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In this paper, we address the problem of cooperative tracking of multiple heterogeneous targets
by deploying multiple and heterogeneous pursuers exhibiting different decision-making capabilities.
Initially, under infinite resources, we formulate a game between the evader and the pursuing team,
with an evader being the maximizing player and the pursuing team being the minimizing one.
Subsequently, we relax the perfect rationality assumption via the use of a level-k thinking framework
that allows the evaders to not exhibit the same levels of rationality. Such rationality policies are
computed by using a reinforcement learning-based architecture and are proven to form Nash policies
as the thinking levels increase. Finally, in the case of multiple pursuers against multiple targets, we
develop a switched learning scheme with multiple convergence sets by assigning the most intelligent
pursuers to the most intelligent evaders.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) and other types of au-
tonomous vehicles have been used in a plethora of services that
involve search and rescue, crop monitoring, traffic monitoring,
critical infrastructure inspections, and pursuing of encroachers in
no-fly zones (Valavanis & Vachtsevanos, 2015). The latter pertains
to the target tracking problem, wherein a single UAV or a team of
UAVs named pursuers is tasked either to capture or stay in close
contact with another UAV called target. However, concerning the
scenario involving a team of pursuers, coordination is needed for
ensuring collision avoidance and to guarantee that at least one
pursuer is always observing the target.

Related work. Considerable work has been done in the area of co-
ordinated standoff tracking of a ground target where the vehicles
are loitering around the target with the desired phase separa-
tion (Kokolakis & Koussoulas, 2021). Optimal pursuing policies
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have been developed in Quintero, Copp, and Hespanha (2016)
where fixed-wing aircrafts are equipped with cameras and co-
operate to achieve a multitude of goals; namely to reduce the
geolocation error and to track an unpredictable moving ground
vehicle. The authors in Anderson and Milutinovi¢ (2014) de-
veloped a stochastic control policy for maintaining a nominal
distance between a UAV and a ground-based target with an
unknown trajectory. However, in the aforementioned approaches,
the target is supposed to be non-strategic. In the event of a strate-
gic target, a game-theoretical approach is required (Basar & Ols-
der, 1999). The authors of Von Moll, Garcia, Casbeer, Suresh, and
Swar (2020) develop a game theoretical framework to account for
a scenario in which the pursuers attempt to prevent the evader
from escaping. In the work of Sun, Tsiotras, Lolla, Subramani, and
Lermusiaux (2017), a reachability-based approach is used to deal
with a pursuit-evasion differential game between one evader
and multiple pursuers in the presence of environmental distur-
bances. Three-dimensional Dubins curves for target assignment
and path planning for multiple underwater targets have been
studied in Cai, Zhang, and Zheng (2017). The authors of Bakolas
and Tsiotras (2012) propose a relay pursuit scheme for capturing
a maneuvering target by a group of pursuers distributed in the
plane by using Voronoi-like partitioning. The aforementioned
scheme was extended in Sun and Tsiotras (2017) to account
for environmental disturbances. A discrete-time pursuit-evasion
problem with sensing limitations was presented in Bopardikar,
Bullo, and Hespanha (2008). A decentralized, real-time algorithm
for cooperative pursuit of a single evader by multiple pursuers



N.-M.T. Kokolakis and K.G. Vamvoudakis

is given in Zhou et al. (2016). The aforementioned works involve
Dubins vehicles performing offline computations, suffer from the
curse of dimensionality, and do not consider vehicle hetero-
geneity and different levels of rationality that can evolve since
adversaries will not abide by a restricted set of actions. Moreover,
in many important real-world applications, it is necessary to
provide a more generalized treatment allowing for learning the
capabilities of heterogeneous evading players while executing
pursuing policies.

Most of the target-tracking and pursuit-evasion problems
(Von Moll, Casbeer, Garcia, Milutinovi¢, & Pachter, 2019) have
been formulated as Nash games (Arthur, 1994), which assume
that the pursuers and the evaders know the existence of the
game and the decision-making mechanisms of each other. Al-
though a team of pursuers can be endowed with behaviors
designed a-priori, they often need to learn new behaviors due
to the potential changes in the environment and heterogeneity,
thereby enabling autonomy (Vamvoudakis & Kokolakis, 2020).
Several recent experimental studies suggest that responses often
deviate systematically from equilibrium and that structural non-
equilibrium game models out-predict equilibrium. For instance,
the level-k model has successfully accounted for systematic devi-
ations from equilibrium behavior, such as coordination in market
entry games and overbidding in auctions (Strzalecki, 2014). One
of the first works on non-equilibrium game-theoretic behavior
has been reported in Fudenberg and Levine (1998). The work
of Erev and Roth (1998) and Roth and Erev (1995) constructs
a low-rationality game-theoretic framework in the context of
behavioral game theory (Camerer, Ho, & Chong, 2004). Structural
non-equilibrium models were applied for autonomous vehicle
behavioral training in Li et al. (2017) and Tian et al. (2018). The
authors in Kanellopoulos and Vamvoudakis (2019) developed a
level-k model for differential games for predicting adversarial ac-
tions. Early results (Section 4) of this paper appeared in Kokolakis,
Kanellopoulos, and Vamvoudakis (2020).

Contributions. The contribution of this paper is threefold. First,
we formulate the problem of target-tracking as a game in the
three-dimensional space with dynamics following Dubins. Under
the assumption of perfect rationality, we obtain the saddle-point
policies and develop a computationally efficient learning frame-
work to learn such policies in real time. Then, relaxing the perfect
rationality assumption, we develop a bounded rational frame-
work considering that the evaders and the targets have different
levels of rationality. Specifically, we introduce a level-k think-
ing model and an adaptive learning mechanism that provides
solutions in cases where players employ different levels of ra-
tionality. Finally, for the problem of multiple pursuers against
multiple evaders, we develop a switching learning scheme with
multiple convergence sets based on the idea that the highest-level
pursuers will be assigned to pursue the highest-level evaders.

Structure. The rest of this work is structured as follows. Section 2
formulates the problem of coordinated target tracking using co-
operative Dubins vehicles. In Section 3, we describe the problem
as a Nash game, which we term here as the perfect rational
game. This is relaxed in Section 4, giving rise to a bounded
rational game. Section 5 presents the evader assignment problem
addressing the case of multiple evaders and pursuers possessing
different decision-making capabilities. Simulation results are pre-
sented in Section 6 to demonstrate the efficacy of the proposed
framework. Finally, Section 7 concludes and provides future work
directions.
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Notation. The notation used here is standard. R* denotes the set
of positive real numbers. V and 3% are used interchangeably and
denote the partial derivative with respect to a vector x. Z2N*!
denotes the set of positive odd numbers while the set of positive
even numbers is denoted as Z?", I, denotes an identity matrix
of order n, block-diag [A1,...,A], A; € R" ™M i = 1,...,k
denotes a block-diagonal matrix, and 0., denotes an n x m
zero matrix. We define the open ball B, (x.) = {x e R"
lx — xe|| < ¢} and the closed ball Bg[xe] := {x € R" : || x — x| <
e}. The distance of a point x € R" to a closed set C € R", in
the norm || - ||, is defined as dist (xq, C) := infyec {||Xo — x||}, and
Pc (xp) = argmin,c {[lx — xo||} denotes the projection of x, on
C.

2. Problem formulation

Consider that a team of N heterogeneous cooperative pursuers
is tasked with pursuing a team of M heterogeneous uncooperative
targets, with N > M, whose kinematic models are represented by
a variant of the Dubins car model extended to a flying vehicle,
while the heterogeneity stems from the fact that they feature
different computational and cognitive skills.

Denote as NV := {1, 2, ..., N} the index set of the pursuers and
as M = {1, 2, ..., M} the index set of the targets. Before describ-
ing the challenging problem of multiple pursuers and multiple
evaders, we shall first start with 1 target and N homogeneous
pursuers and describe their models.

2.1. Dubins aircraft kinematics

Each pursuer i € A moves at a speed v;i € V; = {vy; €
R : |v| < v}, with 9; € R*, has a bounded heading rate
Uy, € ul//i = {llwi e R : |U¢i| < ﬁ‘//i}‘ with ﬂ‘//i € R+, and
a bounded flight path angle rate u,, € 4, = {u,, € R
lu,| < 1,}, with i, € RT. Denote the state of each vehicle by
g = [&l & & & Sé]T e R® i e N, which comprises
the position of each vehicle in p; = [£] & s;]T, its heading
€ = Y, and its flight path angle & := 1y, all of which are
measured in an inertial coordinate frame. Hence, the kinematics
of each vehicle is given for all t > 0 and i € N by

i . . T
&= [vi cosyicosy; wvisinyicosy;  wvisiny; Uy, uyi] .

The target is also modeled as a Dubins vehicle that moves at a
speed vy € V; = {v; € R : |v] < v}, with 3, € RT, with a
bounded heading rate dy, € Dy, = {dy, € R: |dy,| < dy,}, where
dy, € R*, and a bounded flight path angle rate d,, € D, := {d,, €
R : |dy| < d,,}, where d,, € R*. Denote the state of the target by
ni=[m m m na ns]' €RS, wherep, =[m m ]
is the position of the target in the same inertial coordinate frame
as the pursuing vehicles, 14 := ¥ is its heading, and ns := y; is
its flight path angle. Before we proceed, the following assumption
is needed.

Assumption 1. At t = 0, the pursuing vehicle is observing the
target and is not dealing with the problem of initially locating
the target. The maximum speed, the maximum heading rate, and
the maximum flight path angle rate of the target satisfy v; <
min{vy, ¥z, ..., O}, dy, < min{iy,, dy,, ..., Uy}, and d,, <
min{iy,, i, ... i, }, respectively. 0
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2.2. Relative kinematics

We will determine the relative motion of each pursuer with
respect to the target by expressing the position of each vehi-
cle with respect to the target frame, i.e., a non-rotating frame
attached at the moving target (pure mass point) with identical
orientation with respect to the inertial coordinate frame. We will
thus work in the spherical coordinates (r;, 6;, ¢;), where r; €
[0, 00) is the relative distance to the target defined as r; =

Ipi — pill = /%2 +y2 + 22, where x;, := & — 01, yr, = &} — ma,
zy; = 53 n3, 6; is the azimuth angle defined as 0, = arctan y"

¢; is the zenith angle defined as ¢; = arccos , Vi e N. By
differentiating r;, 6;, and ¢; while taking into account that x;, =
ricosf;sing;, yr, = r;sinf;sing;, and z;; = r;cos ¢;, one has for
allie N

f; = cos 6; sin ¢iX;; + sin ¢; sin O;y,, + cos ¢z, Vt > 0,
rif;= — sin ¢; sin OiX;, + cos 6; sin ¢y,
. 2y, — COS Pi
ripi= ————,

sin ¢;
Vi = Uy, Vi = Uy,

I.ﬂt = dwtv )./t = d)/t'

Letu; == [ uy, uy,]" be the input vector for the ith vehicle,
let d = [vt dy, dyt]T € D C R3 be the input vector for

the target, let u = [u] u} ul]" € u c R be the

augmented input vector of the pursuing vehicles, and let r :=
T
[m 6 &1 ¥1 v - v O O Yn o Y %]
€ R3¥+2 be the augmented state vector.
The augmented dynamics can be written as

I = F(r)+ G(r)u + K(r)d, r(0) =1, t >0, (1)
where F(r) := O;sn42)x1,

G(1) 05, (3n-3)
05,3 G(2) 05, (3n—6)
G(r):= : ,
05, (3n-3) G(N)
02,38
G'(i) 032
GA(i)
G(i) '
01 D
with G(i) = (cos 6; sin ¢; cos ¥; + sin ¢; sin 6; sin ;) cos y;+cos ¢;
siny;, G*(i) = (— sin ¢; sin 6; cos Y + cos ; sin ¢; sin ;) cos y; /i,

G(i):=

and G*(i) = — (siny; — cos ¢;G'(i)) /(sin ¢ir;), Vi € N, and
k() KI(0) 05
: . K4(i)
K(r):= : , K(i):= . )
( ) K(N) ( ) K3(l)
01 Db 023
with K'(i) = — (cos6; sin ¢; cos Y, + sin ¢; sin 6; sin ) cos y; +
cos¢;siny,, K?(i) = (sing;sin6;cos v, — cosé;sin ¢; sin ¥r)

cos y¢/r;, and K3(i) = (sin y + cos ¢iK (1)) /(sin ¢iry), Vi € N.
2.3. Game

Since a team of pursuers tries to collaboratively minimize the
three-dimensional distance from the target while the target tries
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to maximize it, we will formulate the target-tracking problem as
a two-player game, where the pursuers act as the minimizing
player and the evader as the maximizing one. In the case that the
players know the existence of the game, motivated by Quintero
et al. (2016), define the following cost functional

J(1(0), u, d) == /00 L(x(t), u(t), d(t))dt, vr(0),u, d,
0

where L(r, u,d) := Ry(u) — R4(d) + R:(r), Ri(r) = B

e

1
B2 Zl 1 ,2, with B1,8, > 0 being the weighting constants.
Specifically, the term being weighted by 8; enforces distance co-
ordination in order that one pursuer is always close to the target
to improve measurement quality and the term being weighted
by B, penalizes the individual pursuers’ distances to the target.
To enforce bounded pursuers’ inputs and bounded target’s input,
i.e, turn rate constraints, we use non-quadratic penalty func-

tions of the form R,(u) := 2YN, 23_1 Q,’( . z?l_l(vﬁ)dvﬁ +
I Hi - T (vi)dvyi + fo e v],)dvﬂ) and Ry(d) == 2 [} 9

dv, + Zfo eyt vz)ydvz + Zfo %95 (v3)ydvs, with welghtmg
factors o; € RT, Vi € N, y € R*. With a slight abuse of notation,
we can write the component -wise operatlons in compact form as
Ru(u) =2 [3' (97 ) Rvec(dv) and Ry(d) = 2[0 (05 ) rdv,

where R = block diag[o1ls, ..., QN13] r = y13 > 0, and
Yi(-), j € {1,2}, are one-to-one real-analytic functions used
to map R onto the intervals [—u,u], &t € {v;, iy, i,}, and
[—d, d], d € {v, dy,, dy}, respectively, satisfying 9;(0) = 0, j €
{1, 2}. Also note that R,(u) and R4(d) are positive definite because

~1(.), j € {1, 2}, are monotonic odd. For instance, one can pick
97 '(v) = dtanh~'(v/i) and ¥, '(v) = dtanh~'(v/d). Before
proceeding to the next section, the following definition is needed
for the agents involved in the game.

Definition 1. Perfectly rational (Nash) agents are defined as the
agents that know the existence of the game and the structure of
the decision-making mechanisms. O

Perfect rationality accounts for all players who can reason
perfectly about their situation while knowing that everyone else
shares the same capability.

Hence, we are interested in solving the following zero-sum
game

V*(r(t)) ;== min max/OO L(r(t), u(t), d(z))dz, vVt >0,
t

u(-) d(-)
subject to the dynamics given by (1).

3. Nash game

The saddle-point conditions are

Jrut,d) = rr;(a)x](r, ut,d) = m(i?](r, u,d%), vr, (2)
; uf-

subject to (1). Note that the function J(r, u*, d*) is termed as the
value function

J(r, u*, d*), Vr. (3)
Write the Hamiltonian function as
1%

av\"
H(r, —,u,d) := L(r, u, d) + (—) f, (4)
ar or

Vi(r) =
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with the optimal colst*(3) satisfying the Hamilton-Jacobi-Isaacs
(HJT) equation, H(r, daLr u*, d*) = 0, Vr, with a boundary condi-
tion V*(0) = 0. The saddle-point policies are given by

*

u*(r) .= argruréllng(r, . u,d")
1 av*
=—9,(=R'G"— ), wr, (5)
2 or
for the pursuers team, and
V*
d*(r) .= arg max H(r, ,ur, d)
deD ar
1 av*
=0 (= 'K'— |, vr, (6)
2 ar

for the target. The closed-loop dynamics can be found by substi-
tuting (5) and (6) into (1) to write

I = F(r) + Gu* + Kd*, r(0) =ro, t > 0. (7)

The next theorem characterizes the stability properties of the
equilibrium point of the closed-loop system (7) while providing
a sufficient condition on the existence of a saddle-point solution.

Theorem 1. Suppose that there exist a radially unbounded positive
definite function V* e C, policies (5) and (6), and L(r, u*(r), d*(r))
> 0, Vr # 0. Then, the zero solution r(t) = 0 to (7) is globally
asymptotically stable. Moreover, the policies (5) and (6) form a
saddle-point, and the value of the game is J(r(0), u*(r(-)), d*(r(+))) =
V*(r(0)).

Proof. The proof follows from Vamvoudakis, Miranda, and Hes-
panha (2016). =

4. Bounded rational game

In this section, we shall relax the assumption of perfect ratio-
nality as given in Definition 1 and leverage a framework inspired
by the work of Camerer et al. (2004), namely a level-k thinking
model. To obtain bounds on the optimal value of the performance
index for every level of rationality and prove convergence to the
Nash value V*(-) as the levels of thinking increase, we follow the
work of Leake and Liu (1967).

4.1. Level-k thinking model

4.1.1. Level-0 (anchor) policy

We will introduce the anchor policies for the level-0 agents
designed for a particular situation under the rationale that they
are non-strategic. For this case we will consider that the players
are both naive and do not know the structure of the game. In
fact, the level-0 target ignores the presence of the pursuer and
flies in a horizontal line (as in Quintero, Papi, Klein, Chisci, and
Hespanha (2010)), i.e.,, d = 0, while the level-0 strategy of the
pursuers relies on the belief that the target cannot be adversarial
and solves the optimal control problem

V(o) = min [ (Rute) + Ri(o)e.
u() Jo

subject to I = F(r) + Gu, r(0) = 1o, t > 0. The level-0 pur-

- 0y g [1p—1-TOVE
suer’s input is u°(r) ;== — (3R 'G 5 ), Vr, where the value
function VL?(-) satisfies the HJ-Bellman (HJB) equation, namely
2170
HY(r, 5, u°, 0) = 0.
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4.1.2. Level-1 policy

Subsequently, the intuitive response of a level-1 target is an
optimal policy under the belief that the pursuer assumes that
the target is not able to perform evasive maneuvers. Thus, we
define the optimal control problem from the point of view of
the target for the anchor input u = u°(r) as follows, Vd](ro) =
maxg) [, L(r(), u®(r), d(r))dr, subject to i = F(r) + Gu° +
Kd, 1(0) =19, t > 0.

The level-1 target’s input is computed as d'(r) = ( r-1

1
2

TV) . 1 e 1. Voo
K" = ), where the value function V;(-) satisfies H;(r, &, u”, d")

3
=0.

4.1.3. Level-k policies

To derive the policies for the agents of higher levels of ratio-
nality, we will follow an iterative procedure wherein the pursuers
and the target optimize their respective strategies under the
belief that their opponent is using a lower level of thinking. The
pursuers performing an arbitrary number of k strategic thinking
interactions solve the following minimization problem

Vi) = min [ 1), u(e), & (e, ®)
u(- 0

subject to

f=F1)+Gu+Kd“ ", r(0)=ro, t >0, 9)

Ak—1
where d*-1 .= 9, (%F‘U(TW%) is the policy of a level-(k — 1)

target.
Define the corresponding Hamiltonian as
vk

H(r, =2, u, d* ") :=L(r, u, )
ar

avk\T
+ (Ti) (F(r) + Gu + Kd*~1), Vvr, u.

The level-k policy of the pursuers is given by

u¥(r) ;= arg min H(r ovy u, d< 1
’ =72 T
1 vk
=0 (=R'GT—=4 ), wvr, (10)
2 ar
where the value function Vl’f(-) satisfies
vy
Hy(r, =, uf, d" 1) =0, vr. (11)

Similarly, the target of an arbitrary level-(k-+ 1) maximizes her re-
sponse given that the input of the pursuers is of level-k, i.e., solves
the maximization problem

(o]
Vi o) = max [ L),k e, (12)
: 0
subject to
i =F(r)+ Gu* +Kd, r(0) =10, t > 0. (13)
Define the corresponding Hamiltonian as
avk+1
Hyt (e, —4—, vk, d) :=L(r, u*, d)

ar

avk+l T
+ 8dl‘ (F(r) + Gu* + Kd), Vr, d.

The level-(k + 1) policy of the target is given by

k+1
Mukd)

d*t1(r) ;= arg max H* (1,
(r) &M M ( ar
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1 -1 TBVL;{H
=h |- K ——], Vr, (14)
2 or

where the value function Vk“( ) satisfies
8V:+1

H(Ij(+] ([_7 o

uk, d*1y =0, vr. (15)

Remark 1. Given this iterative procedure, the pursuers compute
the strategies of the target with an uncertain level of thinking
for a given number of levels. Furthermore, it is worth clarifying
that the pursuers operate in even-numbered levels of thinking,
whereas the evaders in odd-numbered levels of thinking. O

The following theorem provides sufficient conditions for the
existence of an optimal level-k policy as well as an explicit
computation of the value of the game at each level.

Theorem 2. Consider the system (1) under the effect of agents
with bounded rationality with policies given by (10) for the level-
k pursuers and (14) for the level-(k + 1) target associated with
the corresponding radially unbounded continuously differentiable
positive definite value functions (8) and (12), respectively. Assuming
that the policies (10) and (14) along with the value functions (8) and
(12) satisfy

u"(O) _ dk+1( ) =0,
Vi) = —Lr,u*, d" ) < 0, Vr #0, (16)
VEHI(r) = —I(r, u, d*T1) < 0, Vr #£0,
vk
H(r, =%, u¥, d“ ") =0, vr,
ar
3Vk +1
Hit(r, ad uk, dy = 0, vr,
vk
Hﬁ( ) ) >0, Vr,u, (17)
ar
avk+1
HiH(r, # u¥,d) <0, vr,d.

Then, the policies (10) and (14) render the zero solution r(t) = 0 to
(9) and (13), respectively, globally asymptotically stable. Moreover,
the game can be terminated at any level-k, and the value of the game
for the level-k pursuers and a level-(k + 1) target are given by

J(x(0), u¥, d*" 1) = V¥(x(0)), ¥ r(0),
J(x(0), u¥, @1y = ViT(x(0)), V r(0),

respectively. Finally, the policy (10) minimizes J(r(0), u, d*~') and
the policy (14) maximizes the cost J(r(0), u, d) in the sense that

J@(0), u, 1) = minJ(r(0), u, &), ¥ r(0),

J(0), u¥, dM1) = max(r(0). u¥, d), ¥ r(0).

Proof. By (16), it follows that the zero solution r(t) = 0 to (9) is
globally asymptotically stable. Let u be any stabilizing policy and
r(t), t > 0, be the corresponding solution to (9), then VL’,‘(r) =

(249) (F(r) + Gu + Kd*1), which implies that
L(x(t), u(t), d*~(x(t))) = — V,s(x(t)
AVK(r(t
o, 0y g
Thus, given any r(0), evaluating the level-k performance measure
yields
J((0), u, d* 1) =
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00 k
/ (=¥ + B o), Yl
0 ar

= — lim V¥(x(t)) + V(o)

t—00

o0 k
+ / HX(x(e), W) - e
0

u, d71(x(t))))dt

1
r(t)))dt.

o (x(t)))

However, since u is a stabilizing policy, it follows that lim;_, o, 1(t)

= 0, and since VL’,‘(r) is continuous, it turns out that lim;_ o Vlﬂ‘

(r(t)) = 0. Thus,

J(x(0), u, d 1) = V¥(x(0))

o] k
+ / i), )
0

d“1(x(t)))dt > VE(x(0)), (18)

or
because of (17). Finally, by substituting u = u* and using (11),
the relationship (18) yields J(r(0), u*, d~') = VX(rp), Vro. Ap-
plying similar analysis to the problem from the perspective of
the level-(k + 1) target, we conclude that d**! is a maximizing
policy. m

The next proposition benchmarks the value functions of level-
k pursuers and a level-(k + 1) evader against the optimal value
function V*.

Proposition 1.  Consider the radially unbounded continuously
differentiable positive definite value functions given by (8) for the
level-k pursuers and (12) for the level-(k + 1) target. Then, the
following holds

vE<vr <vitt

, Yk ez, (19)

Proof. The level-k pursuer’s policy is the best response to a
level-(k — 1) evader. In fact, it solves the minimization problem
described by (8), and hence

.](ra uk5 dk_l) <J(r, u, dk_l) < Vr7 u() (20)

However, the inequality (20) is true for any policy u(-), which
implies that it is true for u = u*. Thus, it yields

Jeuk, dhy < ey ur, dEY, v (21)
However, the Nash condition states that

J(r,u*, d) < J(r,u*, d*) < J(r,u, d*), Vr, (22)
where d(-), u(-) are any admissible policies. Consequently, tak-

ing the inequalities (21) and (22) into account yields J(r, u*,
d*=1y < J(r,u*, d 1) < J(r, u*, d*), Vr, and thus the left-hand
side of (19) follows since J(r, u¥, d*~1) = VX(r) and J(r, u*, d*) =
V*(r), Vr. Finally, similar arguments can be drawn for the level-
(k+ 1) target. =

Let V, be the set of all radially unbounded continuously dif-
ferentiable positive definite value functions of level-k pursuers
given by (8) and define V; as the set of all radially unbounded
continuously differentiable positive definite value functions of
a level-(k 4+ 1) target given by (12). We shall now provide a
sufficient condition establishing that the policies form a Nash
equilibrium as k — oo. To that aim, we need to define the
following bijective mappings:

(1) Ty : Vy — Y, \ VQ is defined for any V¥ € v, by V2 =

T, (V¥), Vk € 22V, and
(2) Tq : Vg — Va \ V} is defined for any V¥ € v, by Vé‘“ =
Ty (V§), Vk € Z2N*H1,

Lemma 1. Consider the sequences of the level-k value functions
denoted as {V"} —o J € {u, d}, generated by the mappings Ty(-), j
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{u, d}, respectively. Suppose that V* € C! is the unique positive
definite solution of the HJI equation and assume that the following
inequalities are satisfied for all k € 72N,

L(r, u*, d* ) < L(r, u**2, d*), v, (23)
L(r, u¥, ) > L(r, u**2, d*F3), Vr. (24)
Then, the following hold for all k € 7N,

VO<V2c VRV vt v, (25)
VizVize o>V > vEB S s v v (26)

Proof. Consider the sequence of the level-k pursuer’s value
functions denoted as {Vk} o Vk € 7?N, which is bounded from
above by the optimal value function V* by Proposition 1. Let V"
and V"+ 2 be the value functions of the level-k and level-(k + 2)
pursuers, respectively. Owing to (23) and by virtue of the HJB
equation, one obtains for all k € Z2N

—L(r, uk’ dk*‘l) > —L(r, uk+2’ dk+1) = VL’f > V1£<+2 =
o0 oo
/ VK(r(z))dr > / VK2(H())dr = VK < VR v,
t t

where 1(7), 1(t), YT > t, are the stabilizing solutions of the
systems i = F(r)+GuX+Kd*"!, i = F(r)+ Gu*t? +Kd*t!, respec-
tively, such that r(t) = 1(t) for some t > 0. Therefore, one can in-
ductively deduce (25), which in turn implies that {V"}k or Vke
Z*N . is monotonically increasing and convergent. However, it
remains yet to establish that the limit function of the increasing
sequence of the value functions {V¥}* . Vk € z?", is the Nash
value V*, i.e., we need to prove that V* = limy_ o VL’f. To this

. 4 T BV
= lim oo ub = =0 (IR7IGTHE )
. v
and d®° = limpoo dt! = 9, (%F ]KT‘Tdr), where V® =

limy_ 0o VK = J(r, u™®, d*) and Vd = limy_ o V' = J(r,u®
a*), whlch in turn yields V® = llm,Hoo VE = limy_ o VAT
However, u®(r) :— arg minyey, H(r, &Y = U, d°), while d*(r) :=
arg maxgep H(r, &= u°° d). Also, the value function V*° satisfies

the HJI equation H( 0 d*°) = 0, Vr, which is assumed
to admit a unique continuously differentiable positive definite
solution. Therefore, it turns out that V> = V*, Vr, and thus it
follows that u* = u*, d* =d*, Vr.

Finally, considering the level-(k 4+ 1) and level-(k + 3) evaders
and that (24) holds, similar conclusions can be drawn for the se-
quence of the level-k evader’s value functions denoted as
{V"}k .+ Vk € Z2N*1 leading to (26).  m

end, we can write that u®

Remark 2. Note that the assumptions that V* e (' and
vk, Vil e ¢!, k e z?N, imply that the game solutions and
the Hamlltomans are smooth and hence do not feature a singular
surface (Basar & Olsder, 1999) as in classical pursuit evasion
games that are time optimal problems (with bang-bang type
controls). This is in line with several works in the literature, in-
cluding Leake and Liu (1967), Vamvoudakis and Kokolakis (2020)
and the references therein. O

Remark 3. The rationale behind enforcing the sufficient condi-
tions (23) and (24) stems from Proposition 1. O

The following lemma reveals the properties of the bijective map-
pings Tj(-), j € {u, d}.

Lemma 2. LetY, Y* € V, such that Y* = T,(Y) and let
Y, Y* € vy, such that Y* = T, ( ) Then, the following hold:

Y <Y* <V, (27)

V<Y Y. (28)
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Proof. The result follows directly by (25) and (26). ®

The next lemma establishes that V* is the unique fixed point
of the mappings Tj(-), j € {u, d}.

Lemma 3. V* is the unique fixed point of T;(-), j € {u, d}, in the
sense that V* = T;(V*), j € {u, d}.

Proof. Invoking Lemma 2, it follows that V* < T{(V*) < V*, j e
{u, d}. Hence, it turns out that Tj(V*) = V*, j € {u, d}, which in
turn implies that V* is a fixed point of Tj(-), j € {u, d}.

Now, we shall demonstrate uniqueness via the next contra-
diction argument. Suppose, ad absurdum, that V* is not unique.
In other words, suppose there exists V e (Vi \ V) (N (Va \ V),
1% # V*, such that V= T(V) j € {u, d}. However, both V an V*
satisfy (27), i.

V<V <V, (29)
V* < VF V™, (30)

Multiplying (30) by —1 and then adding the resulting inequality
0 (29), one gets

V-V*<V-V*<o. (31)

On the other hand, both V and V* satisfy (28) as well, and
following similar lines as above, one obtains

0KV -V <V -V~ (32)

Consequently, adding (31) to (32) yields V — V* < 2(V —
V*) < V — V* which in turn leads to 2(V — V*) = V —
V¥ = V—-V* = 0 = V = V* which is a contradiction.
Hence, V* is the unique common ﬁxed point of the mappings
Tj(-), j € {u, d}. Finally, suppose, ad absurdum, there exist V, €
(VA V(0 \ V) (Y02 \ V) Vo # V7, and Vi (3 \ VN
(VAVI N (Vva\Vy)). Va # V*, such that V, = Ty(V,) and
Va = T4(V4). However, Lemma 1 reveals that the sequences
{V"} , Yj € f{u,d}, generated by Tj(-), j € {u,d)}, are
convergent Thus, noting that the limit of a convergent sequence
is unique leads to a contradiction. Hence, V* is the unique fixed
point of Tj(-), je {u,d}. ®

The next theorem provides the convergence properties of the
sequences of the level-k value functions {V"} , Vije{ud).

Theorem 3. Consider the sequences of the level-k value functions
denoted as {V]"}:i , Vj € {u,d}, and generated by the mappings
Ti(-), Vj € {u, d}, respectively. Suppose that the mappings Tj(-), Vj €
{u, d}, are continuous on Vj, Vj € {u, d}, and the inequalities (23),
(24) are satisfied. Then, the sequence {VX}* . Vk € Z?", is mono-

tonically increasing, whereas the sequence {V"};il , Vk € 72N+,
is monotonically decreasing, and both converge to V* pointwise on
R3N+2, Furthermore, the convergence is uniform on any compact set
G C RN,

Proof. The fact that the sequence {V"} o Yk € 72N, is increas-
ing, while the sequence {VX} . Vk € ZN*1 is decreasing stems
from Lemma 1. Yet, in the proof of Lemma 1, we established
that V®° = limy_, o VL’,‘ = limy_ VU’,‘“. However, by assumption,
the mappings Tj(-), j € {u, d}, are continuous on V;, j € {u, d},

which in turn implies that lime_ V¥ = limoo Ty (V) =
iMoo Ty (V) = Tu(limo V) = T, (V®) = V™ and
limg_ o0 Vg+3 = limg_oo Ty (V‘;H—l) = limgoe Ty (Vg_H) =
Ts (limes oo V1) = Ty (V) = V. However, by taking into

account Lemma 3, it follows that V> = V*. Therefore, it turns
out that both sequences converge to the continuously differen-
tiable optimal value function V* pointwise on R>N*2. Also, if
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we consider any compact set G C R®N*2, then both sequences
still converge to the continuously differentiable value function
V* pointwise on G. Furthermore, since we established that the
monotone sequences of continuous functions {Vj"}oo_o, Vije
{u, d}, converge pointwise on a compact set and the limit function
V* is also continuous, then the convergence is uniform on any
compact set G C R>V*2 by using Dini’s theorem. ®

The next corollary establishes that the policies form a Nash
equilibrium as the levels tend to infinity.

Corollary 1. Consider the pair of strategies at any level given by
(10) for the level-k pursuers and (14) for the level-(k + 1) target.
Suppose that the inequalities (23) and (24) are satisfied. Then, the
policies form a Nash equilibrium as the levels tend to infinity.

Proof. The result follows directly by taking Theorem 3 and
Lemma 1 into account, which state that u® = u*, d*° = d*, and
Ve =V*, Vr. 1

Remark 4. Note that the convergence of the iterative procedure
to the Nash value V* is guaranteed no matter what the anchor
policies are. As long as the conditions (23) and (24) are satisfied,
the generated sequences by Tj(-), j € {u, d}, will converge to V*
since it is the unique fixed point of Tj(-), j € {u,d}. O

Remark 5. The developed level-k thinking model for target
tracking not only accounts for a non-strategic target moving
in a straight line but even for an intelligent, highly adversar-
ial (Nash) target. This captures the behavior of any potential
type of target, allowing the pursuers to develop the proper
countermeasures. [

4.2. Learning-based coordination

The level-k pursuers and the level-(k + 1) target to compute
their policies (10) and (14), respectively, they need to have
available in advance the value functions Vlf(r) and Vd"“(r), re-
spectively. However, since it is impossible to compute a so-
lution of (11) and (15), we will utilize an actor/critic struc-
ture (Vamvoudakis & Kokolakis, 2020). Towards this end, initially,
we will construct a critic approximator to learn the optimal
value function that solves (11) and (15). Note that for the sake
of simplicity, we omit to declare the agent level of thinking in
the below analysis, and we will develop a learning algorithm
applicable to each level of rationality agent. Specifically, let 2 C
R>N*2 be a compact set such that 0_€ £2. We can rewrite the
optimal value function as V(r) = WTo(r) + (1), Vr € £2, where
¢ =1[p1 ¢ ... ¢n]" : R%N*T2 — R are the activation functions,
W e R" are unknown ideal weights, and ¢, : R°Vt2 — R is the
approximation error. Specific choices of activation functions can
guarantee that ||e.(r)|| < &, Vr € 2, with €. € RT (Vamvoudakis
& Kokolakis, 2020).

Since the ideal weights W are unknown, we define an approx-
imation of the value function as

V(r) == W(r), Vre @, (33)

where Wc € R" are the estimated weights. We rewrite (4)

N NT . nai
utilizing (33) as H(r, (%) We, u, d) == L(r, u, d) + WI 2 (F(r) +
Gu+Kd), Vre 2, u, d.
The approximate Bellman error due to the bounded approx-

imation error and the use of estimated weights is defined as

~ 2\ T A ~
e. = H(r, (%) W¢, u, d). An update law for W, must be designed
so that the estimated values of the weights converge to the

ideal ones. To this end, we define the squared residual error
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K. = %ef, which we want to minimize. Picking a tuning for the
critic weights according to a modified gradient descent algorithm

yields
W= g @tec(t)
’ (@™ (Ot + 1)°

where @ > 0 is a constant gain that determines the speed of
convergence and w := V@(F(r) + Gu + Kd). We use similar ideas
to learn the best response policy. For brevity, we denote lj(r), j €
{u, d}, where [,(r) = u(r) for the pursuers and lg(r) = d(r) for
the evader, which will allow us to develop a common framework
for the pursuers and the evaders. The feedback policy [i(r) can
be rewritten as l]’f(r) = W,;Tdnj(r) +e, VI € 82, j € {u,d},

(34)

where Wy € R"*M; is an ideal weight matrix with N, := 3N
and Ny, := 3, qb,j(r) are the activation functions defined similarly
to the critic approximator, and € is the actor approximation
error. Similar assumptions to the critic approximator are needed
to guarantee boundedness of the approximation error ;. Since

the ideal weighs W" are not known, we introduce VAV,}. e RN
to approximate the optimal control in (10) and (14) as
Ii(r) = W,;qb,j(r), vre 2, je {u,d. (35)

Our goal is to tune VAV,j so that the following error is minimized,
K, = %e,Tje,j, j € {u, d}, where e, := VAV,}Tqb,j —7]‘-/, j € {u, d}, where
1V is a version of the optimal policy in which V is approximated
by the critic’s estimate (33), i.e.,

L | (GReTveT). =,
02<%F-11<TV$TWC), j=d.

Note that the error considered here is the difference between the
estimate (35) and versions of (10) and (14). The tuning for the
actor approximator is obtained by a modified gradient descent
rule given by

Wiy = —aydye), j e (u.dy, £ >0, (36)

where o > 0 is a constant gain that determines the speed of
convergence.

After the training process, since each agent has limited re-
sources, she will have a finite number of level-k policies available.
Hence, the following definition is needed to proceed with the
next subsection.

Definition 2. Define C as the index set including the trained
policies for the different levels of an agent. Then, the agent is

defined as level-« where « := max(C). O

Remark 6. According to Definition 2, each agent has available
an indexed family of trained level-k policies, but the maximum
element of the index set determines her level of rationality.
Hence, we should not confuse the level of rationality of each
agent with the level of rationality of the policy that is used during
rounds of the game, i.e., a level-x agent can use a level-i policy,
wherei < k. O

An iterative procedure for learning the level of thinking is
presented in Algorithm 1.

4.3. Level of thinking and adaptation

In this subsection, we shall address the issues arising due to
the inherent uncertainty in the behavior of the evader, namely,
the recognition of the level of rationality. Therefore, we shall
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Algorithm 1 Learning of the Level-k Thinking
Input: ro, I, R, B1, B2, @, o, and K.
: procedure
fork=0,...,K—1do
Set j := u to learn the level-k pursuing policies.
Start with W¥ (0), Wf(0).
u u
Propagate the augmented system with states x* :=
R N T
!’ (Wc"u)T (W,’;)T] , according to (1), (34), and (36) until
convergence.
Compute (33) and (35).
Set j := d to learn the level-(k + 1) target policy.
Start with WEH1(0), WH(0).
Propagate the augmented system with states x ! :=
N n T
[rT (Wc"d*-l)T (Wl’;“)T] , according to (1), (34), and (36) until
convergence.
10: Compute (33) and (35). Go to 2.
11: end for
12: end procedure

EANE I S

e N

develop an online identification framework that allows the pur-
suer to estimate the level of thinking of the target as well as to
choose the appropriate policy amongst the available ones. Each
level-K pursuer assumes a policy of level-kj,; € Kiy for the level-
(KX — 1) evader, where iy .= {1, 3,5, ..., K— 1} is the index set
including the computed estimated levels of rationality.

Suppose now that the pursuers have available a family of
policies Cger parameterized by kger € Kger = {0,2,4,...,K},
ie., Cger = {ukeef(r(-)) : kger € Kger}. It is worth noting that the
index set KCqef is finite since each pursuer has limited cognitive
capabilities and is trained to operate in a particular range of levels
of thinking. In effect, the pursuers need a logic-based rule that
shall determine the appropriate policy among the controllers in
Cdef, that is, kgef = kint + 1, and will enable them to adjust when
the level of target rationality increases. To this end, it is necessary
to design a switching mechanism that allows the pursuers to
adapt to the level of thinking of the evader, thereby avoiding
“overthinking” and wasting resources by using Nash policies.

In what follows, we shall use a switching supervisor (Liberzon,
2003) and develop a framework by sequentially interacting over
time intervals of length Ty, > 0. This shall allow the pursuers
to estimate the level of thinking of an evader that can change
her behavior unpredictably. In essence, we will allow arbitrary
evading policies to be mapped to the level-Ki,: policy database.

Assuming that the pursuers can directly measure the speed,
the heading rate, and the flight path angle rate of the target, we
define the error between the measured target’s policy and the
estimated one of a level-k target as

iTin
ety = [
(i=DTine

where £ is the total number of samples. However, the ith sample
shows the estimated target level of thinking over ((i—1)Tint, iTint)
and is classified according to the minimum distance

Id (r (z)) — L™ (r (v)) ||dr,

kintelcim:, Vle {1,...,[:}, (37)

S; := arg min ;“"i"t(i), Vie{l,...,c}. (38)

Kint€Cint

Remark 7. Note that the notions of “thinking steps”, which
amounts to the total number of the changes of the level-k strate-
gies of each agent during the game, and “rationality levels” do
not coincide as in Camerer et al. (2004). O
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Let k; = S’;’l, Vi € {1,...,L}, be the random variable
counting the target thinking steps per game that follows the
Poisson distribution (Camerer et al., 2004) with a probability mass
function, p(k;; A) = *k;f,_k, with A > 0 being both the mean and
the variance. "

Our goal is to estimate the parameter A from the observed data
by using the sample mean of the observations, which forms an
unbiased maximum likelihood estimator,

ng
Ang) = % Vns € {1,..., L} (39)
S

At this point, we need the following assumption.

Assumption 2. The target is at most level-(X — 1) and does not
change policy for every t € ((i—1)Tint, iTin), i € {1, ..., £}. Given
that the target changes her policy, the level will move to the next
one. [

Remark 8. Note that Assumption 2 is valid since the evader
has always the incentive to deviate from her chosen level-k
policy after considering the behavior of the pursuers, and increase
the level of thinking for unpredictability. Also, it follows that
the agents can change their strategies instantaneously, only at
multiples of the sampling period Tjp;. O

In terms of the evader, the switching signal that determines
the level of rationality of her policy is given by kin(t) : [0, 00) —
Kint. However, her decision-making mechanism is completely
unknown to the pursuers. From the pursuer’s perspective, given
the current estimate of the level of thinking of the target (38),

foralli € {1,..., £}, it can select an appropriate policy with a
switching signal kgef(t) : [0, 00) — Kgef given by
kaef(t) := 1+ s;, Vt € (iTine, (i + 1)Tine). (40)

In fact, the supervisor serves as a high-level decision-maker that
orchestrates the switching amongst the levels of rationality of
the pursuers. However, the target can also switch her policy, and
hence it leads to a closed-loop system with two switching signals
that can be given by

= F(r) + Gu*ef  Kd it ¥ kyer € Kaer, Kint € Kint
r(0) =rg, t >0. (41)

Essentially, the sequential interaction of the pursuers with the
evader turns out to be a finitely repeated game whose evolution is
captured via a switching system. Specifically, the game is played
over discrete periods of time of duration Tj,, where the total
number of periods is finite for level-k players. In each period,
the same stage game is played, and the players play a dynamic
game where they simultaneously and independently select their
actions. Furthermore, we assume that during each period, the
players have observed the history of the play, that is, the se-
quence of action profiles from the first period up to the last one.
The following theorem provides the stability properties of (41).

Theorem 4. Consider the system given by (41) with agents with
bounded rationality whose policies are defined by (10) for the pur-
suers and (14) for the target. Suppose that Assumption 2 holds, then
the zero solution r(t) = 0 to (41) is globally asymptotically stable
Vkaet € Kdef, Kint € Kint.

Proof. The zero solution r(t) = 0 to (41) is globally asymp-
totically stable for all kgef € Kgef, Kine € Kine if and only if it
is both Lyapunov stable and globally attractive. We first estab-
lish stability of the equilibrium point in the sense of Lyapunov.
Assume that K is finite, thus we have a level-X pursuer and
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a level-(X — 1) evader. Then Kgef and Kjne are finite, which in
turn implies that the set KCger | Kine is finite. Given any & > 0,
let B, (0) be the open ball centered at the origin with radius

e. Let R = {r:VN(r)<cc} be a compact set, where 0 <
Cc < Minyy=¢ Vf(r), in order that Ri is contained in B; (0).
Fori =K —1,...,0 let R; == {r:Vi(r)<c}, ¢ > 0, be a

compact set, where ¢; is picked so that R; is contained in the set
Rit1, i.e, Ri C Riyq (for the sake of simplicity, we shall omit
the subscript of the value function, which determines the kind of
player). Let §(¢) > 0 be such that By (0) lies in the intersection
of all nested sequences of sets (constructed in an iterative manner
as described above) for all possible permutations of Kgef | Kint-
Overall, it turns out that Bs;)(0) C -+ C R C Rix1 C -+ C
B. (0). However, by Assumption 2, if the players change their
strategies, they will move to a higher level of rationality. Hence, if
a switching exists, regardless of which agent switches, the closed-
loop system moves to a higher level of rationality. In view of this
observation, it follows that the switching signal o : [0, 00) —
Kder | Kine takes distinct values and is an increasing function of
time.

Suppose that rqg € B (0). Then, it follows by construction
that r(t) € B: (0), Vt > 0, allowing us to conclude that the origin
is Lyapunov stable. In fact, this stems from the properties of the
switching signal o described above, together with the fact that by
Theorem 2, R; is a positively invariant set of the system arising
when the mode i is active.

Now, to establish global asymptotic stability, it remains to
show that the equilibrium point is globally attractive. Towards
that end, we need first to note that the agents are bounded
rational, and thus the switching signal o exhibits a finite number
of switches. Let t; > 0 be the last switching time of the switching
signal o(t), Vt > 0, and o (tr) = kf € Kger | Kint. However, invok-
ing Theorem 2, the system associated with the mode k; is globally
asymptotically stable, and thus the asymptotic convergence of the
trajectory to the origin follows. Hence, the equilibrium point is at-
tractive, i.e., lim;_, o, 1(t) = 0. Consequently, since the equilibrium
point of the switched system (41) is both Lyapunov stable and
attractive, it follows that it is asymptotically stable. Furthermore,
since the level-k value functions V¥, Vk € Kger | Kint, are radially
unbounded, it follows that the sets R; are bounded for every
¢ >0, fori=K,...,0, and thus the global asymptotic stability
readily follows. ®

The estimation of the level of the target is shown in Algorithm
2.

Algorithm 2 Level-k Policy Adaptation
Input: Ty, £, and K.

1: procedure

2 fori=1,...,L£do

3 while (i — 1)Tiy < t < iTipe do

4 fork=1,3,..., K—1do

5: Measure the value of (37).

6 end for

7 end while

8 Estimate the rationality of the target according to (38).
9 Update X based on (39).

10: At t = iTipe update the pursuer’s level according to (40).
Go to 2 to take the next sample.

11: end for

12: end procedure

5. Multiple evaders and assignment

Define the function k(i) : N — Ny, which is essentially a map-
ping from an index set to a set of natural numbers expressing the

Automatica 149 (2023) 110732

level of thinking for each agent. To make the problem well-posed,
we shall make the following assumption.

Assumption 3. The following are necessary to hold: (1) The
level-k agent chooses the level-k action. (2) For each level-k
pursuer, there exists a level-(k — 1) target. In particular, for all
i € NV, there exists j € M such that k(i) = k(j)+ 1. O

Remark 9. Note that Assumption 3 is intuitive since the higher
the level-k policy, the closer it is to the Nash equilibrium. More-
over, it guarantees that the target allocation problem admits
a solution in that for each target, there is a pursuer that can
efficiently pursue it. O

Consider a pursuer i € A and an evader j € M, and let
a: N x M — R be the quadratic cost associated with the
assignment of pursuer i to evader j given by

a(k(i), k(i) = (k(i) — kG) — 1)°, (42)

reflecting the difference with respect to the level of thinking
between the pursuer i and the evader j.

Remark 10. Note that the number 1 in (42) is used as a bias
term to ensure that the minimum value of a(i, j) is zero since, by
Assumption 3, it holds that k(i) # k(j), where j € M and i € N,
but there exist i € N and j € M such that k(i) = k() + 1. O

Let ¥ == {k(i) : i € N}U{0} C 7" and ¥ = {k(j) : j €
M} C Z**1 be the indexed families of the levels of thinking of
the pursuers and the evaders, respectively. Now, the problem of
evader assignment can be stated as follows. Consider the set of
pursuers A and the set of evaders M. Suppose that the indexed
family of the levels of thinking of the evaders X is available to
every pursuer. Then assign each i € A to a unique target j € M
such that a(k(i), k(j)) = 0. The target assignment problem can
then be represented as a constrained separable nonlinear inte-
ger programming problem with a quadratic objective function,
namely, min,, vazl a(k(i), x;), subject to x; € X, where x; : N' —
X is a decision variable determining the level of thinking of the
evader assigned to the ith pursuer.

Remark 11. As per Assumption 3, the target assignment problem
admits an optimal solution so that the total assignment error
vanishes. O

Remark 12. The target assignment problem is an optimization
problem and does not constitute a differential game with multiple
pursuers and multiple evaders. O

Next, we shall relax the fact that the set X is discrete, and
we shall work on its convex hull, namely, on the set Conv(X).
The latter is a closed line segment in R (with min X and max X
to be the lower and upper endpoints, respectively), and thus it
is a compact convex set. Now, the target assignment problem
can be redefined as follows, miny, Zf’zl a(k(i), x;) subject to x; €
Conv(Xx) C R.

However, note that for each pursuer i € N, the objective
function a(k(i), x;) is continuously differentiable, strictly convex,
and defined over a compact, convex, nonempty set Conv(.x).
Therefore, there exists a strict global minimum over Conv(X) to
the continuous relaxation optimization problem, which can be
solved individually by each pursuer by employing the following
projected dynamical system

Xi = & (—Xi + Peonv(ae)(Xi — Va(k(i), x))), € >0, £ >0,

xi(0) € Conv(x), rendering Conv(x’) invariant (Gao, 2003).
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5.1. Data-driven and finite-time allocation

Unlike the previous analysis, we now relax the assumption
that X is available to every pursuer, i.e., the level of thinking
of each evader is unknown to the pursuers, and thus it consti-
tutes an uncertainty. Before we proceed, we need to make the
following assumption.

Assumption 4. Assume that there exists a pursuer anointed to
be the leader of the pursing team that is the most intelligent
amongst the pursuers and evaders, i.e., there exists g € N such
that g := arg maxen k(i) and k(g) > maxjea k(). O

The leader pursuer has complete information in terms of the
cognitive skills of her collaborators, namely, the set X is known
to her. Thus, the leader pursuer takes over to be the coordinator
of the evader assignment process by measuring (37). We are
thus interested in determining in real-time the minimum of the
objective function

a(gi, arg min ki), Vg € Q == Conv(X), i € M,
Kint € Kint
where g; is the level of rationality of the pursuer that is pinned
to the ith evader. The leader pursuer has access only to current
evaluations of the objective function during the interaction with
each evader. The objective function can be re-written for all g; €
Q as

algi, arg min ¢*n) = wiT
int €Kint

(q1) + &(qi), Yie M,

where ¢(qi) = [¢1 2 ... ]" : @ — RP are the activation
functions selected so that they define a complete independent
basis set, w; € RP are unknown ideal weights, and €; : @ — R is
the approximation error bounded as ||€;(q;)|l < €, Yq; € Q, with
€ € RT (Vamvoudakis & Kokolakis, 2020). However, since the
ideal weights w; are unknown, we define the objective function
of each evader for all g; € Q as

a(gi,arg min ¢"m) =D gy(q;), Vie M,

Kint €Cint

where w; € RP are the estimated weights. To enable explo-
ration (Poveda, Vamvoudakis, & Benosman, 2019) that is needed
during learning, we shall use past recorded data concurrently
with current data. To this end, we define a measurable approx-
imation error corresponding to the data collected at the current
time t, e,(t) =a—a=w0¢i(q) — &lqi), Vie M, g € Q, where
w; = W; — w} is the weight estimation error. The error corre-
spondmg to the previously stored data at times ty, t, ..., t < ¢
is given by e; (ti. t) := W] (t)pi (qi(tr)) — € (qi(ty)) . Vi € M, gi €
Q. With some abuse of notation, we use t; = t to denote the
current time, and we define e; (tp, t) := e;(t)

Definition 3. The data {¢ (q,(tk))}k 1 is said to be k-sufficiently

T
rich if _ ot @) g
Z" T (1467 e)lai(t))

Overall, the leader pursuer sequentially runs the following
online data-driven algorithm while interacting with each evader

forallt >0
- —a Z # (gi (t)) e (t, t)
¢T (qi (te)) & (q; () + )
qi =¢ (_qi + PQ (Qi - ATV(b(ql))) s q,(O) € Q, (44)

where « > 0 is the tuning gain, and i(t) : [0, c0) — M is the
switching signal. The resulting system is a switched system with
multiple convergence sets.

(43)
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Theorem 5. Consider the system (43). Assume that the sequence
of the stored data {¢ (q,(tk))} 1 is k-sufficiently rich. Let t; and tj4q
be any two consecutive swztchmg times. Given o; > 0, Vi € M, and
71, T > Osuch that 11 < 1, < oo, then there exist 7; € [t1, 12] and

vi > 0 such that for every w;(t;) the solution w;(t), tj <t < tj;q, to
(43) satisfies

(0l < e [[in(g)] . Vibs & Bo(w). <t < b+,
i(t) € By[wil, Vo + 1 < £ <t i€ M. (45)

Moreover, there exists a fixed dwell time ty > 0 where 14
T, such that

1=t >

lim dist (w(t), Bs;[w]]) =0, Vie M.

t—>ti+1q

(46)

Proof. The error dynamics for all i € M can be written for all
t>0as

: Plai()e" (ailt) -
w — o 5 Wi
(14 ¢™(ai(t))e(ai(t)))
#(qi(t)e" (qi(te))
( + ¢T(QI(tk ) QI tk)))

d’ (Qi(tk))
= (1+¢7 @i(t) ¢ (@(t)

Let us define
$(ai(t))" (@i(t))
(1+ ¢™(ai(t))(ai(t))”
S glal0)e" (@it)
~ (1+ ¢"(@(t)(ain)’

Utilizing that {¢ (q; (tk))};_j:] is k-sufficiently rich, it follows that

. . . T T
there exist 8i, 8{ > 0 such that 8i[, = Y% W @t)
12 2l > D (10Tt (ailn))

~ 7 MR_.

+a

5€i (i(tk)) -

Pi(t) :=

8ily, Yie M.

()T (@ . .
Moreover, since the matrix —24itt)¢_(@(0) 5 Is symmetric,

(1+¢T(qi(t))ep(aite)))
positive semi-definite, and uniformly bounded, it follows that
there exists a constant 84 > 0 such that

851, > Pi(t) = 841, Vt > 0. (47)

Let - #(gi(tk))
,01 ql Zk =0 (]+¢T(q (tk))tﬁ(fh(tk))

dynamics can be written as

5 €i (qi(ty)), then the error

W; = —aPi(t); + apigqi), Vt >0, (48)

where there is no equilibrium point, and thus we shall examine
the ultimate boundedness of the solutions. To this effect, consider
the following radially unbounded continuously differentiable pos-
itive definite Lyapunov function candidate

(49)

Since (49) is quadratic_, it follows that there exist constants
c}, ¢, > 0, where ¢ < cj, such that the following inequality holds

cillwill® < Vi, < cyllwil®, Vibi. (50)
The Lie derivative of (49) along (48) is given by V@i_ = zZ;ITﬁ) =
—aw!Pi(t); + o] pi(g;). Owing to (47), one gets Vi, < —8ia

lwill? + ozzZ;iT,oi(q,-). However, note that the trajectory g;(t) is

confined to the compact set Q and the approximation error
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function ¢;(q;) is continuous. Using the extreme value theorem of
Weierstrass, there exists a u; > 0 such that || p;(q;)|| < wi, Vqi €
Q. Consequently, using the Cauchy-Schwarz inequality yields

Vi, < —8halliill® + il i
—(1 — v ellwill® — vidae | ill® + oepaill il
—(1 = v)Siallil®, Vib; & Bo (w}),
— i
=
solutions are globally unlformly ultlmately bounded with the

ultimate bound o7, which implies that for every arbitrarily large
a > 0, there is 7y, = 1q,(a, 0;) > 0, independent of t; > 0, such

that w(tp) € Ba[wi] = w(t) € Bylw}l.Vt > to + 14(a, o7).
It is worth pointing out that if w(ty) € Bylw;] = w4, = 0.
Finally, by uniform ultimate boundedness, the compact set §2; =

(51)

where v; € (0,1) and o; : . Thus, we conclude that the

2

{; € RP : Vi, < c}, where ¢ > -, is a positively invariant set
with respect to (48). Now, we need to pick properly a lower
bound for the fixed dwell time 74 so that the convergence of
the trajectory w; to the ball By, [w]] is guaranteed for all i € M,
under the consideration that {By,[w}]:i € M} is a collection of
disjoint sets. To this end, we shall construct the following worst-
case scenario based on the relative positions of the convergence
balls in the state space

b = max{”wi* - wj*” +oj}, Vie M. (52)
jem
Denote Wi = (1 — vl)aia||w,|| , Vw;, which is a continuous
posmve definite functlon Consider the compact set Al := {w; €
RP : 7’ < Vi < 2} wherein the following inequality holds
Vi, < —Wi Vi, € Al However, W' is continuous over the
compact set A', and thus by using the extreme value theorem
of Weierstrass, the minimum exists, which is A; = ming, . ,i W".
Note that A; > 0 since W’ is positive definite. Consequently, it
follows that V3, < —W' < —A;, Yw; € A" Integrating both
. ty t ~ : .
sides fto Vg, dt < —fto rdt, Ve = to > 0, w; e Al yields
Vi, (wi(t)) < Vg, (wi(to)) — A; (t — to). However, without loss
of generality, we can assume that 0 and Vy, (w;(0))
b? . . .
-, Let t; be the time instant where V,;Jl. (wi(t)) 3 (o).

Hence, it follows that 0 < t* < 2/(\0‘) In fact, the trajectory

wi(t) converges to the ball B [w}] in finite time, i.e., within

the time interval |0, b zrl . Consequently, since we analyze
1
max bz_(“'i)2
the worst-case scenario, it follows that = S Vi €

M. In a similar fashion, the best-case scenario is described by
bi = minjepdd |w; —w}| — o5}, Vi € M, whereby one gets
m‘“ Vi € M, which m turn yields t; := minjeay r;““ Finally,
the lower bound of the fixed dwell time of a switched system
with multiple convergence balls is given by 7, := maxjcq ‘L'di ,
whereby one ensures the convergence of the trajectory w; to the
ball B, [w;], Vie M.
Let ¢} := (1 — v;)8j« and assume without loss of generality
that ¢; = 0. Using (50) and (51), it follows that

cl i
‘./1171' ?Vw, = Vw (w( )) < e_(%/cz)tvﬁu (a}l(o))v
G
Yw; & By (w]), i€ M. (53)
However, because of (50) and (53), one gets
Vi, (i(0)\ /2 1 (i 1/2
i)l < (M) < <T‘e (63/C2)tvlj)i (11),-(0)))
G G
< Ge " wi(0)l . Vi & B (wi), (54)
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where ¢; := (E% and y; == c}/2c;. Thus, for all i € M, there
1

exists 7; € [1q, T2] such that the inequality (54) holds over the

interval [0, 7;) during which w; & B,,(w). For t > 7;, we have

_ (- 1/2 i a2\ 1/2
Mmm<<ﬁ£?@> <(2$i> _ o
G G

Consequently, (54) and (55) show that the trajectory wj(t) is
uniformly bounded with an ultimate bound min{c;o;} oi.

Finally, note that as % — 0, the ultimate bound o; — 0. |
1

(55)

Remark 13. Given that the mode i is active, according to (45) and
(46), the convergence to the ball B,,[w;] may happen earlier than
74. Nevertheless, the fixed dwell time t4 is computed in order
for the convergence to the ball B,,[w;] to be doable even in a
worst-case scenario. O

Corollary 2. Consider the systems (43) and (44). Assume that the
sequence of the stored data {¢ (q,-(tk))};ﬁj is k-sufficiently rich. Let
tj and ti;q be any two consecutive switching times. Given tg >
0, qf € X, and v; > 0,Yi € M, then there exists a fixed dwell
time Tq := tj;1 — tj > 7q, such that for every q;(t;) € Q the solution
q(t), t; <t < tiyq, to (44) satisfies lim; 7, dist (ai(t), By, q7]) =
0, Vie M.

Proof. The proof follows from Poveda et al. (2019) and Theo-
rem 5. |

The assignment of pursuers to evaders is summarized in Algo-
rithm 3.

Algorithm 3 Evader Assignment

Input: g;(0) € Q, wi(0), Tint, Ty, £, M, and K.
1: procedure
2 fori=1,...,M do
3 while (i — 1)Tg < t < iTy do
4: Run Algorithm 2.
5 Start with w;((i — 1)Ty) and q;((i — 1)Tg) .
6 Propagate the augmented system state z; :=

[07, qf]T according to (43) and (44) until convergence.
Assign target i to the pursuer of level-g;(iTq). Go to

2 to assign the next evader.

8: end while

9: end for

10: end procedure

~

6. Simulations

Consider a team of two cooperative UAVs with the same
capabilities, namely of level-6, with v; = 1.25 m/s, i1y, = 0.5
rad/s, and i1, = 0.3 rad/s, Vi € N := {1, 2} assigned to track a
level-5 target with o, = 1.15 m/s, dy, = 0.4 rad/s, and d,, = 0.3
rad/s. We have used the following parameters in Algorithms 1-
3: R = 300lg, I = 5000f5, B = 0.00001, B, = 0.5, a; =
0.0001, @ = 100, @ = 10, ¢ = 10, Tjp = 155, and Ty = 80 s.

From Fig. 1, one can see that the pursuers are engaging the
target and always keep the target in a close relative distance as
shown in Fig. 2. It can be seen that at least one pursuer is always
close to the target. The beliefs over the levels of rationality of
the target are shown in Fig. 3. From the latter we can observe
that the pursuers believe that the target has a probabilistic belief
state of: 15% of being level-1, 23% of being level-3, and 23% of
being level-5. The evolution of the Poisson parameter estimate A
in terms of the number of samples is also shown and converges
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Target Engagement

Pursuer-1
105

— T arget

s PUrSUGS-2
@  Projected Target Initial Position
& Projected Target Final Posifon

z[m]

Fig. 1. The evolution of the trajectories of the two pursuers and the target. The

dashed lines are the projections of the vehicles onto the flat Earth plane.

8 Relative Distances

Pursuer-1
161 Pursuer-2 7

0 ! ! ! ! ! ! !

40
Time (s)

50 60 70 80

Fig. 2. The evolution of the relative distance between every pursuer and the
target. We observe that at least one pursuer is always close to the target.

to 3. It is evident that it converges as long as enough data
have been gathered by observing the motion of the target. The
latter observations let us create a profile of “intelligence” while
adapting to the appropriate levels of the target and following
appropriate countermeasures, as shown in Fig. 4.

Consider now the case of multiple pursuers and multiple
evaders with ;' = {1,2, 3,4}, M {1,2}, x = {1, 3}, and
X = {2, 2, 4,4} |J{0}. Fig. 5 shows the engagement of the evaders
after the target assignment, which is shown in Fig. 6. In particular,
Fig. 6 displays the evolution of the decision variable (44) while the
inset depicts the learning of each objective function associated
with each evader (43). Finally, a video illustration of the results
is available at https://tinyurl.com/yzh38un5.
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Convergence of Poisson parameter
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Fig. 3. The distribution of the beliefs over the different levels of thinking while
learning the Poisson parameter A.

Evolution of the Game
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Fig. 4. The adaptation of the levels of the pursuer to the levels of the evader.
It is shown that the target sequentially changes her level-k strategies at time
instances t = 30 s and t = 45 s, and the pursuers adapt.

7. Conclusion and future work

This paper developed a cooperative target-tracking framework
via a Nash and a bounded rational game-theoretic approach.
In the case of perfect rationality, we derived the saddle-point
policies of the agents. We then considered that the agents have
bounded rationality and showed sufficient conditions for conver-
gence to the Nash equilibrium as the levels of thinking increase.
In the case of multiple pursuers against multiple targets, we de-
veloped a switching learning scheme with multiple convergence
sets by assigning the pursuers with the highest rationality to
the appropriate evaders. Finally, we showed the efficacy of the
proposed approach with a simulation example. Future work will
extend the proposed framework to probabilistic game protocols
for the coordinated team of pursuers to explicitly adapt to a
boundedly rational stochastic evader.
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Fig. 5. The evolution of the trajectories for multiple pursuers and multiple
evaders after the target assignment is performed. In the right plot, one can
see the evolution of the tracking trajectories of a level-1 evader by two level-2
pursuers, while in the left plot, the evolution of the tracking trajectories of a
level-3 evader by two level-4 pursuers.
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Fig. 6. The leader interacts sequentially for 80 s with each evader and assigns
targets to the appropriate pursuers. First, it interacts with the level-1 evader
and then with the level-3.
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