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Abstract—Brain-inspired computing - leveraging neuroscien-
tific principles underpinning the unparalleled efficiency of the
brain in solving cognitive tasks - is emerging to be a promis-
ing pathway to solve several algorithmic and computational
challenges faced by deep learning today. Nonetheless, current
research in neuromorphic computing is driven by our well-
developed notions of running deep learning algorithms on com-
puting platforms that perform deterministic operations. In this
article, we argue that taking a different route of performing
temporal information encoding in probabilistic neuromorphic
systems may help solve some of the current challenges in the
field. The article considers superparamagnetic tunnel junctions as
a potential pathway to enable a new generation of brain-inspired
computing that combines the facets and associated advantages
of two complementary insights from computational neuroscience
– how information is encoded and how computing occurs in
the brain. Hardware-algorithm co-design analysis demonstrates
97.41% accuracy of a state-compressed 3-layer spintronics en-
abled stochastic spiking network on the MNIST dataset with
high spiking sparsity due to temporal information encoding.

Index Terms—Neuromorphic Computing, Stochasticity, Mag-
netic Tunnel Junction.

I. INTRODUCTION

Deep learning has undergone unprecedented growth in the
past decade and has witnessed success in a plethora of applica-
tions. However, with scaling complexity of the problem space
and with the ever-growing dimensions of data, computational
expenses to train and implement such Artificial Intelligence
(AI) systems have also grown beyond limits. Driven by this
motivation, “neuromorphic computing” attempts to decode
the operation of the biological brain by mimicking the core
functionalities in the underlying algorithms and hardware
substrate. In particular, we focus on the more bio-plausible
“spiking” neural/synaptic computing models in this text due
to its promise of enabling low-power, asynchronous “compute
only when needed” neuromorphic hardware. We will refer
to such a computing model as “Spiking Neural Networks”
(SNNs) for the remainder of this text. While SNNs have
shown initial promise as a low-power, event-driven alternative
computing paradigm, significant challenges remain from both
the algorithms and hardware perspective to ensure scalability
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in terms of key performance metrics like recognition accuracy,
hardware power, energy and area efficiency. Most prior studies
have used smaller sub-problems or have converted non-spiking
Deep Neural Networks (DNNs) to SNNs [1] - a non-optimal
approach in demonstrating the abilities of SNNs. Currently,
SNNs remain very similar to non-spiking networks with the
analog neural computation in DNNs distributed as binary
information over time in the case of a spiking neuron - with
the temporal aspect remaining largely unexploited. This has
significantly limited SNN efficiency in large-scale problems
[2].

In order to address these limitations, we formulate our
solution against two complementary backdrops:
• Information Encoding (Goal - Enhanced Sparsity and
Reduced Latency): The vast majority of SNN algorithm
formulations have been based on rate coding [3], [4] where the
neuron output is encoded in the spike rate, i.e. the total number
of spikes generated in a sufficiently long time duration. How-
ever, in temporal-encoding, the precise time duration required
to spike is believed to encode the neuron output information.
The principal advantages of using temporal encoding [5] for
modelling spiking behavior are multiple. Since information is
now transmitted in precise spike timings instead of the signal
rate, such neural codes can be sparse and much faster to avoid
temporal-averaging effect.
• Computing Paradigm (Goal - State-Compressed Hard-
ware): The computing perspective is motivated by a bottom-
up hardware viewpoint that emerging technologies like spin-
tronics exhibit stochastic switching behavior (due to thermal
noise) at room temperature, specially at aggressively scaled
dimensions [6], [7]. The potential benefits of such a computing
framework from the hardware implementation perspective is
that they allow multi-level neural/synaptic state compression to
single bit (in turn, leading to scaled device implementations)
due to the additional probabilistic encoding of information.
However, such stochastic SNNs have been mostly utilized in
the rate encoding framework.

In order to leverage the benefits of increased information
capacity in SNNs for enhanced power, latency and energy
metrics and simultaneously to utilize the advantages of state-
compressed hardware enabled by these nanomagnetic devices,
the article explores a device-algorithm co-design approach
– where we explore the implementation of spintronics en-
abled stochastic SNNs bearing temporal domain encoding of
information. Section II discusses basic device preliminaries
of magnetic tunnel junction devices. Section III outlines the
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Fig. 1. Device Preliminaries: Magnetization components for a magnet with
anisotropy along the z-direction is shown during a switching process. For a
superparamagnetic device, the switching is spontaneous as shown by the noisy
switching characteristics. However, the device lifetimes can be modulated by
the external current stimuli, I , resulting in a sigmoid device switching rate,
R, variation with external current magnitude. The green transients represent
the plot without time averaging.

novel device physics enabling the dynamic temporal control
of the stochastic magnetization dynamics that are leveraged in
Section IV to formulate algorithms for stochastic SNNs with
temporally encoded spikes. Recognition accuracy and spiking
sparsity advantages for fully connected network architectures
on the MNIST dataset are reported in Section IV. Section V
concludes the paper with potential future research directions.

II. MAGNETIC TUNNEL JUNCTION (MTJ) AS A
STOCHASTIC COMPUTING ELEMENT

Magnetic Tunnel Junction is a fundamental device building
block of spintronic hardware systems. A typical MTJ consists
of two ferromagnetic layers and a sandwiched oxide layer.
One of the ferromagnetic layers is called “pinned layer”
(PL) because its magnetization direction is “pinned” and does
not change during operation. The other ferromagnetic layer
is called “free layer” (FL) since its magnetization can be
switched freely by an external stimuli like spin current or
magnetic field. The state of the device is determined by
the relative orientation of the two ferromagnetic layers. The
device is in “anti-parallel” (AP) / “parallel” (P) state if the
two ferromagnetic layers have opposite / same magnetization
direction. The device possesses a higher resistance in AP state
than in the P state. Energy barrier height determined by device
volume and anisotropy stabilizes the two states.

Landau-Lifshitz-Gilbert (LLG) equation with a spin torque
term is used to characterize the probabilistic switching of an
MTJ device [8],

dm̂
dt

= −γ(m̂×Heff )+α(m̂× dm̂
dt

)+
1

qNs
(m̂×Is×m̂) (1)

in which m̂ is the FL magnetization unit vector, γ = 2µBµ0

~ is
the gyromagnetic ratio, α is Gilbert’s damping ratio, Heff

is the effective magnetic field, Ns = MsV
µB

is the number
of spins in free layer of volume V (where Ms is saturation
magnetization and µB is Bohr magnetron), q is the charge
of a single electron and Is is the input spin current. Ther-
mal noise is included by adding an additional thermal field,
Hthermal =

√
α

1+α2
2KBTK
γµ0MsV δt

G0,1, where G0,1 is Gaussian
distribution with zero mean and unit standard deviation, KB

is Boltzmann constant, TK is the absolute temperature and δt
is the simulation time-step.

Recently there has been a lot of interest in superparam-
agnetic devices for unconventional computing. In essence,
these are aggressively scaled nanomagnetic MTJs in the sub-
10KBTK barrier height regime where the magnet loses its
non-volatility and does not need to be triggered by a pulse
for state transitions (see Fig. 1). The thermal noise becomes
significant and is large enough to overcome the barrier height,
resulting in spontaneous stochastic switching behavior. How-
ever, the metastable state transitions can be modulated by an
external current and the time-averaged response of the device,
R = τAP

τP+τAP
(τP and τAP are device lifetimes in the P and

AP states respectively) has a non-linear sigmoid response that
can be utilized for stochastic spiking neuron functionalities
[9]. The main advantage of transitioning to a superpara-
magnetic system would lie in the faster operating speeds
and asynchronous operation [10]. However, careful peripheral
circuitry design, sensitivity to noise and variations remain
open challenges [10]. In addition to neuromorphic applications
[7], [10]–[14], stochasticity inherent in magnetic devices (su-
perparamagnets or higher barrier height magnets) have been
leveraged to implement true random number generators [15],
and even for other unconventional computing platforms like
Ising computing, quantum-inspired algorithms, combinatorial
optimization problems, on-chip temperature sensors, among
others [6], [16]–[18].

While the intrinsic temporal dynamics of superparamagnets
have been utilized in certain applications like Ising computing,
the vast majority of neuromorphic SNN applications have
primarily leveraged the superparamagnetic device character-
istics in the rate encoding regime, i.e. the continuous-time
dynamic behavior of superparamagnets have been ignored and
the time-averaged behavior has been used from the computing
perspective. This leads us to the question - Can the unique
probabilistic switching behavior of superparamagnetic devices
be utilized for temporal information encoding in stochastic
SNNs?

III. LEVERAGING THE DYNAMIC TEMPORAL BEHAVIOR
OF MTJS

In order to design a magnetic device where the intrinsic
physics is able to support temporal information encoding, one
needs to precisely control the device lifetimes τP and τAP .
This is difficult in a superparamagnet under sole external
current stimulation. As shown in Fig. 1, the external current
magnitude and direction controls the time averaged firing rate
of the device and both the device lifetimes get modulated
together with change in the external current magnitude.

However, as explained in Eq. (1), the magnetization dynam-
ics is a function of both external current and external magnetic
field which opens up the possibility of tuning the two device
lifetimes by two separate independent control knobs. When
an external “write” voltage is applied to the MTJ (resulting in
spin-torque) along with an external magnetic field, the lower
MTJ resistance in the P state results in much larger modulation
of τP than τAP due to an external voltage. Consequently,
the external spin current can be used to control τP . On the
other hand, the magnetic field can be used to tune τAP by
manipulating the energy profile. In this manner, under certain
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conditions [19], independent control of τP and τAP can be
realized by adjusting the externally applied magnetic field and
current. Recent experiments [20] and theoretical modelling
[19] have shown that such a controlling scheme can be realized
in a CoFeB MTJ stack within a range of applied field and
current.

Pinned Layer

Free Layer

ME Layer

(a) (b)

[ns]

[ns]

(c)

Fig. 2. Stochastic computing and temporal information encoding in
MTJs: (a) Concept of magneto-electric MTJ device [21], driven by two inde-
pendent inputs - (1) Voltage, VME , applied across the ME-oxide modulates
lifetime τAP , (2) Voltage, VI , applied across the MTJ modulates τP . (b)
Circuit design to detect spikes. IOutput indicates the MTJ state. (c) Contour
map of τAP and τP versus external voltage inputs V1 and V2 [21]. The
horizontal and vertical nature of the contour lines indicate independent control
of the device lifetimes.

However, on-chip external magnetic field control of
nanoscale devices is not promising from the effect of scalabil-
ity and power consumption [21]. A potential alternative path
can be to design novel device structures exploiting emerging
devices physics like the magnetoelectric effect [22]. Recent
work [21] explored a three-terminal magnetoelectric (ME)
MTJ device concept where voltage applied across a ME layer
(VME) lying underneath the MTJ was used to mimic the
effect of an effective magnetic field while voltage across
the MTJ stack (VI ) was used to induce an external spin
current, as is shown in Fig. 2(a). ME effect was modelled
by considering the effect of an external magnetic field acting
on the magnet, whose magnitude is directly proportional to
the applied voltage [23], [24], with the proportionality factor
(αME) being a material property. The device modelled at room
temperature (300K) has an elliptic ferromagnetic layer, the

size of which is 17nm in width, 42.5nm in length and 0.8nm
in thickness. Tunnel magnetoresistance (TMR) ratio of the
device is 200%. The saturation magnetization is 750KA/m.
Gilbert damping ratio is chosen to be 0.0122. The ME layer
has a thickness of 5nm and ME constant of 5×10−9s/m [10],
[24]. The device state can be detected by a circuit shown in
Fig. 2(b). The transistor working in saturation region provides
a constant current, ITotal. VI is the input voltage applied to
the MTJ. The MTJ resistance modulates the current flowing
through the MTJ, IMTJ , leading to the control of current
flowing through the load resistance RL. As a result, the output
current, IOutput = ITotal − IMTJ , will be an indicator of the
MTJ state. While some amount of inter-dependency of the
device lifetimes is observed, it can be shown through device
characterizations that the device lifetime modulation can be
made truly independent by a simple transformation of the
external voltages to a different bases < V1, V2 > which can
be mapped to the device inputs < VME , VI > through the
relation [21],(

V1
V2

)
=

(
cosα cosβ
sinα sinβ

)−1(
VME

VI

)
(2)

where, α, β represent the slopes of the contour lines for τP
and τAP variation against < VME , VI >. For more details,
interested readers are referred to Ref. [21]. The transformed
input V1 (V2) only controls τAP (τP ) independently, as shown
by the horizontal/vertical contour lines in Fig. 2(b). It is worth
mentioning here that this transformation can be achieved in
hardware by simple voltage summer circuits since α and β
are constants.

Given such a continuously switching device is available
where the precise temporal dynamics can be controlled, the
high level question to be addressed next is: Can we map the
core device characteristics to compute primitives required in a
functional stochastic SNN operation with temporal information
encoding? Let us consider a particular network where all
the neurons are driven by the same voltage corresponding to
input V1 such that the average device lifetime in the AP state
equals the duration of a “timestep” in the system. Note that
the duration of “timestep” will be determined by circuit and
architecture level constraints for simulating the SNN. If we
interpret the device AP state as the “spike” of the neuron,
then the average time to fire for that neuron will be given
by τP , which can be controlled by the external neuron input
V2. For an SNN inferring data based on temporal encoding,
this time to fire will dictate the winning neuron. The neuron
which fires earliest will be interpreted as the winning class and
is based on time-to-first-spike encoding. Note that the SNN
can be turned off after the first spike, thereby resulting in
significant sparsity and latency benefits. Such a fine-grained
control of time to fire is not possible in case of stochastic
magnetic devices driven by only a single external input signal
since both the device lifetimes will be modulated together. It is
also worth mentioning here that while our proposal is based on
the ME-MTJ device, the formulation can be easily extended
to experimentally demonstrated stochastic devices operating
under the influence of external spin current and magnetic field
[19], [20]. In order to train the network, let us assume that
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Fig. 3. Algorithm Formulations: (a) Supervised algorithm for stochastic SNNs with temporal information encoding where neuron input, V2, controls the
time to fire. (b) Variation of the average device lifetimes as a function of the neuron input, V2, which is equivalent to the weighted summation of synaptic
inputs

∑
wiIi. Device lifetime, τAP , remains roughly constant over the input voltage range while the exponential variation of τP with V2 is considered to

be the activation function of the neuron (g(.) in Eq. (9)). (c) Accuracy of MTJ based hardware simulations for two neural network architectures (784× 10
and 784× 400× 10 neurons) are depicted. The 784× 400× 10 (784× 10) network has a baseline accuracy of 97.41% (90.88%). Simulated accuracy of
the hardware MTJ network approaches the baseline software accuracy with time-to-2nd/3rd spike of the winning neuron.

we set the winning class neuron to fire at timestep t1 while
the other neurons target a firing time t2. In order to infer
with sufficient confidence margin, ∆t = t2 − t1 should be
reasonably high. Note that ∆t, t1 and t2 are hyperparameters
for our algorithm and user specified. In this work, we used a
value of t1 = 1ns and t2 = 300ns.

IV. ALGORITHM FORMULATION

Fully connected neural network architectures with stochastic
temporal encoding were trained on the MNIST dataset [25]
based on algorithmic formulations described next. Since the
real-time device lifetimes follow an exponential distribution in
the low current regime [26], we utilize Kullback-Leibler (KL)
divergence to model the loss function. Assuming the target
average device lifetime in the P state to be λ and the expected
device lifetime due to the external input to be z, the KL
divergence between the expected and target spike probability
distributions is given by,

L =
∑
a∈A

1

λ
e−

a
λ log(

z

λ
ea(

1
z−

1
λ )) (3)

where, A is the probability space. From a network perspective,
each neuron receives the weighted summation of synaptic
inputs (

∑
i wiIi) as the input voltage V2 (see Fig. 3(a)). Note

that the output current in the spike detection circuit (see Fig.
2(b)) can be used to charge a capacitor till the input neuron
device spikes, thereby converting the timing information to an
analog voltage input for the next layer. Assuming the intrinsic
device function mapping from the synaptic dot product to
the average P state device lifetime to be g(.) (which can be
formulated by the exponential variation shown in Fig. 3(b)),

z = g(
∑
i

wiIi) = g(V2) (4)

It is worth mentioning here that the output z represents the
average value of P-state device lifetime under the influence of
V2, although the real-time characteristics follow an exponential
distribution [26]. The operating voltage range of the device is
also chosen properly (Fig. 3(b)) such that the change in τP
is much larger than τAP (assumed constant equal to spike
duration in the algorithm formulation) within this working
range.

Using gradient descent, the weights of the network can be
learnt through the following relations,

w = w − α(
∂L

∂w
);
∂L

∂w
=
∂L

∂z

∂z

∂w
(5)

where, α is the learning rate. The term ∂z
∂w can be obtained

using Eq. (4), while the term ∂L
∂z can be derived from Eq. (3)

by algebraic manipulations as,

∂L

∂z
=
∑
a

1

zλ
e−

a
λ −

∑
a

a

T 2λ
e−

a
λ (6)

The activation function of the neurons, given by the re-
lationship between the P state lifetime, τP , and the applied
voltage, V2, is obtained from stochastic-LLG simulations of
the superparamagnetic MTJ device with a 2KBTK barrier
height. A hybrid device-algorithm co-simulation framework
calibrated to experimental measurements was used to evaluate
the performance of the network. The 784 × 10 network
therefore consisted of LLG simulations of 10 MTJ devices
while the deeper 784 × 400 × 10 network consisted of 400
MTJs in the hidden layer and 10 devices in the output layer.

We observed a test accuracy of 90.88% for a network
architecture of 784 × 10 neurons. However, since the real-
time device operation is stochastic with exponential lifetime
characteristics, there might be image instances which are
inferred incorrectly if the decision is solely based on the first
spike. In that case, the robustness of the decision and the
classification accuracy improves significantly if the inference
process is based on the sum of multiple inter-spike intervals.
As demonstrated in Fig. 3(c), the accuracy of the hardware
network approaches the ideal baseline software accuracy with
only a 2/3-spike confidence for the winning neuron, thereby
resulting in a highly sparse firing behavior of the neurons due
to temporal information encoding.

Similar observations were achieved when the network was
scaled to a 3-layer architecture with 784 × 400 × 10 neurons.
The network had a test accuracy of 97.41%, at par with iso-
architecture standard deterministic networks (a conventional
non-spiking network with rectified linear neuron units with
400 hidden layer neurons was observed to have a test accuracy
of 97.03% after 20 epochs of training). Interestingly, even
for this deeper network, the testing accuracy achieved near-
maximum values with only 2 − 3 spikes being considered
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for both the hidden and output layers. This is a significant
improvement over rate encoding methods and substantiates the
advantages of spiking sparsity enabled by temporal encoding.
In rate encoding, each layer triggers the next layer by the
average firing rate and therefore the spiking activity increases
exponentially with layer depth (for instance, the maximum
firing activity per neuron can range between 5 − 10 in
deep rate encoded SNN architectures like VGG and ResNet
[1]). In contrast for temporal encoding, since information
transmission from one layer to another does not depend on
average firing rate but rather on the time of firing, there is
no dependency of spiking activity on network scaling. While
the stochasticity causes the number of spikes for inference
to slightly increase above 1 to maintain minimal accuracy
drop, it enables the usage of binary state-compressed scaled
neuron devices to encode multi-bit information, instead of
complex device structures exhibiting spin textures like domain
walls, skyrmions, among others [27]. In order to perform a
benchmarking analysis, we compared the sparsity levels in our
network against an iso-accuracy rate-encoded stochastic MTJ
network (implemented according to the proposal outlined in
Ref. [9]). We observed 1.6× reduction in spiking sparsity for
the hidden layer and 3.77× reduction in spiking sparsity for
the output layer in the 784×400×10 neuron network. Scaling
to deeper architectures is expected to improve the sparsity
and latency benefits of such architectures along with providing
accuracies at par with other implementations [3], [4].

V. DISCUSSION AND OUTLOOK

The article presents a unique perspective of designing effi-
cient stochastic neuromorphic systems with temporal informa-
tion encoding driven by an interdisciplinary perspective from
devices to brain-inspired algorithm development. The work
provides algorithmic formulations to leverage the stochastic
temporal device characteristics of superparamagnetic devices
and provides proof-of-concept demonstrations through ex-
tensive simulations. Such an end-to-end co-design effort to
leverage unique properties of neuromorphic computing is an
ideal fit for application drivers characterized by temporal
information (for instance, sparse data collected by event-driven
sensors [28], [29], among others).
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