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ARTICLE INFO ABSTRACT

Keywords: Minimizing metabolic energy expenditure (MEE) plays an important role in increasing mobility in people with
Stride frequency locomotor disabilities, as movements that require high energy lead to less activity. Rehabilitation programs and
Real-time

devices use MEE to determine how effective they are, but using indirect calorimetry is limiting due to time delays
and non-real-world conditions. Electromyography (EMG) offers insight into how muscles activate; thus, the
purpose of this study was to develop a real-time MEE feedback system through the utilization of EMG signals.
Participants completed five walking conditions at different stride frequencies (preferred, +/- 15%, +/- 30%),
while breath-by-breath gas exchange, ground reaction forces and EMG signals were collected. The live EMG
signal was numerically integrated and separated into strides, then scaled by a cost of force (COF) coefficient. MEE
had the expected quadratic relationship seen in previous literature (R? = 0.967), along with COF data ®R? =
0.701). The EMG method stabilized between 75.1% - 133.1%, which is not within a close range (90% - 110%) of
MEE; thus, future studies must investigate other mathematical methods. Our results indicate a qualitative as-
sociation between MEE and EMG activity, which could be used to increase mobility and quality of life for

Cost of force

populations with disability.

1. Introduction

Minimizing energy expenditure during locomotion plays an impor-
tant role in the animal kingdom, from small to large animals with
differing forms of locomotion [1-3]. This principle applies to human
movement across many walking parameters, such as stride frequency,
step width, and gait speed to minimize energy costs [4-7]. People with
disabilities may also minimize energy expenditure [8] but have mobility
deficits that cause impaired locomotion, making it difficult to experi-
mentally prove this with current methods. Development of assistive
devices and rehabilitation programs use the measurement of energy
expenditure to make an assessment of the macroscopic effects of the
mechanism on the body [9,10]. If real-time metabolic data could be
obtained during locomotion, it would give insight into how specific
parameters could be adjusted to promote increased mobility and quicker
recovery; however, this is difficult to achieve with current methods.

Currently, the most widely used approach to estimate metabolic
energy expenditure (MEE) in engineering and biomechanics is indirect

calorimetry (IC), which measures expired oxygen and carbon dioxide
byproducts of the internal energetic demands to supply muscles and
other organs with energy in the form of ATP. However, due to mito-
chondrial dynamics and oxygen exchanges that take place during cir-
culation from the muscles to the lungs [11] a delay exists before oxygen
usage presents itself in the respiratory gases [12,13], making it difficult
to estimate direct metabolic energy expenditure in real-time. This leads
to the fundamental limitation of indirect calorimetry, being the need to
perform tests in which steady state levels are obtained over several
minutes at a certain parameter to ensure that oxygen is being consumed
at a sustainable rate [14], as well as high breath-by-breath noise present
in the measurements [13]. The implications of these limitations make
real-world comparisons difficult, wherein only one percent of walking
lasts the required five minutes at steady parameters due to continually
changing terrain or task objectives [15]. Changing terrain can require
quicker and slower steps, with quicker steps having greater MEE than
slower steps based on the cost of force relationship [16]. More impor-
tantly, people with disabilities are often unable to perform long bouts of
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steady state conditions due to mobility difficulties. The limitations of
indirect calorimetry are well-acknowledged, resulting in the develop-
ment of new methods to estimate energy expenditure.

An approach that is promising in estimating rapidly changing energy
costs is measurement of muscle activity using electromyography (EMG),
which records the myoelectric signals produced during muscle activa-
tion [16]. As the muscles perform a task, they are supplied with energy
from both aerobic and anaerobic sources, implying that muscle activa-
tions correlate directly with dynamic energy expenditure [17]. EMG
signals collecting muscle activation happening in real-time could
significantly decrease the time delay in estimating MEE compared to IC
(Fig. 1). Previous studies that examined EMG while walking were able to
accurately predict metabolic energy expenditure validated side-by-side
with indirect calorimetry, one under a specific set of ankle assisted
walking conditions [18] and the other showing muscle activity mini-
mized while walking at a preferred stride frequency (PSF) [19]. Addi-
tionally, results from another study were able to establish a relationship
between metabolic power and EMG signals during non-steady state
cycling conditions [17]. These studies indicate the potential for devel-
oping a robust method of determining energy expenditure from EMG
signals. To the authors knowledge, there has not been a study to estimate
real-time energy expenditure compared to indirect calorimetry while
walking using EMG. If people with disabilities had access to immediate
metabolic cost predictions for everyday movements, it could lead to
quicker movement self-optimization and a better quality of life [20].

The purpose of this study was to develop a real-time metabolic en-
ergy expenditure feedback system using EMG. We hypothesized that
real-time EMG would have the same qualitative (i.e., pattern) relation-
ship as IC across preferred and non-preferred walking patterns. In
addition to collecting unaltered muscle activity, we also were interested
in incorporating scaling coefficients to investigate whether their inclu-
sion would provide a better match to IC. We incorporated a coefficient
approximating the cost of force required by each stride, which was
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calculated by taking the reciprocal of the time of each stride [21]. This
was chosen to drive up MEE estimations for quicker stride conditions
and lower MEE estimations for longer stride conditions and was hy-
pothesized to provide a better match to IC. We hypothesized that the
real-time EMG would have a different quantitative relationship to IC. We
wanted insight into how quickly EMG could predict sudden changes in
MEE, hoping the time delay that exists with indirect calorimetry can be
decreased. Additionally, we wanted to know which muscle sets are the
best predictors of MEE and hypothesized that larger muscles will have a
greater contribution to energy expenditure and would be the best in-
dicators of total energy costs.

2. Methods

Five healthy participants (age = 22.1 4+ 1.1 yr., height =1.7 + 0.1 m,
mass = 69.6 + 14.3 kg, females = 3) took part in this study after giving
informed written consent to protocols approved by East Carolina Uni-
versity’s Institutional Review Board. The participants completed five
different walking conditions at 1.3 m-s~! on an instrumented treadmill
(Bertec, Columbus, OH) at five-minute intervals after an initial five-
minute static collection. The first condition was at the participant’s
PSF, and the remaining four were +/- 15% and 30% of the PSF in a
random order. Each individual’s PSF was recorded by making note of
how many steps they took in one minute while walking during the first
condition [22]. An audio metronome was used to indicate the desired
frequency and the participant was directed to time each step to the beat.
The participants walked continuously for the first three conditions,
underwent a 60 second rest to prevent lagging in the program due to the
amount of data, and then walked continuously for the final two
conditions.

Breath-by-breath oxygen and carbon dioxide gas exchange were
recorded (ParvoMedics TrueOne 2400, Sandy, UT) during the static and
walking periods continuously. Additionally, ground reaction forces and
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Fig. 1. Theoretical Framework Comparing Energy Expenditure Processes. EMG may significantly decrease time delay seen in IC giving reliable MEE estimates.
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surface EMG (Motion Lab Systems, Baton Rouge, LA) signals were
recorded throughout the trials. EMG sensors were placed on five muscles
(biceps femoris (BF), rectus femoris (RF), vastus lateralis (VL), medial
gastrocnemius (MG), soleus (Sol)) on each leg for all participants. These
muscles were chosen due to their superficial nature and easy access
which allowed data to be clean and reliable. Participant’s skin was
prepared and sensors were placed according to accepted standards and
guidelines [16]. The signals from the force treadmill and EMG were
acquired using a DAQ Board (Measurement Computing Corporation,
Norton, MA) which fed the live voltage signal into LabVIEW (National
Instruments, Austin, TX).

In LabVIEW, the live voltage signals from the DAQ Board were
filtered through a 4™ order bandpass and lowpass filter and then recti-
fied [16]. Each individual muscle signal was multiplied by the fraction
of muscle volume within a lower extremity from a previous imaging
study [23]. The program used the ground reaction forces to signal heel
strike and toe-off while numerically integrating the EMG signal [24].
This resulted in the quantity referred to as RAW, which is the unaltered
summed muscle activity for each stride. After a pilot trial, it was
observed that the negative stride conditions (-30%, -15%) were over-
estimated while the positive stride conditions (15%, 30%) were under-
estimated significantly compared to IC in the RAW data. A scaling
coefficient calculation to approximate the cost-of-force (COF) was added
to observe if its inclusion would provide a closer match to IC. This was
obtained by taking the reciprocal of stride time from a three-stride
moving average, which would decrease the muscle output estimation
for the slower conditions with a longer stride time (-30%, -15%) and
increase them for the faster ones with a quicker stride time (15%, 30%).
The unaltered summed muscle activity, RAW, was multiplied by the COF
coefficient separately to determine how they compared to each other in
approximating MEE. This resulted in two quantities that were analyzed,
the first being the unaltered summed muscle activity, RAW, and the
second being RAW multiplied by the cost-of-force coefficient, referred to
as COF. Throughout the data collection, a bar graph displayed the COF
summed muscle activity per stride and the percentages of the individual
muscle contributions for the previous three strides in real-time. The
participants were told not to alter their walking based on the real-time
display but match the audible metronome.

Following the data collection, metabolic energy expenditure was
calculated from averaged gas exchange data over the last two minutes of
each condition [25]. The average stride-by-stride muscle activity
exported from LabVIEW was sorted by condition. The last 189 strides for
each condition were used for data analysis.

To examine the qualitative relationship between MEE and EMG per
stride, each subject’s average ground truth MEE and summed total
muscle activity per stride for each condition (-30%, -15%, PSF, +15%,
+30%) were packaged together as the RAW unaltered totals and the COF
product. Statistical analyses were performed in MATLAB (2021b,
MathWorks, Natick, MA), R (R Core Team, 2017) and Excel®. To
examine the qualitative relationships between datasets, orthogonal
polynomial contrast analysis with ANOVA methods were utilized to
examine which polynomial equation best represented the relationship of
the summed total muscle activity and ground truth energy expenditure.
As a surrogate measure we expect values for EMG obtained from an
individual participant, or a function of these values, to be close to that
individual’s MEE value. What is considered a suitable tolerance between
MEE and the surrogate measure will depend on the application. For this
study, surrogate values needed to be within 10% of the MEE value.
Another property of a surrogate measure is that it is close to the target
value with high probability. With only five individuals this aspect could
not be addressed. We began with the simplest surrogate, that of using
EMG values. EMG values may stabilize earlier than MEE, but the
required number of strides for this stabilization is unknown and can
depend on experimental condition and the individual. The relationship
between number of strides and the potential of EMG values to be used as
surrogates was explored by making scatter plots with the difference
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between log EMG and log MEE values on the y-axis and number of
strides on the x-axis. Plotting symbols of different colors were used to
distinguish the individuals.

3. Results

All analyses were computed using the data from the ground truth
energy expenditure calculated from IC and the EMG muscle activity per
stride (Table 1). MEE had a U-shaped relationship, with the least amount
of MEE at the PSF and increasing exponentially the further away the
participant deviated from the PSF (p = 0.015, R? = 0.090 [linear]; p <
0.001, R? = 0.966 [quadratic]; p = 0.676, R? = 0.984 [cubic]) (Fig. 2).
The average muscle activity per stride with the implemented COF co-
efficient had a similar U-shaped relationship (p = 0.023, R? = 0.211
[linear]; p = 0.004, R? = 0.701 [quadratic]; p = 0.449, R% = 0.963
[cubic]) (Fig. 2). MEE and COF was represented best by a quadratic
equation, while the RAW unaltered totals (p < 0.001, R? = 0.534
[linear]; p = 0.051, R = 0.874 [quadratic]; p < 0.001, R? = 0.993
[cubic]) was best represented by a cubic equation (Fig. S1).

The plots showed that for most conditions the EMG values stabilized
after 100 strides, meaning there were ~89 strides left within the con-
dition, and therefore not stabilizing faster than MEE (Figs. 3-4). These
plots also showed considerable variability across the five individuals
(Figs. 3-4). The EMG values did not stabilize in the range from -.10 to .10
for any conditions (Fig. 4), therefore absolute differences on the log
scale, which correspond to the log of relative differences on the original
scale, did not stabilize between 90.5% (= exp(-.10)*100%) and 110.5%
(= exp(.10)*100%) of the MEE value.

These plots also showed that stabilized values for the five individuals
were not centered at zero (Figs. 3-4). For many of the conditions, the
EMG values were below their corresponding MEE values. If the stabi-
lized values for all five individuals fell within a range of 0.2 (not
necessarily centered at zero, i.e., -.10 to .10) then there is the possibility
that an offset could be used to make these values into suitable surro-
gates. Ideally, the range would be less than 0.2 since the offset would be
based on the data and so introduce additional variability. None of the
plots had a range of stabilized values that was less than 0.57 (Table 2).
The muscle groupings that stabilized in a range of 0.57 were MG-SOL,
BF-SOL, BF-MG, and BF-VL-MG, only when multiplied by the COF co-
efficient (Fig. 4, Table 2).

4. Discussion

The purpose of this project was to determine feasibility of a method
that estimates real-time energy expenditure with EMG signals by
comparing it to IC. When looking at mean muscle activity per stride over
individuals, our results indicate a promising relationship with MEE
measured with IC, especially for summed muscle activity scaled by the
inverse of stride time (i.e., COF). The COF (R? = 0.701) summed muscle
activity had a U-shaped relationship across conditions, similar to MEE
R?= 0.967), which was expected (Fig. 2) [6]. The estimated changes in
MEE from summed muscle activity with our data are similar to a
different study which determined that breath-by-breath EMG intensity
gives a reliable assessment of changes in metabolic power [17]. The
RAW unaltered totals did not reflect the U-shaped curve, as they tended

Table 1
Average and standard deviation of breath-by-breath MEE and EMG muscle
activation (cost of force = COF, unscaled = RAW) per stride.

Stride Frequency Condition =~ MEE (J/kg/m Net)  COF (V/s) RAW (V/s)

-30% 3.43 + 0.66 3.59 £ 0.61 4.94 £+ 0.80
-15% 2.54 £ 0.48 2.71 £0.247 3.27 £0.31
PSF 2.08 = 0.22 2.73+0.21 2.97 +£0.29
+15% 2.46 = 0.12 3.14 £ 0.37 3.03 £ 0.57
+30% 3.32+0.31 3.29 + 0.40 2.97 £0.31
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Fig. 2. Muscle Contribution to COF Average Summed Muscle Activity: Mean MEE and muscle activity at different stride frequencies. Shaded blue and error bars are
+ 1 SD. COF summed muscle activity reflects U-shaped curve seen of MEE from IC, indicating a potential qualitative relationship.
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Fig. 3. Steady state MEE (solid line) and COF EMG by stride (dots) for four muscle combinations for individual participants (colors) and means (black). Each dot
represents an individual stride. The EMG COF values underestimate the steady state MEE in most conditions and muscle combinations.

to overestimate the negative conditions (i.e., longer strides) and un-
derestimate the positive conditions (i.e., shorter strides) (Fig. S1-2). The
COF coefficient considered the amount of force needed to execute
quicker movements and increased the values seen in the positive con-
ditions, and decreased the values seen in the negative conditions.
While muscle activity per stride increases and decreases along with

MEE, our results showed the variability in the relationship across in-
dividuals indicates that additional information is required to obtain a
suitable approximation to the MEE value for an individual. We tried to
account for the different energetic demands of each muscle by scaling
muscles to relative volume within each leg. There may be other scaling
factors, statistical methods such as multiple linear regression in real-
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nations with the smallest range had at least one triceps surae muscle and three of the four were only two muscles.

time, or other forms of machine learning that this study did not consider
to establish significantly similar quantitative values. The analysis shows
that for many conditions, the EMG values stabilized for each of the in-
dividuals after a reasonable number of strides (~100). We also found
that the variability among individuals was so great that the stabilized
values cannot be used as surrogate measure which indicates surrogate
values will need to include participant characteristics (such as sex) and/
or that the experimental conditions (e.g., velocity) need to be adjusted to
address differences among participants (such as height). Establishing a
quantitative relationship could lead to better predictions of MEE in the
real-world and avoid the limitations of IC in the laboratory, assuming
that measuring muscle activity would result in a smaller time delay to
attain steady state to quantify the MEE for a new walking task. However,
it is possible that it would take longer than hoped, this is yet to be
determined and leads to a future research goal.

After analyzing different combinations of muscle groups, we cannot
confirm that larger sets of muscles would be better predictors of energy
expenditure. However, this could mean that the muscles used in this
project each contain valuable information about real-time energy
expenditure, potentially implying that a small number of sensors would
be needed to get a reliable qualitative relationship. The four muscle
combinations with a spread of 0.57 (Fig. 4) all had at least one triceps
surae muscle, and three of the four had only two muscles. The triceps
surae is an important set of locomotor muscles [26] and having only two
muscles with the best quantitative results indicate potential for less
sensors being needed. A study that examined muscle activity tuning to
different stride frequencies showed that peak EMG values from eight
different muscles, including the five muscles used in this study, all
demonstrated the U-shaped quadratic relationship across varying stride
frequencies [27].

There were many limitations with this initial study, as this research

served as a pilot study and provided the technical means to continue to
research a relationship between MEE and EMG. Due to the nature of the
study, researchers were provided with a small window of time to access
the equipment needed to both develop the real-time program and collect
participant data, and were not given any additional opportunities to
collect data for more subjects. The sample size was smaller than needed
to show validation of a reliable pattern of MEE across subjects and a
larger scale study with more participants and other numerical consid-
erations will need to be conducted to make any conclusive statements
about the feasibility of developing a real-time EMG surrogate for MEE.
We believe the findings are another step in trying to find real-time MEE
surrogates and will be useful in designing a larger study. We did not
account for the force-length and force-velocity properties of muscles and
how elastic energy could be playing a role with different conditions.
Walking at different stride frequencies at only one constant velocity was
observed. Other factors, such as changing velocities, terrain, and
movements were not represented in this study, which would be a more
robust examination into the relationship between MEE and EMG.
Additionally, all the participants were young and able-bodied, therefore
not representative of populations with disabilities, which this research
aims to benefit. Lastly, EMG is an inherently noisy signal that can be
distorted by sensor sliding and electrical noise due to sweat and excess
body tissue.

Future studies will have more participants with additional proced-
ures included to capture rapidly changing stride frequency conditions.
We will also use other statistical and mathematical methods, such as
multiple linear regression or extraction of different EMG features to
estimate MEE more accurately. An increased number of participants and
different mathematical methods may answer remaining questions
regarding the quantitative relationship between MEE and EMG muscle
activity per stride, while also improving quantitative predictions. Once
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Table 2

Spread of individual data showing the offset between max and min EMG and metabolic energy expenditure log differences after the 100th stride in column one of each condition, and the minimum (column two of each
condition) and maximum (column three of each condition) percentage of EMG stabilization relative to metabolic energy expenditure for 30 muscle combinations with RAW and COF values. 12 combinations are bolded

because they are the smallest spreads of individual data (0.57 and 0.58).

Muscle Combinations Negative 30% Negative 15% Preferred Positive 15% Positive 30% Means

SOL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.56 75.6 132.3 0.55 76.0 131.7 0.68 71.2 140.5 0.59 74.6 134.2
SOL 0.70 70.5 141.9 0.80 67.0 149.2 0.63 73.0 137.0 1.05 59.2 169.0 1.25 53.5 186.8 0.89 64.6 156.8
MG COF 0.60 74.1 135.0 0.58 74.8 133.6 0.55 76.0 131.7 0.50 77.9 128.4 0.65 72.3 138.4 0.58 75.0 133.4
MG 0.70 70.5 141.9 0.78 67.7 147.7 0.60 74.1 135.0 1.05 59.2 169.0 1.20 54.9 182.2 0.87 65.3 155.2
VL COF 0.60 74.1 135.0 0.52 77.1 129.7 0.55 76.0 131.7 0.54 76.3 131.0 0.70 70.5 141.9 0.58 74.8 133.8
VL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.25 53.5 186.8 0.87 65.2 155.7
RF COF 0.60 74.1 135.0 0.57 75.2 133.0 0.57 75.2 133.0 0.52 77.1 129.7 0.70 70.5 141.9 0.59 74.4 134.5
RF 0.67 71.5 139.8 0.87 64.7 154.5 0.60 74.1 135.0 1.02 60.0 166.5 1.15 56.3 177.7 0.86 65.3 154.7
BF COF 0.60 74.1 135.0 0.56 75.6 132.3 0.55 76.0 131.7 0.55 76.0 131.7 0.75 68.7 145.5 0.60 74.1 135.2
BF 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 3.15 20.7 483.1 1.25 53.5 186.8 1.29 57.5 218.5
MG-SOL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.53 76.7 130.3 0.53 76.7 130.3 0.65 72.3 138.4 0.57 75.1 133.1
MG-SOL 0.70 70.5 141.9 0.78 67.7 147.7 0.60 74.1 135.0 1.00 60.7 164.9 1.20 54.9 182.2 0.86 65.6 154.3
VL-SOL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.55 76.0 131.7 0.55 76.0 131.7 0.65 72.3 138.4 0.58 74.8 133.7
VL-SOL 0.70 70.5 141.9 0.40 81.9 122.1 0.60 74.1 135.0 1.05 59.2 169.0 1.28 52.7 189.6 0.81 67.7 151.5
VL-MG COF 0.60 74.1 135.0 0.55 76.0 131.7 0.57 75.2 133.0 0.55 76.0 131.7 0.68 71.2 140.5 0.59 74.5 134.4
VL-MG 0.67 71.5 139.8 0.79 67.4 148.4 0.63 73.0 137.0 1.00 60.7 164.9 1.20 54.9 182.2 0.86 65.5 154.5
RF-SOL COF 0.70 70.5 141.9 0.56 75.6 132.3 0.55 76.0 131.7 0.50 77.9 128.4 0.70 70.5 141.9 0.60 74.1 135.2
RF-SOL 0.65 72.3 138.4 0.78 67.7 147.7 0.60 74.1 135.0 1.03 59.8 167.4 1.20 54.9 182.2 0.85 65.7 154.1
RF-MG COF 0.58 74.8 133.6 0.58 74.8 133.6 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.4 134.5
RF-MG 0.68 71.2 140.5 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.25 53.5 186.8 0.87 65.3 155.4
RF-VL COF 0.60 74.1 135.0 0.55 76.0 131.7 0.55 76.0 131.7 0.57 75.2 133.0 0.65 72.3 138.4 0.58 74.7 133.9
RF-VL 0.69 70.8 141.2 0.55 76.0 131.7 0.60 74.1 135.0 1.00 60.7 164.9 1.20 54.9 182.2 0.81 67.3 151.0
BF-SOL COF 0.58 74.8 133.6 0.53 76.7 130.3 0.55 76.0 131.7 0.54 76.3 131.0 0.65 72.3 138.4 0.57 75.2 133.0
BF-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.00 60.7 164.9 1.15 56.3 177.7 0.84 66.0 153.0
BF-MG COF 0.60 74.1 135.0 0.55 76.0 131.7 0.50 77.9 128.4 0.55 76.0 131.7 0.65 72.3 138.4 0.57 75.2 133.0
BF-MG 0.70 70.5 141.9 0.78 67.7 147.7 0.63 73.0 137.0 1.05 59.2 169.0 1.20 54.9 182.2 0.87 65.0 155.6
BF-VL COF 0.58 74.8 133.6 0.55 76.0 131.7 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.6 134.1
BF-VL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.30 52.5 191.6 0.88 64.9 156.6
BF-RF COF 0.60 74.1 135.0 0.53 76.7 130.3 0.55 76.0 131.7 0.56 75.6 132.3 0.65 72.3 138.4 0.58 74.9 133.5
BF-RF 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.03 59.8 167.4 1.25 53.5 186.8 0.87 65.3 155.3
VL-MG-SOL COF 0.58 74.8 133.6 0.55 76.0 131.7 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.6 134.1
VL-MG-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.65 72.3 138.4 1.05 59.2 169.0 1.25 53.5 186.8 0.88 64.8 156.3
RF-MG-SOL COF 0.60 74.1 135.0 0.53 76.7 130.3 0.57 75.2 133.0 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.5 134.4
RF-MG-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.05 59.2 169.0 1.30 52.2 191.6 0.88 64.9 156.6
RF-VL-SOL COF 0.58 74.8 133.6 0.55 76.0 131.7 0.53 76.7 130.3 0.55 76.0 131.7 0.70 70.5 141.9 0.58 74.8 133.8
RF-VL-SOL 0.70 70.5 141.9 0.78 67.7 147.7 0.63 73.0 137.0 1.05 59.2 169.0 1.25 53.5 186.8 0.88 64.8 156.5
RF-VL-MG COF 0.58 74.8 133.6 0.57 75.2 133.0 0.55 76.0 131.7 0.57 75.2 133.0 0.70 70.5 141.9 0.59 74.3 134.6
RF-VL-MG 0.73 69.4 144.1 0.75 68.7 145.5 0.60 74.1 135.0 1.02 60.0 166.5 1.35 50.9 196.4 0.89 64.6 157.5
BF-MG-SOL COF 0.58 74.8 133.6 0.57 75.2 133.0 0.55 76.0 131.7 1.10 57.7 173.3 0.70 70.5 141.9 0.70 70.8 142.7
BF-MG-SOL 0.70 70.5 141.9 0.75 68.7 145.5 0.60 74.1 135.0 1.00 60.7 164.9 1.25 53.5 186.8 0.86 65.5 154.8
BF-VL-SOL COF 0.60 74.1 135.0 0.53 76.7 130.3 0.55 76.0 131.7 0.55 76.0 131.7 0.70 70.5 141.9 0.59 74.6 134.1
BF-VL-SOL 0.68 71.2 140.5 0.75 68.7 145.5 0.60 74.1 135.0 1.03 59.8 167.4 1.20 54.9 182.2 0.85 65.7 154.1

(continued on next page)
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N T validation of the method is reached with able-bodied participants, we
RIS S S e I S-S I S S hope to use this method with people who have disabilities, to examine
Lo e I T T B I T T B T T T T T T e B T . . . . . . . .
MEE with rapidly changing gait strategies. Trying different gait strate-
gies in a short period of time may lead to finding the best gait pattern
N @ . . . . .
I St e B e S Sk St vy s more efficiently. Extending this research to movements such as running,
lifting, jumping, and other everyday occurrences would be beneficial

2 and make this method more generalizable to the real-world.

I RheaRE38R8R8333333888 Implications of a real-time energy expenditure feedback system are
extensive for people with disabilities. This technology could be inte-
grated into a wearable sensor taken outside a lab setting, collecting

TORDIN®ORYIOQR®NQNRNRD IO energy cost information about everyday movements. Clinicians could
RETELETTIRETRTRTERS . .
AR RIRIERIR2SIEIRSERE have access to this data and make recommendations that would lessen
metabolic energy costs. It may aide in the development of exoskeletons
- . or powered protheses by showing the macroscopic effects of the device
A IR L R RN ; - ;
c|VdRudnedrpesenenyd on the body. By making movements more economical, people will

3 hopefully move more. Increased physical activity lowers the risk for

@ oy . . .. . .

= conditions such as cardiovascular disease, joint degradation, diabetes,

§ SERELEREBERERERESY and depression, among many others [28-30]. This proof-of-concept

£|ldidddrddrddridricrdondn p ) g y . p p
study established a method with reasonable preliminary results for a
real-time energy expenditure feedback system that could be used to

NtTtNonNnNOoNTYTNOOONOOINNT f e . . . .
AENE RS AN oGO N significantly improve the health and quality of life for people with
MOMOMOMOMOMOMOMOMO
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