are for the case when

nkey = 0, along the way we prove anciliary results for the
regimes where nkey = Θ(n) and nkey = Θ(log n).

• List-Decoding: We prove a general result for
list-decoding in the presence of a myopic adversary. For
an omniscient adversary, the list-decoding capacity is
RLD = 1

2 log P
N . This is a folklore result, but we give a

proof of this statement in Appendix D for completeness.
When the adversary is myopic, and the encoder-decoder
pair shares O(n) bits of common randomness, we give
achievable rates for list-decoding. This is equal to
RLD for σ2

P ≤ P
N − 1, and is larger than RLD in a

certain regime (depending on the amount of common
randomness) where σ2

P > P
N − 1. The achievable rates

are illustrated in Fig. 7. With no common randomness,
we can achieve RLD and RLD,myop in the red and blue
regions of Fig. 7a respectively. If Alice and Bob share
nkey bits, then RLD,myop is achievable in a larger region.
For instance, if nkey = 0.2n, then the blue region can
be expanded to give Fig. 7b.

• Linear CR: When common randomness is present,
we combine our list-decoding result with [37, Lemma
13] to give achievable rates over the myopic adversarial
channel. Let us first discuss the case the amount of
common randomness is linear in n, i.e., nkey = nRkey for
some Rkey > 0. If Rkey ≥ 1

2 log
(
1 + P

σ2

)
− RLD,myop,

then we are able to give a complete characterization of the
capacity of the channel for all values of the NSRs. We can
achieve everything in Fig. 8. If Rkey < 1

2 log
(
1 + P

σ2

)
−

RLD,myop, then we are able to characterize the capacity
in only a sub-region of the NSRs — This is illustrated in
Fig. 6c and Fig. 6d for different values of Rkey. In the
dotted regions, we only have nonmatching upper and
lower bounds. It is worth pointing out that no fixed Rkey

will let us achieve RLD,myop in the entire blue region
of Fig. 8. However, for every point in the blue region,

4Our parameterization makes the parameter regions of interest compact and
concentrated in a bounded region around the origin (rather than scattered or
shooting infinitely far away) in the two-dimensional plane spanned by σ2/P
and N/P .

there exists a finite value of Rkey such that RLD,myop is
achievable at that point. In other words, an nkey = Ω(n)
is sufficient to achieve RLD,myop at every point in the
interior of the blue region in Fig. 8.

• Logarithmic CR: For the nkey = Θ(log n) case, we are
able to find the capacity in the red and blue regions in
Fig. 6b. In the dotted regions, we have nonmatching upper
and lower bounds.

• No CR: For nkey = 0, we require a more involved
approach to find the capacity. We use some of the results
on myopic list-decoding in our bounds for the probability
of error. We find the capacity in the red, blue and grey
regions in Fig. 6a, but only have nonmatching upper and
lower bounds in the dotted green and white regions.

• Sufficiency of Deterministic Encoding Against Omniscient
Adversaries: We show that if James is omniscient, then
private randomness at the encoder does not help improve
the capacity. This is based on a similar observation made
by Dey et al. [36] for the bit-flip adversarial channel. See
Appendix C for details.

• Wiretap Secrecy: We use the above results to derive
achievable rates under strong secrecy constraints. Specif-
ically, we want to ensure that the mutual information to
James, I(m; z) = o(1) in addition to Bob being able to
decode m reliably. Since the proof of reliability uses a
random spherical code construction, we are able to obtain
strong secrecy using random binning by ensuring that the
code corresponding to each bin is a good resolvability
code [38] for the AWGN channel from Alice to James.

The variation of the regions of the noise-to-signal ratios (NSR)
where we can obtain achievable rates is illustrated in Fig. 9.
As seen in the figure, even Θ(log n) bits of common ran-
domness is sufficient to ensure that the red and blue regions
are expanded. An additional Θ(n) bits can be used to expand
the blue region even further, eventually achieving everything
in Fig. 8. The rates derived in this paper are compared with
prior work in Table I.5

B. Proof Techniques for Converse Results

We begin by outlining the proof techniques used in our
converse results. At first sight, it might seem that geomet-
ric/sphere packing bounds such as in [6] may be used when
Bob’s NSR N/P is higher than James’s NSR σ2/P , since
whenever Bob can hope to decode Alice’s message, so can
James. If Alice’s encoder is deterministic, James can therefore
infer Alice’s transmitted codeword, and thereby “push” it to
the nearest codeword. However, such a reasoning applies only
to deterministic codes, i.e., when Alice does not use any
private or common randomness. We therefore highlight two
converse techniques that apply even when Alice’s encoder is
not deterministic.

5Many prior works (for example [1], [14] etc.) also consider additional
random noise, independent of the jamming noise introduced by James, on the
channel from Alice to Bob. In principle the techniques in this paper carry
over directly even to that setting, but for ease of exposition we choose not to
present those results.
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1) Scale-and-Babble: The scale-and-babble attack is a strat-
egy that reduces the channel from Alice to Bob into an
AWGN channel. James expends a certain amount of power
in cancelling the transmitted signal, and the rest in adding
independent Gaussian noise. Since the capacity of the AWGN
channel cannot be increased using common randomness, the
scale-and-babble attack gives an upper bound that is valid for
all values of nkey. This technique gives us the rate region
illustrated in Fig. 10. The capacity is upper bounded by RLD

in the red region, RLD,myop in the blue region, and is zero in
the grey region.

We remark that the scale-and-babble attack is not an original
idea of this work. This proof was suggested by Sarwate [1],
and is an application of a more general technique proposed by
Csiszár and Narayan [39] to convert an AVC into a discrete
memoryless channel. Nevertheless we give a complete proof
to keep the paper self-contained.

2) Symmetrization Attacks: Symmetrization attacks give us
upper bounds on the throughput when Alice and Bob do not
share a secret key, but hold regardless of whether Alice’s
encoder uses private randomness or not. We give two attacks
for James:

• A z-aware symmetrization attack: James picks a code-
word x′ from Alice’s codebook uniformly at random and
independently of z. He transmits (x′ − z)/2 — since
z = x+sz for some vector sz with N (0,σ2) components,
therefore Bob receives (x + x′ − sz)/2. If x &= x′,
then Bob makes a decoding error with nonvanishing
probability. This attack is inspired by a technique used
to prove the Plotkin bound for bit-flip channels. The
symmetrization attack lets us prove that the capacity is
zero when σ2

P ≤ 1
1−N/P − 2 (Fig. 11c). The z-aware

attack is novel in the context of myopic channels, but is
also inspired by similar ideas in [40].

• A z-agnostic symmetrization argument: This lets us show
that the capacity is zero for N > P (Fig. 11b). James
picks a codeword x′ as before but instead transmits
s = x′. Bob receives x + x′ and we can show that the
probability of error is nonvanishing. The z-agnostic sym-
metrization attack was used by Csiszár and Narayan [9]
to show that the capacity of the oblivious adversarial
channel is zero for N > P .

The scale-and-babble attack holds for all values of nkey

since it involves reducing the channel into an equivalent
AWGN channel, and the capacity of the AWGN channel
cannot be increased using common randomness. On the
other hand, the symmetrization arguments are not valid when
nkey > 0. Indeed, we will show that strictly positive rates can
be achieved in the symmetrizable regions with even Ω(log n)
bits of common randomness.

Combining the three techniques give us the upper bounds
in Fig. 12.

C. Proof Techniques for Achievability Results

The achievability proofs for the three regimes of nkey

outlined above involve some common techniques. We now
give a high-level description of some of the ideas. Fundamental

to the achievability proofs is the concept of list-decoding.
In all the achievability proofs, we use random spherical codes
C = {x(m, k) : 1 ≤ m ≤ 2nR, 1 ≤ k ≤ 2nkey}, where
each x(m, k) is sampled independently and uniformly from
the sphere Sn−1(0,

√
nP ) in Rn centred at 0 and comprising

of vectors of magnitude
√

nP .
1) Myopic List-Decoding: This is a central idea in our

proofs, and a novel contribution of this work. The broad
idea is to use myopia to ensure that James is unable to
uniquely recover the transmitted codeword. We show that if the
codebook rate is sufficiently large, then there are exponentially
many codewords that from James’s perspective Alice could
plausibly have transmitted. Due to this confusion, no attack
strategy (by pushing the transmitted x in the direction of the
nearest other codeword x′, since the nearest codeword will
in general be different directions for different x) by James
is as bad as the one he could instantiate in the omniscient
case. We study the list-decoding problem, where instead of
recovering the transmitted message uniquely, Bob tries to out-
put a poly(n) sized list that includes the transmitted codeword.
Since James is myopic, we could hope to achieve rates greater
than the omniscient list-decoding capacity RLD. Even with
nkey = 0, we can achieve a higher rate, equal to RLD,myop,
in the blue region in Fig. 7a. The blue region can be expanded
with a larger amount of common randomness, as seen in
Fig. 7b. We will in fact show that the list-decoding capacity is
equal to Cmyop,rand (see Eqn. (VI.1) for its definition) if nkey

is large enough.
Let us briefly outline the proof techniques. We show that

conditioned on z, the transmitted codeword lies in a strip
(informally denoted by Str for now) approximately at a
distance

√
nσ2 to z. See Fig. 2 for an illustration. If the

codebook rate exceeds 1
2 log

(
1 + P

σ2

)
, then this strip will

contain exponentially many codewords. All these codewords
are roughly at the same distance to z and are therefore
nearly indistinguishable from the one actually transmitted.
We operate under the assumption of a more powerful adversary
who has, in addition to z, access to an oracle. This is a matter
of convenience and will greatly simplify our proofs. The
oracle reveals an exponential sized subset of the codewords
(that includes x) from the strip. We call this the oracle-given
set (OGS). We prove that for most codewords in the OGS,
no attack vector s can eventually force a list-size greater than
poly(n) as long as the rate is less than Cmyop,rand. To prove
this result, we obtain a bound on the typical area of the decod-
ing region Sn−1(0,

√
nP ) ∩ Bn(x + s,

√
nN). We will show

that for certain regimes of the noise-to-signal ratios (NSRs),
the volume of the decoding region is typically much less than
the worst-case scenario (i.e., had James known x). This gives
us an improvement over the omniscient list-decoding capacity.

2) Reverse List-Decoding: This technique, along with
myopic list-decoding outlined above, is used to obtain achiev-
able rates in the case where Alice and Bob do not share any
common randomness. Given an attack vector s, we say that x′

confuses x if x′ lies within Bn(x+s,
√

nN). In list-decoding,
we attempt to find the number of codewords that could
potentially confuse the transmitted codeword. Our goal in the
list-decoding problem is to keep the number of confusable
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Fig. 2. Illustration of the strip and the oracle-given set (OGS). All codewords
in the strip (the collection of red, blue and green points) are roughly at the
same distance from z, and hence approximately have the same likelihood of
being transmitted. The OGS (illustrated as red and green points) is a randomly
chosen subset of the codewords in this strip.

codewords to a minimum. In reverse list-decoding, we ask the
opposite question: Given a potentially confusing codeword,
how many codewords in the strip could this confuse?

For every codeword x′ and attack vector s, we could define
the reverse list-size as |{x ∈ Str : ‖x + s − x′‖2 ≤

√
nN}|.

In other words, this is the number of codewords in the strip
which when translated by s, are confusable with x′. Our goal
is to keep this as small as possible (in fact, poly(n)) for all
possible attack vectors s. We show that small reverse list-sizes
are guaranteed as long as 1

2 log P
N > 1

2 log
(
1 + P

σ2

)
, i.e. in the

red and blue regions of Fig. 13.
3) Going From List-Decoding to Unique Decoding: Obtain-

ing results for unique decoding uses two different approaches
that depends on the amount of common randomness.

• Linear/logarithmic amount of common randomness:
Langberg [41] gave a combinatorial technique to convert
any list-decodable code (with no common randomness)
for a binary channel into a uniquely decodable code of
the same rate with Ω(log n) bits of common randomness.
This was later generalized by Sarwate [37] to arbitrary
AVCs, and [42] recently showed that only (1 + ε) log n
bits suffices (where ε denotes the difference between the
list-decoding capacity and the transmission rate). This
combined with our result on myopic list-decoding will
give us an achievable rate for reliable communication
over the myopic channel.

• No common randomness: The ideas in myopic
list-decoding can be used to show that there are at
most poly(n) codewords that can potentially confuse
the exponentially many codewords in the OGS. Using
reverse list-decoding, we can conclude that each
codeword outside the OGS can confuse at most poly(n)
codewords in the OGS. Using this, and a “grid argument”

along the lines of [25], we can show that the probability
of decoding error is vanishingly small.

4) Two Uses of the Common Randomness: When Alice and
Bob have only O(log n) bits of common randomness, k is only
used to find the true message from the list using the approach
proposed in [37], [41]. However, when Alice and Bob have
Ω(n) bits of shared secret key, there are two different uses
for k.

Recall from our discussion above that to obtain an improve-
ment over omniscient list-decoding, we must ensure that James
is sufficiently confused about the true codeword. If he can
recover x with high probability (w.h.p.), then there would be
no hope of achieving rates greater than RLD. When Alice
and Bob share linear amounts of common randomness, all
but (1 + ε) log n bits is used to ensure that the strip contains
exponentially many codewords. This is done by generating
2nkey−(1+ε) log n independent codebooks, each containing 2nR

codewords. Based on the realization of the key, Alice picks
the appropriate codebook for encoding. Since Bob knows the
key, he can use this codebook for decoding. However, James
does not have access to the shared secret key and to him,
all the 2nR+nkey−(1+ε) log n codewords are equally likely to
have been transmitted. This ensures that James is sufficiently
confused about the true codeword. The remaining (1+ε) logn
bits are then used to disambiguate the list at the decoder.

III. COMPARISON WITH OTHER WORKS

We now describe the similarities and differences with three
closely related works.

Sarwate [1] derived the capacity of the myopic adversarial
channel with unlimited common randomness. The present
paper is in some sense a continuation of [1], with a restriction
on the amount of shared secret key. In [1], the codebook
was privately shared by Alice and Bob. A minimum angle
decoder was used, and the achievable rate was the solution
of an optimization problem identical to what we obtain in our
analysis of myopic list-decoding. The converse used the scale-
and-babble attack that we describe in a subsequent section.
When Alice and Bob share Ω(n) bits of common randomness,
we find that the upper bound is indeed optimal. We were
unable to obtain an improved upper bound for smaller amounts
of common randomness. However, we do give an improved
converse for certain NSRs using symmetrization when there
is no common randomness shared by the encoder-decoder pair.

Dey et al. [25] studied the discrete myopic adversarial chan-
nel. We borrow several proof techniques from their paper to
obtain results when nkey = 0. This includes the ideas of blob
list-decoding, reverse list-decoding, and the grid argument to
prove that the probability of error is vanishingly small even
when transmitting at rates above RGV, despite the fact that
the jamming pattern may be correlated with the transmission.
However, there are several differences between our work and
the discrete case. A key difference between this work and [25]
is our use of myopic list-decoding. A direct extension of
the techniques in [25] would only let us achieve rates up
to the omniscient list-decoding capacity 1

2 log P
N . The study

of myopic list-decoding is novel, and is one of the main

Authorized licensed use limited to: Rutgers University. Downloaded on January 06,2023 at 00:10:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: QUADRATICALLY CONSTRAINED MYOPIC ADVERSARIAL CHANNELS 4907

Fig. 3. Achievable rates for the quadratically constrained adversarial channel
— prior work.

contributions of this work. Furthermore, the random variables
involved in this work are continuous which introduces several
challenges. Several arguments involving union bounds and
fixed distances do not go through directly from the discrete
setting. We overcome some of these by quantizing the rel-
evant random variables, a standard trick to approximate the
continuous variables by discrete ones. In [25], the oracle-
given set (OGS) was chosen to be a subset of codewords
all at the same distance to the vector received by James. All
codewords in the OGS would then have the same posterior
probability given James’s observation and the OGS. As sz

is Gaussian in our case, such an argument cannot be used.
Instead, we choose the OGS from a thin strip. Given z and the
OGS, the codewords are not uniformly distributed. However,
we carefully choose the thickness of the strip to be small
enough to ensure that this posterior distribution is close to
being uniform. Due to the random variables being continuous,
dealing with the quadratically constrained case requires a more
careful analysis involving many more slackness parameters
than the discrete analogue.

The symmetrization argument we use in Section IX-B is
inspired by the “scaled babble-and-push” attack studied by
Li et al. [40]. This work studies the attack where James gen-
erates an independent codeword x′ and transmits (x′−z)/2. A
similar idea with optimized parameters allows us to prove that
the capacity is zero in the regime where σ2

P < 1
1−N/P − 2.

We could potentially extend this idea, along the lines
of the scaled babble-and-push attack [40] in the following
manner. In a subset of codeword indices, James uses the scale-
and-babble attack. In the remaining indices i, he transmits
(x′

i − zi)/2. We could hope to get an improved converse in
the regime 1 ≤ P

N ≤ 1+ σ2

P ≤ 1
N/P−1 . We were unsuccessful

in analyzing this and it has been left as future work.

IV. NOTATION

Random variables are denoted by lower case Latin letters
in boldface, e.g., m. Their realizations are denoted by corre-
sponding letters in plain typeface, e.g., m. Vectors of length n,
where n is the block-length, are denoted by lower case Latin
letters with an underline, e.g., x, s, x, s, etc. The ith entry
of a vector is denoted by a subscript i, e.g., xi, si, xi, si, etc.

Matrices are denoted by capital Latin/Greek letters in boldface,
e.g., I,Σ, etc.

Sets are denoted by capital Latin letters in calligraphic
typeface, e.g., C, I, etc. In particular, an (n − 1)-dimensional
sphere in n-dimensional Euclidean space centered at x of
radius r is denoted by

Sn−1(x, r) = {y ∈ Rn : ‖y‖2 = r}.

An n-dimensional ball in Euclidean space centered at x of
radius r is denoted by

Bn(x, r) = {y ∈ Rn : ‖y‖2 ≤ r}.

As shown in Figure 4a, an (n − 1)-dimensional cap centered
at x of radius r living on an (n − 1)-dimensional sphere of
radius r′ is denoted by

Capn−1(x, r, r′) = {y ∈ Sn−1(O, r′) : ‖y − x‖2 ≤ r}
= Bn(x, r) ∩ Sn−1(O, r′).

As shown in Figure 4b, an (n− 1)-dimensional strip centered
at x− and x+ of radii r− and r+ is denoted by

Strn−1(x−, x+, r−, r+)
={x ∈ Sn−1(r) : ‖x − x−‖2 ≥ r−, ‖x − x+‖2 ≤ r+}
=Bn(x−, r−)c ∩ Bn(x+, r+) ∩ Sn−1(O, r),

where r satisfies
√

r2 − r2
− −

√
r2 − r2

+ = ‖x− − x+‖.
An n-dimensional shell centered at x of inner radius rin and
outer radius rout, where rout > rin, is denoted by

Shn(x, rin, rout) =Shn

(
x,

rin + rout

2
± rout − rin

2

)

=Bn(x, rout)\Bn(x, rin).

Let Vol(·) denote the Lebesgue volume of a Euclidean body
and let Area(·) denote its Lebesgue area of an Euclidean
surface. For M ∈ Z>0, we let [M ] denote the set of first
M positive integers {1, 2, . . . , M}.

The probability mass function (p.m.f.) of a discrete random
variable x or a random vector x is denoted by px or px. Here
with a slight abuse of notation, we use the same to denote
the probability density function (p.d.f.) of x or x if they are
continuous. If every entry of x is independently and identically
distributed (i.i.d.) according to px, then we write x ∼ p⊗n

x .
In other words,

px(x) = p⊗n
x (x) :=

n∏

i=1

px(xi).

Let Unif(Ω) denote the uniform distribution over some
probability space Ω. Let N (µ,Σ) denote the n-dimensional
Gaussian distribution with mean vector µ and covariance
matrix Σ.

The indicator function is defined as, for any A ⊆ Ω and
x ∈ Ω,

1A(x) =

{
1, x ∈ A
0, x /∈ A.

At times, we will slightly abuse notation by saying that 1A

is 1 when relation A is satisfied and zero otherwise. We use
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TABLE I

SUMMARY OF RESULTS FOR THE ADVERSARIAL CHANNEL WITH QUADRATIC CONSTRAINTS. HERE, 1{P≥N} IS 1 WHEN P ≥ N AND

ZERO OTHERWISE. ALSO, CJ := 1
2 log 1 + P

σ2 . RATES KNOWN IN PRIOR WORK ARE PLOTTED IN FIG. 3. NOTE THAT IN ANY ENTRY

IN THE THIRD COLUMN “Level of Myopia”, ALL REGIMES OF σ2/P AS A FUNCTION OF N/P ARE DISJOINT. IN PARTICULAR,
IN THE LAST FOUR ENTRIES OF THAT COLUMN, ONLY ONE OF THE CASES σ2/P ≤ 1/(N/P ) − 1 AND

σ2/P ≤ N/P − 1 CAN OCCUR FOR ANY FIXED VALUE OF N/P

standard Bachmann-Landau (Big-Oh) notation for asymptotic
functions. All logarithms are to the base two.

We use H(·) to denote interchangeably Shannon entropy
and differential entropy; the exact meaning will usually be
clear from context.

V. PRELIMINARIES

A. Arbitrarily Varying Channel (AVC)

A channel with a state controlled by an adversarial jammer
is called an AVC in the literature. James’s jamming strategy
is a (potentially probabilistic) map which, based on his obser-
vation, constructs an attack vector s satisfying his maximum
power constraint ‖s‖2 ≤

√
nN ,

Jam : Rn → Rn

z -→ s
.

B. Code

A deterministic encoder is a deterministic map which
encodes a message to a codeword of length n, where n is
called block-length or the number of channel uses, satisfying
Alice’s maximum power constraint ‖x(m)‖2 ≤

√
nP ,

Enc : {0, 1}nR → Rn

m -→ x(m) ,

where R is the rate of the system. Alice uses her encoder
to encode the set of messages {0, 1}nR and get a codebook
{x(m)}2nR

m=1 which is simply the collection of codewords.
A deterministic decoder is a deterministic function which

maps Bob’s observation to a reconstruction of the message,

Dec : Rn → {0, 1}nR

y -→ m̂
.

Authorized licensed use limited to: Rutgers University. Downloaded on January 06,2023 at 00:10:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: QUADRATICALLY CONSTRAINED MYOPIC ADVERSARIAL CHANNELS 4909

TABLE II

SUMMARY OF RESULTS FOR THE ADVERSARIAL CHANNEL WITH QUADRATIC CONSTRAINTS AND WIRETAP SECRECY. HERE, 1{P≥N} IS 1 WHEN

P ≥ N AND ZERO OTHERWISE. ALSO, CJ := 1
2 log 1 + P

σ2 . PRIOR WORKS MOSTLY CONSIDERED THE CASE WHERE THE EAVESDROPPER

IS INDEPENDENT OF THE JAMMER AND OBSERVES A DEGRADED VERSION OF x, WHILE THE JAMMER MUST CHOOSE HIS SIGNALS
OBLIVIOUSLY OF x AND m

Fig. 4. The geometry of caps and strips.

An (n, R, P, N) deterministic code C is a deterministic
encoder-decoder pair (Enc, Dec). Sometimes we also slightly
abuse the notation and call the set of codewords {x(m)}2nR

m=1

a code.
We distinguish between three types of codes:
• Deterministic codes: The encoder is a deterministic map

from {0, 1}nR to Rn, and the decoder is a deterministic
map from Rn to {0, 1}nR.

• Stochastic codes: The encoder and decoder are allowed
to use private randomness. If Alice and Bob have nA

and nB bits of private randomness respectively, then a
stochastic encoder is a map

Enc : {0, 1}nR × {0, 1}nA → Rn

(m, kA) -→ x(m, k) ,

while the decoder is a map

Dec : Rn × {0, 1}nB → {0, 1}nR

(y, kB) -→ m̂
.

Here, kA is known only to Alice while kB is known only
to Bob.

• Randomized codes: Alice and Bob share nkey bits of
common randomness, which is kept secret from James.
They may additionally have nA and nB bits of private
randomness respectively. The encoder is a map

Enc : {0, 1}nR×{0, 1}nA ×{0, 1}nkey → Rn

(m,kA, k) #→ x(m, kA, k)
,

while the decoder is a map

Dec : Rn × {0, 1}nB × {0, 1}nkey → {0, 1}nR

(y, kB, k) -→ m̂
.

Here, k is known to Alice and Bob, but not to James. The
private randomness kA is known only to Alice, while kB

is known only to Bob.
In all our code constructions, we will not use any private
randomness, i.e., nA = nB = 0. However, our converse results
are true for all values of nA and nB .
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C. Probability of Error

A decoding error occurs when Bob’s reconstruction does
not match Alice’s message. The average (over messages)
probability of error P avg

e (also denoted by Pe for notational
brevity in this paper) is defined as

Pe = sup
s

P(m̂ &= m) = sup
s

2nR∑

m=1

P(m̂ &= m,m = m)

= sup
s

1
2nR

2nR∑

m=1

P(m̂ &= m|m = m).

where the probability is taken over the private randomness
in the encoder-decoder pair, the common randomness shared
by Alice and Bob, the noise to James, and any additional
randomness he may use in choosing s. The maximization
is taken over all (potentially stochastic) functions s : Rn →
Bn(0,

√
nN) which map James’s observation z to a jamming

sequence s(z).6 For deterministic codes,

P(m̂ &= m|m = m)

=
∫

Bn(0,
√

nN)

∫

Rn

pz|x(z|x(m))ps|z(s|z)1{Dec(x(m)+s) %=m} dz ds.

For stochastic codes,

P(m̂ &= m|m = m)

=
1

2nB

2nB∑

kB=1

∫

Bn(0,
√

nN)

∫

Rn

1
2nA

2nA∑

kA=1

pz|x(z|x(m, kA))ps|z(s|z)

1{Dec(x(m,kA)+s,kB) %=m} dz ds.

For randomized codes,

P(m %= m|m = m)

= 1

2nB

2nB

kB=1 Bn(0,
√

nN) Rn

1

2nA

2nA

kA=1

1

2nkey

2
nkey

k=1

pz|x(z|x(m, kA, k))ps|z(s|z)1{Dec(x(m,kA,k)+s,kB ,k) #=m} dz ds.

D. Rate and Capacity

A rate R is said to be achievable if there exists a sequence
of (n, R, P, N) codes C(n) labelled by block-length n such
that each code in the sequence has rate R(n) at least R and
average probability of error P (n)

e vanishing in n, i.e.,

∀n, R(n) ≥ R, and lim
n→∞

P (n)
e = 0.

The capacity C of a communication system is the supremum
of all achievable rates.

6The output of the jammer can also depend on the (potentially stochastic)
codebook used by Alice and Bob, and his own private randomness. However,
it cannot depend on the common randomness shared only by the encoder-
decoder pair. We omit these dependences in the notation for brevity.

E. List-Decoding

Definition 1: Fix R > 0 and nkey ≥ 0. A codebook
C = {x(m, k) : m ∈ [2nR], k ∈ [2nkey ]} is said to be
(P, N, L)-list-decodable at rate R with nkey bits of common
randomness if

• ‖x(m, k)‖2 ≤
√

nP for all m, k; and
• for all possible randomized functions s := s(C,x) satis-

fying P(‖s‖2 ≤
√

nN) = 1, we have

P(|Bn(x + s,
√

nN) ∩ C(k)| > L) = o(1),

where C(k) := {x(m, k) : m ∈ [2nR]} and the shorthand
notation x = x(m,k) is the (potentially stochastic)
encoding of m under common randomness k. In the
above equation, the averaging is over the randomness in7

m,k, sz and s.

A rate R is said to be achievable for (P, N, L)-list-decoding
with nkey bits of common randomness if there exist sequences
of codebooks (in increasing n) that are (P, N, L)-list-
decodable. The list-decoding capacity is the supremum over
all achievable rates.

Remark 1: An error in list-decoding can only occur if the
list is too big, i.e., larger than L.

Remark 2: While sticking with maximum power constraint
and average probability of error, there also exist other jamming
power constraints and error criteria in the literature. They are
not always equivalent and we strictly distinguish them in this
remark.

1) Maximum vs. average power constraint for James. If we
use an average power constraint for James, then no
positive rate is achievable under both maximum and
average probability of error. This is because James can
focus only on a small constant fraction of codewords
and allocate large enough power to completely corrupt
them to ensure Bob has no hope to decode them.
Then Bob’s (maximum/average) probability of error is
bounded away from zero while James’s jamming strat-
egy still satisfies his average power constraint. We will
therefore only consider maximum power constraint on
James.

2) Maximum vs. average probability of error. As we know,
in information theory, an achievability result under max-
imum probability of error is stronger than that under
average one, while it is the other way round for a con-
verse result. In adversarial channel model, if we adopt
maximum probability of error, notice that it suffices for
James to corrupt the transmission of only one message.
Thus we may assume that James knows the transmitted
message a priori (but not necessarily the transmitted
codeword if Alice uses stochastic encoding where a
message potentially corresponds to a bin of codewords).

7Note that we are using an average probability of error in our work. This is
different from a maximum probability of error, where the list-size is required
to be less than or equal to L for every codeword. On the other hand, we are
satisfied with this being true for all but a vanishingly small fraction of the
codewords.
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More formal justification of these criteria and their effect on
capacity are given by Hughes and Narayan [8]. The authors
defined the notion of λ-capacity for different criteria.

F. Probability Distributions of Interest

Alternatively, the system can be described using proba-
bility distributions. We assume the messages are uniformly
distributed, i.e., pm = Unif([2nR]). Given the message to be
transmitted, the codewords are distributed according to px|m.
Notice that it is not necessarily a 0-1 distribution, i.e., the
codeword may not be entirely determined by the message,
as Alice may have access to some private randomness and use
stochastic encoding. Each message may be associated to many
codewords and Alice samples one codeword according to the
distribution px|m and transmits it. James receives a corrupted
version z of x through an AWGN channel specified by

pz|x(z|x) = p⊗n
z|x(z|x) = p⊗n

z|x(x + (z − x)|x) = p⊗n
sz

(z − x),

where p⊗n
sz

= N (0,σ2In). Based on his observation, James
designs an attack vector s according to his jamming strategy
specified by ps|z. Again, notice that it is not necessarily a
0-1 distribution as James may have access to private random-
ness and the output of his jamming may not be deterministic.
Then Bob receives y which is the sum of x and s. In particular,
y is a deterministic function of the codeword transmitted in
the main channel and the attack vector added to it, i.e.,

py|x,s(y|x, s) = 1{y=x+s}.

Based on his observation, Bob reconstructs m̂ using a
(potentially stochastic) decoder specified by pm|y.

G. Area and Volume

The area of an (n − 1)-dimensional Euclidean sphere of
radius r is given by

Fact 1:

Area(Sn−1(·, r)) =
2πn/2

Γ(n/2)
rn−1.

The area of an (n − 1)-dimensional cap centered at x of
radius r living on an (n− 1)-dimensional sphere of radius r′

can be lower bounded by the volume of an (n−1)-dimensional
ball centered at x of radius r since the intersection of an
n-dimensional ball and an (n − 1)-dimensional hyperplane is
an (n − 1)-dimensional ball, as shown in Figure 5, i.e.,

Fact 2:

Area(Capn−1(x, r, r′)) ≥ Vol(Bn−1(x, r)).

The area of a cap can also be upper bounded by a sphere
of the same radius, i.e.,

Fact 3:

Area(Capn−1(x, r, r′)) ≤
1

2
Area(Sn−1(x, r)) ≤ Area(Sn−1(x, r)).

The volume of an n-dimensional Euclidean ball of radius r
is given by

Fact 4:

Vol(Bn(·, r)) =
πn/2

Γ(n/2 + 1)
rn.

Fig. 5. Approximation of surface area. The surface area of a cap
Capn−1(x, r, r′) is upper bounded by that of a sphere Sn−1(x, r). It is
lower bounded by the volume of a lower dimensional ball Bn−1(x, r) since
the intersection of an (n − 1)-dimensional hyperplane parallel to the bottom
of the cap passing through x and the ball Bn(O, r′) whose surface the cap
lives on is an (n − 1)-dimensional ball Bn−1(x, r).

More facts about high-dimensional geometry can be found
in the notes by Ball [43].

H. Error Event Decomposition

We will frequently apply the following fact to decompose
various decoding error events.

Fact 5: For any two events A and B, we have P(A) ≤
P(B) + P(A|Bc).

I. Basic Tail Bounds

Standard tail bounds (see, for instance, the monograph by
Boucheron et al. [44]) for Gaussians and χ2-distributions are
used at times throughout this paper.

Fact 6: If g ∼ N (0,σ2), then P(|g| ≥ ε) ≤
2 exp

(
− ε2

2σ2

)
.

Fact 7: If g ∼ N (0,σ2In), then ‖g‖2
2 has (scaled)

χ2-distribution and

P(‖g‖2
2 ≥ nσ2(1 + ε)) ≤ exp

(
−ε

2

4
n

)
,

P(‖g‖2
2 ≤ nσ2(1 − ε)) ≤ exp

(
−ε

2

2
n

)
,

P(‖g‖2
2 /∈ nσ2(1 ± ε)) ≤ 2 exp

(
−ε

2

4
n

)
.

The following lemma is proved in Appendix B.
Lemma 8: Fix ζ > 0 and b ∈ Rn. If a is isotropically

distributed on the sphere Sn−1(0, ‖a‖2), then

P(|〈a, b〉| > nζ) ≤ 2
− (n−1)n2ζ2

2‖a‖2
2‖b‖2

2 .

We now state a general lemma that will be useful in proving
list-decoding results. This essentially says that if codewords
are chosen i.i.d. according to a uniform distribution, then the
probability that more than O(n2) codewords lie within any set
of sufficiently small volume is super-exponentially decaying
in n. A proof of this lemma for discrete case appeared in
Langberg’s [45, Lemma 2.1] paper. A proof can be found in
Appendix B.
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Lemma 9: Suppose A ⊆ Rn Lebesgue measurable and
C = {x(m)}2nR

m=1 ⊆ A contains 2nR, R > 0 uniform samples
from A. If V ⊆ A is Lebesgue measurable and for some small
enough constant ν > 0

p := P(x ∈ V ) =
µ(V )
µ(A)

≤ 2−(R+ν)n, (V.1)

where x is sampled uniformly at random from A and µ(·)
denotes the Lebesgue measure of a measurable subset of Rn,
then there exists some constant C = C(c, ν, R) > 0, s.t.,

P(|V ∩ C| ≥ cn2) ≤ 2−Cn3
.

Remark 3: The above lemma can be generalized in a
straightforward manner to the case where the measure is,
instead of Lebesgue measure, the unique translation-invariant
measure on the sphere, i.e., the Haar measure. This variant
will be the version that we invoke later in the proof.

Remark 4: The above lemma indicates that the number of
codewords falling into V is small (say at most poly(n)) with
high probability as long as we can get an exponentially small
upper bound on the expected number of such codewords (note
that the condition given by Eqn. (V.1) implies E(|V ∩ C|) =
p2nR≤2−νn).

VI. FORMAL STATEMENTS OF MAIN RESULTS

We now formally state the results in this paper with respect
to decreasing values of nkey. We start with the case when
there is an unlimited amount of common randomness available
between Alice and Bob.

Lemma 10 ( [1]): The capacity of the myopic adversarial
channel with an unlimited amount of common randomness is

Cmyop,rand=






RLD, σ2

P ≤ 1
N/P − 1

RLD,myop, σ2

P ≥ max
{

1
N/P − 1, N

P − 1
}

0, σ2

P ≤ N
P − 1,

(VI.1)

where

RLD :=
1
2

log
P

N
,

RLD,myop :=
1
2

log

(
(P +σ2)(P + N)−2P

√
N(P +σ2)

Nσ2

)
.

These are summarized in Fig. 8.
Proof: The achievability was proved in [1] and the con-

verse is proved in Sec. VII-A. See Sec. VII for details. !
Remark 5: The capacities in Eqn. (VI.1) are continuous at

the boundaries of different parameter regimes. Indeed, it is
easy to check that

RLD,myop =

{
RLD, σ2

P = 1
N/P − 1

0, σ2

P = N
P − 1.

In fact, in all our results, whenever we have characterizations
on both sides of a certain boundary, the capacities are contin-
uous at the boundary.

Remark 6: It is worth noting that RLD ≤ RLD,myop in all
parameter regimes.

We now discuss two possibilities: (1) nkey is Θ(n), and (2)
nkey is Θ(log n). The rate given by Lemma 10 is an upper
bound on the capacity in both cases, and we show that this
is also achievable in a subregion of the NSRs. The proof
will involve a myopic list-decoding argument, which we state
below. We will combine this with a known technique [37],
[41], [42] which uses Θ(log n) bits of common randomness to
disambiguate the list and give us a result for unique decoding.

Theorem 11: For (P, N,O(n2))-list-decoding, the capacity
is lower bounded as follows

Cmyop,LD ≥




RLD,myop, if σ2

P ≥ max
{

1
N/P − 1, N

P − 1
}

and RLD,myop + Rkey > 1
2 log

(
1 + P

σ2

)

RLD, otherwise.

These are summarized in Fig. 7.
Proof: See Sec. VIII-B for a proof sketch and Sec. X for

details. !
The rate RLD is achievable even in the presence of an
omniscient adversary. A major contribution of this work is
in showing that myopia indeed does help, and we can obtain
a higher rate of RLD,myop in a certain regime. It is interesting
to note that even when nkey = 0, the myopic list-decoding
capacity is nonzero for sufficiently large values of σ2/P .
Furthermore, increasing rates of common randomness (Rkey)
help us achieve higher list-decoding rates as seen from Fig. 7.

The above theorem is crucially used in proving the follow-
ing result for linear amount of common randomness:

Lemma 12: Fix any Rkey > 0. If Alice and Bob share
nRkey bits of common randomness, then the capacity is

Cmyop =






RLD,myop, if σ2

P ≥max
{

1
N/P − 1, N

P − 1
}

and Rkey > 1
2 log

(
1+ P

σ2

)
−RLD,myop

RLD, σ2

P ≤ 1
N/P − 1

0, σ2

P ≤ N
P − 1.

Furthermore,
RLD ≤ Cmyop ≤ RLD,myop,

if
σ2

P
≥ max

{
1

N/P
− 1,

N

P
− 1
}

,

and
Rkey <

1
2

log
(

1 +
P

σ2

)
− RLD,myop.

Proof: See Sec. VIII-C. !
The rates achievable for different values of the NSRs are

illustrated in Fig. 6c and Fig. 6d for different values of Rkey.
Our scheme achieves capacity in the red and blue regions of
Fig. 6c and 6d. In the white dotted region, RLD is a lower
bound on the capacity, as guaranteed by Lemma 12. However,
we can achieve RLD,myop with an infinite amount of common
randomness. Hence, there is a small gap between the upper
and lower bounds in this region. In the cyan dotted region,
RLD < 0 and our lower bound is trivial, while the converse
says that the capacity is upper bounded by RLD,myop.
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Fig. 6. Capacity bounds for different values of nkey .

As remarked earlier, we only require Θ(log n) bits of
common randomness to disambiguate the list (in other words,
go from a list-decodable code to a uniquely decodable code).
The additional nRkey − Θ(logn) bits are used for additional
randomization at the encoder to “confuse” James. As is evident
from Figures 6c and 6d, and the following lemma, larger
values of Rkey can guarantee that RLD,myop is achievable in
a larger range of NSRs.

Using Theorem 11 for Rkey = 0, we can show Lemma 13.
Note that when Rkey = 0, the condition RLD,myop + Rkey >
1
2 log

(
1 + P

σ2

)
reduces to σ2

P ≥ 4N
P − 1.

Lemma 13: When log n < nkey = O(log n), the capacity
of the myopic adversarial channel is:

Cmyop =






RLD,myop, if σ2

P ≥ max
{

1
N/P − 1, 4N

P − 1
}

RLD, σ2

P ≤ 1
N/P − 1

0, σ2

P ≤ N
P − 1.

Furthermore,

RLD ≤ Cmyop ≤ RLD,myop,
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if

max
{

1
N/P

− 1,
N

P
− 1
}

≤ σ2

P
≤ 4

N

P
− 1.

These results are summarized in Fig. 6b.
Proof: See Sec. VIII-D. !

These results are illustrated in Fig. 6b. We have matching
upper and lower bounds in the red, blue, and grey regions.
As in the previous subsection, there is a nontrivial gap between
the upper and lower bounds in the green and white regions.

When Alice and Bob do not have access to a shared secret
key, the achievability proofs in Sec. VIII-C and VIII-D are not
valid, and for certain values of the NSRs, tighter converses
can be obtained. In this scenario, we will prove the following
result.

Theorem 14: The capacity of the myopic adversarial chan-
nel with no common randomness is given by

Cmyop =






RLD, if 1
1−N/P − 1≤ σ2

P ≤ 1
N/P − 1

RLD,myop, if σ2

P ≥max
{

1
1−N/P −1, 1

N/P −1
}

0, if σ2

P ≤ 1
1−N/P − 2 or N

P ≥ 1.

In the other regimes, we have

RGV ≤ Cmyop ≤





RLD, if 1
1−N/P − 2 ≤ σ2

P

≤ min
{

1
N/P − 1, 1

1−N/P − 1
}

RLD,myop, if max
{

1
N/P − 1, 1

1−N/P − 2
}

≤ σ2

P ≤ 1
1−N/P − 1 and N

P ≤ 1.

These are summarized in Fig. 6a.
Proof: The achievability follows by combining the myopic

list-decoding lemma (Theorem 11 which is proved in Sec. X)
and a trick used in [25] for myopic list disambiguation.
We adapt the trick to the quadratically constrained case dealt
with in this paper and the proof is presented in Sec. XI.

The converse follows by combining the scale-and-babble
converse (proved in Sec. VII-A) for Lemma 10 and a sym-
metrization converse proved in Sec. IX-B.

See Sec. IX-A for an overview of the proof structure. !

A. Wiretap Secrecy

We will show that a simple modification can guarantee
secrecy when James also wants to eavesdrop on the message.
In addition to achieving a vanishingly small probability of
error at the decoder, we wish to ensure that the information
leaked to James is vanishingly small, i.e., I(x; z) → 0 as
n → ∞. This can be easily guaranteed by a wiretap code, and
we briefly describe the modifications required to ensure this.

When Alice and Bob share infinite common randomness,
nCmyop,rand bits of secret key can be used as a one-time
pad. In fact, the one-time pad guarantees perfect secrecy:
I(m; z) = 0 for all n. In this case, the secrecy capacity can
be completely characterized and is equal to Cmyop,rand.

Lemma 15: The secrecy capacity of the myopic adversarial
channel with an unlimited amount of common randomness is

Cmyop,rand,sec=






RLD, σ2

P ≤ 1
N/P − 1

RLD,myop,
σ2

P ≥max
{

1
N/P −1, N

P −1
}

0, σ2

P ≤ N
P − 1.

(VI.2)

In the regime where nkey = Θ(n), we use a standard ran-
dom binning scheme analogous to [35], [38], [46], [47]. The
result of secrecy then essentially follows from [38, Lemma 2].
We give sketch of the proof of the following lemmas in
Appendix H.

Let CJ := 1
2 log

(
1 + P

σ2

)
. The following rates are

achievable:
Lemma 16: If Alice and Bob share nRkey bits of common

randomness, then the secrecy capacity is

Cmyop,sec






≥ min{RLD,myop, RLD,myop − CJ + Rkey},
if σ2

P ≥ max
{

1
N/P −1, N

P −1
}

and Rkey > 1
2 log

(
1+ P

σ2

)
−RLD,myop

= 0, if σ2

P ≤ N
P −1

≥ min{RLD, RLD−CJ +Rkey}, otherwise.

The results of Lemma 16 are pictorially summarized in
Figs. 17c and 17d. Positive rates are guaranteed in the red
and blue regions, as in Figs. 6c and 6d.

The analysis above easily extends to the case where nkey =
Θ(log n) and nkey = 0. We can obtain the following results.

Lemma 17: When nkey = Θ(log n), the secrecy capacity
of the myopic adversarial channel is:

Cmyop,sec




≥ RLD,myop − CJ , if σ2

P ≥ max
{

1
N/P − 1, 4N

P − 1
}

= 0, σ2

P ≤ N
P − 1

≥ RLD − CJ , otherwise.

These results are summarized in Fig. 17a.
Lemma 18: The secrecy capacity of the myopic adversarial

channel with no common randomness is given by

Cmyop,sec




≥ RLD − CJ , if 1
1−N/P − 1≤ σ2

P ≤ 1
N/P − 1

≥ RLD,myop − CJ , if σ2

P ≥max
{

1
1−N/P −1, 1

N/P − 1
}

= 0, if σ2

P ≤ 1
1−N/P −2 or N

P ≥ 1
≥ RGV − CJ , otherwise.

The above results are pictorially depicted in Fig. 17b.
We now discuss the proof techniques used to derive our

main results.

VII. LEMMA 10: CAPACITY OF THE MYOPIC

ADVERSARIAL CHANNEL WHEN Rkey = ∞
In this section, we prove Lemma 10. The achievability part

uses a random coding argument and can be found in [1]. The
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Fig. 7. Achievable rates for myopic list-decoding for 7a nkey = 0 and 7b nkey = 0.2n bits of common randomness.

Fig. 8. Capacity of the myopic adversarial channel for nkey = ∞ [1]. The
x-axis denotes the NSR from Alice to Bob (with noise from James) and the
y-axis denotes NSR from Alice to James (with AWGN added).

Fig. 9. Expansion of the achievable rate regions for the myopic adversarial
channel with different amounts of common randomness. A rate of RLD is
achievable in the red and orange regions, whereas RLD,myop is achievable
in the regions with different shades of blue. With Ω(n) bits of common
randomness, a rate of at least RLD is achievable whenever P > N .

converse can be proved by specifying an attack for James
that instantiates an AWGN channel from Alice to Bob having
the capacity given by (VI.1). We now give a proof of the
converse (which was omitted in [1]). The bounds that we

Fig. 10. Upper bounds on capacity as obtained from the scale-and-babble
attack. These outer bounds are valid for all values of nkey.

obtain in the following subsection are tight. Coupled with the
achievability in [1], we have a complete characterization of the
capacity. This also gives us some insight as to what optimal
attack strategies for James might be, and hence give a detailed
argument.

A. Proof of Converse: “Scale-and-Babble” Attack

In this subsection, we prove the converse part of Lemma 10.
The converse involves what we call a “scale-and-babble”
attack strategy for James. This attack essentially converts the
myopic channel into an equivalent AWGN channel. Since the
capacity of the AWGN channel cannot be increased using
common randomness, this gives us an upper bound on the
capacity for all values of nkey. We make no claim about the
originality of this proof, as the strategy is well-known (and
maybe dates back to Blachman [4], as suggested in [1]. This
was also implicitly used in [14]). But we nevertheless provide
the details to keep the paper self-contained.

The strategy for James is the following: He uses a certain
fraction of his power to subtract a negatively scaled version
of his observation; the remainder of his power is used to add
AWGN. Specifically,

s = βββ(−αz + g) = βββ(−α(x + sz) + g),
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Fig. 11. Regions where the 11a z-agnostic symmetrization argument, 11b z-aware symmetrization argument and 11c improved z-aware symmetrization
argument gives zero capacity. Note that these are valid only for nkey = 0. However, they continue to hold even if the encoder has access to private randomness.

where8

βββ =

{
1, ‖ − αz + g‖2 ≤

√
nN

√
nN

‖−αz+g‖2
=: βββ′, otherwise,

α > 0 is a constant to be optimized subject to N − α2(P +
σ2) ≥ 0, i.e., α ≤

√
N/(P + σ2). Also, g ∼ N (0, γ2In)

with α2(P + σ2) + γ2

1−ε = N , for a small ε > 0. Therefore,
γ2 = (N −α2(P + σ2))(1− ε), and P(βββ &= 1) = P(‖−αz +
g‖2 >

√
nN) = 2−Ω(n). Then

y = x + s

=

{
x − α(x + sz) + g, ‖ − αz + g‖2 ≤

√
nN

x + βββ′(−α(x + sz) + g), otherwise

=

{
(1 − α)x − αsz + g, ‖ − αz + g‖2 ≤

√
nN

(1 − βββ′α)x − βββ′αsz + βββ′g, otherwise.

(VII.1)

The scaling factor βββ is introduced to make the attack vector
satisfy the power constraint. Note that the channel above is
not exactly an AWGN channel. However, the probability that
βββ &= 1 is exponentially small in n. We have the following
claim, formally proved in Appendix E.

Claim 19: Fix 0 < ε < 1, and let α be nonnegative. If γ2 =
(N − α2(P + σ2))(1 − ε), then the capacity CAWGN of the
channel (VII.1) from x to y is upper bounded as follows

CAWGN <
1
2

log
(

1 +
(1 − α)2P
α2σ2 + γ2

)
. (VII.2)

Using Claim 19, we have

Cmyop,rand <
1
2

log
(

1 +
(1 − α)2P
α2σ2 + γ2

)

=
1
2

log
(

1 +
(1 − α)2P
N − α2P

)
+ g(ε, P, N,σ2,α),

where g(ε, P, N,σ2,α) → 0 as ε → 0. Since this holds for
every ε > 0, and every 0 < α ≤

√
N/(P + σ2), we can say

that

Cmyop,rand < min
0<α≤

√
N/(P+σ2)

1
2

log
(

1 +
(1 − α)2P
N − α2P

)
.

(VII.3)

8Here, βββ is a factor introduced to handle atypicality in the noise. As we
show subsequently, the value of βββ is 1 with high probability.

Fig. 12. Upper bounds on capacity for nkey = 0. This is obtained by
combining the bounds obtained using the scale-and-babble attack in Fig. 10
with the symmetrization arguments in Fig. 11.

Fig. 13. Currently, our reverse list-decoding arguments, an integral part of
our proof techniques for nkey = 0, are only valid in the red and blue regions,
which present bottlenecks in our analysis of the scenario when no common
randomness is available. As ongoing work, we are trying to expand the region
where reverse list-decoding is possible.

Denote f(α) := (1−α)2P
N−α2P and R(α) := 1

2 log(1 + f(α)).
The minimum points of f(α) are α = N/P and α = 1.

1) N/P ≥ 1 (See Figure 18(a) with N/P = 1.1).
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Fig. 14. Capacity of the myopic adversarial channel with Ω(n) bits of
common randomness. Here NSRJames := σ2/P .

Fig. 15. Capacity of the myopic adversarial channel with different amounts
of common randomness. Here, RNC (nkey) denotes the region where our
upper and lower bounds do not meet.

Fig. 16. Capacity of the myopic adversarial channel as a function of σ2/P .

a) If N/P <
√

N/(P + σ2), i.e., σ2

P < 1
N/P − 1,

then

min
0<α≤

√
N/(P+σ2)

R(α)=
1

2
log(1 + f(N/P ))=

1

2
log

P

N
.

b) If N/P ≥
√

N/(P + σ2), i.e., σ2

P ≥ 1
N/P − 1,

then

min
0<α≤

√
N/(P+σ2)

R(α) =
1

2
log 1 + f

N

P + σ2

=
1

2
log

(P + σ2)(P + N) − 2P N(P + σ2)

Nσ2

=: RLD,myop.

Notice that if σ → ∞, the channel becomes oblivious.
It can be directly verified that

lim
σ→∞

1
2

log

(
(P + σ2)(P + N) − 2P

√
N(P + σ2)

Nσ2

)

=
1
2

log
(

1 +
P

N

)
,

consistent with the oblivious capacity of quadratically
constrained channels.

2) N/P < 1 (See Figure 18b with N/P = 0.9).

a) If
√

N/(P + σ2) ≥ 1, i.e., σ2

P ≤ N
P − 1, then

min
0<α≤

√
N/(P+σ2)

R(α) =
1
2

log(1 + f(1)) = 0.

b) If
√

N/(P + σ2) < 1, i.e., σ2

P > N
P − 1, then

min
0<α≤

√
N/(P+σ2)

R(α)

=
1
2

log

(
1+f

(√
N

P + σ2

))
=RLD,myop.

The upper bound on the capacity given by the scale-and-babble
attack is shown in Figure 19.

The scale-and-babble attack converts the adversarial chan-
nel into an equivalent AWGN channel. The capacity of
the point-to-point AWGN channel cannot be increased using
private/common randomness. Therefore, the upper bounds
obtained using this technique hold regardless of whether deter-
ministic/stochastic/randomized codes are used, and regardless
of the amount of common randomness shared by the encoder
and decoder.9

VIII. LEMMAS 12 AND 13: LINEAR AND SUBLINEAR

AMOUNTS OF COMMON RANDOMNESS

Our approach in these two regimes will involve a myopic
list-decoding argument, which we will prove next. We will
combine this with a known technique [37], [41], [42] which
uses Θ(log n) bits of common randomness to disambiguate
the list and give us a result for unique decoding.10 Before
we state the main results, we take a brief detour to discuss
classical and myopic list-decoding.

9This is due to the fact that common randomness/stochastic encoding does
not increase the capacity of a memoryless channel. This in turn can be derived
from Fano’s inequality with common randomness (see Appendix E for more
details).

10For the case σ2 = 0, [42] also showed that log n bits are necessary to
achieve a rate equal to list-decoding capacity with unique decoding.
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Fig. 17. Achievable rates with secrecy for different values of nkey.

Fig. 18. Optimization of f(α).

A. List-Decoding
Consider the quadratically constrained adversarial channel

model where James observes z, which is a noisy copy of x.
In the list-decoding problem, the decoder is not required to
recover the transmitted message exactly but can instead output
a (small) list of messages with the guarantee that the true
message is in the list. We are typically interested in list-sizes
that are constant or grow as a low-degree polynomial function
of the blocklength.

As a warm-up, let us consider the omniscient adversary
(i.e., when σ2 = 0). We have the following folk theorem.11

Lemma 20: Let σ = 0 and nkey = 0. If ε := 1
2 log P

N −R >
0, then R is achievable for

(
P, N, Ω

(
1
ε log 1

ε

))
-list-decoding.

If R > 1
2 log P

N , then no sequence of codebooks of rate
R is (P, N, nO(1))-list-decodable. Therefore, for polynomial

11As will be evident from the proof, the omniscient list-decoding capacity
is shown to be 1

2 log P
N under a (stronger) maximum probability of error

criterion.
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Fig. 19. The upper bound of capacity given by scale-and-babble attack.

list-sizes, the omniscient list-decoding capacity is equal to
1
2 log P

N .
Although the above result is well-known, we are not aware

of a reference with a formal proof of this statement. For
completeness, and to keep the paper self-contained, we give a
proof in Appendix D.

B. Theorem 11: List-Decoding With a Myopic Adversary

In this subsection, we provide a proof outline of Theorem 11
and forward the detailed proof to Sec. X.

In the case where σ > 0, we can achieve a higher
list-decoding rate for certain values of N/P and σ2/P .
We show that when noise level to James is large enough (he
is “sufficiently myopic”), he is unable to exactly determine
x from z. Conditioned on z, the transmitted codeword lies
in a thin strip which is roughly

√
nσ2 away from z. If R is

large enough, then the strip will contain exponentially many
codewords, and James cannot distinguish the true codeword
from the others. Since we use a random code, these codewords
are roughly uniformly distributed over the strip. An effective
value of s for one codeword on the strip (in the sense of
ensuring maximum confusion for Bob) may be ineffective
for most of the remaining codewords. As a result, there is
no single direction where James can align s in order to
guarantee the level of confusion that Bob could have if he
were omniscient. This is what will let us achieve a higher
rate.

We will consider the case nkey = nRkey, for some
Rkey ≥ 0. Even the case when Rkey = 0 is non-trivial –
see Figure 7a for an illustration of the achievable rate.

Theorem 11 (Restatement of Theorem 11): For
(P, N,O(n2))-list-decoding, the capacity is lower bounded
as follows

Cmyop,LD≥






RLD,myop, if σ2

P ≥max 1
N/P −1, N

P −1

and RLD,myop+Rkey > 1
2 log 1+ P

σ2

RLD, otherwise.

These are summarized in Fig. 7.
We now provide a sketch of the proof, but relegate the

details to Sec. X.

Proof Sketch: First, observe that RLD is achievable as long
as N < P . This is true since RLD is achievable even with
an omniscient adversary (Lemma 20). The nontrivial step is
in showing that a higher rate of RLD,myop is achievable in a
certain regime of the NSRs. We will prove the achievability
using random spherical codes. The 2n(R+Rkey) codewords
are sampled independently and uniformly at random from
Sn−1(0,

√
nP ). This is partitioned randomly into 2nRkey

codebooks, each containing 2nR codewords. The value of the
shared key determines which of the 2nRkey codebooks is used
for transmission. Since Bob has access to the key, he has to
decode one of 2nR codewords. We analyze the probability
of error taking James’s point of view. To James, one of
2n(R+Rkey) codewords is chosen at random, and the code is
(P, N,O(n2))-list-decodable with high probability if no attack
vector s can force a list-size of Ω(n2) for a nonvanishing
fraction of the codewords.

Conditioned on z, the true codeword x lies in a thin strip
at distance approximately

√
nσ2 to z. We show Lemma 24

that as long as the codebook rate R + Rkey is greater than
1
2 log

(
1 + P

σ2

)
, this strip (with high probability) contains

exponentially many codewords, thereby causing sufficient con-
fusion for James. This condition effectively limits the values
of the NSRs where RLD,myop is achievable.

For ease of analysis, we assume that James has access to
an oracle, which reveals a particular subset of 2εn codewords
from the strip. This set is guaranteed to contain the true code-
word. Clearly, the oracle only makes James more powerful,
and any result that holds in this setting also continues to be
valid when there is no oracle. The codewords in the oracle-
given set (OGS) are all independent (over the randomness in
the codebook) and are approximately uniformly (which we call
quasi-uniformly) distributed over the strip. See Lemma 23 for
a formal statement. The codewords outside the oracle-given
set are independent of these, and are uniformly distributed
over the sphere. From the point of view of James, the true
codeword is quasi-uniformly distributed over the OGS.

We fix an attack vector s, and bound the probability that this
forces a list-size greater than L for a significant fraction of the
codewords in the oracle-given set. To do so, we find the typical
area of the decoding region Bn(x+s,

√
nN)∩Sn−1(0,

√
nP )

by computing the typical norm of y. This decoding region is a
cap, whose area is maximized when the radius of the cap (see
Sec. IV) is

√
nN . This would be the result of James’s attack

if he were omniscient. However, due to the randomness in sz

and his uncertainty about x, the typical radius is considerably
less than

√
nN . It is this reduction in the typical radius that

helps us achieve rates above RLD. The value of the typical
radius is the solution of an optimization problem, which is
identical (under a change of variables) to the one we obtain
when analyzing the scale-and-babble attack in Sec. VII-A. See
Fig. 20 for an illustration. This is proved in Sec. X-H, with
some of the calculations appearing in subsequent subsections.

With an upper bound on the typical decoding volume,
we can bound the probability that there are more than L
codewords in the decoding region. We separately handle
the codewords within and outside the oracle-given set. The
probability that a fixed s causes list-decoding failure for a
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Fig. 20. Intuition behind myopic list-decoding. From the point of view of
James, the true codeword is quasi-uniformly distributed over the OGS. The
best-case scenario for James would be to “push” the true codeword towards
the origin. However, for any fixed attack vector s, only a small fraction of the
codewords in the OGS lead to a large overlap with Sn−1(0,

√
nP ) (which

could lead to a large list-size). For a randomly chosen codeword from the
OGS, the overlap of the decoding ball with Sn−1(0,

√
nP ) is small with

high probability.

significant fraction of codewords in the oracle-given set is
found to decay super-exponentially in n. We complete the
proof using a covering argument for s and taking a union
bound over all representative attack vectors sQ.

C. Achievable Rates Using Θ(n) Bits of CR

In this subsection, we prove Lemma 12.
The following lemma by Sarwate [37] (originally proved

by Langberg [41] for the bit-flip channel, later generalized
and improved for more general AVCs and constant list-sizes
in [42]) says that a list-decodable code can be converted to
a uniquely decodable code with an additional O(log n) bits
of common randomness. Although the lemma was stated in
the context of discrete AVCs with deterministic encoding, the
proof goes through even without these restrictions. We can use
our list-decodable code as a black box in the following lemma
to go from a list-decodable code to a uniquely decodable code.

For an arbitrary AVC W , we define an (n, R, L, ε)-list-
decodable code as one which has blocklength n, message rate
R, and achieves a list-size of L with probability 1 − ε.

Lemma 21 (Lemma 13, [37]): Suppose we have a deter-
ministic (n, R, L, ε)-list-decodable code for an AVC W . If the
encoder-decoder pair shares nkey bits of common randomness,
then there exists a blocklength-n code of rate R − nkey

2n such
that the decoder can recover the transmitted message with
probability 1 − ε− ε′, where

ε′ :=
2nLR

nkey2nkey/2
.

The above lemma says that an additional nkey = 2 log(nL)
bits of common randomness is sufficient to disambiguate the

list. If L = nO(1), then the nkey required is only logarithmic,
and the penalty in the rate nkey

2n is vanishing in n.
We can therefore use this with our myopic list-decoding

result in Theorem 11 to obtain achievable rates. Combining
this with the converse in Lemma 10, we obtain Lemma 12

D. Achievable Rates With Θ( log n) Bits of CR

In this subsection, we prove Lemma 13.
Lemma 21 says that 2 logn bits of common randomness is

sufficient to disambiguate the list. Using this with Theorem 11
for Rkey = 0, we have Lemma 13. Note that when Rkey = 0,
the condition RLD,myop + Rkey > 1

2 log
(
1 + P

σ2

)
reduces to

σ2

P ≥ 4N
P − 1.

IX. NO COMMON RANDOMNESS

We now discuss the basic ideas required to obtain
Theorem 14.

A. Proof Sketch

The proof involves two parts:
• The upper bounds are obtained using Lemma 10, and

symmetrization arguments described in Sec. IX-B.
• The achievability involves a combination of list-decoding,

reverse list-decoding, and the grid argument. We give a
high-level description below. For the rigorous proof, see
Sec. XI.

The achievability proof uses several ideas from our discussion
on myopic list-decoding in Sec. VIII-B. As discussed in
Sec. VIII-B, the transmitted codeword lies in a strip. We can
only prove our result in the sufficiently myopic case, i.e.,
when the strip contains exponentially many codewords. This
is possible only if R > 1

2 log
(
1 + P

σ2

)
. Just as in the proof

of myopic list-decoding, we assume that James has access to
an oracle-given set. Our goal is to show that there exists no
attack strategy for James that would cause decoding failure
for a significant fraction of codewords in the oracle-given set.

See Fig. 20. Let us fix an s. We say that a codeword x′

confuses x if Bn(x + s,
√

nN) contains x′. From James’s
perspective, the codewords in the oracle-given set are (approxi-
mately12) equally likely to have been transmitted. We say that
decoding fails if the attack vector chosen by James causes
x to be confused with another codeword. To analyze this,
we study the effect of s simultaneously over all codewords in
the oracle-given set. The set

⋃
m∈Orcl Bn(x(m) + s,

√
nN)

forms a “blob”. We show that the probability that the blob
contains more than n4 confusing codewords13 is vanishingly
small. This ensures that there are only a polynomial number
of codewords that could potentially confuse the exponentially
many codewords in the oracle-given set.

We then find the number of codewords x(m) in the OGS
that could potentially be confused by a fixed x′. We call
this reverse list-decoding, and show that each x′ can confuse

12We add this qualifier since all points in the strip are not equidistant from z.
13The degree of the polynomial here is not important, but is chosen to be

4 for convenience. What matters is that the list-size grows polynomially in n.
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only polynomially many codewords in the OGS. Our reverse
list-decoding argument holds if σ2

P ≥ 1
1−N/P − 1.

We combine the blob list-decoding and reverse list-decoding
results and give a combinatorial argument to show that the
probability of a fixed s causing a decoding error for a signifi-
cant fraction of codewords in the OGS is super-exponentially
decaying in n. We categorise the error into two types:

• Type I: The “confusing” codeword does not lie within
the OGS. Blob list-decoding and reverse list-decoding in
this case are studied in Sec. XI-A.

• Type II: The “confusing” codeword lies within the OGS.
This is studied in Sec. XI-B.

We then use a standard covering argument for s and show
that the average probability of decoding error is also vanishing
in n. This will complete the proof of Theorem 14.

B. An Improved Converse Using Symmetrization

In this section, we prove the symmetrization part of the
converse of Theorem 14.

When the encoder is a deterministic map from the set of
messages to Rn, we can give a better upper bound for certain
values of the NSRs. This attack is based on the scaled babble-
and-push attack designed by Li et al. [40] for the quadratically
constrained channel with a causal adversary. The basic idea
in a symmetrization argument is to make sure that Bob is
equally confused between the actual transmitted codeword and
a random codeword independently chosen by James. Bob will
then be unable to distinguish between the two codewords and
therefore makes an error with nonvanishing probability.

Lemma 22: If nkey = 0, then Cmyop = 0 when
σ2

P ≤ 1
1−N/P − 2 or N

P ≥ 1.
Proof: We first present two suboptimal jamming strategies

referred to as z-agnostic symmetrization and z-aware sym-
metrization. They are simple and natural strategies and give
respectively the following bounds inferior to the one claimed
in Lemma 22.

1) z-agnostic symmetrization: If nkey = 0, then Cmyop = 0
when N ≥ P .

2) z-aware symmetrization: If nkey = 0, then Cmyop = 0
when σ2

P < 4N
P − 2.

We then slightly modify z-aware symmetrization and present
an optimal symmetrization-type attack. The analysis follows
verbatim that of z-aware symmetrization by changing some
coefficients. The bound given by such an improved sym-
metrization subsumes and extends those given by z-agnostic/-
aware symmetrization.

a) z-agnostic symmetrization: The first part (Item 1) is
considerably simpler, and involves a z-agnostic symmetriza-
tion argument. If N ≥ P , then James can mimic Alice. A sim-
ple attack strategy is the following: He generates a message
m′ uniformly at random, and independently of everything
else. Using the same encoding strategy that Alice uses; m′

is mapped to a codeword s = x′ which is transmitted. Bob
receives x + x′, and unless m′ = m, he will be unable
to determine whether Alice sent m or m′. Therefore, with
probability 1 − 2−nR he is unable to decode the correct

message, and this is true for all R > 0. Therefore, the capacity
is zero when N ≥ P .

b) z-aware symmetrization: To prove the second part
(Item 2), when σ2

P < 4N
P − 2, we give a z-aware sym-

metrization attack. Here, James picks a random codeword x′

uniformly from the codebook and “pushes” z to the midpoint
of z and x′. Bob is then unable to distinguish between x
and x′, and will therefore make an error with nonvanishing
probability. Specifically, James samples m′ ∼ pm,x′ ∼ px|m,
both independently of Alice, and sets

s =
1
2
βββ(x′ − z) =

1
2
βββ(x′ − x − sz), (IX.1)

where

βββ =





1,

∥∥ 1
2 (x′ − z)

∥∥
2
≤

√
nN

√
nN

‖ 1
2 (x′−z)‖2

=: βββ′, otherwise, (IX.2)

such that

y = x + s

=

{
x + 1

2 (x′ − x − sz),
∥∥1

2 (x′ − z)
∥∥

2
≤

√
nN

x + 1
2βββ

′(x′ − x − sz), otherwise

=

{
= 1

2 (x′ + x)− 1
2sz,

∥∥1
2 (x′−z)

∥∥
2
≤
√

nN

=
(
1 − 1

2βββ
′)x+ 1

2βββ
′x′− 1

2βββ
′sz, otherwise.

We introduce βββ merely to ensure that the attack vector always
satisfies James’s power constraint. We don’t care much about
the second case in Equation (IX.2), since the probability of
the second case goes to zero. Hence, even if Bob may be able
to decode the message in the second case, we show that in the
first case his probability of error is going to be bounded away
from zero. Assume we operate at a rate R. Define z′ := x′+sz,
s′ := 1

2 (x − z′) and y′ := x′ + s′ = x′ + 1
2 (x − z′) =

x′ + 1
2 (x− x′ − sz) = 1

2 (x′ + x)− 1
2sz = y. The probability

of error can be lower bounded by

Pe = P(m̂ &= m)

≥P(m̂ &= m,x′ &= x, ‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)

= P(x′ &= x, ‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)

P(m̂ &= m|x′ &= x, ‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)

≥1
2 P(x′ &= x, ‖s‖2 ≤

√
nN, ‖s′‖2 ≤

√
nN),

where the last inequality comes from the following argument.
Suppose that James has enough power to push the channel
output y to (x+x′)/2 even when sz = 0, and that Bob knew
that his observation y is the average of x and x′.14 In this
case, Bob cannot distinguish whether x or x′ was transmitted
and his probability of decoding error is no less than 1/2. Note
that, in the myopic case we are considering, Bob’s observation
y = (x + x′)/2− sz/2 also contains a (scaled) random noise
component other than the average of two codewords. The
noise is completely random and independent of everything

14Notice that there may exist other pairs of codewords with the same
average.
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else, hence it does not provide Bob with any information of m
and a decoding error will occur still with probability at least
1/2. However, there is one more caveat. The output y when
x was transmitted by Alice and x′ was sampled by James
coincide with the output y′ when x′ was transmitted by Alice
and x was sampled by James. If s′ violates James’s power
constraint, then Bob immediately knows that the output is not
y′, x is the genuine codeword and x′ is a spoofing codeword.
Hence, to ensure that Bob is fooled by x and x′, it had better
be the case that s′ satisfies his power constraint as well.

The probability P(x′ &= x, ‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)
can be bounded as follows.

P(x′ &= x, ‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)

= P(‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)

− P(‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN,x′ = x)

≥P(‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN) − P(x′ = x).

Apparently, P(x′ = x) = 2−nR → 0. It now remains to lower
bound the first term.

P(‖s‖2 ≤
√

nN, ‖s′‖2 ≤
√

nN)

= P
(∥∥∥∥

1
2
(x′ − z)

∥∥∥∥
2

≤
√

nN,

∥∥∥∥
1
2
(x − z′)

∥∥∥∥
2

≤
√

nN

)

= P(‖x′ − x − sz‖2 ≤ 2
√

nN, ‖x− x′ − sz‖2 ≤ 2
√

nN)

= P(‖x− x′‖2
2 + ‖sz‖2

2 + 2〈x − x′, sz〉 ≤ 4nN,

‖x− x′‖2
2 + ‖sz‖2

2 − 2〈x− x′, sz〉 ≤ 4nN)
≥P(‖x− x′‖2

2 ≤ 2nP (1 + δ1), ‖sz‖2
2 ≤ nσ2(1 + δ2),

|〈x − x′, sz〉| ≤ nδ3) (IX.3)

≥1 − P(‖x − x′‖2
2 > 2nP (1 + δ1))

− P(‖sz‖2
2 > nσ2(1 + δ2)) − P(|〈x − x′, sz〉| > nδ3),

(IX.4)

where in Eqn. (IX.3) we assume 2P +σ2 = 4N −ε < 4N for
some constant ε > 0 and we set δ1 := ε

6P , δ2 := ε
3σ2 , δ3 :=

ε/6. The first term in Eqn. (IX.4) can be bounded using
Markov’s inequality. Specifically,

E(‖x − x′‖2
2)

= E(‖x‖2
2) + E(‖x′‖2

2) − 2 E(〈x,x′〉)

= E(‖x‖2
2) + E(‖x′‖2

2) − 2
n∑

i=1

E(xix
′
i)

= E(‖x‖2
2) + E(‖x′‖2

2) − 2
n∑

i=1

E(xi) E(x′
i) (IX.5)

= E(‖x‖2
2) + E(‖x′‖2

2) − 2
n∑

i=1

(E(xi))
2 (IX.6)

≤2nP. (IX.7)

where Equation (IX.5) and Equation (IX.6) follow since x′

and x are i.i.d. By Markov’s inequality, we have

P(‖x − x′‖2
2 > 2nP (1 + δ1)) ≤

2nP

2nP (1 + δ1)
=

1
1 + δ1

.

The second term of Eqn. (IX.4) follows from χ2 tail bound
(Fact 7).

P(‖sz‖2
2 > nσ2(1 + δ2)) ≤ exp(−δ22n/4).

Since 〈x − x′, sz〉 ∼ N (0, ‖x − x′‖2
2σ

2In), by Gaussian tal
bound (Fact 6),

P(|〈x − x′, sz〉| > nδ3) ≤2 exp
(
− (nδ3)2

2‖x− x′‖2
2σ

2

)

≤2 exp
(
− n2δ23

4nPσ2

)

=2 exp
(
− nδ23

4Pσ2

)
.

Finally, we have

Pe ≥1
2
(1 − P(‖x − x′‖2

2 > 2nP (1 + δ1))−

P(‖sz‖2
2 > nσ2(1 + δ2)) − P(|〈x − x′, sz〉| > nδ3)

− P(x′ = x))

≥1
2

(
1 − 1

1 + δ1
− exp(−δ22n/4)

−2 exp
(
− nδ23

4Pσ2

)
− 2−nR

)

=
1
2

(
ε/6P

1 + ε/6P
− exp

(
− nε2

36σ4

)

−2 exp
(
− nε2

144Pσ2

)
− 2−nR

)

→ ε/6P

2(1 + ε/6P )
,

which is bounded away from zero. Thus no positive rate is
achievable when σ2

P < 4N
P − 2.

c) Improved z-aware symmetrization: Finally, we modify
the previous z-aware symmetrization by optimizing the coef-
ficients in front of x′ and z in the design of s (Eqn. (IX.1)).

Let

s = αz + βx′ + g, (IX.8)

where α < 0,β > 0 are to be determined momentarily,
g ∼ N (0, γ2In) for some γ > 0 to be determined later,
and x′ is a random codeword sampled uniformly from Alice’s
codebook.15

Under the choice of s defined in Eqn. (IX.8), Bob receives

y=x+s=x+αz+βx′+g = (1 + α)x + βx′ + αsz + g.

(IX.9)

15Strictly speaking, as in Eqn. (IX.1), we should also multiply s by a
normalization factor βββ. It ensures that s satisfies James’s power constraint
with probability one. The way to handle it is precisely the same as in the
previous part IX-B.0.b and we omit the technical details in this part.
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We observe the following two points from Eqn. (IX.9). Firstly,
to “symmetrize” the channel from Alice to Bob, James had
better set 1+α = β. This ensures that Bob has no idea whether
x or x′ was transmitted even if he somehow magically knew
the value of αsz + g. Secondly, to save his power, James had
better set γ = 0, that is, not add additional Gaussian noise in
s. Therefore we set s = αz + (1 + α)x′ where α < 0 and
1 + α > 0, i.e., α > −1.

We now evaluate 1
n E(‖s‖2

2) and contrast it with James’s
power constraint N .

E(‖s‖2
2) = E(‖αz + (1 + α)x′‖2

2)

= E(‖αx + (1 + α)x′ + αsz‖2
2)

=α2 E(‖x‖2
2) + (1 + α)2 E(‖x′‖2

2) + α2 E(‖sz‖2
2)

+ 2α(1 + α) E(〈x,x′〉) + α2 E(〈x, sz〉)

+ α(1 + α) E(〈x′, sz〉)

≤α2 · nP + (1 + α)2 · nP + α2 · nσ2 + 0 + 0
(IX.10)

=n(2P + σ2)α2 + 2nPα+ nP. (IX.11)

Eqn. (IX.10) follows from the same calculation as in
Eqn. (IX.7). Minimizing Eqn. (IX.11) over α ∈ (−1, 0) (so as
to minimize the amount of power James spent), we obtain the
minimizer

α∗ = − P

2P + σ2
, β∗ = 1 + α∗ =

P + σ2

2P + σ2
.

The above calculation can be directly substituted into the
previous part (IX-B.0.b). This implies that Cmyop = 0 as
long as the power James spent in transmitting s defined in
Eqn. (IX.1) is at most

√
nN . That is, the RHS of Eqn. (IX.11)

evaluated at α = α∗ is at most N : (2P +σ)2α2
∗+2Pα∗+P ≤

N . This reduces to the condition σ2

P ≤ 1
1−N/P −2, as promised

in Lemma 22. !
Remark 7: The argument above generalizes the Plotkin

bound (via the Cauchy–Schwarz inequality – see, e.g.,
Li et al. [40]) to scenarios with additional randomness in sz .

X. MYOPIC LIST-DECODING

We now describe our coding scheme and prove that it
achieves the rate in Theorem 11 (restated in Theorem 11).
In Sec. X-A, we formally describe the scheme. The proof of
Theorem 11 proceeds by analyzing various error events which
are formally defined in Sec. X-C. The proof is outlined in
Sec. X-D, and the probabilities of the various error events are
analyzed in the following subsections.

A. Coding Scheme

1) Codebook Construction: We use random spherical codes.
Before the communication, Alice samples 2n(R+Rkey) code-
words {x(m, k) : m ∈ [2nR], k ∈ [2nRkey ]} independently
and uniformly at random from the sphere Sn−1

(
0,
√

nP
)

.
Once sampled, the codebook is fixed and revealed to every
party: Alice, Bob and James. Notice that all codewords
satisfy Alice’s power constraint ‖x‖2 ≤

√
nP . We define

C(k) := {x(m, k) : m ∈ [2nR]} to be the kth codebook.
We also distinguish the message rate R from the codebook
rate Rcode := R + Rkey.

2) Encoder: Let k ∈ [2nRkey ] be the realization of the secret
key shared by Alice and Bob. Alice sends x(m, k) if she wants
to transmit message m to Bob.

3) Decoder: Bob uses a minimum distance decoder. Having
received y, he outputs m̂ such that the corresponding codeword
x(m̂, k) is the nearest (in Euclidean distance) one in C(k) to
his observation, i.e.,

m̂ = argmin
m′∈{0,1}nR

‖x(m′, k) − y‖2.

Remark 8: We emphasize that the above coding scheme
is designed for the original unique decoding problem.
To approach the proof of unique decodability, we have to go
through a novel notion of list-decoding referred to as myopic
list-decoding16 as the title of this section suggests. However,
myopic list-decoding appears only as a proof technique and
neither Bob nor James really performs a step of myopic list-
decoding. Note that the above decoder for unique decoding
will not be used until Section XI.

For the rest of this section, we fix two quantities: ε is a
small positive constant independent of n, and δ is a parameter
that decays as Θ((log n)/n). The latter parameter δ is used
in Eqn. (X.2) to parameterize the thickness of each strip
Strn−1(zQ, i).

B. The Strips and the Oracle-Given Set (OGS)

Let L = 3n2. To simplify the proof, we prove the achiev-
ability part under a more powerful adversary who has access to
an oracle in addition to z. The oracle reveals a random subset
of 2εn codewords that contains the transmitted codeword
and others that are all at approximately the same distance
to z. We call it an oracle-given set, denoted Orcl(z,x).
Conditioned on James’s knowledge, the transmitted codeword
is independent of all codewords outside the oracle-given set.
We now describe the rule that assigns a pair (x, z) to an OGS.

Choose any optimal covering Z of
Shn(0,

√
n(P + σ2)(1 ± ε)) such that minz′∈Z ‖z − z′‖2 ≤√

nδZ for all z in the shell. The size of such a covering can
be bounded as follows.

|Z| ≤
(

Vol(Bn(0,
√

n(P + σ2)(1 + ε) +
√

nδZ))
Vol(Bn(0,

√
nδZ))

)1+o(1)

=

(√
(P + σ2)(1 + ε) +

√
δZ√

δZ

)n(1+o(1))

=: cn
ε,δZ .

(X.1)

Given z, let zQ := argminz′∈Z ‖z − z′‖2 denote the closest
point to z in Z (a.k.a. the quantization of z). For each zQ ∈ Z ,
and i ∈ {−ε/δ + 1, . . . , ε/δ}, define the i-th strip

Strn−1(zQ, i) := Sn−1(0,
√

nP )

∩ Shn(zQ,
√

nσ2(1 + (i − 1)δ),
√

nσ2(1 + iδ)) (X.2)

16See Section X-D below for what it means for a code to be non-myopic-
list-decodable.
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to be the set of all points on the coding sphere at a distance
of at least

√
nσ2(1 + (i − 1)δ) but at most

√
nσ2(1 + iδ)

away from zQ. It is not hard to see that the union of the
strips is the whole power sphere:

⋃
zQ

⋃
i Strn−1(zQ, i) =

Sn−1(0,
√

nP ).17 Let C := {x(m, k) : m ∈ [2nR], k ∈
[2nRkey ]} denote the codebook. Define

Mstr(zQ, i) := {(m, k) : x(m, k) ∈ Strn−1(zQ, i)} (X.3)

to be the set of indices of the codewords that lie in
Strn−1(zQ, i). We partition this set of indices into blocks
of size 2nε each (except perhaps the last block) in the
lexicographic order of (m, k). Let {Orcl(j)(zQ, i)}'

j=1 denote
the partition, where , := 2|Mstr(zQ, i)|/2nε3. Each of these
blocks constitutes an oracle-given set. If (m, k) corresponding
to the transmitted codeword x(m, k) lies in the µth block
Orcl(µ)(zQ,λ) of the partition of the λth strip Mstr(zQ,λ)
for some λ ∈ {−ε/δ+1, . . . , ε/δ} and µ ∈ [,], then the oracle
reveals Orcl(zQ, x) := Orcl(µ)(zQ,λ) to James.

Remark 9: It is important to note that all sets defined above
(strips, OGSs, etc.) are designed a priori, before communica-
tion takes place.

C. Error Events

Define

L(k)(x(m), s)

:={w ∈ [2nR] : x(w, k) ∈ Bn(x(m, k) + s,
√

nN) ∩ C(k)}
={w ∈ [2nR] : ‖x(w, k) − x(m, k) − s‖2 ≤

√
nN}

for m ∈ [2nR], k ∈ [2nRkey ], s ∈ Bn(0,
√

nN). Recall that by
the proof sketch in Section VIII-B, to prove the existence of
a myopic list-decodable code, we want to show that with high
probability over the randomness in codebook construction,
the uniform selection of the messages, the key shared by
encoder-decoder and the channel from Alice to James, only
a vanishing fraction of codewords in the OGS (say, 2nε/4

out of 2nε codewords in the OGS) have list-size larger than
L under some attack vector by James. Formally, we want to
show that a random spherical code ensemble as constructed
in Section X-A is myopically list-decodable in the following
sense.

Definition 2 (Myopic List-Decodability): A code ensemble{
C(k)

}
with common randomness k shared by Alice and Bob

is said to be myopic list-decodable if

P
(
∃s ∈ Bn(0,

√
nN), |{(m,k) ∈ Orcl(z,x) :

|L(k)(x(m), s)| > L}| > 2n(ε−h(ε,τ,δS ,δZ)/2)
)

= o(1),

where 0 < h(ε, τ, δS , δZ) < 2ε is a vanishing function in
each of its variables. In particular, we can take h(ε) = 3

2ε by
setting τ , δS and δZ to be suitable functions of ε.

Here and throughout the rest of this paper, we often write
x as a shorthand for x(m,k) where m is a uniform message,

17Indeed, to see this, note that the quantization zQ ∈ Z essentially ranges
over all directions. By making the quantization level δZ sufficiently fine
compared to the thickness parameters ε and δ of the strips, one is able to
cover the whole sphere using strips.

k is a random shared key and for any given pair (m,k)
the corresponding codeword x(m,k) is chosen uniformly
from the power sphere Sn−1(0,

√
nP ). To analyze the above

probability, we define a number of error events.
Choose any optimal covering S of Bn(0,

√
nN) such that

mins′∈S ‖s − s′‖2 ≤
√

nδS for all s in the ball. Given s,
let sQ := arg mins′∈S ‖s− s′‖2 denote the closest point to s
in S (a.k.a. the quantization of s). By similar calculation to
Equation (X.1), we have

|S| ≤
(√

N +
√
δS√

δS

)n(1+o(1))

=: cn
δS . (X.4)

We say that list-decoding fails if any of the following events
occurs. We will ultimately show that the probability of failure
is negligible. The error events that we analyze are listed below:

Eatyp: James’s observation z behaves atypically, or equiv-
alently, the noise sz to James behaves atypically.

Eatyp1
:={‖sz‖2 /∈

√
nσ2(1 ± ε)}. (X.5)

Eatyp2
:={| cos(∠x,sz)| ≥ ε}. (X.6)

Eatyp3
:={‖z‖2 /∈

√
n(P + σ2)(1 ± ε)}. (X.7)

Hence the error event Eatyp is the union of the
above three events.

Eatyp := Eatyp1
∪ Eatyp2

∪ Eatyp3
. (X.8)

Estr: One of the strips {Strn−1(zQ, i)}i contains fewer
than 23εn codewords.

Estr(i) :={|Mstr(zQ, i)| < 23εn}. (X.9)

Estr :=
⋃

i

Estr(i). (X.10)

Note that for a fixed zQ, the randomness in error
events defined in Eqn. (X.9) and (X.10) comes
from codebook construction, message selection
and common randomness. That is, the number of
message-key pairs in each Mstr(zQ, i) is a random
variable.

Eorcl: Since the number of messages need not be an
integer multiple of 2nε, the last OGS may be
substantially smaller than the others, and hence
could have a higher probability of error. But the
probability that the transmitted codeword happens
to fall into the last set is small. Call Eorcl the event
that the message corresponding to the transmitted
codeword belongs to the last block Orcl(')(zQ,λ)
of the partition of Mstr(zQ,λ).

Eorcl := {µµµ = ,}. (X.11)

In the above definition (Eqn. (X.11)), the random-
ness in the random variable µµµ results from the
uniform selection of message-key pair (m,k).

ELD−rad: Assume that none of Eatyp, Estr, Eorcl occurs.
For any (m, k) ∈ Orcl(j)(zQ, i) and sQ ∈
S, let

√
n · r(m, sQ) be the radius of the cap

Bn(x(m, k)+sQ,
√

nN +
√

nδS)∩Sn−1(0,
√

nP )
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(which is the list-decoding region) of x(m, k) under
sQ. We will show that r := r(m, sQ) concentrates
around a certain typical value ropt(sQ):

ropt(sQ) = E(r). (X.12)

In the worst case, the maximum (over the choice
of sQ) of this typical value is given by ropt which
is substantially smaller than

√
nN . The exact value

of ropt is the minimizer of a certain optimization
problem (X.49). We will refer to ropt as the typical
radius. Let ELD−rad(m, sQ) denote the event that
r(m, sQ) is atypical, i.e., r is significantly larger
than its expectation ropt.

ELD−rad(m, sQ) := {r(m, sQ) > ropt(sQ)(1 + f11(ε, δS))},

(X.13)

for some small function f11(ε, δS) to be determined
later.

EsQ : Assume that none of Eatyp, Estr, Eorcl occurs.
Define

ψ(zQ, i, j, sQ)

:=|{(m, k) ∈ Orcl(j)(zQ, i) :

r(m, sQ) > ropt(sQ)(1 + f11(ε, δS))}|

=
∑

(m,k)∈Orcl(j)(zQ,i)

1{r(m,sQ)>ropt(sQ)(1+f11(ε,δS))}

=
∑

(m,k)∈Orcl(j)(zQ,i)

1ELD−rad(m,sQ) (X.14)

to be the number of messages in the OGS whose
encodings have atypical list-decoding radii. Let
EsQ(zQ, i, j) be the event that there are more than
n2 such messages in the OGS.

EsQ(zQ, i, j) :={ψ(zQ, i, j, sQ) > n2}. (X.15)

ELD: Given that none of Eatyp, Estr, Eorcl occurs, there
exists an attack vector sQ ∈ S that results in a
list-size greater than L for at least one codeword in
the oracle-given set. For each k, zQ, i, j, sQ, define

χ(zQ, i, j, sQ)

=:|{(m, k) ∈ Orcl(j)(zQ, i) : |L(k)(x(m), sQ)| > L}|

=
∑

(m,k)∈Orcl(j)(zQ,i)

1{|L(k)(x(m),sQ)|>L} (X.16)

to be the number of codewords in an oracle-given
set that result in a large list-size when perturbed by
sQ. Then, we define

ELD(zQ, i, j, sQ)

:=
{∣∣∣
{
(m, k) ∈ Orcl(j)(zQ, i) :

|L(k)(x(m), sQ)| > L
}∣∣∣ > n2 + 1

}

={χ(zQ, i, j, sQ) > n2 + 1} (X.17)

to be the event that there exists codewords that can
be perturbed by sQ to give a large list-size. The
error event ELD is defined as

ELD :=
⋃

zQ

⋃

i

⋃

j

⋃

sQ

ELD(zQ, i, j, sQ). (X.18)

D. The Probability of Myopic List-Decoding Error – Proof
of Theorem 11

We now prove Theorem 11 by upper bounding the proba-
bility that an error occurs in myopic list-decoding. Let

L(k)(x(m), sQ) := {w ∈ [2nR] :

x(w, k) ∈ Bn(x(m, k) + sQ,
√

nN +
√

nδS) ∩ C(k)}.

We can decompose the failure probability in the following
manner using Fact 5.

P
(
∃s ∈ Bn(0,

√
nN), |{(m,k) ∈ Orcl(z,x) :

|L(k)(x(m), s)| > L}| > 2n(ε−h(ε,τ,δS ,δZ )/2)
)

≤P
(
∃sQ ∈ S, |{(m,k) ∈ Orcl(zQ,x) :

|L(k)(x(m), sQ)| > L}| > 2n(ε−h(ε,τ,δS ,δZ )/2)
)

≤P (Eatyp ∪ Estr ∪ Eorcl ∪ ELD)

= P



Eatyp∪
⋃

i

Estr(i)∪Eorcl∪
⋃

zQ

⋃

i

⋃

j

⋃

sQ

ELD(zQ, i, j, sQ)





≤1 − (1 − P(Eatyp))

·
(

1 −
∑

i

P(Estr(i)|Ec
atyp)

)

· (1 − P(Eorcl|Ec
atyp ∩ Ec

str))

·



1−
∑

zQ

∑

i

∑

j

∑

sQ

P(ELD(zQ, i, j, sQ)|Ec
atyp∩Ec

str∩Ec
orcl)



.

It is therefore sufficient to show that each of the error terms
is vanishing in n.

The analysis of Eatyp, Estr and Eorcl follows from somewhat
standard concentration inequalities which are formally justified
in Section X-E, Section X-F and Section X-G, respectively.
Notice that in the analysis of Estr, James is said to be
sufficiently myopic if, given his observation z, his uncertainty
set, i.e., any strip Strn−1(z, i), contains at least exponen-
tially many codewords. This is guaranteed if R + Rkey >
1
2 log

(
1 + P

σ2

)
.

Much of the complication of our work is devoted to the
analysis of ELD(zQ, i, j, sQ). We further factorize it into
sub-events and treat them separately. Define E := Eatyp ∪
Estr ∪ Eorcl. Fix zQ, i, j and sQ. We are able to show that

P(ELD(zQ, i, j, sQ)|Ec) ≤2−Ω(n3),

which allows us to take a union bound over exponentially
many objects. To this end, we need to further decompose the
error event ELD(zQ, i, j, sQ) in a careful manner.
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Since the codewords all lie on a sphere, the effective
decoding region is equal to B(x(m,k)+sQ,

√
nN +

√
nδS)∩

Sn−1(0,
√

nP ). We will first show in Lemma 25 that for
most codewords in the oracle-given set, the area of the
effective decoding region under any fixed sQ is not too large.
The list-sizes for the remaining codewords can be controlled
using two-step list-decoding argument and grid argument in
Lemma 27. Specifically,

P(ELD(zQ, i, j, sQ)|Ec) ≤ P(EsQ |Ec)

+ P(ELD(zQ, i, j, sQ)|Ec ∩ Ec
sQ

).

We first compute the explicit value of the typical volume
of list-decoding region. Using Chernoff’s bound, we show
in Lemma 26 that P(EsQ |Ec) ≤ 2−Ω(n3). The second term

can be shown to also be 2−Ω(n3). This implies that for any
given attack vector sQ, the probability that sQ can force a
large list-size for any codewords is super-exponentially small.
To complete the proof, we take a union bound over zQ, the
strips, the OGSs and sQ.

The whole bounding procedure (including myopic
list-decoding in this section and unique decoding in
Section XI) is depicted in Figure 21.

E. Event Eatyp: Analysis of Atypical Behaviour of James’s
Observation

Though, as already mentioned in Section X-C, we still use
the shorthand notation x to denote x(m,k), results in this
subsection in fact hold regardless of the distribution of x and
in particular the readers, if they want, can take x to be any
fixed vector x on Sn−1(0,

√
nP ).

From Fact 7, we know the probability that sz,x are not
jointly typical vanishes as n → ∞. Specifically, the AWGN
to James is independent of everything else, hence has norm
concentrating around

√
nσ2 and is appproximately orthogonal

to x.

P(Eatyp1
) = P(‖sz‖2 /∈

√
nσ2(1 ± ε))

≤ 2 exp(−ε2n/4) =: 2−f1(ε)n.

Since sz is AWGN independent of x, the average dot product
between the two vectors is zero. We can further bound the
probability that the cosine of the angle between the two
exceeds ε.

P(Eatyp2
)

= P(| cos(∠x,sz)| ≥ ε)

= P
(∣∣∣∣

〈x, sz〉
‖x‖2‖sz‖2

∣∣∣∣ ≥ ε

)

= P
(∣∣∣∣

〈e1, sz〉
‖sz‖2

∣∣∣∣ ≥ ε

)
(X.19)

= P(|sz1
| ≥ ε‖sz‖2)

≤P(|sz1
| ≥ ε‖sz‖2, ‖sz‖2 ∈

√
nσ2(1 ± ε))

+ P(‖sz‖2 /∈
√

nσ2(1 ± ε))

≤P(|sz1
| ≥ ε

√
nσ2(1 − ε)) + P(‖sz‖2 /∈

√
nσ2(1 ± ε))

≤2 exp(−ε2(1 − ε)n/2) + 2−f1(ε)n

=:2−f2(ε)n,

where in Equation (X.19), without loss of generality,
we assume x/‖x‖2 = e1, where e1 = (1, 0, . . . , 0)T is the
unit vector along the first dimension. Notice that

‖z‖2
2 = ‖x + sz‖2

2 = ‖x‖2
2 + ‖sz‖2

2 + 2〈x, sz〉.

Choose the smallest ε1 := ε1(ε) that satisfies n(P + σ2)(1 ±
ε) ⊂ nP + nσ2(1 ± ε1) ± 2

√
nP
√

nσ2(1 + ε1)ε1. We can
also concentrate James’s observation. In the following, the
probability is computed with respect to the product distribution
of (x, sz) since they are independent.

P(Eatyp3
) = P(‖z‖2

2 /∈ n(P + σ2)(1 ± ε))

≤P(‖z‖2
2 /∈ nP + nσ2(1 ± ε1) ±

√
nP
√

nσ2(1 + ε1)ε1)

≤P(‖sz‖2
2 /∈ nσ2(1 ± ε1))

+ P(|〈x, sz〉| ≥
√

nP
√

nσ2(1 + ε1)ε1)

= P(‖sz‖2
2 /∈ nσ2(1 ± ε1))

+ P(|〈x, sz〉|≥
√

nP
√

nσ2(1+ε1)ε1, ‖sz‖2
2∈nσ2(1±ε1))

+ P(|〈x, sz〉|≥
√

nP
√

nσ2(1+ε1)ε1, ‖sz‖2
2 /∈nσ2(1±ε1))

≤2 P(‖sz‖2
2 /∈ nσ2(1 ± ε1)) + P(|〈x, sz〉| ≥ ‖x‖2‖sz‖2ε1)

≤2 · 2−f1(ε1)n + 2−f2(ε1)n

=:2−f3(ε)n.

Therefore,

P(Eatyp) ≤ P(Eatyp1
) + P(Eatyp2

) + P(Eatyp3
)

≤ 2−f1(ε)n + 2−f2(ε)n + 2−f3(ε)n =: 2−nfatyp(ε),

where fatyp(ε) is positive as long as ε > 0 and
limε↓0 fatyp(ε) = 0.

F. Event Estr: Number and Distribution of Codewords in
Strips: Exponential Behaviour and Quasi-Uniformity

The intersection of Shn(zQ,
√

nσ2(1 ± ε)) with
Sn−1(0,

√
nP ) forms a thick strip Strn−1(zQ) :=⋃

i Strn−1(zQ, i), i.e., the union of all thin strips, which we
study next. For ease of incoming calculations, let us first
translate the slacks in the distances from the strips to zQ,
i.e., ε and δ as afore-defined, to slacks in the radii

√
nrstr of

strips, i.e, ρ and τ , respectively. Recall that the set of strips
is defined as follows

Strn−1(zQ, i) = Sn−1(0,
√

nP )

∩ Shn(zQ,
√

nσ2(1 + (i − 1)δ),
√

nσ2(1 + iδ)),

∀i ∈ {−ε/δ + 1, . . . , ε/δ}. (X.20)
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Fig. 21. A flowchart describing the procedure of bounding error probability. Some notation is simplified for ease of drawing.

Now we write it in a slightly different form

Strn−1(zQ, i) = Capn−1(·,
√

nrstr(1 + iτ),
√

nP )

\Capn−1(·,
√

nrstr(1 + (i − 1)τ),
√

nP ),

∀i ∈ {−ρ/τ + 1, . . . , ρ/τ}. (X.21)

Note that ρ/τ = ε/δ. Define di :=
√

nσ2(1 + iδ) and
rstr,i :=

√
nrstr(1 + iτ), for any i ∈ {−ε/δ + 1, . . . , ε/δ}.
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Then by Heron’s formula,

1
2
‖zQ‖2rstr,i =

√
s(s − di)(s − ‖zQ‖2)(s −

√
nP ),

where

s =
1
2
(di + ‖zQ‖2 +

√
nP ).

Solving the equation, we have

rstr,i =
2

‖zQ‖2

√
s(s − di)(s − ‖zQ‖2)(s −

√
nP ).

It follows that ρ and τ only differ by a constant factor from
ε and δ, respectively.

As mentioned, codewords are almost uniformly distributed
in the strip from James’s point of view. Given z, we now
characterize the quasi-uniformity in terms of τ . Define quasi-
uniformity factor

∆(τ) := sup
z∈Shn(0,

√
n(P+σ2)(1±ε))

max
i

sup
x(1),x(2)∈Strn−1(zQ,i)

px|z(x(1)|zQ)
px|z(x(2)|zQ)

, (X.22)

where the conditional density is determined by the joint law
px,z where x ∼ Unif(Sn−1(0,

√
nP )), z = x + sz and sz ∼

N (0,σ2In).
We will show that under appropriate choice of

parameters, the above ratio is small maximized over
x(1), x(2) in Strn−1(zQ, i). By our random code
construction, each codeword indeed follows the distribution
x(m, k) ∼ Unif(Sn−1(0,

√
nP )) for any (m, k). Hence the

ratio remains small if x(1), x(2) are respectively replaced
by x(m1, k2), x(m2, k2) for some (m1, k1), (m2, k2) in
Mstr(zQ, i).

Lemma 23 (Quasi-Uniformity): For appropriate choices of
the small constant ρ and τ = Θ((log n)/n), conditioned on
Ec
atyp, we have ∆(τ) = O(poly(n)).

Proof: As shown in Figure 22, obviously, for fixed z and
i, the inner supremum is achieved by a point x− on the upper
boundary (closer to z) of the strip and a point x+ on the lower
boundary (further from z) of the strip. Let rstr be such that
|xO′| =

√
nrstr. Calculations in Appendix F show that

sup
x(1),x(2)∈Strn−1(z,i)

px|z(x(1)|zQ)
px|z(x(2)|zQ)

= exp

(
‖z‖2 +

√
nδZ

σ2

2nrstrτ√
n(P − r−) +

√
n(P − r+)

)
,

where r− := rstr(1 − τ) and r+ := rstr(1 + τ) as defined in
Eqn. (F.1). Then, conditioned on Ec

atyp, the quasi-uniformity

factor is upper bounded by

∆(τ) ≤ sup
z∈Shn(0,

√
n(P+σ2)(1±ε))

max
i

exp

(
‖z‖2 +

√
nδZ

σ2

2nrstrτ√
n(P − r−) +

√
n(P − r+)

)

≤ exp

(√
n(P + σ2)(1 + ε) +

√
nδZ

σ2

2nrstrτ√
n(P − rstr(1 − τ)) +

√
n(P − rstr(1 + τ))

)

≤ exp

(√
(P + σ2)(1 + ε) +

√
δZ

σ2

2nτ Pσ2(1+ε)
(P+σ2)(1−ε)√

P − Pσ2(1+ε)(1−τ)
(P+σ2)(1−ε) +

√
P − Pσ2(1+ε)(1+τ)

(P+σ2)(1−ε)



 .

(X.23)

Eqn. (X.23) follows since the bound is increasing in rstr.
Bounds on rstr can be obtained as follows. In the triangle
∆xzO, we have

1
2
‖z‖2

√
nrstr =

1
2
‖x‖2‖sz‖ sin(∠x,sz),

which implies

rstr =
P‖sz‖2(1 − cos(∠x,sz)2)

‖z‖2
.

Conditioned on Ec
atyp,

Pσ2(1 − ε)
(P + σ2)(1 + ε)

≤ rstr ≤
Pσ2(1 + ε)
Pσ2(1 − ε)

. (X.24)

We have ∆(τ) = O(poly(n)) by taking
τ = Θ((log n)/n). !

Next, we show that if the codebook rate is large enough,
then with high probability (over the randomness in the code-
book generation) every strip will contain exponentially many
codewords.

Lemma 24 (Exponentially Many Codewords in Strips):
Let Rcode > 1

2 log
(
1 + P

σ2

)
. Then, from James’s perspective,

he is confused with exponentially many codewords in the
strip with probability doubly exponentially close to one.

P(Estr|Ec
atyp) = P

(
⋃

i

Estr(i)

∣∣∣∣∣ E
c
atyp

)

= P
(
∃i, |Mstr(zQ, i)| ≤ 23εn

∣∣∣ Ec
atyp

)

= P
(
∃i, |Strn−1(zQ, i) ∩ C| ≤ 23εn

∣∣∣ Ec
atyp

)

≤2−2Ω(n)
.

Remark 10: Note that James’s uncertainty set contains
codewords from the whole codebook C, not only from C(k)

for some particular k, since the shared key is assumed to be
kept secret from James.
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Fig. 22. For any James’s observation z, a thin strip containing the transmitted
codeword x is constructed on the coding sphere Sn−1(0,

√
nP ). Typically,

the geometry is shown in above figure. From James’s perspective, given z,
codewords in the strip are approximately equally likely to be transmitted
by Alice. The quasi-uniformity is defined as the maximum deviation of
probability of codewords in the strip. Notice that any codeword at the
same latitude has exactly the same probability. Codewords on the upper
(respectively lower) boundary of the strip, say x− (respectively x+), are
most (respectively least) likely in the strip to be transmitted. For small
enough (O((log n)/n)) thickness of the strip, the quasi-uniformity factor
is a polynomial in n.

Proof: First, in Appendix G, we show that, for any typical
zQ and i,

E
(
|Strn−1(zQ, i) ∩ C|

∣∣∣ Ec
atyp

)
≥ 24εn.

Note that the random variable |Strn−1(zQ, i) ∩ C| can be
written as a sum of a bunch of independent indicator variables

|Strn−1(zQ, i)∩C|=
∑

(m,k)∈[2n(R+Rkey)]

1{x(m,k)∈Strn−1(zQ,i)},

or in slightly different notation

|Mstr(zQ, i)| =
∑

(m,k)∈[2n(R+Rkey)]

1{(m,k)∈Mstr(zQ,i)}.

Thus by Chernoff bound,

P(Estr(i)|Ec
atyp) = P(|Strn−1(zQ, i) ∩ C| ≤ 23εn|Ec

atyp)

≤ 2−2Ω(n)
.

Note that there are at most 2ρ/τ = O(n/ log n) many i’s.
Lemma 24 is then obtained by taking a union bound over
all i’s. !

G. Event Eorcl: Transmitted Codeword Falls Into the Last
Block

Conditioned on z and the OGS, the transmitted codeword
is quasi-uniformly distributed over the strip that contains the
OGS. Given Ec

atyp and Ec
str, there are at least 23εn many

codewords in each strip. Also, notice that each OGS (except

perhaps the last one) is of size 2nε. Therefore, the probability
over m,k that Eorcl occurs can be bounded as follows.

P(Eorcl|Ec
atyp ∩ Ec

str) ≤
1
,
∆(τ)

=
1

2|Mstr(zQ, i)|/2nε3∆(τ)

≤ 1
23εn/2nε

∆(τ) = 2−2εn∆(τ).

H. Event ELD: Existence of a “Bad” Attack Vector

At first, we fix zQ ∈ Z, i ∈ {−ε/δ + 1, . . . , ε/δ},
j ∈ [,], sQ ∈ S. We will show that the probability that the
list-size is greater than L is super-exponentially small in n.
We will finally use a quantization argument and take a union
bound over zQ, i, j, sQ to show that P(ELD|Ec) = o(1).

For any (m,k) ∈ Orcl(j)(zQ, i), to prove that
P(|L(k)(x(m), sQ)| > L|Ec) is super-exponentially decay-
ing, we will find the typical value of

√
nr, where r :=

r(m, sQ) is the normalized radius of the list-decoding region
Bn(x(m,k)+ sQ,

√
nN +

√
nδS)∩Sn−1(0,

√
nP ) (which is

nothing but a cap), and use this to obtain an upper bound on
the probability that the list-size is large.

Recall that the typical radius is defined as ropt(sQ) :=
E(r(m, sQ)) (Eqn. (X.12)). This will be obtained as the
solution to an optimization problem (X.49) and actually corre-
sponds to the worst-case s that James can choose for the given
OGS. Recall that ELD−rad(m, sQ) denotes the event that the
radius of the list-decoding region Bn(x(m,k) + sQ,

√
nN +√

nδS) ∩ Sn−1(0,
√

nP ) is not typical, i.e. that r is much
larger than ropt. Let J denote the event that (zQ, sQ) =
(zQ, sQ) and the transmitted codeword lies in Orcl(j)(zQ, i).
In Section X-I, we will show the following:

Lemma 25: Fix zQ, i, j and sQ. There exists f11(ε, δS)
satisfying f11(ε, δS) → 0 as ε → 0 such that for every
(m, k) in the OGS,

P(ELD−rad(m, sQ)|Ec ∩ J )

= P
(
r(m, sQ) > ropt(sQ)(1 + f11(ε, δS))

∣∣∣ Ec ∩ J
)

≤ 2−f9(ε,η,δS ,δZ )n,

where E = Eatyp∪Estr∪Eorcl and f9(ε, η, δS , δZ) can be taken
as 3

2ε by choosing proper η, δS and δZ .
Recall that EsQ is the event that the radius of the

list-decoding region r is greater than ropt(1 + f11(ε, δS)) for
more than n2 codewords in the OGS. Since codewords in
OGS are quasi-uniformly distributed and independent, using
Chernoff-type bound similar to Lemma 9 and the above
lemma, we get that

Lemma 26: Fix zQ, i, j and sQ. Then

P(EsQ(zQ, i, j)|Ec ∩ J )

= P
(
|{(m,k) ∈ Orcl(j)(zQ, i) :

r(m, sQ) > ropt(sQ)(1 + f11(ε, δS))}| > n2
∣∣∣ Ec ∩ J

)
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≤P




∑

(m,k)∈Orcl(j)(zQ,i)

1ELD−rad(m,sQ) > n2

∣∣∣∣∣∣∣
Ec ∩ J





≤2−Ω(n3).
In Section X-J, we will show the following:
Lemma 27: Fix zQ, i, j and sQ. For any (m,k) ∈

Orcl(j)(zQ, i) for which r is typical, we have

P(|L(k)(x(m), sQ)| > L|Ẽc ∩ J ) ≤ 2−Ω(n3),

where L is set to be 3n2 and Ẽ denotes E ∪ EsQ(zQ, i, j).
Lemmas 25 and 27 allow us to conclude that the probability

that there exist n2 + 1 codewords with list-sizes greater
than L is super-exponentially small. Recall that J denotes
the realization of James’s knowledge, i.e., the event that
(zQ, sQ) = (zQ, sQ) and (m,k) ∈ Orcl(j)(zQ, i).

Lemma 28: Fix zQ, i, j and sQ. Then

P(ELD(zQ, i, j, sQ)|Ec ∩ J ) ≤2−Ω(n3).

Proof: Using Fact 5 we obtain:

P(ELD(zQ, i, j, sQ)|Ec ∩ J ) ≤ P(ELD(zQ, i, j, sQ)|Ẽc ∩ J )

+ P(EsQ(zQ, i, j)|Ec ∩ J ).

The second term is bounded by Lemma 26.
The first term is super-exponentially small by Lemma 27

and union bound. The probabilities are computed with respect
to the quasi-uniform (due to the conditioning) distribution
of the codewords in the OGS over the strip, and the uni-
form distribution of the remaining codewords over the sphere
(conditioned on the OGS, they are independent of James’s
observations).

P
(
ELD(zQ, i, j, sQ)

∣∣∣ Ẽc ∩ J
)

= P
(
χ(zQ, i, j, sQ) > n2 + 1

∣∣∣ Ẽc ∩ J
)

(X.25)

= P




∑

(m,k)∈Orcl(j)(zQ,i)

1{|L(k)(x(m),sQ)|>L}

> n2 + 1
∣∣∣Ẽc ∩ J

)
(X.26)

= P




∑

(m,k)∈Orcl(j)(zQ,i)

1{|L(k)(x(m),sQ)|>L}

(
1ELD−rad(m,sQ)

+1ELD−rad(m,sQ)c

)
> n2 + 1

∣∣∣ Ẽc ∩ J
)

≤P




∑

(m,k)∈Orcl(j)(zQ,i)

1{|L(k)(x(m),sQ)|>L}

1ELD−rad(m,sQ) > n2
∣∣∣ Ẽc ∩ J

)

+ P




∑

(m,k)∈Orcl(j)(zQ,i)

1{|L(k)(x(m),sQ)|>L}

1ELD−rad(m,sQ)c > 1
∣∣∣ Ẽc ∩ J

)
(X.27)

≤P




∑

(m,k)∈Orcl(j)(zQ,i)

1ELD−rad(m,sQ) > n2

∣∣∣∣∣∣∣
Ẽc ∩ J





(X.28)

+ P




∑

(m,k)∈Orcl(j)(zQ,i)

1{|L(k)(x(m),sQ)|>L}

1ELD−rad(m,sQ)c ≥ 1
∣∣∣ Ẽc ∩ J

)

= P
(
ψ(zQ, i, j, sQ) > n2

∣∣∣ Ẽc ∩ J
)

(X.29)

+ P
(
∃(m,k) ∈ Orcl(j)(zQ, i),

r(m, sQ) ≤ ropt(sQ)(1 + f11(ε, δS)),

|L(k)(x(m), sQ)| > L
∣∣∣ Ẽc ∩ J

)
(X.30)

≤P
(
EsQ(zQ, i, j)

∣∣∣ Ẽc ∩ J
)

+ 2nε P
(
|L(k)(x(m), sQ)| > L

∣∣∣ Ẽc ∩ J
)

(X.31)

≤0 + 2nε2−Ω(n3) (X.32)

=2−Ω(n3)

Eqn. (X.25) is by the definition of ELD(zQ, i, j, sQ)
(Eqn. (X.17)). Eqn. (X.26) is by the definition of
χ(zQ, i, j, sQ) (Eqn. (X.16)). Eqn. (X.27) is by the union
bound. In Eqn. (X.28), we upper bound 1ELD−rad(m,sQ) by
1. Eqn. (X.29) follows from the definition of ψ(zQ, i, j, sQ)
(Eqn. (X.14)). Eqn. (X.30) follows from the definition of
ELD−rad(m, sQ) (Eqn. (X.13)). In Eqn. (X.31), the first term
follows from the definition of EsQ(zQ, i, j) (Eqn. (X.15)).
To get the second term in Eqn. (X.31), we drop the first
event {r(m, sQ) ≤ ropt(sQ)(1+f11(ε, δS))} and take a union
bound. Note that conditioned on Ec

orcl ⊂ Ec ⊂ Ẽc, we have
|Orcl(j)(zQ, i)| = 2nε. In Eqn. (X.32), the first term follows
since we conditioned on Ẽc where Ẽ = E ∪ EsQ(zQ, i, j). The
second term of Eqn. (X.32) follows from Lemma 27.

This finishes the proof of Lemma 28. !
There are at most 2O(n) many zQ’s in the covering Z of

z’s. For each zQ, there are at most 2ε/δ = Θ(n/ logn) strips.
For fixed zQ and i, a loose upper bound on the number of
oracle-given sets in the strip Strn−1(zQ, i) is 2n(Rcode−ε).
We are required to quantize s using a finite covering of
Bn(0,

√
nN). The steps mimic the proof of Lemma 32, and we

omit the details. The argument for P(ELD|Ec) = o(1) follows
by taking a union bound over

2O(n) · Θ(n/ logn) · 2n(Rcode−ε) · 2O(n) = 2O(n)

many configurations of the four-tuple zQ, i, j and sQ. This
completes the basic ingredients needed to obtain Theorem 11.

All that remains is to prove Lemma 25 and Lemma 27.

I. Proof of Lemma 25

In this section, we will upper bound the average area of the
list-decoding region over James’s uncertainty in the OGS, and
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show that with high probability it will not exceed the typical
value largely.

Let us begin by taking a closer look at the geometry. Let
x be quasi-uniformly distributed over the strip Strn−1(zQ, i).
For reasons that will be clear in the subsequent calculations,
we decompose x and sQ into sums of vectors parallel and
orthogonal to zQ,

x = xQ
‖ + xQ

⊥, sQ = sQ
‖ + sQ

⊥,

where e‖ denotes the unit vector along zQ and

xQ
‖ :=

√
nαααxe‖, xQ

⊥ :=
√

nβββxe⊥,

sQ
‖ := −

√
nαse

‖, sQ
⊥ :=

√
nβses

⊥,

√
nαααx =

〈x, zQ〉
‖zQ‖2

, −√
nαs =

〈sQ, zQ〉
‖zQ‖2

.

Remark 11: In this remark, we clarify the notation in the
above decomposition. Since zQ is given, the unit vector
e‖ along zQ is fixed (hence in non-boldface). Since x is
quasi-uniformly distributed over Strn−1(zQ, i), the perpen-
dicular component of x is isotropically distributed in an
annulus centered at 0, perpendicular to zQ and hence its
direction e⊥ is also isotropically distributed (therefore in
boldface). Furthermore, since Strn−1(zQ, i) has certain thick-
ness, the angle between x and zQ gets a slight variation,
so αααx,βββx are in fact random variables (hence in boldface)
as well.

On the other hand, since zQ, sQ are both fixed, both
components of sQ are fixed and in particular the direction
es

⊥ of its perpendicular component is in non-boldface.
Note that x is on Sn−1(0,

√
nP ) and thus αααx + βββx = P .

Note also that s, and thus sQ, should satisfy James’s power
constraint, i.e, αs + βs ≤ N .

This decomposition will bring us analytic ease to compute
the list-size, which is equivalent to computing the radius

√
nr

of the myopic list-decoding region. It is noted that, for any
(m, k) ∈ Orcl(j)(zQ, i), the list-decoding region of x(m, k)
under sQ is nothing but a cap

Bn(yQ,
√

nN +
√

nδS) ∩ Sn−1(0,
√

nP )

=Bn(x(m,k) + sQ,
√

nN +
√

nδS) ∩ Sn−1(0,
√

nP )

=Capn−1(·,
√

nr,
√

nP ),

where yQ := x + sQ.
Notice that, averaged over the codebook generation, e⊥

is uniformly distributed18 over the unit sphere Sn−2(0, 1)
orthogonal to zQ. We will use Lemma 8 to bound the tail
of inner product of xQ

⊥ and zQ.
Heuristically, in expectation, without quantization, we can

compute the scale of each component of x and sQ. A glimpse

18Technically speaking, this is indeed the case only when we decompose
x with respect to z, but not its quantization zQ. It is not exactly, yet still
approximately true when we take the quantization zQ of z. This quantization
error will be taken into account via Lemma 29.

Fig. 23. In expectation, the noise to James sz is orthogonal to the
codeword x and of length

√
nσ2. Fix a legitimate attack vector s and

decompose x and s into sums of components orthogonal and parallel to
James’s observation z. Each component in above figure can be concentrated
and is robust to quantization errors.

at the geometry (shown in Figure 23) immediately gives us
the following relations:

√
nαααx√
nP

=
√

nP√
n(P + σ2)

=⇒ αααx =
P 2

P + σ2
, (X.33)

√
nβββx√
nσ2

=
√

nP√
n(P + σ2)

=⇒ βββx =
Pσ2

P + σ2
, (X.34)

both of which follow from similarity of triangles. In fact,
the lengths of both components are well concentrated. Recall
that conditioned on Ec ∩ J , the transmitted codeword is
quasi-uniformly distributed over the strip. For any 0 < η < 1,
we have

P
(
αααx /∈ P 2

P + σ2
(1 ± η)

∣∣∣∣ E
c ∩ J

)

= P

(
〈x, zQ〉
‖zQ‖2

/∈
√

n
P 2

P + σ2
(1 ± η)

∣∣∣∣∣ E
c ∩ J

)

= P

(
〈x, zQ〉 /∈

√
n

P 2

P + σ2
(1 ± η)‖zQ‖2

∣∣∣∣∣ E
c ∩ J

)

≤P

(
〈x, zQ〉 /∈

√
n

P 2

P + σ2
(1±η)(‖z‖2 ∓

√
nδZ)

∣∣∣∣∣ E
c∩J

)

≤P

(
〈x, zQ〉 /∈

√
n

P 2

P + σ2
(1 ± η)

(
√

n(P + σ2)(1 ∓ ε) ∓
√

nδZ)
∣∣∣ Ec ∩ J

)
(X.35)

≤P(〈x, zQ〉 /∈ nP (1 ± f4(ε, η, δZ))|Ec ∩ J )

=:2−f5(ε,η,δZ )n, (X.36)

where Inequality (X.35) follows from that ‖z‖2 ∈√
n(P + σ2)(1 ± ε) since we condition on Ec ∩ J , and
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Inequality (X.36) follows from the following calculations.

P(〈x, zQ〉 /∈ nP (1 ± f4(ε, η, δZ))|Ec ∩ J )

= P(〈x, z + ze〉 /∈ nP (1 ± f4(ε, η, δZ))|Ec ∩ J ) (X.37)

= P(〈x, z〉 + 〈x, ze〉 /∈ nP (1 ± f4(ε, η, δZ))|Ec ∩ J )

≤P(〈x, z〉 /∈ nP (1 ± f4(ε, η, δZ)) ∓ ‖x‖2‖ze‖2|Ec ∩ J )

(X.38)

≤P(〈x, z〉 /∈nP (1 ± f4(ε, η, δZ))∓n
√

P δZ |Ec ∩ J )

= P(〈x,x + sz〉 /∈ nP (1 ± f4(ε, η, δZ)∓
√

P δZ)|Ec ∩ J )

≤P(〈x, sz〉 + ‖x‖2
2 /∈ nP (1 ± f ′

4(ε, η, δZ))|Ec ∩ J )

= P(|〈x, sz〉| > nPf ′
4(ε, η, δZ)|Ec ∩ J )

= P

(
|〈e1, esz 〉| >

nPf ′
4(ε, η, δZ)√
nP‖sz‖2

∣∣∣∣∣ E
c ∩ J

)

≤P

(
|〈e1, esz 〉| >

nPf ′
4(ε, η, δZ)√

nP
√

nσ2(1 + ε)

∣∣∣∣∣ E
c ∩ J

)
(X.39)

≤2−
P f′

4(ε,η,δZ )2

2σ2(1+ε)
(n−1) (X.40)

=:2−nf5(ε,η,δZ ), (X.41)

where in the above chain of (in)equalities, we use the
following facts.

1) In (X.37), we write zQ = z + ze, where ze denotes the
decomposition error which has norm at most

√
nδZ by

the choice of the covering Z .
2) Inequality (X.38) follows from Cauchy–Schwarz

inequality −‖x‖2‖ze‖2 ≤ 〈x, ze〉 ≤ ‖x‖2‖ze‖2.
3) In Inequality (X.39), ‖sz‖2 ∈

√
nσ2(1 ± ε) since we

condition on Ec ∩ J .
4) Inequality (X.40) is a straightforward application of

Lemma 8.
It follows that with probability at least 1 − 2−f5(ε,η,δZ )n the
scale of the perpendicular component is also concentrated
around its expected value,

βββx ∈ P − P 2

P + σ2
(1 ± η)

=
Pσ2

P + σ2
(1 ∓ η/σ2) =:

Pσ2

P + σ2
(1 ∓ η1),

All the above concentration is over the randomness in
the channel between Alice and James and the codebook
generation.

We are now ready to compute the expected value of the
radius

√
nr of the list-decoding region and concentrate it.

To this end, let us first do some rough calculations to see what
we should aim for. Loosely speaking, we expect the following
quantity

〈x,−sQ〉 =〈
√

nαααxe‖ +
√

nβββxe⊥,
√

nαse
‖ −

√
nβses

⊥〉

=〈
√

nαααxe‖,
√

nαse
‖〉 − 〈

√
nβββxe⊥,

√
nβses

⊥〉
(X.42)

=n
√
αααxαs − n

√
βββxβs〈e⊥, es

⊥〉

to satisfy

E(〈x,−sQ〉) ≈ nP

√
αs

P + σ2
. (X.43)

This is because:
1) In Equation (X.42), by decomposition, crossing terms

vanish.
2) When there is no quantization error in z, it holds that

E(〈e⊥, es
⊥〉) = 0 as e⊥ is isotropically distributed on a

ring Sn−2(0, 1). By previous heuristic calculations (see
Equation (X.33)), we expect αααx to be roughly P 2

P+σ2 .
These indicate that Equation (X.43) should be reasonably
correct modulo some small error terms, bounded below in
Lemma 29.

Remark 12: Notice that, for a fixed βx, we actually know
exactly the distribution of 〈

√
nβxe⊥,

√
nβses

⊥〉. Indeed,
in Rn, given a fixed unit vector e and a random unit vector
e isotropically distributed on the unit sphere Sn−1(0, 1),
|〈e,e〉|2+1

2 follows Beta distribution Beta
(

n−1
2 , n−1

2

)
. Plug-

ging this into our calculation, indeed, we get that
〈
√

nβxe⊥,
√

nβses
⊥〉 has mean 0. However, this result does

not bring us any analytic advantage. Rather, in the analysis,
when caring about concentration, we use Lemma 8 to approx-
imate the tail of this distribution.

Although given z, e⊥ is perfectly isotropic on the unit ring
Sn−2(0, 1), it is not exactly the case when we are working
with zQ. It is, however, probably approximately correct (PAC).
Specifically, this issue can be fixed by the following lemma.
As shown in Figure 24b, recall that we denote by x = xQ

‖ +
xQ

⊥ the decomposition with respect to zQ. Also, denote by
x = x‖ + x⊥ the decomposition with respect to z. Define the
error vectors as xe := xQ

⊥ − x⊥ and se := sQ
⊥ − s⊥.

Lemma 29: Fix ζ > 0. Also fix z and s, and thereby zQ and

sQ. Let ζ′ := ζ −
√

P δS −
√

NPδZ
(P+σ2)(1−ε) −

√
PδSδZ

(P+σ2)(1−ε) .
Then

P(|〈xQ
⊥, sQ

⊥〉| ≥ nζ|Ec ∩ J ) ≤ 2−
(n−2)ζ′2

2NP .

Proof: We write

P(|〈xQ
⊥, sQ

⊥〉| ≥ nζ|Ec ∩ J )

=P(|〈x⊥ + xe, s⊥ + se〉| ≥ nζ|Ec ∩ J )

≤P(|〈x⊥, s⊥〉| + |〈x⊥, se〉| + |〈xe, s⊥〉|+|〈xe, se〉| ≥ nζ|Ec ∩ J )

≤P(|〈x⊥, s⊥〉|+‖x⊥‖2‖se‖2+‖xe‖2‖s⊥‖2+‖xe‖2‖se‖2≥nζ|Ec∩J )

≤P(|〈x⊥, s⊥〉|+n P δS +
√

nN‖xe‖2 + nδS‖xe‖2≥nζ|Ec∩J ).

It then suffices to upper bound ‖xe‖2. Write zQ = z + ze

where ze denotes the quantization error for z with respect to
the covering Z . As ze is at most

√
nδZ , for maximum θ shown

in Figure 24a, we have sin(θ) = ‖ze‖2

‖z‖2
≤

√
nδZ

‖z‖2
. Notice that

∠QAP = ∠QBP = ∠QOP/2 = θ. Consider the triangle
∆QOP . We have |QP |/2

|QO| = ‖xe‖2/2
‖x‖2/2 = sin(θ) ≤

√
nδZ

‖z‖2
,

i.e., ‖xe‖2 ≤
√

nP√
n(P+σ2)(1−ε)

√
nδZ =

√
nPδZ

(P+σ2)(1−ε) . Now

Lemma 8 can be applied.

P(|〈xQ
⊥, sQ

⊥〉| ≥ nζ)
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Fig. 24. The geometry of the propagation of the quantization error of z.

≤P

(
|〈x⊥, s⊥〉| ≥ nζ − n

√
P δS − n

√
NP δZ

(P + σ2)(1 − ε)

−n

√
P δSδZ

(P + σ2)(1 − ε)

)

≤2
− (n−2)n2ζ′2

2‖x⊥‖2
2‖s⊥‖2

2

≤2−
(n−2)ζ′2

2NP .

This completes the proof for Lemma 29. !
Now we give a concentrated version of Equation (X.43).

P
(
〈−x, sQ〉 /∈ nP

√
αs

P + σ2
(1 ± ε)

∣∣∣∣ E
c ∩ J

)
(X.44)

= P
(
〈
√

nαααxe‖,
√

nαse
‖〉 − 〈

√
nβββxe⊥,

√
nβses

⊥〉

/∈ nP

√
αs

P + σ2
(1 ± ε)

∣∣∣∣ E
c ∩ J

)

= P
(
〈
√

nαααxe‖,
√

nαse
‖〉−〈

√
nβββxe⊥,

√
nβses

⊥〉

/∈ nP

√
αs

P +σ2
(1 ± ε), αααx ∈ P 2

P +σ2
(1 ± η)

∣∣∣∣ E
c∩J

)

+ P
(
〈
√

nαααxe‖,
√

nαse
‖〉−〈

√
nβββxe⊥,

√
nβses

⊥〉

/∈ nP

√
αs

P + σ2
(1 ± ε), αααx /∈ P 2

P +σ2
(1 ± η)

∣∣∣∣ E
c∩J

)

≤P
(
〈
√

nβββxe⊥,
√

nβses
⊥〉 /∈ nP

√
αs

P +σ2
(1±η)

−nP

√
αs

P + σ2
(1±ε)

∣∣∣∣ E
c ∩ J

)
(X.45)

+ P
(
αααx /∈ P 2

P + σ2
(1 ± η)

∣∣∣∣ E
c ∩ J

)
. (X.46)

By (X.36), the second term (X.46) is at most 2−f5(ε,η,δZ )n.
The first term (X.45) can be bounded as follows.

P
(
|〈
√

nβββxe⊥,
√

nβses
⊥〉| > nP

√
αs

P + σ2

(
√

1 + η +
√

1 + ε)
∣∣∣ Ec ∩ J

)

≤P(|〈
√

nβββxe⊥,
√

nβses
⊥〉| > nf8(ε, τ)|Ec ∩ J )

= P(|〈xQ
⊥, sQ

⊥〉| ≥ nf8(ε, η)|Ec ∩ J )

≤2−
(n−2)f′

8(ε,η,δS ,δZ )2

2NP , (X.47)

where inequality (X.47) follows from Lemma 29 and
f ′
8(ε, η, δS , δZ) := f8(ε, η) −

√
P δS −

√
NPδZ

(P+σ2)(1−ε) −
√

PδSδZ
(P+σ2)(1−ε) . Thus combining bounds (X.36) and (X.47) on

terms (X.46) and (X.45) respectively, the probability (X.44) is
well bounded by

2−
(n−2)f′

8(ε,η,δS ,δZ )
2NP + 2−f5(ε,η,δZ )n =: 2−f9(ε,η,δS ,δZ)n.

The above results allow us to compute the typical length
of yQ under the translation of the prescribed sQ. We can do
so by writing the “angular correlation” between x and sQ in
analytic and geometric ways separately. Specifically, it follows

Authorized licensed use limited to: Rutgers University. Downloaded on January 06,2023 at 00:10:48 UTC from IEEE Xplore.  Restrictions apply. 



4934 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

from the above concentration result that with probability at
least 1 − 2−f9(ε,η,δS ,δZ)n,

cos(∠−x,sQ) =
〈−x, sQ〉
‖x‖2‖sQ‖2

∈
nP
√

αs
P+σ2 (1 ± ε)

√
nP

√
nN

=

√
Pαs

N(P + σ2)
(1 ± ε).

On the other hand, by law of cosines, we have (with probability
one)

cos(∠−x,sQ)=
‖x‖2

2+‖sQ‖2
2 − ‖yQ‖2

2

2‖x‖2‖sQ‖2
=

nP + nN−‖yQ‖2
2

2
√

nP
√

nN
.

It immediately follows that

‖yQ‖2
2 = n(P + N) − 2nP

√
αs

P + σ2
(1 ± ε),

with probability at least 1 − 2−f9(ε,η,δS ,δZ)n.
Denote by

√
nr the radius of the intersection

Bn(yQ,
√

nN +
√

nδS) ∩ Sn−1(0,
√

nP ). Staring at the
triangle ∆OAO′ shown in Figure 25, we know that, with
probability at least 1 − 2−f9(ε,η,δS ,δZ )n,
( √

nr√
nP

)2

= (sin(∠AOO′))2 = 1 − (cos(∠AOO′))2,

i.e.,

r
P

=1 −
(

nP + ‖yQ‖2
2 − (

√
nN +

√
nδS)2

2
√

nP‖yQ‖2

)2

=⇒ r =
N − P αs

P+σ2 (1 ± ε) + f10(ε, δS)

P + N − 2P
√

αs
P+σ2 (1 ± ε)

P,

where f10(ε, δS) := − (δS+2
√

NδS)2

4P +(
1 −

√
αs

P+σ2 (1 − ε)
)

(δS + 2
√

NδS). That is to say,
we have

P



r /∈
N − P αs

P+σ2

P + N − 2P
√

αs
P+σ2

P (1 ± f11(ε, δS))

∣∣∣∣∣∣
Ec ∩ J





≤ 2−f9(ε,η,δS ,δZ)n. (X.48)

From James’s perspective, he aims to maximize the above
quantity to confuse Bob to the largest extent. He will take
the jamming strategy corresponding to the optimal solution of
the following optimization problem.19 The average (over the
randomness in z) worst-case (over αs) value of r obtained in
this manner is what we call ropt.

minαs

P+N−2P αs
P+σ2

N−P αs
P+σ2

subject to 0 ≤ αs ≤ N
σ2

P ≥ 1
1−N/P − 1

P, N,σ2 ≥ 0

(X.49)

19Although James could possibly choose other strategies, the proof still
goes through by taking a union bound over all possible type classes of
s (corresponding to all possible attack strategies). Since there are only
polynomially many of them, and none of them can be as bad as the worst-case
strategy, the arguments still hold.

Fig. 25. Fix a legitimate attack vector sQ. We compute the expected radius

of the list-decoding region, which is the cap Capn−1(yQ,
√

nr,
√

nP ) =

Capn−1(x+sQ,
√

nr,
√

nP ) shown in above figure, over codewords in the
strip.

Remark 13: Notice that the objective function of the above
optimization problem (X.49) is essentially the same as that
of the optimization (VII.3) in the scale-and-babble converse
argument under the map α -→

√
αs

P+σ2 .

Solving this optimization problem20 and combining it with
Lemma 27 which will be proved in Section X-J, we get that,
if the code operates at a rate

R ≤





RLD, 1

1−N/P − 1 ≤ σ2

P ≤ 1
N/P − 1

RLD,myop,
σ2

P ≥ max
{

1
1−N/P − 1, 1

N/P − 1
}

,

(X.50)

where

RLD :=
1
2

log
P

N
,

RLD,myop :=
1
2

log

(
(P +σ2)(P +N)−2P

√
N(P +σ2)

Nσ2

)
,

20The solution to the optimization problem (X.49) is obtained by elementary
algebraic manipulation which is omitted. We attach the following Mathematica
codes for verification (where \[Alpha] denotes αS and M denotes N since
the symbol N is reserved by Mathematica).
Minimize[{(P+M-2 P Sqrt[\[Alpha]/(P+\[Sigma]ˆ2)])/

(M-(P \[Alpha])/(P+\[Sigma]ˆ2)),0<=\[Alpha]<=M,
P/M>=1+P/\[Sigma]ˆ2,P>=0,M>=0,\[Sigma]>=0},\[Alpha]]

The above codes are displayed as

Minimize
P + M − 2P α

P+σ2

M − Pα
P+σ2

, 0 ≤ α ≤ M,
P

M
≥ 1 +

P

σ2
,

P ≥ 0, M ≥ 0, σ ≥ 0} , α]

in the graphical user interface of Mathematica.
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then no matter towards which direction James is going to push
the transmitted codeword, a vast majority (an exponentially
close to one fraction) of codewords in the strip have small
list-sizes (at most a low-degree polynomial in n).

In conclusion,

P (r > ropt(1 + f11(ε, δS)|Ec ∩ J ) ≤ 2−f9(ε,η,δS ,δZ)n.

where ropt is the average list-decoding radius obtained by
James choosing the worst-case attack vector minimizing the
rate corresponding to the optimization problem (X.49). One
can choose η, δS and δZ so that f9(ε, η, δS , δZ) = 3

2ε. This
completes the proof of Lemma 25.

J. Proof of Lemma 27

In this section, we will show that myopic list-decoding
succeeds with high probability conditioned on everything
behaves typically (which is true as we have analyzed in
previous sections).

Let ropt denote the optimal solution of the above optimiza-
tion. In what follows, we will prove that the probability that
there are too many (more than L = 3n2) codewords in the
list-decoding region is super-exponentially small. According
to where the codewords in the list-decoding region come
from, the list-decoding error can be divided into two types.
If the confusing codewords come from the OGS, then they are
quasi-uniformly distributed on the strip that the OGS belongs
to, given James observation and extra information revealed to
him. Otherwise, if the confusing codewords are outside the
OGS, then they are uniformly distributed by the codebook
generation.

1) Confusing codewords in the list-decoding region come
from OGS. We further subdivide these confusing code-
words into two types: those which have a typical r and
those which do not.

• Confusing codeword has atypical r: Conditioned
on Ec

sQ
, there are at most n2 codewords with atyp-

ical r. The distribution of these codewords is hard
to obtain, and we will pessimistically assume that
all these codewords are included in the list.

• Confusing codeword has typical r: The codewords
with a typical r are all independent but no longer
uniformly distributed over the strip given Ec

sQ
. How-

ever, the distribution is almost uniform. For any set
A ⊂ Rn, we have

P(x(m,k) ∈ A|Ec
sQ

∩ Ec ∩ J )

≤P(x(m,k) ∈ A|Ec ∩ J )
P(Ec

sQ
|Ec ∩ J )

= P(x(m,k) ∈ A|Ec ∩ J )(1 + o(1)).

Therefore, this conditioning does not significantly
affect our calculations. Conditioned on bad events
aforementioned not happening the average proba-
bility that a codeword falls into the list-decoding
region is

P(m′ ∈ L(k)(x(m), sQ) ∩Orcl(j)(zQ, i)|Ẽc ∩ J )

≤
Area(Capn−1(·,

√
nropt(1 + f11(ε, δS)),

√
nP ))

Area(Strn−1(zQ, i))

· ∆(τ)(1 + o(1))

=

√
ropt(1 + f11(ε, δS))

rstr

· 2n − 1
2 log P

ropt
+ 1

2 log( P
rstr )+f11(ε,δS )

· ∆(τ)(1 + o(1))

≤

√√√√ropt(1 + f11(ε, δS))
Pσ2(1−ε)

(P+σ2)(1+ε)

· 2n − 1
2 log P

ropt
+ 1

2 log(1+ P
σ2 )+2ε+f11(ε,δS)

· ∆(τ)(1 + o(1)),

which is exponentially small. Then by similar cal-
culations to Lemma 9, we have

P(|L(k)(x(m), sQ) ∩Orcl(j)(zQ, i)| > 2n2|Ẽc ∩ J )

≤ 2−Ω(n3).

2) Confusing codewords in the list-decoding region do not
belong to the OGS.

E |L(k)(x(m), sQ)\Orcl(j)(zQ, i)| Ec ∩ J

≤
Area(Capn−1(·, nropt(1+f11(ε, δS)),

√
nP ))

Area(Sn−1(0,
√

nP ))
2nRcode

=
P

ropt(1+f11(ε, δS))
2

n Rcode− 1
2 log P

ropt
+f11(ε,δS )

,

which is exponentially small if Rcode is below
the threshold. Then immediately by Lemma 9 (and
Remark 4 following it),

P(|L(k)(x(m), sQ)\Orcl(j)(zQ, i)| > n2|Ec ∩ J ) ≤ 2−Ω(n3).

(X.51)

Taking into account two types of error in Equation (X.51) and
Equation (X.51), respectively, we get

P(|L(k)(x(m), sQ)| > L|Ẽc ∩ J )

≤P(|L(k)(x(m), sQ) ∩Orcl(j)(zQ, i)| > 2n2|Ẽc ∩ J )

+ P(|L(k)(x(m), sQ)\Orcl(j)(zQ, i)| > n2|Ẽc ∩ J )

≤2−Ω(n3). (X.52)

This completes the proof of Lemma 25.
In the following section, we will argue that Bob will

enjoy a vanishing probability of error below the threshold
given by optimization (X.49), which matches the converse in
Section VII-A in the corresponding region.

XI. ACHIEVABILITY IN THE SUFFICIENTLY MYOPIC

REGIME – FROM MYOPIC LIST-DECODING

TO UNIQUE DECODING

In this section, given the myopic list-decodability results
proved in Sec. X, we provide the proof of the second half
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(unique decodability) of the achievability part of Theorem 14
and hence finish the achievability proof.

We first sketch the roadmap to proving that Bob can
uniquely decode m with high probability. From James’s
point of view, x is quasi-uniformly distributed over the strip.
Loosely speaking, we will say that a message m1 confuses a
message m2 if Bob declares his estimate to be m1 when the
actual message is m2. The probability of error is small if

• the total number of messages (call them confusing code-
words) that can confuse any message in the OGS is small
(say poly(n)) with probability super-exponentially close
to one; and

• any message can only confuse a small number (say
poly(n)) of messages in the OGS (call them confused
codewords) with probability super-exponentially close to
one.

The first statement follows from a blob list-decoding argument
and second follows from a reverse list-decoding argument.
Technically, as we have seen in the analysis of myopic list-
decoding error, we have to analyze the decoding error for two
cases – the case where the confusing codewords come from
the OGS and the case where they are outside the OGS. Note
that these two cases are distinguished. Details are elaborated
in Section XI-A and Section XI-B.

A. Type I Error

For type I error, confusing codewords come from
[2nR]\Orcl(j)(zQ, i). We will prove that there are at most
polynomially many (out of exponentially many) codewords
in the OGS which can be erroneously decoded due to the
confusion with some message outside the OGS.

Recall the definition of E := Eatyp∪Estr∪Eorcl, which is the
union of several error events. Conditioned on E , we have that
simultaneously z behaves typically, the strip contains a large
number of codewords, and the transmitted codewords does not
fall into the last oracle-given set which can potentially have
too small size.

Lemma 30:

P
(
∃zQ, ∃i, ∃j, ∃sQ, |{m ∈ Orcl(j)(zQ, i) :

∃m′ ∈ [2nR]\Orcl(j)(zQ, i),

x(m′) ∈ L(k)(x(m), sQ)}| ≥ n4
∣∣∣ Ec
)
≤ 2−Ω(n3).

Proof: We prove the lemma using a two-step list-decoding
argument. The idea behind this type of argument is along the
lines of [25]. Fix zQ, i, j and sQ. Notice that {x(m) ∈ C(k) :
m ∈ [2nR]\Orcl(j)(zQ, i)} are independently and uniformly
distributed.

It is a folklore (Appendix D) in the literature that a
spherical code C of rate 1

2 log P
N − ε are (P, N, Õ(1/ε))-

list-decodable (with exponential concentration), thus are also
(P, N,O(n2))-list-decodable (with super-exponential concen-
tration by Lemma 9).

1) Myopic Blob List-Decoding: Let X (sQ) := {x(m′) :
m′ ∈ Orcl(j)(zQ, i), and r(m′, sQ)<ropt(1 + f11(ε))} be
the set of all codewords in the OGS having typical list-
decoding region. Since as shown in Lemma 25, there is only

an exponentially small fraction of codewords in the OGS that
do not fall into X (sQ), it suffices to prove that a 1 − o(1)
fraction of the codewords in X (sQ) can with high probability
be decoded uniquely for every sQ. In fact, we will show that,
out of exponentially many codewords in X (sQ), there are only
polynomially many codewords that will incur decoding errors.
Define

Blob =
⋃

x∈X (sQ)

Bn(x + sQ,
√

nN +
√

nδS).

Let us fix a realization J of (zQ, i, j, sQ). If Ẽ = E ∪
EsQ(zQ, i, j), then the number of codewords in the blob is
expected to be

E
(
|Blob ∩ (C(k)\Orcl(j)(zQ, i))|

∣∣∣ Ẽc ∩ J
)

≤
Area(Capn−1(·,

√
nropt(1 + f11(ε, δS)),

√
nP ))2nε

Area(Sn−1(0,
√

nP ))
2nR

≤
Area(Sn−1(·,

√
nropt(1 + f11(ε, δS))))2nε

Area(Sn−1(0,
√

nP ))
2nR

=
√

nropt(1 + f11(ε, δS))
n−1

√
nP

n−1 2nε2nR

=

√
P

ropt(1 + f11(ε, δS))
2n R− 1

2 log P
ropt(1+f11(ε,δS )) +ε

≤

√
P

ropt(1 + f11(ε, δS))
2n R− 1

2 log P
ropt

+f11(ε,δS)+ε
,

(XI.1)

which is exponentially small. The last inequality (XI.1) follows
since log(1 + x) ≤ x for x ≤ 1. Then by Lemma9, the actual
number of codewords exceeds n2 with probability at most
2−Ω(n3).

2) Reverse List-Decoding: Conditioned on Ec
sQ

and J ,
the codewords in X (sQ) are independent but not uniformly
distributed over the strip. However, the distribution is almost
uniform and does not affect our calculations except for adding
a (1+o(1)) term. More precisely, for any set A ⊂ Rn, we have

P(x(m,k) ∈ A|Ec
sQ

∩ J ) ≤ P(x(m,k) ∈ A)
P(EsQ)

= P(x(m,k) ∈ A)(1 + o(1)).

The expected number of codewords corresponding
to messages in OGS translated by sQ lying in

the ball Bn
(
x(m′),

√
nN +

√
nδS

)
for any m′ ∈

[2nR]\Orcl(j)(zQ, i) in (XI.2), as shown at the bottom of the
next page, where in Eqn. (XI.2) we use log(1 − x) ≥ −2x
for small enough x > 0. The above quantity is exponentially
small according to the sufficient myopia assumption. Thus
the actual number is at most n2 with probability at least
1 − 2−Ω(n3).

3) Union Bound: By Section XI-A.1 and Section XI-A.2,
for any zQ, i, j and sQ, there are at most n4 messages
from Orcl(j)(zQ, i) satisfying the condition in the lemma
with probability at least 1 − 2−Ω(n3). To see this, let A
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be a 2nε × (2nR − 2nε) matrix defined as A(m, m′) =
1{x(m′)∈L(k)(x(m),sQ)} for any m ∈ Orcl(j)(zQ, i) and

m′ ∈ [2nR] \ Orcl(j)(zQ, i). The quantity we would
like to concentrate |{m ∈ Orcl(j)(zQ, i) : ∃m′ ∈
[2nR]\Orcl(j)(zQ, i), x(m′) ∈ L(k)(x(m), sQ)}| can be
written as

∑

m∈Orcl(j)(zQ,i)

1{∃m′∈[2nR]\Orcl(j)(zQ,i), Am,m′=1},

i.e., the number of nonzero rows21 of A. We can bound it
above as follows.

∑

m∈Orcl(j)(zQ,i)

1{∃m′∈[2nR]\Orcl(j)(zQ,i), A(m,m′)=1}

≤
∑

m∈Orcl(j)(zQ,i)

∑

m′∈[2nR]\Orcl(j)(zQ,i)

1{A(m,m′)=1} (XI.3)

=
∑

m∈Orcl(j)(zQ,i)

∑

m′∈[2nR]\Orcl(j)(zQ,i)

1{A(m,m′)=1}

1{∃m0∈Orcl(j)(zQ,i), A(m0,m′)=1} (XI.4)

=
∑

m′∈[2nR]\Orcl(j)(zQ,i)

[
1{∃m0∈Orcl(j)(zQ,i), A(m0,m′)=1}




∑

m∈Orcl(j)(zQ,i)

1{A(m,m′)=1}







 (XI.5)

=




∑

m′∈[2nR]\Orcl(j)(zQ,i)

1{∃m0∈Orcl(j)(zQ,i), A(m0,m′)=1}





21We say that a row (resp. column) is nonzero if not all of its entries are
zero.

×



 max
m′∈[2nR]\Orcl(j)(zQ,i)

∑

m∈Orcl(j)(zQ,i)

1{A(m,m′)=1}



.

(XI.6)

Eqn. (XI.3) is by union bound. Eqn. (XI.4) holds since the
event in the first indicator implies that in the second one.
In Eqn. (XI.5), we rearrange the summations. In Eqn. (XI.6),
we bound the inner summation (which depends on m′) by the
largest one among all m′ ∈ [2nR]\Orcl(j)(zQ, i). In the above
chain of (in)equalities, we are essentially bounding the number
of nonzero rows of a matrix by the number of nonzero entries
which is further bounded by the number of nonzero columns
times the largest weight of a column. Note that the number of
nonzero columns (the first term in Eqn. (XI.6)) is the number
of confusing codewords (outside the OGS) that can confuse
some codewords in the OGS, that is, the number of codewords
in the blob. As shown in Section XI-A.1, this number is at
most n2 with probability 1 − 2−Ω(n3). The maximum weight
of a column is the largest number of confused codewords
in the OGS that a codeword outside the OGS can confuse.
This number, as shown in Section XI-A.2, is at most n2 with
probability 1−2−Ω(n3). Therefore, by Eqn. (XI.6), the number
of codewords in the OGS that might be confused by some
codewords outside the OGS is at most n4 with probability
1− 2−Ω(n3). Finally, a union bound over all assumptions we
have made completes the proof. !

B. Type II Error

For type II error, confusing codewords come from
Orcl(j)(zQ, i). We will prove that there are at most polyno-
mially many codewords which are erroneously decoded due
to confusion with another message in the same OGS. Once

E
(
|Bn(x(m′),

√
nN +

√
nδS) ∩ ({x(m)}m∈Orcl(j)(zQ,i) + sQ)|

∣∣∣ Ẽc ∩ J
)

= E
(
|Bn(x(m′) − sQ,

√
nN +

√
nδS) ∩ {x(m)}m∈Orcl(j)(zQ,i)|

∣∣∣ Ẽc ∩ J
)

≤ Area(Sn−1(·,
√

nN +
√

nδS))
Area(Strn−1(O′

−, O′
+,

√
nr−,

√
nr+))

2nε(1 + o(1))

=
Area(Sn−1(·,

√
nN +

√
nδS))

Area(Capn−1(O′
+,

√
nr+,

√
nP )) − Area(Capn−1(O′

−,
√

nr−,
√

nP ))
2nε(1 + o(1))

≤ Area(Sn−1(·,
√

nN +
√

nδS))
Vol(Bn−1(O′

+,
√

nr+)) − Area(Sn−1(O′
−,

√
nr−))

2nε(1 + o(1))

≤
√

N

rstr
2

n − 1
2 log P

N+δS+2
√

NδS
+ 1

2 log( P
rstr )+ε (1 + o(1))

2(n−1) 1
2 log(1+τ)−Θ(log n) − 2(n−1) 1

2 log(1−τ)

=
√

N

rstr
2

n − 1
2 log P

N − 1
2 log 1− δS+2

√
NδS

N+δS+2
√

NδS
+ 1

2 log( P
rstr )+ε (1 + o(1))

2(n−1) 1
2 log(1+τ)−Θ(log n) − 2(n−1) 1

2 log(1−τ)

≤
√

N

rstr
2

n − 1
2 log P

N + 1
2 log( P

rstr )+2
δS+2

√
NδS

N+δS+2
√

NδS
+ε (1 + o(1))

2(n−1) 1
2 log(1+τ)−Θ(log n) − 2(n−1) 1

2 log(1−τ)
(XI.2)

≤

√
N(P + σ2)(1 + ε)

Pσ2(1 − ε)
2

n − 1
2 log P

N + 1
2 log(1+ P

σ2 )+2
δS+2

√
NδS

N+δS+2
√

NδS
+3ε (1 + o(1))

2(n−1) 1
2 log(1+τ)−Θ(log n) − 2(n−1) 1

2 log(1−τ)
,
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again we will only analyze the probability of error only for
codewords having typical list-decoding volume.

Lemma 31:

P
(
∃zQ, ∃i, ∃j, ∃sQ, |{m ∈ Orcl(j)(zQ, i) :

∃m′ ∈ Orcl(j)(zQ, i) \ {m},

x(m′) ∈ L(k)(x(m), sQ)}| ≥ 2 · 2nε/2 · n4

∣∣∣∣E
c ∩ J

)

≤ 2−Ω(n3).
Proof: Notice that for different m ∈ Orcl(j)(zQ, i), the

events {∃m′ ∈ Orcl(j)(zQ, i)\{m}, x(m′) ∈ Bn(x(m) +
sQ,

√
nN+

√
nδS)} are not independent. This issue is resolved

by arranging messages in OGS into a 2nε/2 × 2nε/2 square
matrix M lexicographically and applying blob list-decoding
and reverse list-decoding to any row or column, denoted R,
of M. Again, using Lemma 9, it suffices to bound the
expected blob list-size and reverse list-size from above by
some exponentially small quantity.

1) Blob List-Decoding: The expected number of codewords
in the intersection of the blob and the codewords correspond-
ing to the OGS is

E
(
|Blob ∩ (Orcl(j)(zQ, i)\R)|

∣∣∣ Ẽc ∩ J
)

≤
Area(Capn−1(·,

√
nropt(1 + f11(ε, δS)),

√
nP ))2nε

Area(Strn−1(O′
−, O′

+,
√

nr−,
√

nr+))

· 2nε/2∆(τ)(1 + o(1))

≤

√
ropt(1 + f11(ε, δS))

rstr

· 2n − 1
2 log P

ropt(1+f11(ε,δS )) + 1
2 log( P

rstr )+3ε/2

· ∆(τ)(1 + o(1))
2(n−1) 1

2 log(1+τ)−Θ(log n) − 2(n−1) 1
2 log(1−τ)

≤

√
ropt(1 + f11(ε, δS))

rstr

· 2n − 1
2 log P

ropt
+ 1

2 log( P
rstr )+f11(ε,δS)+3ε/2

· ∆(τ)(1 + o(1))
2(n−1) 1

2 log(1+τ)−Θ(log n) − 2(n−1) 1
2 log(1−τ)

≤

√√√√ropt(1 + f11(ε, δS))
Pσ2(1−ε)

(P+σ2)(1+ε)

· 2n − 1
2 log P

ropt
+ 1

2 log(1+ P
σ2 )+f11(ε,δS)+7ε/2

· ∆(τ)(1 + o(1))
2(n−1) 1

2 log(1+τ)−Θ(log n) − 2(n−1) 1
2 log(1−τ)

.

2) Reverse List-Decoding: The expected number of mes-
sages in the row (column) which can be confused by a single
message is

E
(
|Bn(x(m′),

√
nN +

√
nδS)

∩({x(m)}m∈R + sQ)|
∣∣∣ Ẽc ∩ J

)

= E
(
|Bn(x(m′) − sQ,

√
nN +

√
nδS)

∩{x(m)}m∈R|| Ẽc ∩ J
)

≤ Area(Sn−1(·,
√

nN+
√

nδS))
Area(Strn−1(O′

−, O′
+,

√
nr−,

√
nr+))

2nε/2∆(τ)(1+o(1))

≤
√

N

rstr
2

n − 1
2 log P

N + 1
2 log( P

rstr )+2
δS+2

√
NδS

N+δS+2
√

NδS
+ε/2

· ∆(τ)(1 + o(1))
2(n−1) 1

2 log(1+τ)−Θ(log n) − 2(n−1) 1
2 log(1−τ)

≤

√
N(P + σ2)(1 + ε)

Pσ2(1 − ε)

· 2
n − 1

2 log P
N + 1

2 log(1+ P
σ2 )+2

δS+2
√

NδS
N+δS+2

√
NδS

+5ε/2

· ∆(τ)(1 + o(1))
2(n−1) 1

2 log(1+τ)−Θ(log n) − 2(n−1) 1
2 log(1−τ)

.

3) Grid Argument: By Section XI-B.1 and Section XI-B.2,
for any zQ, i, j, sQ and R, there are at most n2 · n2 =
n4 messages satisfying the condition in the lemma. Thus
there are at most 2 · 2nε/2 · n4 such “bad” messages in M,
i.e., the OGS. This can be formally proved as follows. Let
Econf(m, m′) be the event that m and m′ are confusable, i.e.,

Econf(m, m′) := {x(m′) ∈ L(k)(x(m), sQ)}.

Let M(k, ·) and M(·, ,) denote the k-th row and ,-th column
of M, respectively. We now bound the number of codewords
in the OGS that can be confused by some other codewords
in the OGS as follows. Eqn. (XI.7), as shown at the bottom
of the next page, follows since Orcl(j)(zQ, i) \ {m} =
(Orcl(j)(zQ, i) \ M(m, ·)) ∪ (Orcl(j)(zQ, i) \ M(·, m)).
Eqn. (XI.8), as shown at the bottom of the next page, is by
the union bound. Note that the inner summation of first (resp.
second) term in Eqn. (XI.9), as shown at the bottom of the next
page, is the number of codewords in the k-th row (resp. ,-th
column) that might be confused by codewords from other rows
(resp. columns). Both inner summations are at most n4 with
probability 1 − 2−Ω(n3). Since there are 2nε/2 rows/columns,
the total number of codewords in the OGS that might be
confused by some other codewords in the OGS is at most
2 · 2nε/2 · n4 with probability 1 − 2−Ω(n3). A union bound
over zQ, i, j and sQ completes the proof. !

XII. CONCLUDING REMARKS/FUTURE DIRECTIONS

In this work, we studied the capacity of a myopic adversarial
channel with quadratic constraints. We did so for different
amounts of common randomness, and were able to find a
complete characterization for certain regimes of the noise-to-
signal ratios of Bob and James.

1) For different regimes of the NSRs (Figs. 6a, 6b, 6c,
and 6d), we were able to characterize the capacity in the
red, blue and grey regions. We only have nonmatching
upper and lower bounds on the capacity in the green and
white regions.

2) We also derived a myopic list-decoding result in the
general case when Alice and Bob share a linear amount
of common randomness. We believe that this is a useful
technique that is worth exploring for general channels.
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3) When Alice uses a deterministic encoder, we believe that
an improved converse using linear programming-type
bounds might be obtained in the green and white regions.

4) The z-aware symmetrization argument could also be
extended to obtain Plotkin-type upper bounds on the rate
in the green and white regions.

5) We also believe that superposition codes could be used
to obtain improved achievability results in the green and
white regions for the case when there is no common
randomness. In particular, we feel that rates exceeding
RGV should be achievable using superposition codes in
the green and white regions.

6) A natural problem is to find the minimum amount of
common randomness required to achieve the capacity in
Fig. 8. We know for certain values of the NSRs, this is
achievable with no common randomness (blue and red
regions in Fig. 6a). Even Θ(log n) bits is sufficient to
achieve RLD in the entire red region in Fig. 8, while the
blue region can be expanded with increasing amounts
(Ω(n) bits) of shared secret key. A lower bound on nkey

needed to achieve capacity along the lines of [41] would
be of interest.

7) In this article, we studied the impact of an adversary
who has noncausal access to a noisy version of the
transmitted signal. However, in reality, James can only
choose his attack vector based on a causal observation of
the transmission. Li et al. [40] have some recent results
for the quadratically constrained adversarial channel
where the jammer can choose the ith symbol of his
transmission based on the first i symbols of the trans-
mitted codeword. An interesting direction is to look at
the impact of myopia in this setup.

8) Our work was inspired by the study of the discrete
myopic adversarial channel [25]. A part of their work
involved studying the capacity of a binary channel with
a bit-flipping adversary who can flip at most np bits
of the transmitted codeword (for some 0 < p < 1/2).
The adversary can choose his attack vector based on a
noncausal observation of the output of a binary symmet-
ric channel with crossover probability q. Dey et al. [25]
observed that if q > p (sufficiently myopic), then the
adversary is essentially “blind,” i.e., the capacity is equal
to 1−H(p). This is what one would obtain when James
were oblivious to the transmitted codeword. In other

words, as long as the channel from Alice to Bob has
capacity greater than that of the channel seen by James,
damage that James can do is minimal. What we observe
in the quadratically constrained case is slightly different.
A sufficient condition for our results to go through
is that the list-decoding capacity for Bob be greater
than the Shannon capacity for the channel seen by
James. Even then, we can never hope to achieve the
oblivious capacity 1

2 log(1 + P
N ) for any finite σ. What

we can achieve is the myopic list-decoding capacity.
In the bit-flipping adversarial case, the list-decoding
capacity is equal to the capacity of the channel with
an oblivious adversary. No amount of myopia can let us
obtain a higher list-decoding capacity. However, the two
capacities are different in the quadratically constrained
scenario.

9) The difference between oblivious and list-decoding
capacities might explain the gap between the upper
and lower bounds for general discrete myopic adver-
sarial channels [25]. Our technique of using myopic
list-decoding could potentially be used to close this gap
in certain regimes.

10) While the use of list-decoding as a technique for obtain-
ing capacity of general AVCs is not new [37], we believe
that myopic list-decoding and reverse list-decoding can
be generalized to arbitrary AVCs to obtain results even
in the case where the encoder-decoder pair do not share
common randomness.

11) The code construction in our achievability proof is
the random spherical code ensemble which cannot be
decoded efficiently. It is of interest to construct effi-
ciently decodable codes for myopic channels. Note that
lattice codes do not work due to its linearity. Specifically,
the nearest codeword of any codeword in a lattice code is
along the same direction. As a result, if an adversarial
attack s confuses one codeword, the same attack can
confuse any other codeword in the code. Therefore,
lattice codes are bad under average probability of error.

APPENDIX A
TABLE OF NOTATION

See Table III.

∑

m∈Orcl(j)(zQ,i)

1{∃m′∈Orcl(j)(zQ,i)\{m}, Econf (m,m′)}

=
∑

m∈Orcl(j)(zQ,i)

1{∃m′∈Orcl(j)(zQ,i)\M(m,·), Econf (m,m′) or ∃m′∈Orcl(j)(zQ,i)\M(·,m), Econf (m,m′)} (XI.7)

≤
∑

m∈Orcl(j)(zQ,i)

1{∃m′∈Orcl(j)(zQ,i)\M(m,·), Econf (m,m′)} +
∑

m∈Orcl(j)(zQ,i)

1{∃m′∈Orcl(j)(zQ,i)\M(·,m), Econf (m,m′)}, (XI.8)

≤
∑

k∈[2nε/2]

∑

m∈M(k,·)

1{∃m′∈Orcl(j)(zQ,i)\M(m,·), Econf (m,m′)} +
∑

'∈[2nε/2]

∑

m∈M(·,')

1{∃m′∈Orcl(j)(zQ,i)\M(·,m), Econf (m,m′)}.

(XI.9)
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TABLE III

TABLE OF NOTATION
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TABLE III

(Continued.) TABLE OF NOTATION
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Fig. 26. The geometry corresponding to the tail bound of |〈a, b〉| in Lemma 8.

APPENDIX B
PROOFS OF BASIC LEMMAS

A. Proof of Lemma 8

Let eb denote the unit vector along b, i.e., eb = b/‖b‖2. Let
e denote the random unit vector along a which is isotropically
distributed on the unit sphere Sn−1(0, 1), i.e., e = a/‖a‖2.
Notice that |〈a, b〉| > nζ if and only if |〈e, eb〉| > nζ

‖a‖2‖b‖2
,

i.e., if and only if e lies on one of two caps (shown in
Figure 26) of height 1 − nζ

‖a‖2‖b‖2
. Thus we have

P(|〈a, b〉| > nζ)

= P
(
|〈e, eb〉| >

nζ

‖a‖2‖b‖2

)

=
2 Area

(
Capn−1

(
nζ

‖a‖2‖b‖2

b
‖b‖2

,
√

1 − n2ζ2

‖a‖2
2‖b‖2

2
, 1
))

Area(Sn−1(0, 1))

≤
Area

(
Sn−1

(
0,
√

1 − n2ζ2

‖a‖2
2‖b‖2

2

))

Area(Sn−1(0, 1))

=2
−n−1

2 log 1

1− n2ζ2

‖a‖2
2‖b‖2

2

≤2
− (n−1)n2ζ2

2‖a‖2
2‖b‖2

2 ,

where the last step follows from the inequality log
(

1
1−x

)
≥

log(1 + x) ≥ x for small enough positive x. !

B. Proof of Lemma 9

Since p is the probability that a point chosen uniformly at
random from A lies in V , we have

P(|V ∩ C| ≥ cn2) =
2nR∑

i=cn2

(
2nR

i

)
pi(1 − p)2

nR−i

≤
2nR∑

i=cn2

(
2nR

i

)
pi

≤
2nR∑

i=cn2

(
2nR

i

)
2−in(R+ν)

where the last step follows from the assumption that p ≤
2−n(R+ν). Using bounds on the binomial coefficient, the prob-
ability can be upper bounded as follows for large enough n:

P(|V ∩ C| ≥ cn2) ≤
2nR∑

i=cn2

(
2nRe

i

)i

2−in(R+ν)

≤2nR

(
2nRe

cn2

)cn2

2−cn2·n(R+ν)

=2nR+cRn3+c(log e)n2−cn2 log(cn2)−c(R+ν)n3

=2−cνn3−2cn2 log n+(c log e−c log c)n2+nR

≤2−Cn3
.

This completes the proof. !

APPENDIX C
STOCHASTIC VS. DETERMINISTIC ENCODING AGAINST

AN OMNISCIENT ADVERSARY

Suppose we are given a sequence of (n, R(n)
stoch, P, N)

stochastic codes C(n)
stoch = {x(m, k) : m ∈ [2nR(n)

stoch ], k ∈
[2nR

(n)
key ]} of blocklength n, message rate R(n)

stoch, bounded
private key rate R(n)

key, subject to maximum power constraint
P for Alice and maximum power constraint N for James,
with a deterministic decoder and average probability of error
P (n)

e,stoch
n→∞→ 0. Fix any n, we will turn C(n)

stoch into a

(n, R(n)
det, P, N) deterministic code C(n)

det . The deterministic
decoder associated with C(n)

stoch partitions Rn (the space that
James’s observation y lives in) into 2nR(n)

stoch cells {Y(n)(m) ⊂
Rn : m ∈ [2nR(n)

stoch ]}, where Y(n)(m) := {y ∈ Bn(0,
√

nP +√
nN) : Dec(y) = m}. Collect all “good” messages into

M(n) = {m ∈ [2nR(n)
stoch ] : P(m̂ &= m|m = m) < 1}. Assume

that James’s jamming strategy is deterministic. For any good
message m ∈ M(n), there must exist at least one “good”
codeword x(m, k) such that

px|m(x(m, k)|m) > 0,

and
∀s ∈ Bn(0,

√
nN), x(m, k) + s ∈ Y(n)(m).

The second condition is equivalent to Bn(x(m, k),
√

nN) ⊆
Y(n)(m), i.e., James does not have enough power to push
x(m, k) outside Y(n)(m). For any good message, take any
one of good codewords and we get a deterministic code-
book C(n)

det = {x(m, ·) ∈ C(n)
stoch : x(m, ·) is good, m ∈

[2nR(n)
stoch ]}. By construction, this deterministic code with the

same decoding region partition restricted to the messages in
M(n) enjoys zero probability of error. We then argue that it
has asymptotically the same rate Rdet = limn→n R(n)

stoch as
C(n)
stoch.

P (n)
e,stoch =

1

2nR(n)
stoch

2nR
(n)
stoch∑

m=1

P(m̂ &= m|m = m)

≥ 1

2nR(n)
stoch

|{m ∈ [2nR(n)
stoch ] : P(m̂ &=m|m=m)=1}|
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=
1

2nR
(n)
stoch

|(M(n))c|

= P(m /∈ M(n)) → 0.

Define e = 1{m∈M(n)}. We have

nR(n)
stoch =H(m)

=H(e) + H(m|e)
=H(e)+P(e=1)H(m|e=1)+P(e=0)H(m|e=0)

=H(e) + P(m ∈ M(n))H(m|m ∈ M(n))

+ P(m /∈ M(n))H(m|m /∈ M(n)).

It follows that

R(n)
det =

1
n

H(m|m ∈ M(n))

=
1

n P(m ∈ M(n))
(nR(n)

stoch − H(e)

− P(m /∈ M(n))H(m|m /∈ M(n)))

≥ 1
n P(m ∈ M(n))

(nR(n)
stoch − 1 − P (n)

e,stochnR(n)
stoch)

=
1

1 − P(m /∈ M(n))

(
(1 − P (n)

e,stoch)R(n)
stoch − 1

n

)

→ lim
n→∞

R(n)
stoch.

APPENDIX D
QUADRATICALLY CONSTRAINED LIST-DECODING

CAPACITY WITH AN OMNISCIENT ADVERSARY

A. Achievability

We use a random spherical code, i.e., the 2nR,
R = 1

2 log P
N − ε codewords C = {x(m)}2nR

m=1 are chosen
independently and uniformly at random from the Euclidean
sphere centered at the origin of radius

√
nP . Since James has

a power constraint of
√

nN , the received vector y = x + s
is guaranteed to lie within the shell Shn(0,

√
nP ±

√
nN).

We will prove the following result:
Lemma 32: There exists a constant c > 0 independent of n

and ε, but possibly on P, N , and R, such that

P
(
∀y ∈ Shn(0,

√
nP ±

√
nN),

|Bn(y,
√

nN) ∩ C| < c
1
ε

log
1
ε

)
≥1−2−Ω(n).

Proof: Let L := c 1
ε log 1

ε be the desired list-size, for
some absolute constant c to be determined later. Define δ :=
Nε2/8. At first, we increase the list-decoding radius by a small
amount

√
nδ. As we will see later, this will be helpful when

we take a union bound over possible y’s. We first show that
for any fixed y, the probability (over the codebook) that there
are more than L codewords within a distance

√
nN +

√
nδ to

y is sufficiently small.
Observe that |Bn(y,

√
nN +

√
nδ) ∩ C| =

|Capn−1(y,
√

nN +
√

nδ,
√

nP ) ∩ C|. We claim that

Fig. 27. Maximal intersection of the decoding ball with the sphere
Sn−1(0,

√
nP ). In the figure, we omit the quantization parameter δ that

goes into the actual proof, in particular dilates the radius of the noise ball by
an additive factor

√
nδ.

for any fixed y,

P
(
|Bn(y,

√
nN +

√
nδ) ∩ C| > L

)
≤ c22−n(L+1)ε/2.

(D.1)

for some constant c2 independent of n and ε.
The maximal intersection of a ball Bn(y,

√
nN +

√
nδ) and

the Euclidean sphere Sn−1(0,
√

nP ) is shown in Figure 27
(with

√
nδ being dropped since it is a proof artifact rather than

an essential factor in the geometry of list-decoding). It can be
seen that the corresponding y has length

√
n(P − N).

The probability of a codeword falling into the cap can be
upper bounded by

p := P
(
x ∈ Capn−1(y,

√
nN +

√
nδ,

√
nP )

)

=
Area(Capn−1(y,

√
nN +

√
nδ,

√
nP ))

Area(Sn−1(0,
√

nP ))

≤
Area(Sn−1(y,

√
nN +

√
nδ))

Area(Sn−1(0,
√

nP ))

=
(

N

P

)(n−1)/2
(

1 +
√

δ

N

)n−1

=2−
n−1

2 log( P
N )+2 log 1+

√
δ
N

≤c12
−n 1

2 log P
N +2

√
δ
N

=c12−n( 1
2 log P

N + ε
2 ),

where c1 :=
√

P
N . In the last step, we have used the fact that

δ = Nε2/8. Now consider the left-hand side of ((D.1)).

P
(
|Capn−1(y,

√
nN +

√
nδ,

√
nP ) ∩ C| > L

)

=
2nR∑

i=L+1

(
2nR

i

)
pi(1 − p)2

nR−i
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≤2nR

(
2nR

L + 1

)
pL+1 (D.2)

≤2nR

(
2nRe

L + 1

)L+1 (
c2−n 1

2 log P
N + εn

2

)L+1

=c22nR+n(L+1)(R− 1
2 log P

N + ε
2 )

=c22−n(L+1)ε/2+nR, (D.3)

where c2 :=
(

ec1
L+1

)L+1
. Since we are interested in constant

list-sizes, c2 does not depend on n.
Define Y to be an optimal covering of Shn(0,

√
nP±

√
nN)

by balls of radius
√

nδ. In other words, Y is a finite set of
points in Shn(0,

√
nP ±

√
nN) such that miny′∈Y ‖y−y′‖ ≤√

nδ for all y ∈ Shn(0,
√

nP ±
√

nN). In addition, Y is the
smallest (in cardinality) over all possible coverings. One can
achieve (for e.g., using lattice codes [48, Chapter 2])

|Y| ≤
(

Vol(Bn(0,
√

nP +
√

nN +
√

nδ))
Vol(Bn(0,

√
nδ))

)1+o(1)

=

(√
P +

√
N +

√
δ√

δ

)n(1+o(1))

=:
(c3

ε

)n
. (D.4)

We now have everything to prove Lemma 32.

P ∃y ∈ Shn(0,
√

nP ±
√

nN), |Capn−1(y,
√

nN,
√

nP ) ∩ C| > L

≤ P ∃yQ ∈ Y , |Capn−1(yQ,
√

nN +
√

nδ,
√

nP ) ∩ C| > L

≤
yQ∈Y

P |Capn−1(yQ,
√

nN +
√

nδ,
√

nP ) ∩ C| > L

Now using (D.4) and (D.3), we have

P
(
∃y ∈ Shn(0,

√
nP ±

√
nN),

|Capn−1(y,
√

nN,
√

nP ) ∩ C| > L
)

≤c22−n(L+1)ε/2+nR
(c3

ε

)n

=2−Ω(n)

as long as

(L + 1)ε/2 − R − log
(c3

ε

)
> 0

or equivalently, L > c 1
ε log 1

ε for a suitable constant c. This
completes the proof of Lemma 32. !

B. Converse

Now we turn to the converse part of the list-decoding
capacity theorem over quadratically constrained channels.

Lemma 33: If R > 1
2 log P

N , then no sequence of code-
books of rate R is (P, N, nO(1))-list-decodable.

Proof: We will show that for any code C of rate R =
1
2 log P

N + ε with 2nR codewords (not necessarily randomly)
chosen from Sn−1(0,

√
nP ), there must some y with list-size

exceeding O(1/ε). Let’s choose y uniformly at random on
Sn−1(0,

√
n(P − N)). As we saw, such y’s result in the

largest list-decoding regions. Define

p := P
(
x ∈ Capn−1(y,

√
nN,

√
nP )

)

= P
(
y ∈ Capn−1(x,

√
nN,

√
nP )

)
.

First notice that p can be lower bounded by

p ≥ Vol(Bn−1(0,
√

nN))
Area(Sn−1(0,

√
nP ))

=
1

2
√
π

(√
2√
n

+ O(n−3/2)

)(
N

P

)(n−1)/2

=cn

(
N

P

)n/2

=cn2−n 1
2 log P

N ,

where cn := 1
2
√

π

(√
2√
n

+ O(n−3/2)
)√

P
N . The expected

number of codewords in the intersection is

E(|Capn−1(y,
√

nN,
√

nP ) ∩ C|) = p2nR

≥ cn2n(R− 1
2 log P

N ) = cn2nε.

Hence there must exist some y in Sn−1(0,
√

n(P − N)) such
that

|Capn−1(y,
√

nN,
√

nP ) ∩ C|
≥ E

y∼Unif(Sn−1(0,
√

n(P−N)))

(|Capn−1(y,
√

nN,
√

nP ) ∩ C|)

≥ cn2nε.

By a black-box reduction from ball codes to spherical
codes [18], this converse holds for any code satisfying Alice’s
power constraint. !

APPENDIX E
PROOF OF CLAIM 19

We want to prove that the scale-and-babble attack instanti-
ates a channel whose capacity is equal to that of an equivalent
AWGN channel.

We begin with the following observation, which follows
from a simple application of the chain rule of mutual infor-
mation.

Lemma 34: Consider any joint distribution px,y on (x,y)
such that x has differential entropy which grows as 2o(n).
Let ξξξ be a {0, 1}-valued random variable (possibly depending
on x,y) that takes value 0 with probability 2−cn for some
constant c > 0. Then, I(x;y) ∈ I(x;y|ξξξ = 1)(1 − 2−cn) +
2−cn(1−o(1)).

Proof : The claim follows from straightforward computa-
tion.

I(x;y) = P(ξξξ = 1)I(x;y|ξξξ = 1) + P(ξξξ = 0)I(x;y|ξξξ = 0)

=(1 − 2−cn)I(x;y|ξξξ = 1)
+ 2−cn(H(x|ξξξ = 0) − H(x|y,ξξξ = 0))

=(1 − 2−cn)I(x;y|ξξξ = 1) + 2−cnO(H(x))

=(1 − 2−cn)I(x;y|ξξξ = 1) + 2−cn(1−o(1)). !
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Let ỹ := (1−α)x + g̃, g̃ := g−αsz . The channel from x
to ỹ is a standard AWGN channel with capacity (VII.2). Let

ξξξ =

{
βββ, if βββ = 1
0, if 0 < βββ < 1

=

{
1, if ‖ − αz + g‖2 ≤

√
nN

0, otherwise,

i.e., the indicator random variable if James’s power constraint
is satisfied. Clearly, I(x; ỹ|βββ = 1) = I(x;y|βββ = 1).

Lemma 35:

P(βββ &= 1) = 2−Ω(n).

Proof : Recall that

g − αsz ∼ N (0, (γ2 + α2σ2)In)
= N (0, (N − α2P − (N − α2(P + σ2))ε)In)
=: N (0, (N − α2P − ε′)In).

Now we can bound the probability

P(βββ &= 1)

= P(‖ − αz + g‖2 >
√

nN)

= P(α2‖x‖2
2 + ‖g − αsz‖2

2 − 2〈αx,g − αsz〉 > nN)

≤P(‖g − αsz‖2
2 − 2〈αx,g − αsz〉 > n(N − α2P ))

= P(‖g − αsz‖2
2 − 2〈αx,g − αsz〉 > n(N − α2P ),

2|〈αx,g − αsz〉| > nε′/2)
+ P(‖g − αsz‖2

2 − 2〈αx,g − αsz〉 > n(N − α2P ),

2|〈αx,g − αsz〉| ≤ nε′/2)
≤P(|〈αx,g − αsz〉| > nε′/4) (E.1)

+ P(‖g − αsz‖2
2 > n(N − α2P − ε′/2)). (E.2)

We bound terms (E.1) and (E.2) separately.

(E.1) = P(|N (0,α2‖x‖2
2(N − α2P − ε′))| > nε′/4)

≤2 exp
(
− (nε′/4)2

2α2‖x‖2
2(N − α2P − ε′)

)

≤2 exp
(
− ε′2

32α2P (N − α2P − ε′)
n

)

=:2−g1(ε
′)n,

and

(E.2)

= P(‖N (0, (N − α2P − ε′)In)‖2
2 > n(N − α2P − ε′/2))

≤ exp
({

− ε′/2
N−α2P − ε′

+ln
(

1+
ε′/2

N − α2P − ε′

)}
n

2

)

≤ exp

(
−1

4

(
ε′/2

N − α2P − ε′

)2 n

2

)

=exp
(
− ε′2

32(N − α2P − ε′)2
n

)

=:2−g2(ε
′)n. !

Using Lemmas 34 and 35, we have that

I(x;y) =I(x;y|βββ = 1)(1 − 2−Ω(n)) + 2−Ω(n)

=I(x; ỹ|βββ = 1)(1 − 2−Ω(n)) + 2−Ω(n)

=I(x; ỹ)(1 + o(1)).

Here we have used the fact that x is power constrained, and
hence has differential entropy Θ(n).

The rest of the proof follows along the same lines as the
standard converse for the AWGN channel [49, Sec. 9.2]. Let
us briefly outline the steps involved.

As a first step, note that Fano’s inequality still holds even in
the presence of common randomness. Let k denote the shared
secret key. Specifically, if m, m̂, and Pe, respectively, denote
the message chosen, Bob’s estimate of the message, and the
probability of error, then

H(m|m̂,k) ≤ H(m|m̂) ≤ H(Pe) + nRPe,

where the first step follows because conditioning reduces
entropy, and the second follows from (standard) Fano’s
inequality.

Now, if we demand that the probability of error be vanish-
ingly small in n, then

nR = H(m) = H(m|k) = I(m; m̂|k) + H(m|m̂,k)
≤ I(m; m̂|k) + o(n)
≤ I(x;y|k) + o(n)
≤ I(x; ỹ|k)(1 + o(1)) + o(n)

≤ 1
2

log
(

1 +
(1 − α)2P
α2σ2 + γ2

)
n. (E.3)

We have skipped a number of arguments in obtaining the last
step, but these follow from the standard converse proof for
the AWGN channel. The only property of the codebook used
there is that it satisfies an average power constraint (which
is indeed satisfied as we have a more restrictive max power
constraint). This completes the proof of Claim 19.

APPENDIX F
QUASI-UNIFORMITY – PROOF OF LEMMA 23

As shown in Fig. 22, define |xO′| := √
nrstr. By the

construction of the strip,

|x−O′
−| :=

√
nr− :=

√
nrstr(1 − τ),

|x+O′
+| :=

√
nr+ :=

√
nrstr(1 + τ).

(F.1)

Then the quasi-uniformity factor can be computed as follows

supx∈Strn−1(O′
−,O′

+,
√

nr−,
√

nr+) px|z(x|z)

infx∈Strn−1(O′
−,O′

+,
√

nr−,
√

nr+) px|z(x|z)

=
px|z(x−|z)
px|z(x+|z)

=
px,z(x−, z)
px,z(x+, z)

=
pz|x(z|x−)px(x−)
pz|x(z|x+)px(x+)
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E
(
|Strn−1(O′

−, O′
+,

√
nr−,

√
nr+) ∩ C|

∣∣ Ec
atyp

)

≥
Area(Capn−1(O′

+,
√

nr+,
√

nP )) − Area(Capn−1(O′
−,

√
nr−,

√
nP ))

Area(Sn−1(0,
√

nP ))
2nRcode∆(τ)−1

≥
Vol(Bn−1(O′

+,
√

nr+)) − Area(Sn−1(O′
−,

√
nr−))

Area(Sn−1(0,
√

nP ))
2nRcode∆(τ)−1

:
[

1√
n − 1

(r+

P

)(n−1)/2
−
(r−

P

)(n−1)/2
]

2nRcode∆(τ)−1 (G.1)

=
[
n−1/2

(rstr

P
(1 + τ)

)(n−1)/2
−
(rstr

P
(1 − τ)

)(n−1)/2
]

2nRcode∆(τ)−1

=
(
2(n−1)( 1

2 log( rstr
P )+ 1

2 log(1+τ))− 1
2 log n − 2(n−1)( 1

2 log( rstr
P )+ 1

2 log(1−τ))
)

2nRcode∆(τ)−1

=
√

P

rstr
2−n 1

2 log( P
rstr )

(
2(n−1) 1

2 log(1+τ)− 1
2 log n − 2(n−1) 1

2 log(1−τ)
)

2nRcode∆(τ)−1

≥

√
(P + σ2)(1 + ε)

σ2(1 − ε)
2
−n 1

2 log (P+σ2)(1−ε)
σ2(1+ε)

(
2(n−1) 1

2 log(1+τ)− 1
2 log n − 2(n−1) 1

2 log(1−τ)
)

2nRcode∆(τ)−1, (G.2)

=
pz|x(z|x−)
pz|x(z|x+)

= exp
(
‖z − x+‖2

2 − ‖z − x−‖2
2

2σ2

)

=exp

(
‖z‖2(

√
n(P − r−) −

√
n(P − r+))

σ2

)
(F.2)

=exp

(
‖z‖2

σ2

2nrstrτ√
n(P − r−) +

√
n(P − r+)

)
,

where Eqn. (F.2) holds since

‖z − x±‖2
2 = nr± + (‖z‖2 −

√
nP − nr±)2

= ‖z‖2
2 + nP − 2‖z‖2

√
nP − nr±.

In the above calculation, recall that as mentioned after the
definition in Eqn. (X.22), the joint density px,z is given by
x ∼ Unif(Sn−1(0,

√
nP )) and z = x + sz where sz ∼

N (0,σ2In).

APPENDIX G
EXPONENTIALLY MANY CODEWORDS IN THE

STRIP – PROOF OF LEMMA 24

The expected number of codewords in a strip can be
estimated in (G.1) and (G.2), as shown at the top of this page.
where Eqn. (G.1) follows from the fact that

Vol(Bn(0, 1)) : 1√
πn

(
2πe

n

)n/2

,

Area(Sn−1(0, 1)) :
√

n

π

(
2πe

n

)n/2

.

Eqn. (G.2) follows from Eqn. (X.24). The factor in the
parentheses is a polynomial in n if we properly set τ =
O((log n)/n). If the coding rate is strictly above the threshold

1
2 log

(
1 + P

σ2

)
, then, in expectation, there are at least 24εn

codewords in every strip.

APPENDIX H
PROOF OF LEMMA 16

The coding scheme is determined by parameters
(R, Rkey, Re), where Rkey denotes the rate of the secret key.
We generate 2n(R+Rkey+Re) codewords uniformly at random
from the sphere Sn−1(0,

√
nP ). Let us index the codewords

using the triple (i1, i2, i3) ∈ [2nR] × [2nRkey ] × [2nRe ]. The
messages are chosen uniformly at random from [2nR]. Given
a message m ∈ [2nR] and key k ∈ [2nRkey ], the encoder
picks r uniformly at random from [2nRe ], and transmits the
(m,k, r)th codeword x(m,k, r). Bob knows k, and has to
decode m from y.

We will choose the parameters so as to satisfy:

R + Re < Cmyop,

and

Re = max
{

0,
1
2

log
(

1 +
P

σ2

)
− Rkey + δ

}

for some small δ > 0.
As long as R + Re < Cmyop, the probability of decoding

error is o(1) from Lemma 12. Since we are using random
spherical code (which is a good resolvability code for the
AWGN channel), we can directly invoke [38, Lemma 2]
and [38, Remark 3] which show that the mutual information
I(m, z) is exponentially vanishing in n as long as R′ = Re +
Rkey ≥ p- lim supn→∞

1
nI(x; z)+δ = 1

2 log
(
1 + P

σ2

)
+δ. !
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