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Abstract

Data-driven constitutive modeling is an emerging field in computational solid mechanics with the prospect of significantly
elieving the computational costs of hierarchical computational methods. Additionally, this data-driven paradigm could enable

seamless connection of experimental data probing material responses with numerical simulations at the structural level.
raditionally, these surrogates have just been trained using datasets which map strain inputs to stress outputs for elastic and

nelastic materials directly. Recently, artificial neural networks (ANNs) have instead been trained to additionally incorporate
he underlying physical laws in the construction of these models. However, ANNs do not offer convergence guarantees from an
ngineering point of view and are majorly reliant on user-specified parameters. In contrast to ANNs, Gaussian process regression
GPR) is based on nonparametric modeling principles as well as on fundamental statistical knowledge and hence allows for
trict convergence guarantees. Motivated by the recent work by Frankel et al. (2021) which is based on rewriting the stress
utput as a linear combination of an irreducible integrity basis, in this work we present a physics-informed and data-driven
onstitutive modeling approach for isotropic and anisotropic hyperelastic materials at finite strain. The trained surrogates are able
o respect physical principles such as material frame indifference, material symmetry, thermodynamic consistency, stress-free
ndeformed configuration, and the local balance of angular momentum. Our approach is based on probabilistic machine learning
nd uniquely can be used in the big data context while maintaining the benefits of GPR. As sampling in the mixed invariant
pace poses a unique challenge, we additionally present the first sampling approach that directly generates space-filling points
n the invariant space corresponding to a bounded domain of the deformation gradient tensor. The sampling technique is based
n simulated annealing and provides more efficient and reliable physics-informed constitutive models. Overall, the presented
pproach is tested on synthetic data from isotropic and anisotropic constitutive laws and shows surprising accuracy even far
eyond the limits of the training domain, indicating that the resulting surrogates can efficiently generalize as they incorporate
nowledge about the underlying physics.
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1. Introduction

There has been an increased interest in machine learning (ML) tools in the computational sciences the last few
ears. This rise in popularity is due to multiple reasons: the ability of machine learning models to directly utilize
xperimental data in simulation environments, generalization capabilities of the machine learning tools, potential
peed up in comparison to traditional numerical methods and their automatic differentiation framework. For these
easons, machine learning tools have recently been used as a solution scheme for forward and inverse problems
nvolving partial differential equations [1–4] or for the development of intrusive and non-intrusive reduced order

odeling schemes for accelerated solutions of PDEs [5–7]. On the other hand the use of ML “black-box” models
or constitutive modeling has been extensively studied for over 20 years. Starting from the influential works of Wu
nd Ghaboussi [8] and Ghaboussi et al. [9,10] for concrete in a small-strain biaxial state of stress, these tools have
een employed for different material models with increasing complexity over the years [11–16]. Recently, in the
ope of needing less data and in order to generate models with higher generalization capability, efforts have been
ade to train data-driven constitutive models that do not only train with raw stress–strain data but incorporate

dditional physics-based restrictions to the trained model [17–20]. When dealing with hyperelastic materials, where
o rate-dependence is considered, these models try to include some of the following physics-informed principles:

• Stress-free undeformed configuration: A rigid-body motion induces no strains and consequently no stresses.
• Material frame indifference: Tensor fields such as the stress and the strain should be objective under a change

of observer.
• Material symmetry: Strain energy and stresses are consistent with existing symmetry groups in the material.
• Local balance of angular momentum: The Cauchy-stress tensor and the second Piola–Kirchhoff stress tensor

should be symmetric.
• Thermodynamic consistency: Fulfillment of the Clausius–Planck inequality.

The idea behind physics-informed or physics-guided data-driven constitutive models is that the trained surrogate
hould abide to these conditions and not rely solely on raw data. Additionally, a large majority of the proposed works
n the literature for physics-guided constitutive models are based on artificial neural networks (ANNs) [17–19,21].
or general information about ANNs we refer to Goodfellow et al. [22]. However, ANNs have some characteristics

hat make them suboptimal with regard to training constitutive models from data:

1. ANNs are parametric, which means that they are majorly dependent on user-specified parameter values such
as hidden layers or the number of neurons per layer. Typically these are chosen based on user experience or
in a grid-search fashion. However, this is widely viewed as one of the problematic aspects of ANNs.

2. Even though ANNs are known to be universal approximators [23,24], this is only true if neural networks
of either arbitrary width or arbitrary depths are available, which is not common for general engineering
applications due to limited computational resources. Hence, there is a clear lack of convergence guarantees
with regard to ANNs.

3. ANNs do not have the ability to exactly represent points of the trained dataset due to (typically) being defined
as a mean-error minimizer. This is a significant concern for the preservation of the stress-free undeformed
configuration and requires particular attention such as special stress representations [25].

ue to these reasons, Gaussian process regression (GPR) also known as Kriging [26] has recently gained more
ttention as a tool to fit constitutive data. The major factor for this is that in contrast to ANNs, GPR is based
n nonparametric modeling principles as well as on fundamental statistical knowledge and hence allows for strict
onvergence guarantees and to obtain as output probabilistic information such as the mean and variance of the
rained model. Recently, the authors [14] have proposed a model-data-driven approach using GPR which enhances
nalytical constitutive models by local corrections based on data. Rocha et al. [27] present a method relying
n the adaptive construction of GPR models with application to elastoplastic multiscale mechanics. Wang et al.
28] use a method based on proper orthogonal decomposition (POD) and GPR known as POD-Kriging to build a
urrogate for a time dependent constitutive model for a viscoelastic hydrogel. One solution for probably the most
ignificant problem associated with GPR in the big data regime has recently been proposed by the authors in [29]
here local approximate GPR (laGPR) has been presented for constitutive modeling applications and corresponding
ultiscale calculations. Frankel et al. [30] presented the only work so far where GPR and physics-guided data-
riven constitutive modeling is attempted. They propose an approach for isotropic hyperelastic materials which
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Fig. 1. Solid domain with boundary conditions.

is generally based on building a surrogate model that maps from the space of invariants of the right Cauchy–
Green deformation tensor to the space of coefficients linked with the stress generators. In this work we utilize the
approach discussed in [30] as a starting point. We generalize it, extend it to anisotropic materials and by employing
laGPR we allow the framework to be applicable in the big data context. By doing so we are able to capture five
major physical constraints: the preservation of the stress-free undeformed configuration, material frame indifference,
material symmetry conditions, thermodynamic consistency and local balance of angular momentum. Furthermore,
we introduce the first space-filling sampling approach which directly generates samples in principal and pseudo
invariant space. Thereby, creating metamodels which prove to be more efficient.

The paper is structured as follows. The general framework for modeling hyperelastic materials and the corre-
sponding essential physical principles are introduced in Section 2. The physics-informed approach for hyperelastic
data-driven constitutive laws for isotropic and anistropic materials is discussed and explained in Section 3. A space-
filling sampling approach in the invariant spaces of isotropic and anisotropic materials is introduced in Section 4.
Local approximate Gaussian process regression as well as a consistent form to approximate the material tangent
is presented in Section 5. The presented framework is studied on two numerical examples with different material
symmetries in Section 6. The paper is concluded in Section 7.

2. Physics-based constraints for data-driven mappings

Consider an elastic body B ⊂ R3. Let the boundary of the body Γ be composed of two parts Γt and Γu such
that Γ = Γt ∪Γu (Fig. 1). Here, Γu and Γt describe the boundary sections that displacement and traction boundary
onditions are prescribed. The time-dependent motion between the referential position X and the current position

x can be defined by

x = ϕ(X, t) = X + u(X, t) (1)

where u describes the time-dependent displacement field and ϕ(X, t) denotes the motion of the body. This allows
to define the deformation gradient

F = Gradϕ(X) (2)

and the right Cauchy–Green tensor

C = FT F. (3)

From the balance of linear momentum, the local equilibrium equation

divσ + b = 0 (4)

is fulfilled where σ is the Cauchy stress tensor and b are body forces. The balance of angular momentum leads to
the symmetry of the Cauchy stress tensor

σ = σ T . (5)
3
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Furthermore, knowing that S =
√

det(C)F−1σ F−T [31], where S is the second Piola–Kirchhoff stress tensor, we
can see that S = ST must hold as well. Hence, any data-driven constitutive law with S as an output must ensure
its symmetry.

In the hyperelastic framework, the existence of the strain energy function Ψ is postulated, which is assumed to
be defined per unit reference volume [31]. The formulation of an explicit strain energy function is dependent on
the symmetry group that complies with the symmetries that correspond to a specific material. A symmetry group
of a material is a set of transformations that allow for material symmetry to be preserved. The three dimensional
orthogonal group Orth is defined as the group of 3 × ×3 orthogonal matrices

Orth = {R ∈ R3
⊗ R3

|RT
= R−1

}. (6)

Let there be some structural tensors Ai , i = 1, . . . , p that determine the symmetry group G of an anisotropic
material with

G = {R ∈ Orth|RT Ai R, ∀i = 1, . . . , p}. (7)

ccording to Ehret and Itskov [32] a convenient way to describe the structural tensors is by defining them as

Ai = ai ⊗ ai , i = 1, . . . , p (8)

here the ai ∈ R3 are unit vectors. For a general material consider the strain energy density to be at least a function
f the Cauchy–Green tensor

Ψ = Ψ (C, •). (9)

nder this assumption a necessary condition for material symmetry in terms of Eq. (7) is given by

Ψ (RT C R) = Ψ (C), ∀R ∈ G. (10)

ollowing Zhang and Rychlewski [33] and Itskov and Aksel [34], this condition can only be ensured if the strain
nergy density function has the structural tensors as additional arguments, i.e. Ψ (C, Ai ), i = 1, . . . , p. With regard
o the symmetry group G it is therefore necessary to require

Ψ (RT C R, RT Ai R) = Ψ (C, Ai ), i = 1, . . . , p, ∀R ∈ G (11)

or material symmetry. Data-driven constitutive laws should therefore aim to satisfy Eq. (11). Even though it is
ot a theoretical requirement, hyperelastic constitutive laws are constructed so that they satisfy that the reference
onfiguration corresponds to a stress-free state with zero strain energy density. This can be achieved by requiring
hat

Ψ (I, •) = 0 (12)

n the reference configuration where F = C = I . This condition and the physically sound assumption that the strain
nergy function increases under deformation, i.e. Ψ (C, •) ≥ 0, ensures that the stress in the reference configuration
s zero, i.e.

S(I, •) = 0 (13)

hich is another physical constraint for data-driven material models. If a scalar-valued tensor function, such as the
train energy density function, is invariant under a rotation it may written in terms of the invariants (I1, . . . , IJ ) of its
rguments [31]. For purely mechanical processes of perfectly elastic materials, the second law of thermodynamics
equires that the Clausius–Planck inequality turns into an equality, satisfying

S : Ė − Ψ̇ = 0 (14)

which with arbitrary strain measures requires that

S = Φ(C, A1, . . . Ap) = 2
∂Ψ (C, A1, . . . Ap)

∂C

= 2
∂Ψ (I1, . . . , IJ )

∂C
= 2

J∑ ∂Ψ

∂ I
∂ Ii

∂C
,

(15)
i=1 i

4
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where Φ denotes an analytical tensor-valued tensor function. Hence, any data-driven constitutive model that fulfills
this relationship is thermodynamically consistent, at least for the case of perfectly elastic materials.

Another important requirement for data-driven material models is material frame indifference, i.e. independence
of the observer, which reads [35]

Φ(RT C R, RT A1 R, . . . , RT Ap R) = RTΦ(C, A1, . . . , Ap)R, ∀R ∈ Orth. (16)

From the last term of Eq. (15) it can be seen that the stress can be written as a linear combination of some tensors
∂ Ii
∂C . These terms can be condensed to build an integrity basis G for the stress, constructed from some symmetric
components H i ∈ R3×3, i = 1, . . . , D, as

G = {H1, . . . H D}. (17)

This in turn allows us to write the functional mapping of the stress S = Φ(C, A1, . . . Ap) as a linear combination
of the components of the integrity basis as

S = c1(I1, . . . , IJ )H1(C, A1, . . . Ap) + · · · + cD(I1, . . . , IJ )H D(C, A1, . . . Ap). (18)

If none of the components of G is expressible as a linear combination of the others this representation is called an
irreducible representation. It can be shown that any representation of the form of Eq. (18) fulfills the condition of
material frame indifference, i.e. Eq. (16), as well [36]. Additionally, by construction any stress generated by Eq. (18)
respects the material symmetry condition of Eq. (11) [36,37]. One problem with this approach is that an irreducible
integrity basis has to be known. However, in the last 50 years a lot of effort has been put into finding suitable
irreducible function basis for different kinds of material anisotropies. In particular, Zheng [36] presented a unified
invariant approach for the representation of tensor functions for different cases of anisotropy (isotropy, hemitropy,
transversal isotropy, orthotropy) in two and three dimensions. The findings of this work have been extensively
studied and applied [34,38,39]. Therefore, the integrity bases for standard anisotropic cases are known.

Now consider a material model dataset given by strain inputs and stress outputs of the form

D = {C i , Si
}

N
i=1 (19)

and assume that the material anisotropy and corresponding structural tensors (A1, . . . Ap) are known. This allows
us to obtain the relevant invariants for every input (I i

1, . . . , I i
J ). Furthermore assume that by knowing the C i and Si

the respective coefficients (ci
1, . . . , ci

D) of Eq. (18) can be obtained. Hence, we can generate the alternative dataset

Dalt = {[I i
1, . . . , I i

J ], [ci
1, . . . , ci

D]}N
i=1 (20)

and build a surrogate model

M̂ : I ∈ RJ
→ c ∈ RD (21)

for this dataset. This metamodel allows us to obtain an approximation of the stress output with

Ŝ
i
= ĉi

1(I i
1, . . . , I i

J )H i
1 + · · · + ĉi

D(I i
1, . . . , I i

J )H i
D (22)

where ĉi
j refers to the j th output of the trained metamodel for the i th input. Here, the symbol •̂ indicates an

approximated value.
Following the mapping approach of Eq. (21) we can easily incorporate the following physics-based constraints

into a data-driven constitutive model:

• Local balance of angular momentum: Because the integrity basis is necessarily symmetric,
• Material frame indifference : By estimating stress with Eq. (22),
• Material symmetry conditions: By design the stress output of Eq. (22) respects the symmetry of isotropic and

anisotropic materials,
• Stress-free undeformed configuration: When one set of input invariants are chosen that correspond to the

undeformed configuration and a surrogate modeling technique with exact inference (such as GPR) is used,
• Thermodynamic consistency: By approximating the stress with Eq. (22) thermodynamic consistency holds at

the training points when a metamodeling method with exact inference properties is used.

In the following we explicitly highlight the details of this mapping approach for isotropic and transversally isotropic

materials and compare it to the predominant approach of training a metamodel through strain and stress data.

5
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3. Physics-informed mapping for hyperelastic materials

In this section we discuss and highlight different variations of data-preprocessing for hyperelastic laws.

.1. Classical mapping approach

The classical mapping approach, see e.g. [40–42], is based on the symmetry condition of the right Cauchy–
reen tensor and the second Piola–Kirchhoff stress. This allows to postulate a mapping between upper triangular

omponents of the two tensors, i.e.⎡⎢⎢⎢⎢⎢⎢⎣
C11
C12
C13
C22
C23
C33

⎤⎥⎥⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎢⎢⎢⎣
S11
S12
S13
S22
S23
S33

⎤⎥⎥⎥⎥⎥⎥⎦ . (23)

This principle can equivalently be applied using other symmetric strain and stress measures, e.g. engineering strain
and Cauchy stress. If the data is only available in a non-symmetric tensor form, for example as the deformation
gradient and the first Piola–Kirchhoff stress, then they can simply be converted to equivalent symmetric tensors. The
mapping of Eq. (23) is independently utilizable regardless of any type of anisotropy implicitly present in the data
and allows to easily capture two physics informed-principles: local balance of angular momentum and preservation
of the stress-free undeformed configuration.

3.2. Physics-informed mapping approach for isotropic materials

For the isotropic case we follow we the approach proposed by Frankel et al. [30]. The isotropic case is fully
defined by the 3 invariants

I1 = tr(C)

I2 = 0.5(tr(C)2
− tr(C2))

I3 = det(C).

(24)

The second Piola–Kirchhoff stress response of an isotropic material can always be decomposed into the three stress
generators [31]

G = {I, C, C−1
} (25)

with

S = c1(I1, I2, I3)I + c2(I1, I2, I3)C + c3(I1, I2, I3)C−1. (26)

herefore instead of learning a mapping between the symmetric components of C and S as described in Eq. (23),
we can learn a functional mapping of the form⎡⎣I1

I2
I3

⎤⎦ →

⎡⎣c1
c2
c3

⎤⎦ . (27)

Hence, instead of mapping R6
→ R6, we map R3

→ R3. Since all the stress generators of Eq. (25) are symmetric,
any output of Eq. (26) is symmetric as well, and hence, the local balance of angular momentum is ensured.
Furthermore, the presented mapping yields an output which necessitates the fulfillment of material symmetry and
material frame indifference. To prove the latter, consider the rotation tensor R, then we see that the following needs
to hold

S′
= RSRT

= RΦ(C)RT
= Φ(RC RT ). (28)
6
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This can be proven by using the tensor generators

S′
= RSRT

= R(c1 I + c2C + c3C−1)RT

= c1 RRT
+ c2 RC RT

+ c3 RC−1 RT

= Φ(RC RT ).

(29)

The scalar values c1, c2, c3 can be obtained by observing that

QS QT
=

⎡⎣λs
1 0 0

0 λs
2 0

0 0 λs
3

⎤⎦ , QC QT
=

⎡⎣λC
1 0 0
0 λC

2 0
0 0 λC

3

⎤⎦ (30)

which following Frankel et al. [30] allows to define an equation system for the unknown scalar values of the form

⎡⎣c1
c2
c3

⎤⎦ =

⎡⎢⎢⎢⎣
1 λC

1
1

λC
1

1 λC
2

1
λC

2

1 λC
3

1
λC

3

⎤⎥⎥⎥⎦
−1⎡⎣λs

1
λs

2
λs

3

⎤⎦ . (31)

he matrix might be severely ill-conditioned depending on the number of unique principal strains. Frankel et al.
30] describe an algorithmic way to avoid this problem.

The consistent material tangent of the general stress formulation of Eq. (26) is given by

C = 2
∂ S
∂C

= 2

(
∂c1

∂C
⊗ I + c1

∂ I
∂C

+
∂c2

∂C
⊗ C + c2

∂C
∂C

+
∂c3

∂C
⊗ C−1

+ c3
∂C−1

∂C

) (32)

here
∂ci

∂C
= =

∂ci

∂ I1
I +

∂ci

∂ I2
(I1 I − C) +

∂ci

∂ I3
I3C−1. (33)

ll remaining unknown derivatives of Eq. (32) can be found in Eq. (76). Additionally, from Eq. (32) it can
e seen that if a surrogate model is trained taking as input the principal invariants of C and as output the
calar coefficients of Eq. (26), taking the output derivative with regard to the input ( ∂ci

∂ I j
) allows us to obtain an

approximation of the consistent material tangent. Both ANNs and GPR have the ability to obtain these derivatives.
Other surrogate modeling techniques might need to rely on numerical differentiation, e.g. in the form of finite
difference schemes [43].

3.3. Physics-informed mapping approach for transversely isotropic materials

Transverse isotropy is characterized by a single unit direction a0 that characterizes the material symmetries.
Hence, only one structural tensor A = a0 ⊗ a0 is needed to fulfill the material symmetry of the strain energy
function. The principal invariants of the right Cauchy–Green tensor read

I1 = tr(C)

I2 = 0.5(tr(C)2
− tr(C2))

I3 = det(C).

(34)

We furthermore need to consider the two independent components of the pseudo invariants

I4 = tr(AC)

I5 = tr(AC2).
(35)

Following Zheng [36] the stress output can be decomposed into the six generators collected in the set G

G = {I, C, A, C2, (AC + C A), (AC2
+ C2 A)} (36)
7
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with

S = c1 I + c2C + c3 A + c4C2
+ c5(AC + C A) + c6(AC2

+ C2 A). (37)

Therefore, in the transversely isotropic case we can learn a function mapping from⎡⎢⎢⎢⎢⎣
I1
I2
I3
I4
I5

⎤⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎢⎢⎢⎣
c1
c2
c3
c4
c5
c6

⎤⎥⎥⎥⎥⎥⎥⎦ . (38)

So instead of mapping R6
→ R6 as in the classical mapping case, we map R5

→ R6 and are able to ensure local
balance of angular momentum (all stress generators are symmetric) and maintain material symmetry conditions,
thermodynamic consistency and material frame indifference. The latter can easily be proven by considering

S′
= RSRT

= RΦ(C, A)RT
= Φ(RC RT , R ART ) (39)

and

S′
= RSRT

= R
(
c1 I + c2C + c3 A + c4C2

+ c5(AC + C A) + c6(AC2
+ C2 A)

)
RT

= c1 RRT
+ c2 RC RT

+ c3 R ART
+ c4 RCT RT RC RT

+ c5(R ART RC RT
+ RC RT R ART )

+ c6(R ART RCT RT RC RT
+ RCT RT RC RT R ART )

= Φ(RC RT , R ART ).

(40)

Obtaining the scalars for the isotropic case was straightforward using principal spaces. However, for the transversely
anisotropic case this would result in an underdetermined equation system. Hence, given a stress output and a
corresponding right Cauchy–Green tensor value the scalar values c1, . . . , c6 can instead be approximated using
a least squares approach. By rewriting Eq. (37) we get the overdetermined equation system

[
vc(S)

]  
b

=
[
vc(I) vc(C) vc(A) vc(C2) vc(AC + C A) vc(AC2

+ C2 A)
]  

A

⎡⎢⎢⎢⎢⎢⎢⎣
c1
c2
c3
c4
c5
c6

⎤⎥⎥⎥⎥⎥⎥⎦
  

x

(41)

here the function vc(•) performs a vectorization of the tensors. By defining the following optimization problem
e can constrain the solution space to the linear least squares solution

min
x

∥Ax − b∥
2
2 (42)

hich can for example be solved with QR-decomposition. As a sidenote, instead of setting up a fully-determined
quation system with six symmetric components of Eq. (37), we found that adding all 9 possible equations makes
he solution algorithm more robust.

Similarly to the isotopic case, the consistent material tangent for the transversally isotropic case can also be
erived analytically and is only dependent on an approximation of the derivatives ( ∂ci

∂ I j
) which can be obtained

straightforwardly with some surrogate modeling techniques (such as Gaussian process regression or neural networks)
since predictions are made using closed form analytical formulations. Derivatives of these can for example be found
using automatic differentiation Baydin et al. [44].
8
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The tangent is given as

C = 2
∂ S
∂C

= 2
(

∂c1

∂C
⊗ I + c1

∂ I
∂C

+
∂c2

∂C
⊗ C + c2

∂C
∂C

+
∂c3

∂C
⊗ A + c3

∂ A
∂C

+
∂c4

∂C
⊗ C2

+ c4
∂C2

∂C
∂c5

∂C
⊗ (AC + C A) + c5

∂(AC + C A)
∂C

+
∂c6

∂C
⊗ (AC2

+ C2 A) + c6
∂(AC2

+ C2 A)
∂C

)
(43)

here
∂ci

∂C
=

∂ci

∂ I1
I +

∂ci

∂ I2
(I1 I − C) +

∂ci

∂ I3
I3C−1

+
∂ci

∂ I4
A

+
∂ci

∂ I5
(a0 ⊗ Ca0 + a0C ⊗ a0).

(44)

All unknown tensor derivatives of Eq. (43) are listed in Eq. (76).
As a sidenote, orthotropic materials are not explicitly discussed in this paper. However they have seven invariants

and seven generators [36]. Hence, the scalar values of orthotropic materials can be obtained in a similar manner
to Eq. (42). After this the setup of the data-driven constitutive model approach for this anisotropic material class is
straightforward. The next section proposes an approach of sampling new points in the invariant space.

4. Space-filling sampling approach in invariant space

A problem associated with training a mapping where inputs are principal and pseudo invariants of the right
Cauchy–Green deformation tensor, is that the sample placement in this space might not be spaced evenly even
when sampling the deformation tensors in a space-filling way. Furthermore, generating samples in a space-filling
fashion in a specific domain of the invariant space has not been sufficiently explored since it is not clear how
to define a relevant region. This is important in order to evaluate how much trust we put into the output of a
metamodel, i.e. if we have sampled points inside a restricted domain of the deformation gradient space and we
train our surrogate with these points we expect the model to predict the correct output somewhat accurately if the
new input point is inside the bounded training domain. However, outside this training domain we should not blindly
trust the predicted surrogate output. Hence, when using points in the invariant space as the model input we need
to be able to understand which bounded domain of the deformation gradient space we are representing with our
input data in order to judge how trustful a trained model is with regard to a certain deformation gradient input as
is needed when employing the trained model in a FEM framework.

To highlight all these points, consider that a trained model should be able to accurately predict the constitutive
law when the bounds of the deformation gradient components are given by

F i j ∈ [F L
i j , FU

i j ] where

{
1 − δ ≤ 1 ≤ 1 + δ, when i = j
−δ ≤ 0 ≤ δ, when i ̸= j.

(45)

ith δ > 0. This defines a nine-dimensional bounded space that samples need to be generated in. In order
o generate distributed points in a bounded space in computational engineering applications, latin hypercube
ampling (LHS) [45] or some form of optimal latin hypercube sampling (e.g. latin hypercube samples obtained
ith a translational propagation algorithm (TPLHD) [46]) are typically applied. In order to highlight the problems

ssociated with generating evenly-spaced samples in the deformation gradient space, i.e. in the bounds of Eq. (45),
nd transferring these samples into principal or pseudo invariant space (using Eq. (34) or Eq. (35) equivalently)
ssume in the following that δ = 0.175. Further on, we will refer to this training domain as the 17.5% input
omain.

Next, we want to visually inspect the bounded domain that the 17.5% input region in deformation gradient space
orresponds to in the principal invariant space. For this task we generate 50,000 samples in the bounds of Eq. (45)

ith LHS and plot them in a scatter plot, see blue dots in Fig. 2. It can be seen that the effective area in invariant

9
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Fig. 2. Example of unevenly spread samples in principal invariant space when mapping from the space of the deformation gradient space
which was evenly-sampled with LHS in the 17.5% input domain. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

space stretches over a narrow 3D band. Next, we generate 100 samples in the deformation gradient space with LHS
and transfer them into invariant space, see red dots in Fig. 2. We can observe that the resulting points are unevenly
distributed which will likely result in poor surrogate model performances in areas with low sample point density.
There is one additional problem associated with sampling in deformation gradient space as the mapping between
the two spaces is not injective, i.e. that two seemingly different samples in the deformation gradient space might
point towards exactly the same point in invariant space. Physically this can be understood by two distinct right
Cauchy–Green tensors corresponding to the same principal stretches. However, this is problematic since we do not
gain any new information when using two right Cauchy–Green tensors which point to the same invariants as inputs
to our stress response experiment. Two ways to overcome this issue are to:

• Sample in the space of the principal strains.
• Sample directly in invariant space.

However, when naively sampling with either one of these ideas we crucially lose any information about the training
domain that we have defined in the space of the deformation gradient. To illustrate this problem, Fig. 3 shows
the spread of 20,000 points in principal invariant space sampled from differently bounded regions of the nine-
dimensional deformation gradient space of Eq. (45). Additionally, it is obvious from Fig. 3 that the points in principal
space follow a specific pattern, i.e. some combinations of I1 − I2 − I3 values are not obtainable because they do
not correspond to a physical deformation gradient. Therefore, we aim to develop an approach that evenly spreads
points in the invariant space corresponding to a certain deformation gradient training domain following Eq. (45),
while maintaining that every generated sample corresponds to a physically attainable deformation.

In this paper we are the first to present a sampling strategy that allows generating evenly distributed physical
samples in a pre-determined region of the invariant space. Consequently, any trained surrogate model will be more
proficient by requiring less data. The proposed approach is based on simulated annealing [47]. Furthermore, the
presented approach generates evenly spread samples in isotropic invariant space. Keeping these samples fixed we
present a second level of sampling in the space of pseudo-invariants. This way it is possible to efficiently build
upon the sample points for isotropic materials when needing to extend to anisotropic materials, and the framework
allows efficient storing of sampled points in databases. In the following we will first restrict ourselves to generating
samples for the principal invariants I1 − I2 − I3.

The first requirement for the sampling approach is that a bounded region in the principal invariant space should
be known based on the required deformation gradient input domain. As there are different ways to achieve this, in
this work we propose to generate sufficiently many samples in the deformation gradient space, i.e. here 100,000,

such that it can be assumed that the resulting points in invariant space adequately span the bounded domain. Our

10
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Fig. 3. Spread samples in principal invariant space when mapped from 20,000 samples generated in deformation gradient space with different
δ bounds according to Eq. (45).

approximation is that the convex hull of all of these points is equivalent to the convex hull that we aim to sample
in. To generate the convex hull from a set of points in three-dimensions we refer to Chazelle [48]. The steps
undertaken to generate the convex hull are summarized in Algorithm 1. We could have alternatively chosen to
the alpha-shape method [49] to approximate the hull of the sampled points. However, this framework depends on
user-chosen parameter values which are not necessarily trivial to choose. Hence, for the purpose of this work we
found the convex hull approximation to be more robust.
Algorithm 1: Obtain convex hull of permissible invariant space points based on deformation gradient bounds.

Result: conv I : Convex hull of permissible points in invariant space

Input: Deformation gradient component bounds F L
i j and FU

i j , Number of random samples n

Sample F n-times
for i = 1 : n do

Obtain J = det Fi

if J > 0 then
C i = FT

i Fi

Obtain I1, I2, I3 from C i

Store invariants in Π [i, :] = [I1, I2, I3];
end

end
return conv I = conv(Π )
A convex hull built this way is shown in Fig. 2. From this visualization it can be noted that even though the

onvex hull is an enclosing envelope of all the sample points, it also encloses a part of the domain that does not
orrespond to physical deformations, e.g. the upper part inside the convex hull that has no samples in it. Hence,
ven when generating new points that lie inside the convex envelope we still need to ensure that these points are
hysical. A simple but often overlooked check for the physicality of an invariant set in isotropic materials is derived
rom the fact that all principal strains (λ1, λ2, λ3) defined as the square root of the positive eigenvalues of the right

Cauchy–Green tensor have to be real-valued. According to Currie [50] and Burnside and Panton [51] and under
consideration that three principal invariants (I1, I2, I3) are given we can define

H =
1
9

(I 2
1 − 3I2)

G =
1
3

I1 I2 − I3 −
2

27
I 3
1

β = arccos
(

−
G

3

) (46)
2H 2
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Following the theorem from [51][p.84, “Criterion of the Nature of the Roots of a Cubic.”] we can say that when
the two conditions

1. G2
+ 4H 3

≤ 0
2. β ∈ R

(47)

are fulfilled, the triplet of invariants (I1, I2, I3) correspond to a physical deformation. When these conditions are
met, the squares of the principal strains can be reconstructed as

λ2
1,rec =

1
3

I1 − 2
√

H cos
(

π − β

3

)
λ2

2,rec =
1
3

I1 − 2
√

H cos
(

π + β

3

)
λ2

3,rec =
1
3

I1 + 2
√

H cos
(

β

3

)
.

(48)

his, crucially (for the determination of the resulting stresses) allows us to reconstruct a right Cauchy–Green tensor
hat corresponds to (I1, I2, I3)

Crec =

⎡⎣λ2
1,rec 0 0
0 λ2

2,rec 0
0 0 λ2

3,rec

⎤⎦ . (49)

ow that we have defined an approach to evaluate the physicality of the points in the principal invariant space and
re also able to ensure that the points are inside the input domain in deformation gradient space, we can outline
he simulated annealing algorithm.

Let us assume that our goal is to generate N evenly sampled points in the invariant space. The algorithm starts
ith N − 1 randomly sampled points that are grouped in an array Π ∈ R(N−1)×3 inside the bounded invariant

pace, which could for example be coming from N − 1 sampled points in the deformation gradient space. When
hose initial N − 1 points are obtained, extend Π with one more sample which has the invariant values of the
ndeformed configuration (I1 = 3, I2 = 3, I3 = 1). This last sample is kept unchanged throughout the simulated
nnealing process in order to ensure the preservation of the stress-free undeformed configuration.

The basic idea of the algorithm is then to iteratively adjust the positions of the generated samples over NT

nnealing steps based on three checks:

1. The new position of the current sample increases the distance to the nearest neighbor of the remaining dataset
in comparison to its previous position.

2. The new sample position of the current point is inside the convex hull of the predefined bounded deformation
gradient domain.

3. The new sample position of the current sample corresponds to a physical point in principal invariant space.

To do this in each annealing step we loop over every point of the current sample set Π . For the current sample
j , we find the distance d to the closest data point in the remaining sample set {Π \ Π j }. After that, we utilize

the Box–Muller transform [52] in order to generate a random three dimensional step direction value n, which is
located on the surface of a three dimensional unit sphere. The Box–Muller transform is defined by the following
steps

Step 1 : u, v, w ∈ N (0, 1)

Step 2 : s =

√
u2 + v2 + w2

Step 3 : n =
1
s

(u, v, w).

(50)

Next, we sample a step magnitude s ∈ [0, T ] where T is the current step size. Now that we know the step
size and step direction we can obtain the next possible position of the sample Π j with p = Π j + sn. This point
position is accepted (Π j = p) when (i) its distance to the nearest neighbor in the remaining dataset is larger than
d, when (ii) it passes the physicality test of Eq. (47), and (iii) it is inside the convex hull of the pre-sampled points
of algorithm 1. If one of these conditions is not met, Π remains unchanged. This process is repeated N times
j T
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for every single point in the dataset. After each iteration the step size T is reduced by a constant factor T = αT
here 0 < α < 1. The full algorithm is summarized in Algorithm box 2.

Algorithm 2: Algorithm to obtain evenly spread points in invariant space based on physical constraints
nd deformation gradient bounds using a simulated annealing approach. Values chosen by the authors are
rovided.

Result: Π : Matrix of evenly spread points in invariant space

Input: Convex hull of permissible points conv I , Target number of points in invariant space N , Number of
annealing steps NT = 7, 000, Step size T = 1, Step size factor α = 0.9995

Sample N − 1 points randomly in conv I generating Π
Add vector of unstressed configuration I1 = 3, I2 = 3, I3 = 1 to Π
for i = 1 : NT do

for j = 1 : N do
Set Π − j

= {Π \ Π j }

Set d as distance to closest neighbor of Π j in Π − j

Randomly sample 3-dimensional unit sphere point n (eq. (50))
Set s ∈ U[0, T ]
p = Π j + sn
Set dtest as distance to closest neighbor of p in Π − j

t = 0, tu = 1
if Π j == [3, 3, 1] then

tu = 0
end
if p in conv I && dtest > d && p is physical (see eq. (47)) then

t = 1
end
Π j = Π j + s t tu n

end
T = αT

end
return Π

The effectiveness of the proposed approach is highlighted by an example. Consider a 17.5% training domain in
hich we aim to generate 200 samples. We use an initial step size of T = 1. The relevant hyperparameters that

nfluence the outcome of the optimization are the number of time steps and the step size factor. If the change of
he step size from one time step to another is small enough and the number of time steps is sufficiently high the
resented approach should always result in proficiently even sampling positions. We found that for the presented
ase 7500 time steps and a step size factor of α = 0.995 fulfills these requirements. Alternatively, the process
an be stopped after the particles no longer change their positions, i.e. the step size is small enough. The sample
ositions over the process after a different number of steps have been completed are shown in Fig. 4(c) along with
he convex hull of the bounded domain in gray. It can be seen that the initially generated samples are not spread
venly in the intended region. However after 7500 steps a space-filling sample distribution can be observed.

.1. Extension to anisotropic materials

In the previous section we have discussed how to generate evenly spaced physical samples inside a bounded
omain. However, the presented algorithm is only applied to the principal invariants (I1, I2, I3) and is not applicable
o finding equivalent space-filling components of the pseudo invariant space that includes pseudo-invariants (e.g. in
he transversally isotropic case I4, I5). This is due to the fact that there is, to the best of the authors knowledge, no
irect analytical check for the physicality/reachability of the quintuple (I1, I2, I3, I4, I5), i.e. if a specific combination
f the five invariants is realizable with real eigenvalues of the Cauchy–Green tensor where (I1, I2, I3) are inside a

ounded domain. In Fig. 5 we sampled 10,000 samples in deformation gradient space for different training domains

13
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(

Fig. 4. Selected steps of the proposed minimax (space-filling) distance sampling approach with 200 sample points in invariant space
I1 − I2 − I3). Convex hull of permissible sample point positions of 17.5% input range in deformation gradient space in gray. Step size

T = 1, step size factor α = 0.9995.

Fig. 5. Spread of pseudo-invariants with increasing training domain and a0 =
1

√
6

[1, 2, 1]T . 10,000 samples are plotted in deformation
gradient space with LHS in each bounded domain. Last two components of the quintuple (I1, I2, I3, I4, I5) are plotted.

(corresponding to increasing values of δ ∈ [0.15, 0.45] from Eq. (45)) and plotted the transversally isotropic pseudo-
invariants (assuming a known referential vector a0 =

1
√

6
[1, 2, 1]T ) for the generated samples. We can see that all

of the pseudo-invariant values follow a clear pattern (not all points are reachable, i.e. the values I4 = I5 = 2) and
furthermore that the convex-hull of the points would not be a good enough indicator as to where pseudo-invariant
points can reside. Hence we need to come up with an additional sampling algorithm for the pseudo-invariant space,
which does not change the positions of the primary invariants. That the samples in the pseudo-invariant space must
also be evenly distributed can be seen from Figs. 6(a) and 6(b). In Fig. 6 we again sampled 10,000 points from the
14
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Fig. 6. Initial positions and positions after minimax approach with 10,000 iteration steps of 500 samples projected onto I4 − I5 plane in
red (a0 =

1
√

6
[1, 2, 1]T ). Positions of 10,000 test points generated in 17.5% training range in deformation gradient space with LHS and then

projected onto I4 − I5 plane in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

eformation gradient space with LHS in a 17.5% training domain (blue dots) as well as an additional 500 separate
amples (red) dots. It can be seen that especially the outer edges of the envelope surrounding the blue dots are not
ell preserved by the 500 samples.
Next, we used algorithm 2 to sample 500 evenly spaced points in the primary invariant space. For each of these

riplet of (I1, I2, I3) we used Eqs. (48) and (49) to obtain corresponding right Cauchy–Green tensor. Since we know
the referential vector a0 we are able to obtain the pseudo-invariant values (I4, I5) for all of the 500 samples which
re plotted in Fig. 6(b). It can be seen that even though we have an excellent spread in the primary invariant space
he obtained samples in pseudo-invariant space are very clustered and are not at all space-filling.

Hence, we propose an additional algorithm based on simulated annealing that is able to generate evenly spaced
oints in the pseudo-invariant space. The final points generated by this algorithm (using the same settings as
escribed for Figs. 6(a) and 6(b)) are shown in Fig. 6(c) which preemptively highlights the performances of the
ollowing procedure.

The idea behind this approach, in the context of anisotropic material response, is based upon the fact that simple
otations of the right Cauchy Green tensor result in different pseudo-invariant values while leaving the principal
nvariants unchanged. To emphasize this we look at the following example. Consider a right Cauchy–Green tensor
o be given by

C =

⎡⎣1.4 0 0
0 1.1 0

⎤⎦ (51)

0 0 0.8
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which using a0 =
1

√
6
[1, 2, 1]T has the invariant quintuple (3.3, 3.54, 1.232, 1.1, 1.24). Next consider this tensor to

e rotated in y − z plane around an angle of 0.1 rad, i.e.

Crot = RT
α=0.1C Rα=0.1 ≈

⎡⎣1.4 0 0
0 1.097 −0.029
0 −0.029 0.803

⎤⎦ (52)

hich has the approximate invariant quintuple (3.3, 3.54, 1.232, 1.078, 1.199). Hence, this observation allows us to
enerate different pseudo-invariant values from known (and fixed) right Cauchy–Green tensors. We take advantage
f this and build a simulated annealing algorithm around the three angles defining the rotation matrices acting on
he three planes x − y, x − z and y − z in euclidean space. This has the advantage that the generated quintuple
f values (I1, I2, I3, I4, I5) is always reachable from the primary invariants and the already obtained evenly spaced
rimary invariants do not need to be changed. This algorithm starts with the knowledge about N evenly spaced
rincipal invariants Π I so ∈ RN×3 in some confined space with the requirement that one of the components of Π
as to correspond to the invariants of the undeformed configuration. Then, using Eqs. (48) and (49) we obtain the
ight Cauchy–Green tensor C j , j = 1, . . . , N in principal space for each of the N samples and the corresponding
seudo-invariants which are stored in Π ani ∈ RN×2. For simplicity we consider the three rotation matrices

Rx =

⎡⎣cos αx − sin αx 0
sin αx cos αx 0

0 0 1

⎤⎦ , Ry =

⎡⎣ cos αy 0 sin αy

0 1 0
− sin αy 0 cos αy

⎤⎦ ,

Rz =

⎡⎣1 0 0
0 cos αz − sin αz

0 sin αz cos αz

⎤⎦ .

(53)

ach component of Π ani gets assigned to one instance of the three rotation defining angles which are initially
ndividually sampled in U[0, 2π ] and stored in the angle matrix A ∈ RN×3.

Then, similarly to Algorithm 2 the process iterates over NT loops where each loop consists of the following
rocedure. Loop over all elements of Π ani . For each component Π j,ani ⊂ Π ani find the distance d to the current
losest neighbor in the remaining dataset. Then using Box–Muller transform of Eq. (50) sample a random point
n the three dimensional unit sphere which acts as the step direction n of the current sample. Then, knowing the
urrent step size T , sample s = U[0, T ]. The next possible position of the angle A j that is assigned to the current
oint can then be obtained with p = A j + sn. In order to check if this set of angles leads to a pseudo-invariant
ombination that is further away from the closest point than d, we obtain the rotated right Cauchy–Green tensor of
he current point with

C test = RT
x ( p[1])RT

y ( p[2])RT
z ( p[3])C j Rz( p[3])Ry( p[2])Rx ( p[1]). (54)

rom this tensor we can again obtain I4,test and I5,test and use these values to check the distance to the closest
eighbor in the remaining dataset {Π ani \ Π j,ani }. If this distance is larger than d , set A j = A j + sn and

j,ani = [I4,test , I5,test ]. If this is not the case, then leave all values unchanged. After each loop over all points of
ani reduce the step size with T = αT where 0 < α < 1. The full approach is summarized in algorithm box 3.

In order to obtain stress responses from some sample (I1, I2, I3, I4, I5), a corresponding right Cauchy–Green
ensor needs to be available. As previously discussed, no analytical version analogue to the one for isotropic

aterials (Eqs. (48) and (49)) has been presented in the literature. For this reason we propose an approach based on
umerical optimization. The right Cauchy–Green tensor is a solution of the constrained nonlinear equation system

find C⋆ such that

⎡⎢⎢⎢⎢⎣
tr(C⋆) − I1

0.5(tr(C⋆)2
− tr((C⋆)2)) − I2

det(C⋆) − I3
tr(AC⋆) − I4

tr(A(C⋆)2) − I5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦
lb ⋆ ub

(55)
where C i j ≤ C i j ≤ C i j
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Algorithm 3: Obtain evenly spread samples when pseudo-invariants are present. Values chosen by the authors
are provided.

Result: Π ∈ RN×5 : Matrix of evenly spread points in isotropic-invariant (I1, I2, I3) and pseudo-invariant
(I4, I5) space

Input: Target number of points in invariant space N , Number of annealing steps NT = 10, 000, Step size
T = 2π , Step size factor α = 0.9995, Evenly sampled points in isotropic invariant space
Π iso ∈ RN×3 based on Algorithm 2

for j = 1 : N do
Obtain C j from Π j,iso using equations (48) and (49)
Set Π j,ani = [I4, I5] obtained from C j

end
Initialize angle matrix A ∈ RN×3

∈ U[0, 2π ]

Set Rx (αx ) =

⎡⎣cos αx − sin αx 0
sin αx cos αx 0

0 0 1

⎤⎦, Ry(αy) =

⎡⎣ cos αy 0 sin αy

0 1 0
− sin αy 0 cos αy

⎤⎦,

Rz(αz) =

⎡⎣1 0 0
0 cos αz − sin αz

0 sin αz cos αz

⎤⎦
for i = 1 : NT do

for j = 1 : N do
Set Π − j

ani = {Π ani \ Π j,ani }

Set d as distance to closest neighbor of Π j,ani in Π − j
ani

Randomly sample 3-dimensional unit sphere point n (eq. (50))
Set s ∈ U[0, T ]
p = A j + sn
Set C test = RT

x ( p[1])RT
y ( p[2])RT

z ( p[3])C j Rz( p[3])Ry( p[2])Rx ( p[1])
Set pani = [I4, I5] obtained from C test

Set dtest as distance to closest neighbor of pani in Π − j
ani

if dtest > d then
A j = A j + sn
Π j,ani = pani

end
end
T = αT

end
return Π = [Π iso,Π ani ]

where the upper and lower bounds Cub and C lb are known from the training domain of the deformation gradient.
A real solution can be obtained with any nonlinear solver (such as the fsolve function of scipy [53]) when the input
quintuple (I1, I2, I3, I4, I5) is a reachable value which is guaranteed when obtaining the samples from Algorithm 3.

Overall, the presented sampling approach is generally applicable and is not specific to certain constitutive
esponses. Hence, the introduced method can generate samples for a multitude of different problems.

. GaussIan process regression

Gaussian process regression has recently gained more popularity for building surrogate models for constitutive
aws. This is due to their convergence guarantees, deep stochastic background and excellent performance for out-
f-sample model predictions [26]. They have also evolved into a common choice for building active learning
odels [54].
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Consider a general dataset consisting of N data points to be given by

D = {xi , yi }
N
i=1 (56)

here x ∈ Rni and y ∈ Rno . The output vectors can be recombined to build the output vector ytp
∈ Rn0 N such

that

ytp
=
[
y1 . . . yN

]T
. (57)

Assume that the input output relationship can be approximated by a realization of a Gaussian process given by

Y (x) = µ + AZ , (58)

with the output Y ∈ Rn0 , the mean µ ∈ Rn0 , a positive-definite matrix A ∈ Rn0×n0 (the first set of unknown
parameters), and a vector of mutually independent Gaussian processes Z ∈ Rn0 [55].

The correlation decay between two inputs x and x′ is typically modeled by a user-defined autocorrelation
function. Laurent et al. [56] identified the class of Matérn kernels as the most proficient autocorrelation formulation
for computer experiments when no prior knowledge is available. In this, we restrict ourselves to the so-called Matérn
3/2 function [57] which reads

R(x, x′, θ i ) =

ni∏
k=1

(
1 +

√
3|xk − x ′

k |

θi,k

)
exp

(
−

√
3|xk − x ′

k |

θi,k

)
, (59)

here θ =
[
θ1, . . . , θno

]T is a vector of unknown and trainable parameters
Consider the correlation matrix R ∈ Rno×no to be given by

R(x, x′) = diag{R(x, x′, θ1), . . . , R(x, x′, θn0 )} . (60)

hich allows us to write the covariance between two input values as

Cov(Y (x), Y (x′)) = AR(x, x′)AT (61)

nd the block-component-wise entries of the covariance matrix Σ ∈ Rno N×no N by

[Σ ]i j = Cov(Y (xi ), Y (x j )). (62)

hen, a prediction with GPR at the input point x⋆ can be made with

ŷ(x⋆) = µ̂ + Π (x⋆)Σ
(

ytp
− Fµ̂

)
, (63)

ith F ∈ Rn0 N×no = 1N ⊗ Ino where 1N ∈ RN is a vector of ones and In0 ∈ Rn0×n0 is a unit matrix. Furthermore,
∈ Rno×no N and µ̂ ∈ Rno are defined as:

Π (x⋆) =
[
Cov(Y (x⋆), Y (c1)) · · · Cov(Y (c⋆), Y (cN ))

]
, (64a)

µ̂ = (FTΣ−1F)−1FTΣ−1 ytp . (64b)

The prediction output of Eq. (63) is dependent on the values of the unknown trainable parameters A and θ .
o simplify this procedure we assume in the following that the outputs are uncorrelated which means A is a-
riori defined as a unit matrix. The remaining parameters θ can be found using a restricted maximum likelihood
pproach [55]

θ̂ = arg max
θ⋆

[
−

1
4

log(|Σ |) log(FTΣ−1F)+

−
1
2

( ytp
− Fµ̂)TΣ−1( ytp

− Fµ̂)
]

.

(65)

fter finding the best parameters, the GPR regression model is fully defined and predictions can be obtained by

sing Eq. (63).
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Local approximate Gaussian process regression
Due to its setup as a nonparametric model, GPR suffers from computational intractability in the big data domain

>1000 data points) [26]. Based on the works of Gramacy and Apley [58],Kleijnen and van Beers [59], the authors
n their recent work [29] introduced local approximate GPR (laGPR) to the field of data-driven constitutive models.
his technique keeps the major advantages of the general GPR method but makes it tractable for larger datasets.
he basic concept is build around the premise that points closer to an input of interest x⋆ have more influence to

its output prediction than points far away from it. This can be understood when observing the properties of the
autocorrelation function of Eq. (59), if the elementwise difference between two points is significant the exponential
will result in R(x⋆, x′, •) = 0. Other autocorrelation functions show similar effects, see e.g. [60]. The idea in laGPR
is to find a subset of cardinality n ≪ N of the whole dataset with N training points with which a locally accurate
surrogate model can be obtained. These input points are called inducing points. Different techniques to find the
inducing point set have been proposed and investigated in the literature. Different variations of formulations for the
inducing point set Xn have been explored and tested in the literature, see [61].

Specifically, Kleijnen and van Beers [59] simply use the n nearest neighbors of the point x⋆ in the whole dataset
as measured by the euclidean distance

d(x⋆, x) =

√
(x⋆ − x)T (x⋆ − x). (66)

ecently, it was shown by the authors that this formulation is able to accurately predict complex constitutive
elationships based on data [29]. One negative side effect is that each output prediction requires a retraining of
he unknown parameters of the local GPR model. However, as pointed out in [59], even with around 100 points in
he local dataset the prediction can basically be done in real-time when choosing an efficient optimization algorithm.

. Numerical tests

This section compares the presented physics-informed surrogate modeling approach for isotropic and anisotropic
aterials with the classical mapping approach. Furthermore, the efficiency of the proposed space-filling sampling

pproach is highlighted. For all the following numerical tests consider the training domain to be 17.5% which means

F i j ∈ [F L
i j , FU

i j ] where

{
0.825 ≤ 1 ≤ 1.175, when i = j
−0.175 ≤ 0 ≤ 0.175, when i ̸= j.

(67)

or testing, we randomly sample Nt = 20,000 points in this nine-dimensional training domain using LHS. With
eference to these points we define the mean stress output error as

ES =

√ 1
6Nt

6∑
i=1

Nt∑
j=1

|ŝ j
i − s j

i |
2

(68)

here s = [S11, S12, S13, S22, S23, S33]T .
All results were obtained with MATLAB [62].1 The utilized local approximate GPR model is a modified version

f the code provided by Lophaven et al. [63]. In order to showcase the efficiency of the presented approaches we
eliberately choose the isotropic and anisotropic stress outputs to span different orders of magnitude. As described
n Section 4 evenly-spread points in the deformation gradient space might have the same exact invariants and would
herefore not yield any new information for the training process. Even more problematic is that the covariance matrix
f GPR and therefore of laGPR gets ill conditioned when two points in the training dataset are too close to each
ther [60]. Hence, when obtaining input points in the invariant space from the deformation gradient we remove
uplicate points from the dataset. We define two points x1

∈ Rd and x2
∈ Rd as being a duplicate if

|x1
i − x2

i | < 0.01, ∀ i = 1, . . . , d. (69)

his results in the fact that the size of the dataset used to train the classical mapping approach is always smaller
han or equal to the one for the physics-informed mappings of Eqs. (26) and (38).

1 After acceptance of the paper the codes of this manuscript will be released under https://github.com/FuhgJan/invariant DD CM. Python
versions of the code can be made available under reasonable request.
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Fig. 7. Normalized error values for isotropic hyperelastic law using 20,000 test points in input range of 17.5% sampled with LHS. Three
mapping approaches: the classical mapping approach (6 → 6), mapping in the invariant space (3 → 3) and mapping in the invariant space
where the input points have been sampled with the proposed space-filling technique (3 → 3 SF sampled). Points have been sampled in
deformation gradient space for 6 → 6 and then projected onto invariant space which reduced the number of points. Space-filling sampling
has been done with the number of points in invariant space.

6.1. Isotropic example

Consider the compressible Mooney–Rivlin model of the form [31]

Ψ = γ1(J − 1)2
− 2(γ2 + 2γ3) ln J + γ2(I1 − 3) + γ3(I2 − 3) (70)

which yields the stress

S = 2(γ2 + γ3 I1)I − 2γ3C + (2γ1 J (J − 1) − 2(γ2 + 2γ3))C−1 (71)

where we choose γ1 = γ2=1.0, and γ3 = 0.2. In the following we use this analytical model to test the performance
of the presented physics-informed surrogate modeling approach for the isotropic case with and without space-filling
sampling and compare the results to the classical mapping approach as described in Eq. (23).

For all the following results the classical mapping was trained with 60 inducing points which is inline with
the suggestion of Kleijnen and van Beers [59]. Since for all the investigated cases the number of points for the
physical-mapping never exceeded 360 standard GPR was used for all of the following cases. Fig. 7 shows the error
for the 20,000 randomly sampled points with LHS for the classical mapping approach (6 → 6), the physics-informed
mapping approach (3 → 3) and the physics-informed mapping approach where the inputs are generated with the
space-filling sampling technique of Algorithm 2 (3 → 3 SF sampled). For (6 → 6), between 500 and 4500 points are
sampled in the nine-dimensional deformation gradient space of Eq. (67) with TPLHD. Using Eq. (69) the resulting
invariant space datasets are then checked for duplicates, which results in datasets of sizes ranging between 180
and 360 samples. These samples are used to train the (3 → 3) approach. Using the same number of points as for
(3 → 3) the Algorithm 2 is used to generate space-filling samples which were used to build the datasets for (3 → 3
SF sampled). From Fig. 7 it can be seen that even though the surrogate models in invariant space were trained
on vastly lower number of points they perform better by around a factor 10 compared to the classical mapping
approach. Additionally, the datasets that were created with the space-filling algorithm show large improvements in
comparison to the plain (3 → 3) approach which uses samples that were generated in the deformation gradient
space.

The differences between (3 → 3) and (3 → 3 SF sampled) are further highlighted in Fig. 8 which plots the
normalized error values in invariant space for the 20,000 test points and 2500 deformation gradient training points
(275 training points in invariant space) and which emphasizes the location of the largest errors. As expected, the
areas of the largest errors of the (3 → 3) approach (Fig. 8(a)) are around the boundaries of the test data domain
since the invariant is not sampled evenly. The errors of the space-filling dataset as shown in Fig. 8 are uniformly

lower and especially the boundary regions are better represented. Here, the functional relationships that we intend
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Fig. 8. Normalized error over 20,000 test points in 17.5% input range surrogate models trained with 275 sample points (a) 2500 points
(sampled with TPLHD) in deformation gradient space and then projected onto invariant space which results in 275 samples when reducing
duplicates (3 → 3), (b) 278 sampled with the space-filling sampling approach of Algorithm 2 (3 → 3 SF sampled).

o learn between the invariants and coefficients are rather simple. We expect the space-filling sampling scheme to
rovide an even more significant improvement in terms of error as these maps become more complex.

Consider the following applied deformation gradient range defining uniaxial tension/compression

Fapp = I + F11,appe1 ⊗ E1, with F11,app ∈ [−0.8, 0.8] (72)

ot explicitly part of the training dataset, and which in fact applies loads far outside the input training domain
f Eq. (67). The ground truth responses to this load in directions S11 and S22 as well as the predicted responses
sing 2500 TPLHD points for (6 → 6) and 278 points for (3 → 3) and (3 → 3 SF sampled) after removing the
uplicates are shown in Figs. 9(a) and 9(b). The corresponding absolute errors between the predicted and actual
esponses for these two cases are shown in Figs. 9(c) and 9(d) respectively. It can be seen that all of the investigated
pproaches are able to accurately capture the stress response within the training region (marked by the dotted lines
n Figs. 9(a) and 9(b)). Notably, outside of the training domain the physics-informed approaches perform with
ignificantly better accuracy compared to the classical mapping counterpart. Additionally, the space-filling approach
hows better results than the normal (3 → 3) mapping. This is the first example where physics-informed data-driven
onstitutive modeling in the context of hyperelasticity is shown to generalize proficiently. The initial training region
orresponds to 17.5% but the results of Figs. 9(a) and 9(b) are shown in a testing region of 80%. Interestingly, it
an be seen that the classical approach, which is solely data-driven provides non-physical results beyond the 17.5%
raining region.

.2. Transversely isotropic example

Consider the following analytical transversely isotropic hyperelastic law suggested by Bonet and Burton [64]
hich is given as

Ψ = [α + β log J + γ (I4 − 1)](I4 − 1) −
1
2
α(I5 − 1), (73)

ielding the corresponding second Piola–Kirchhoff stress tensor

S = 2β(I4 − 1)C−1
+ 2[α + 2β log J + 2γ (I4 − 1)]a0 ⊗ a0

− α (Ca0 ⊗ a0 + a0 ⊗ Ca0)
(74)

here a0 =
1

√
6
[1, 2, 1]T is a unit vector representing the direction of reinforcement, I4 = C : a0 ⊗ a0 the fourth

principal invariant, and normalized shear, bulk and fiber reinforcement moduli of α = 1.585e5, β = 5e4 and
= 1.8e5. This analytical model is used to test the performance of the presented physics-informed surrogate

odeling approach for the anisotropic materials with and without space-filling sampling (here termed (5 → 6)
nd (5 → 6 SF sampled) respectively). These results are compared to the classical mapping approach (6 → 6) as
21
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Fig. 9. Illustrative stress outputs for the isotropic case. Thicker horizontal dashed lines symbolize positions of 17.5% training domain.

escribed in Eq. (23). For all the following results all mappings were trained with laGPR and 60 inducing points.
ig. 10 shows the errors between the three cases for 20,000 test points in the training domain of Eq. (67) generated
ith LHS. Similarly to the isotropic case the mapping (6 → 6) is trained on datasets consisting of 500 to 4500

points which are sampled in the nine-dimensional deformation gradient space of Eq. (67) with TPLHD. These
datasets are then checked for duplicates using Eq. (69) which reduces the size of the datasets for training from the
invariant space to a range between 500 and 3500 samples. These define datasets which are in turn used to train
the (3 → 3) approach. An equivalent number of samples is then respectively generated using the Algorithm 2 to
obtain datasets consisting of space-filling samples in primary and pseudo-invariant space which are used to train
(3 → 3 SF sampled). It can be seen that training the surrogate in a physics-informed way decreases the error

ramatically while at the same time less training samples are needed. Here again, the datasets that were generated
n a space-filling manner outperform the datasets that were sampled in deformation gradient space.

Fig. 11 shows raw stress and error output values when the following deformation gradients yielding simple shear
re applied

Fapp = I + F12,appe1 ⊗ E2, with F12,app ∈ [−1, 1]. (75)

This load path is not explicitly part of the training dataset, and even applies loads far beyond the input training
domain of Eq. (67). Figs. 11(a) and 11(b) show the ground truth stress responses as well the predicted stresses in
directions S11 and S12. The respective absolute errors are shown in Figs. 11(c) and 11(b). The shown results are
based on a (6 → 6) model trained with 2000 training points and physics-informed models based on a corresponding
1480 points. Similarly to the isotropic case, it can be seen that all the surrogate models are able to capture the
response inside the training domain (dotted vertical lines) in a proficient way. However outside the training domain
the classical mapping approach becomes crucially unreliable while the physics-informed metamodels are able to
follow the true response surprisingly far away from the main training domain once again confirming their ability
to efficiently generalize. This indicates that training models that guarantee material frame indifference, material
22
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m

Fig. 10. Normalized error values for anisotropic hyperelastic law using 20,000 test points in input range of 17.5% sampled with LHS. Three

apping approaches: the classical mapping approach (6 → 6), mapping in the invariant space (5 → 6) and mapping in the invariant space
where the input points have been sampled with the proposed space-filling technique (5 → 6 SF sampled). Points have been sampled in
deformation gradient space for 6 → 6 and then projected onto invariant space which reduced the number of points. Space-filling sampling
has been done with the number of points in invariant space.

Fig. 11. Illustrative stress outputs for the anisotropic case. Thicker horizontal dashed lines symbolize positions of 17.5% training domain.

symmetry and thermodynamic consistency allows them to intrinsically learn the involved physics of the material
law. Here again, the space-filling sampling approach shows better performances than the model that was trained
from the dataset that was sampled in the deformation gradient space.
23
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7. Discussion and outlook

This paper presents a technique to obtain physics-informed data-driven surrogates for hyperelastic material
odels based on training data from isotropic and anisotropic materials. The idea is based on writing the second
iola–Kirchhoff stress as a linear combination of an irreducible basis of stress generators. This allows us to build
etamodels that map from the corresponding invariants of the input to the scalars of the linear combination.
he trained models are then able to inherently capture five physical concepts: the preservation of the stress-free
ndeformed configuration, local balance of angular momentum, material frame indifference, material symmetry
onditions and thermodynamic consistency. The surrogate modeling technique of choice is an approach called local
pproximate Gaussian process regression which in contrast to neural networks is a non-parametric model with
onvergence guarantees.

It is shown that the presented technique vastly outperforms the classical mapping approach which maps the
ymmetric right Cauchy–Green tensor components to the symmetric components of the second Piola–Kirchhoff
tress tensor, without consideration of material frame indifference or material symmetry of the trained model.
urprisingly, the surrogates trained with the presented physics-informed concept were able to accurately capture
tress paths which reached far outside the training domain showcasing their ability to generalize efficiently.
urthermore a space-filling sampling technique is proposed that is able to generate evenly spread samples in the

nvariant space, for isotropic and anisotropic materials, based on some bounded deformation gradient domain. The
ampling technique was explained in detail and its effectiveness in comparison to randomly obtained samples
rom the deformation gradient space was highlighted for isotropic and anisotropic numerical examples. The major
imitations of the current approach are that the degree of anisotropy as well as the preferred directions of the material
ave to be known a-priori. Hence, in future works we aim to approximate these generally unknown quantities
nd study how the presented framework performs using these approximations. Furthermore, we are interested in
nvestigating the influence of very sparse datasets on the accuracy of the model.
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ppendix

ist of tensor gradient expressions

∂ I1

∂C
= I

∂ I2

∂C
= I1 I − C

∂ I3

∂C
= I3C−1

∂ I4

∂C
= A

∂ I5

∂C
= a0 ⊗ Ca0 + a0C ⊗ a0

∂ I
∂C

= 0 ⊗ 0

∂C
= I ⊗ I (76)
∂C
24
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∂ A
∂C

= 0 ⊗ 0(
∂C−1

∂C

)
i jkl

= −
1
2

(
C−1

ik C−1
l j + A−1

il A−1
k j

)
(

∂C2

∂C

)
i jkl

= δikCl j + Cikδ jl(
∂(AC + C A)

∂C

)
i jkl

= Aikδ jl + δik Al j(
∂(AC2

+ C2 A)
∂C

)
i jkl

= AikCl j + AimCmkδ jl + δikClr Ar j + Cik Al j
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