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We construct robust empirical Bayes confidence intervals (EBCIs) in a normal
means problem. The intervals are centered at the usual linear empirical Bayes estima-
tor, but use a critical value accounting for shrinkage. Parametric EBCIs that assume a
normal distribution for the means (Morris (1983b)) may substantially undercover when
this assumption is violated. In contrast, our EBCIs control coverage regardless of the
means distribution, while remaining close in length to the parametric EBCIs when the
means are indeed Gaussian. If the means are treated as fixed, our EBCIs have an aver-
age coverage guarantee: the coverage probability is at least 1 −α on average across the
n EBCIs for each of the means. Our empirical application considers the effects of U.S.
neighborhoods on intergenerational mobility.

KEYWORDS: Average coverage, empirical Bayes, confidence interval, shrinkage.

1. INTRODUCTION

EMPIRICAL RESEARCHERS IN ECONOMICS are often interested in estimating effects for
many individuals or units, such as estimating teacher quality for teachers in a given ge-
ographic area. In such problems, it is common to shrink unbiased but noisy preliminary
estimates of these effects toward baseline values, say the average effect for teachers with
the same experience. In addition to estimating teacher quality (Kane and Staiger (2008),
Jacob and Lefgren (2008), Chetty, Friedman, and Rockoff (2014)), shrinkage techniques
are used in a wide range of applications including estimating school quality (Angrist, Hull,
Pathak, and Walters (2017)), hospital quality (Hull (2020)), the effects of neighborhoods
on intergenerational mobility (Chetty and Hendren (2018)), and patient risk scores across
regional health care markets (Finkelstein, Gentzkow, Hull, and Williams (2017)).

The shrinkage estimators used in these applications can be motivated by an empirical
Bayes (EB) approach. One imposes a working assumption that the individual effects are
drawn from a normal distribution (or, more generally, a known family of distributions).
The mean squared error (MSE) optimal point estimator then has the form of a Bayesian
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posterior mean, treating this distribution as a prior distribution. Rather than specifying
the unknown parameters in the prior distribution ex ante, the EB estimator replaces them
with consistent estimates, just as in random effects models. This approach is attractive
because one does not need to assume that the effects are in fact normally distributed,
or even take a “Bayesian” or “random effects” view: the EB estimators have lower MSE
(averaged across units) than the unshrunk unbiased estimators, even when the individual
effects are treated as nonrandom (James and Stein (1961)).

In spite of the popularity of EB methods, it is currently not known how to provide uncer-
tainty assessments to accompany the point estimates without imposing strong parametric
assumptions on the effect distribution. Indeed, Hansen (2016, p. 116) described inference
in shrinkage settings as an open problem in econometrics. The natural EB version of a
confidence interval (CI) takes the form of a Bayesian credible interval, again using the
postulated effect distribution as a prior (Morris (1983b)). If the distribution is correctly
specified, this parametric empirical Bayes confidence interval (EBCI) will cover 95%, say,
of the true effect parameters, under repeated sampling of the observed data and of the
effect parameters. We refer to this notion of coverage as “EB coverage,” following the
terminology in Morris (1983b). Unfortunately, we show that, in the context of a normal
means model, the parametric EBCI with nominal level 95% can have actual EB coverage
as low as 74% for certain non-normal effect distributions. The potential undercoverage is
increasing in the degree of shrinkage, and we derive a simple “rule of thumb” for gauging
the potential coverage distortion.

To allow easy uncertainty assessment in EB applications that is reliable irrespective of
the degree of shrinkage, we construct novel robust EBCIs that take a simple form and
control EB coverage regardless of the true effect distribution. Our baseline model is an
(approximate) normal means problem Yi ∼ N(θi�σ

2
i ), i = 1� � � � � n. In applications, Yi

represents a preliminary estimate of the effect θi for unit i. Like the parametric EBCI
that assumes a normal distribution for θi, the robust EBCI we propose is centered at
the normality-based EB point estimate θ̂i that shrinks Yi toward some baseline value,
but it uses a larger critical value to account for bias due to shrinkage.1 EB coverage is
controlled in the class of all distributions for θi that satisfy certain moment bounds, which
we estimate consistently from the data (similarly to the parametric EBCI, which uses
the second moment). We show that the baseline implementation of our robust EBCI is
“adaptive”: its length is close to that of the parametric EBCI when the θi’s are in fact
normally distributed. Thus, little efficiency is lost from using the robust EBCI in place of
the non-robust parametric one.2

In addition to controlling EB coverage, the robust EBCIs with level 1 − α have a fre-
quentist average coverage property: If the means θ1� � � � � θn are treated as fixed, the cover-
age probability, averaged across the n parameters θi, is at least 1 − α. In fact, under mild
conditions, at least a fraction 1−α of the n EBCIs will contain their respective parameters
(with high probability as n → ∞). This weakening of the usual requirement of coverage
for each parameter θi allows our robust EBCI to be shorter than the usual CI centered
at the unshrunk estimate Yi, and often substantially so.3 Intuitively, the average coverage
criterion only requires us to guard against the average coverage distortion induced by the

1Our methods are implemented in the Stata package ebreg, R package ebci, and Matlab package
ebci_matlab, which are available at SSC, CRAN, and GitHub, respectively.

2If the θi ’s are not normally distributed, our robust EBCIs are valid but may leave room for greater efficiency
improvement, as we discuss in Section 5.3.

3Relaxing the usual notion of coverage in some way is necessary to obtain intervals that reflect the efficiency
improvement of the empirical Bayes approach. In particular, the results in Pratt (1961) imply that for CIs
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biases of the individual shrinkage estimators θ̂i, and the data are quite informative about
whether most of these biases are large, even though individual biases are difficult to es-
timate. To complement the frequentist properties, our EBCIs can be viewed as Bayesian
credible sets that are robust to the prior on θi, in terms of ex ante coverage.

The average coverage criterion has the same motivation as the usual frequentist justifi-
cation of the EB point estimator: the EB point estimator achieves lower MSE on average
across units at the expense of potentially worse performance for some individual units
(see, e.g., Efron (2010, Chapter 1.3)). Thus, researchers who use EB estimators instead of
the unshrunk Yi’s prioritize favorable group performance over protecting individual per-
formance. Our average coverage intervals make an analogous tradeoff: they guarantee
coverage and achieve short length on average across units at the expense of giving up on
a coverage guarantee for every individual unit. We examine this tradeoff in more detail in
Section 5.

We caution, however, that the average coverage criterion is typically inappropriate in
applications where shrinkage point estimation is unattractive. This includes settings where
one is interested in the magnitude or the identity of the largest θi, or the true effect for
the largest observed Yi (as in, e.g., Hung and Fithian (2019), or Andrews, Kitagawa, and
McCloskey (2021)).4 It also includes settings where a particular effect, say θ1, is of primary
interest, or, more generally, settings where the effects are not exchangeable, and their
ordering is relevant (Greenshtein and Ritov (2019)). Our methods are also not applicable
if one is interested in functionals of the random effects distribution (as in Bonhomme and
Weidner (2021), or Ignatiadis and Wager (2021)), rather than in the effects themselves.
Finally, the justification for our methods is asymptotic in the number of parameters n.
In our Monte Carlo simulations, we find that our EBCIs have close to nominal coverage
over a range of data generating processes (DGPs) once n is greater than 100.

We illustrate our results by computing EBCIs for the causal effects of growing up in dif-
ferent U.S. neighborhoods (specifically commuting zones) on intergenerational mobility.
We follow Chetty and Hendren (2018), who applied EB shrinkage to initial fixed effects
estimates. Depending on the specification, we find that the robust EBCIs are on average
12–25% as long as the unshrunk CIs.

Our underlying ideas extend to other linear and nonlinear shrinkage settings with pos-
sibly non-Gaussian data. For example, our techniques allow for the construction of robust
EBCIs that contain (nonlinear) soft thresholding estimators, as well as average coverage
confidence bands for nonparametric regression functions.

The average coverage criterion was originally introduced in the literature on nonpara-
metric regression (Wahba (1983), Nychka (1988), Wasserman (2006, Chapter 5.8)). Cai,
Low, and Ma (2014) constructed adaptive average coverage confidence bands. These pro-
cedures are challenging to implement in our EB setting, and lack a clear finite-sample jus-
tification, unlike our procedure. Liu, Moon, and Schorfheide (2022) constructed forecast
intervals in a dynamic panel data model that guarantee average coverage in a Bayesian
sense (for a fixed prior). We discuss alternative approaches to inference in EB settings in
Section 5.

with coverage 95%, one cannot achieve expected length improvements greater than 15% relative to the usual
unshrunk CIs, even if one happens to optimize length for the true parameter vector (θ1� � � � � θn). See, for
example, Corollary 3.3 in Armstrong and Kolesár (2018) and the discussion following it.

4As we show in Section 6.2, our methods do extend to settings where we keep a subset of units i that exceed
a given cutoff. However, we do not allow this cutoff to diverge with the sample size, such as when one focuses
on the unit i with the single largest observed Yi .
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The rest of this paper is organized as follows. Section 2 illustrates our methods in the
context of a simple homoscedastic Gaussian model. Section 3 presents our recommended
baseline procedure and discusses practical implementation issues. Section 4 presents our
main results on the coverage and efficiency of the robust EBCI, and on the coverage dis-
tortions of the parametric EBCI; we also verify the finite-sample coverage accuracy of
the robust EBCI through extensive simulations. Section 5 compares our EBCI with other
inference approaches. Section 6 discusses extensions of the basic framework. Section 7
contains an empirical application to inference on neighborhood effects. Appendices A
to C give details on finite-sample corrections, computational details, and formal asymp-
totic coverage results. The Supplemental Material (Armstrong, Kolesár, and Plagborg-
Møller (2022)) contains proofs as well as further technical results. Applied readers are
encouraged to focus on Sections 2, 3, and 7.

2. SIMPLE EXAMPLE

This section illustrates the construction of the robust EBCIs that we propose in a sim-
plified setting with no covariates and with known, homoscedastic errors. Section 3 relaxes
these restrictions, and discusses other empirically relevant extensions of the basic frame-
work, as well as implementation issues.

We observe n estimates Yi of elements of the parameter vector θ = (θ1� � � � � θn)′. Each
estimate is normally distributed with common, known variance σ2,

Yi|θ ∼ N
(
θi�σ

2
)
� i = 1� � � � � n� (1)

In many applications, the Yi’s arise as preliminary least squares estimates of the param-
eters θi. For instance, they may correspond to fixed effect estimates of teacher or school
value added, neighborhood effects, or firm and worker effects. In such cases, Yi will only
be approximately normal in large samples by the central limit theorem (CLT); we take this
explicitly into account in the theory in Appendix C.

A popular approach to estimation that substantially improves upon the raw estimator
θ̂i = Yi under the compound MSE

∑n

i=1 E[(θ̂i − θi)2] is based on empirical Bayes (EB)
shrinkage. In particular, suppose that the θi’s are themselves normally distributed,

θi ∼N(0�µ2)� (2)

Our discussion below applies if Eq. (2) is viewed as a subjective Bayesian prior dis-
tribution for a single parameter θi, but for concreteness we will think of Eq. (2) as
a “random effects” sampling distribution for the n mean parameters θ1� � � � � θn. Un-
der Eq. (2), it is optimal to estimate θi using the posterior mean θ̂i = wEBYi, where
wEB = 1 − σ2/(σ2 + µ2). To avoid having to specify the variance µ2, the EB approach
treats it as an unknown parameter, and replaces the marginal precision of Yi, 1/(σ2 +µ2),
with a method of moments estimate n/

∑n

i=1 Y
2
i , or the degrees-of-freedom adjusted esti-

mate (n−2)/
∑n

i=1 Y
2
i . The latter leads to the classic estimator of James and Stein (1961),

ŵEB = 1 − σ2(n− 2)/
∑n

i=1 Y
2
i .

One can also use Eq. (2) to construct CIs for the θi’s. In particular, since the marginal
distribution of wEBYi −θi is normal with mean zero and variance (1 −wEB)2µ2 +w2

EBσ
2 =

wEBσ
2, this leads to the 1 − α CI

wEBYi ± z1−α/2w
1/2
EBσ� (3)
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where zα is the α quantile of the standard normal distribution. Since the form of the
interval is motivated by the parametric assumption (2), we refer to it as a parametric
EBCI. With µ2 unknown, one can replace wEB by ŵEB.5 This is asymptotically equivalent
to (3) as n → ∞.

The coverage of the parametric EBCI in (3) is 1−α under repeated sampling of (Yi� θi)
according to Eqs. (1) and (2). To distinguish this notion of coverage from the case with
fixed θ, we refer to coverage under repeated sampling of (Yi� θi) as “empirical Bayes
coverage.” This follows the definition of an empirical Bayes confidence interval (EBCI)
in Morris (1983b, Eq. 3.6) and Carlin and Louis (2000, Chapter 3.5). Unfortunately, this
coverage property relies heavily on the parametric assumption (2). We show in Section 4.3
that the actual EB coverage of the nominal 1 − α parametric EBCI can be as low as
1 − 1/max{z1−α/2�1} for certain non-normal distributions of θi with variance µ2; for 95%
EBCIs, this evaluates to 74%. This contrasts with existing results on estimation: although
the EB estimator is motivated by the parametric assumption (2), it performs well even if
this assumption is dropped, with low MSE even if we treat θ as fixed.

This paper constructs an EBCI with a similar robustness property: the interval will be
close in length to the parametric EBCI when Eq. (2) holds, but its EB coverage is at
least 1 − α without any parametric assumptions on the distribution of θi. To describe the
construction, suppose that all that is known is that θi is sampled from a distribution with
second moment given by µ2 (in practice, we can replace µ2 by the consistent estimate
n−1

∑n

i=1 Y
2
i − σ2). Conditional on θi, the estimator wEBYi has bias (wEB − 1)θi and vari-

ance w2
EBσ

2, so that the t-statistic (wEBYi − θi)/wEBσ is normally distributed with mean
bi = (1 − 1/wEB)θi/σ and variance 1. Therefore, if we use a critical value χ, the non-
coverage of the CI wEBYi ±χwEBσ , conditional on θi, will be given by the probability

r(bi�χ) = P
(
|Z − bi| ≥ χ|θi

)
=�(−χ− bi) +�(−χ+ bi)� (4)

where Z denotes a standard normal random variable, and � denotes its cdf. Thus, by
iterated expectations, under repeated sampling of θi, the non-coverage is bounded by

ρ
(
σ2/µ2�χ

)
= sup

F

EF

[
r(b�χ)

]
s.t. EF

[
b2
]
= (1 − 1/wEB)2

σ2 µ2 = σ2

µ2
� (5)

where EF denotes expectation under b ∼ F . Although this is an infinite-dimensional op-
timization problem over the space of distributions, it turns out that it admits a simple
closed-form solution, which we give in Proposition B.1 in Appendix B. Moreover, because
the optimization is a linear program, it can be solved even in the more general settings of
applied relevance that we consider in Section 3.

Set χ = cvaα(σ2/µ2), where cvaα(t) = ρ−1(t�α), and the inverse is with respect to the
second argument. Then the resulting interval

wEBYi ± cvaα

(
σ2/µ2

)
wEBσ (6)

will maintain coverage 1 − α among all distributions of θi with E[θ2
i ] = µ2 (recall that

we estimate µ2 consistently from the data). For this reason, we refer to it as a robust
EBCI. Figure 1 in Section 3.1 gives a plot of the critical values for α = 0�05. We show
in Section 4.2 below that by also imposing a constraint on the fourth moment of θi, in

5Alternatively, to account for estimation error in ŵEB, Morris (1983b) suggested adjusting the variance
estimate ŵEBσ

2 to ŵEBσ
2 + 2Y 2

i (1 − ŵEB)2/(n− 2). The adjustment does not matter asymptotically.
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FIGURE 1.—Function cvaα(m2�κ) for α = 0�05 and selected values of κ. The function cvaα(m2), defined
in Section 2, that only imposes a constraint on the second moment, corresponds to cvaα(m2�∞). The func-
tion cvaP�α(m2) = z1−α/2

√
1 +m2 corresponds to the critical value under the assumption that θi is normally

distributed.

addition to the second moment constraint, one can construct a robust EBCI that “adapts”
to the Gaussian case in the sense that its length will be close to that of the parametric
EBCI in Eq. (3) if these moment constraints are compatible with a normal distribution.

Instead of considering EB coverage, one may alternatively wish to assess uncertainty
associated with the estimates θ̂i = wEBYi when θ is treated as fixed. In this case, the EBCI
in Eq. (6) has an average coverage guarantee that

1
n

n∑

i=1

P
(
θi ∈

[
wEBYi ± cvaα

(
σ2/µ2

)
wEBσ

]
|θ
)
≥ 1 − α� (7)

provided that the moment constraint can be interpreted as a constraint on the empiri-
cal second moment on the θi’s, n−1

∑n

i=1 θ
2
i = µ2. In other words, if we condition on θ,

then the coverage is at least 1 − α on average across the n EBCIs for θ1� � � � � θn. To see
this, note that the average non-coverage of the intervals is bounded by (5), except that
the supremum is only taken over possible empirical distributions for θ1� � � � � θn satisfying
the moment constraint. Since this supremum is necessarily smaller than ρ(σ2/µ2�χ), it
follows that the average coverage is at least 1 − α. In fact, if the Yi’s exhibit limited de-
pendence across i, a stronger property holds: the probability that at least a fraction 1 − α
of the n EBCIs contain their respective true parameters converges to 1 as n → ∞; cf.
Remark 4.1 below.

The usual CIs Yi ± z1−α/2σ also of course achieve average coverage 1 − α. The robust
EBCI in Eq. (6) will, however, be shorter, especially when µ2 is small relative to σ2—
see Figure 3 below. The reduction in length is achieved by weakening the requirement
that each CI covers its true parameter 1 − α percent of the time to the requirement that
the coverage probability equal 1 − α on average across the CIs. It may seem surprising
that we can construct a narrower CI by centering it at the shrinkage estimates wEBYi.
The intuition for this is that the shrinkage reduces the variability of the estimates, at the
expense of introducing bias in the estimates. The bias necessitates the use of a larger
critical value cvaα(σ2/µ2). Because under the average coverage criterion we only need to
control the bias on average across i, rather than for each individual θi, this increase in the
critical value is smaller than the reduction in the standard error.
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3. PRACTICAL IMPLEMENTATION

We now describe how to compute a robust EBCI that allows for heteroscedasticity,
shrinks toward more general regression estimates rather than toward zero, and exploits
higher moments of the bias to yield a narrower interval. In Section 3.1, we describe the
empirical Bayes model that motivates our baseline approach. Section 3.2 describes the
practical implementation of our baseline approach.

3.1. Motivating Model and Robust EBCI

In applied settings, the unshrunk estimates Yi will typically have heteroscedastic vari-
ances. Furthermore, rather than shrinking toward zero, it is common to shrink toward an
estimate of θi based on some covariates Xi, such as a regression estimate X ′

i δ̂. We now
describe how to adapt the ideas in Section 2 to such settings.

Consider a generalization of the model in Eq. (1) that allows for heteroscedasticity and
covariates,

Yi|θi�Xi�σi ∼ N
(
θi�σ

2
i

)
� i = 1� � � � � n� (8)

The covariate vector Xi may contain just the intercept, and it may also contain (functions
of) σi. To construct an EB estimator of θi, consider the working assumption that the
sampling distribution of the θi’s is conditionally normal:

θi|Xi�σi ∼N(µ1�i�µ2)� where µ1�i =X ′
iδ� (9)

The hierarchical model (8)–(9) leads to the Bayes estimate θ̂i = µ1�i + wEB�i(Yi − µ1�i),
where wEB�i = µ2

µ2+σ2
i

. This estimate shrinks the unrestricted estimate Yi of θi toward

µ1�i = X ′
iδ. In contrast to (8), the normality assumption (9) typically cannot be justified

simply by appealing to the CLT; the linearity of the conditional mean µ1�i =X ′
iδ may also

be suspect. Our robust EBCI will therefore be constructed so that it achieves valid EB
coverage even if assumption (9) fails. To obtain a narrow robust EBCI, we augment the
second moment restriction used to compute the critical value in Eq. (5) with restrictions
on higher moments of the bias of θ̂i. In our baseline specification, we add a restriction on
the fourth moment.

In particular, we replace assumption (9) with the much weaker requirement that the
conditional second moment and kurtosis of εi = θi −X ′

iδ do not depend on (Xi�σi):

E
[(
θi −X ′

iδ
)2

|Xi�σi

]
= µ2� E

[(
θi −X ′

iδ
)4

|Xi�σi

]
/µ2

2 = κ� (10)

where δ is defined as the probability limit of the regression estimate δ̂.6 We discuss this
requirement further in Remark 3.1 below, and we relax it in Remark 3.2 below.

We now apply analysis analogous to that in Section 2. Let us suppose for simplicity
that δ, µ2, κ, and σi are known; we relax this assumption in Section 3.2 below, and in
the theory in Section 4. Denote the conditional bias of θ̂i normalized by the standard
error by bi = (wEB�i −1)εi/(wEB�iσi) = −σiεi/µ2. Under repeated sampling of θi, the non-
coverage of the CI θ̂i ± χwEB�iσ , conditional on (Xi�σi), depends on the distribution of

6Our framework can be modified to let (Xi�σi) be fixed, in which case δ depends on n. See the discussion
following Theorem 4.1 below.
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the normalized bias bi, as in Section 2. Given the moments µ2 and κ, the maximal non-
coverage is given by

ρ(m2�i�κ�χ) = sup
F

EF

[
r(b�χ)

]
s.t. EF

[
b2
]
= m2�i� EF

[
b4
]
= κm2

2�i� (11)

where b is distributed according to the distribution F . Here m2�i = E[b2
i|Xi�σi] = σ2

i /µ2.
Observe that the kurtosis of bi matches that of εi. Appendix B shows that the infinite-
dimensional linear program (11) can be reduced to two nested univariate optimizations.
We also show that the least favorable distribution—the distribution F maximizing (11)—is
a discrete distribution with up to four support points (see Remark B.1).

Define the critical value cvaα(m2�i�κ) = ρ−1(m2�i�κ�α), where the inverse is in the last
argument. Figure 1 plots this function for α= 0�05 and selected values of κ. This leads to
the robust EBCI

θ̂i ± cvaα(m2�i�κ)wEB�iσi� (12)

which, by construction, has coverage at least 1 − α under repeated sampling of (Yi� θi),
conditional on (Xi�σi), so long as Eq. (10) holds; it is not required that (9) holds. Note
that both the critical value and the CI length are increasing in σi.

3.2. Baseline Implementation

Our baseline implementation of the robust EBCI plugs in consistent estimates of the
unknown quantities in Eq. (12), based on the data {Yi�Xi� σ̂i}ni=1, where σ̂i is a consistent
estimate of σi (such as the standard error of the preliminary estimate Yi), and Xi is a
vector of covariates that are thought to help predict θi.

1. Regress Yi on Xi to obtain the fitted values X ′
i δ̂, with δ̂ = (

∑n

i=1 ωiXiX
′
i)

−1
∑n

i=1 ωi ×
XiYi denoting the weighted least squares estimate with precision weights ωi. Two
natural choices are setting ωi = σ̂−2

i , or setting ωi = 1/n for unweighted estimates;

see Appendix A.2 for further discussion. Let µ̂2 = max{
∑n

i=1 ωi (ε̂2
i
−σ̂2

i
)∑n

i=1 ωi
�

2
∑n

i=1 ω
2
i
σ̂4
i∑n

i=1 ωi ·
∑n

i=1 ωiσ̂
2
i
},

and κ̂ = max{
∑n

i=1 ωi(ε̂4
i
−6σ̂2

i
ε̂2
i
+3σ̂4

i
)

µ̂2
2
∑n

i=1 ωi
�1 + 32

∑n
i=1 ω

2
i
σ̂8
i

µ̂2
2
∑n

i=1 ωi ·
∑n

i=1 ωiσ̂
4
i
}, where ε̂i = Yi −X ′

i δ̂.

2. Form the EB estimate

θ̂i =X ′
i δ̂+ ŵEB�i

(
Yi −X ′

i δ̂
)
� where ŵEB�i =

µ̂2

µ̂2 + σ̂2
i

�

3. Compute the critical value cvaα(σ̂2
i /µ̂2� κ̂) defined below Eq. (11).

4. Report the robust EBCI

θ̂i ± cvaα

(
σ̂2

i /µ̂2� κ̂
)
ŵEB�iσ̂i� (13)

We provide fast and stable software packages that automate these steps (see footnote 1).
We now discuss the assumptions needed for validity of the robust EBCI.

REMARK 3.1—Conditional EB coverage and moment independence: A potential con-
cern about EB coverage in a heteroscedastic setting is that in order to reduce the length
of the CI on average, one could choose to overcover parameters θi with small σi and
undercover parameters θi with large σi. Our robust EBCI ensures that this does not hap-
pen by requiring EB coverage to hold conditional on (Xi�σi). This also avoids analogous
coverage concerns as a result of the value of Xi.
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The key to ensuring this property is assumption (10) that the conditional second mo-
ment and kurtosis of εi = θi − X ′

iδ do not depend on (Xi�σi). Conditional moment in-
dependence assumptions of this form are common in the literature. For instance, it is
imposed in the analysis of neighborhood effects in Chetty and Hendren (2018) (their ap-
proach requires independence of the second moment), which is the basis for our empiri-
cal application in Section 7. Nonetheless, such conditions may be strong in some settings,
as argued by Xie, Kou, and Brown (2012) in the context of EB point estimation. In Re-
mark 3.2 below, we drop condition (10) entirely by replacing µ̂2 and κ̂ with nonparametric
estimates of these conditional moments; alternatively, one could relax it by using a flexible
parametric specification.7

REMARK 3.2—Nonparametric moment estimates: As a robustness check to guard
against failure of the moment independence assumption (10), one may replace the critical
value in Eq. (13) with cvaα((1 − 1/ŵEB�i)2µ̂2i/σ̂

2
i � κ̂i), where µ̂2i and κ̂i are consistent non-

parametric estimates of µ2i = E[(θi − X ′
iδ)2|Xi�σi] and κi = E[(θi − X ′

iδ)4|Xi�σi]/µ2
2i.

The resulting CI will be asymptotically equivalent to the CI in the baseline implemen-
tation if Eq. (10) holds, but it will achieve valid EB coverage even if this assumption
fails. In our empirical application, we use nearest-neighbor estimates, as described in Ap-
pendix A.1. As a simple diagnostic to gauge how much the second moment of θi − X ′

iδ
varies with (Xi�σi), one can report the R2 gain in predicting ε̂2

i − σ̂2
i using µ̂2i rather than

the baseline estimate µ̂2, as we illustrate in our empirical application.

REMARK 3.3—Average coverage and non-independent sampling: We show in Sec-
tion 4 that the robust EBCI satisfies an average coverage criterion of the form (7) when
the parameters θ = (θ1� � � � � θn) are considered fixed, in addition to achieving valid EB
coverage when the θi’s are viewed as random draws from some underlying distribution.
To guarantee average coverage or EB coverage, we do not need to assume that the Yi’s
and θi’s are drawn independently across i. This is because the average coverage and EB
coverage criteria only depend on the marginal distribution of (Yi� θi), not the joint distri-
bution. Indeed, in deriving the infeasible CI in Eq. (12), we made no assumptions about
the dependence structure of (Yi� θi) across i. Consequently, to guarantee asymptotic cov-
erage of the feasible interval in Eq. (13) as n → ∞, we only need to ensure that the
estimates µ̂2, κ̂, δ̂, σ̂i are consistent for µ2, κ, δ, σi, which is the case under many forms of
weak dependence or clustering. Furthermore, our baseline implementation above does
not require the researcher to take an explicit stand on the dependence of the data; for
example, in the case of clustering, the researcher does not need to take an explicit stand
on how the clusters are defined.

REMARK 3.4—Estimating moments of the distribution of θi: The estimators µ̂2 and
κ̂ in step 1 of our baseline implementation above are based on the moment conditions
E[(Yi − X ′

iδ)2 − σ2
i |Xi�σi] = µ2 and E[(Yi − X ′

iδ)4 + 3σ4
i − 6σ2

i (Yi − X ′
iδ)2|Xi�σi] =

κµ2
2, replacing population expectations by weighted sample averages. In addition, to avoid

small-sample coverage issues when µ2 and κ are near their theoretical lower bounds of 0
and 1, respectively, these estimates incorporate truncation on µ̂2 and κ̂. These truncated

7Another way to drop condition (10) is to base shrinkage on the t-statistics Yi/σi , applying the baseline
implementation above with Yi/σ̂i in place of Yi and 1 in place of σ̂i . Then the homoscedastic analysis in
Section 2 applies, leading to valid EBCIs without any assumptions about independence of the moments. See
Remark 3.8 and Appendix D.1 in Armstrong, Kolesár, and Plagborg-Møller (2020) for further discussion.
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estimates approximate the Bayesian posterior means under a flat prior on µ2 and κ, as
in Morris (1983a,b). Although the resulting EBCIs do not directly account for estimation
uncertainty in µ2 and κ, we verify their small-sample coverage accuracy via extensive
simulations in Section 4.4. Appendix A.1 discusses the choice of the moment estimates,
as well as other ways of performing truncation.

REMARK 3.5—Using higher moments and other forms of shrinkage: In addition to
using the second and fourth moment of bias, one may augment (11) with restrictions on
higher moments of the bias in order to further tighten the critical value. In Section 4.2,
we show that using other moments in addition to the second and fourth moment does not
substantially decrease the critical value in the case where θi is normally distributed. Thus,
the CI in our baseline implementation is robust to failure of the normality assumption (9),
while being near-optimal when this assumption does hold. Section 4.2 also shows that
further efficiency gains are possible if one uses the linear estimator θ̃i = µ1�i+wi(Yi−µ1�i)
with the shrinkage coefficient wi chosen to optimize CI length, instead of using the MSE-
optimal shrinkage wEB�i. For efficiency under a non-normal distribution of θi, one needs
to consider nonlinear shrinkage; we discuss this extension in Section 6.1.

4. MAIN RESULTS

This section provides formal statements of the coverage properties of the CIs presented
in Sections 2 and 3. Furthermore, we show that the CIs presented in Sections 2 and 3
are highly efficient when the mean parameters are in fact normally distributed. Next, we
calculate the maximal coverage distortion of the parametric EBCI, and derive a rule of
thumb for gauging the potential coverage distortion. Finally, we present a comprehensive
simulation study of the finite-sample performance of the robust EBCI. Applied readers
interested primarily in implementation issues may skip ahead to the empirical application
in Section 7.

4.1. Coverage Under Baseline Implementation

In order to state the formal result, let us first carefully define the notions of cover-
age that we consider. Consider intervals CI1� � � � �CIn for elements of the parameter vec-
tor θ = (θ1� � � � � θn)′. The probability measure P denotes the joint distribution of θ and
CI1� � � � �CIn. Following Morris (1983b, Eq. 3.6) and Carlin and Louis (2000, Chapter 3.5),
we say that the interval CIi is an (asymptotic) 1 − α empirical Bayes confidence interval
(EBCI) if

lim inf
n→∞

P(θi ∈ CIi) ≥ 1 − α� (14)

We say that the intervals CIi are (asymptotic) 1 − α average coverage intervals (ACIs)
under the parameter sequence θ1� � � � � θn if

lim inf
n→∞

1
n

n∑

i=1

P(θi ∈ CIi|θ) ≥ 1 − α� (15)

The average coverage property (15) is a property of the distribution of the data con-
ditional on θ and therefore does not require that we view the θi’s as random (as in a
Bayesian or “random effects” analysis). To maintain consistent notation, we nonetheless
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use the conditional notation P(·|θ) when considering average coverage. See Appendix C
for a formulation with θ treated as nonrandom.

Observe that under the exchangeability condition that P(θi ∈ CIi) = P(θj ∈ CIj) for all
i, j, if the ACI property (15) holds almost surely, then the EBCI property (14) holds, since
then

P(θi ∈ CIi) = 1
n

n∑

j=1

P(θj ∈ CIj) ≥ 1 − α+ o(1) for all i.

We now provide coverage results for the baseline implementation described in Sec-
tion 3.2. To keep the statements in the main text as simple as possible, we (i) maintain
the assumption that the unshrunk estimates Yi follow an exact normal distribution con-
ditional on the parameter θi, (ii) state the results only for the homoscedastic case where
the variance σi of the unshrunk estimate Yi does not vary across i, and (iii) consider only
unconditional coverage statements of the form (14) and (15). In Appendix C, we allow
the estimates Yi to be only approximately normally distributed and allow σi to vary, and
we verify that our assumptions hold in a linear fixed effects panel data model. We also
formalize the statements about conditional coverage made in Remark 3.1.

THEOREM 4.1: Suppose Yi|θ ∼ N(θi�σ
2). Let µj�n = 1

n

∑n

i=1(θi − X ′
iδ)j and let κn =

µ4�n/µ
2
2�n. Suppose the sequence θ = θ1� � � � � θn and the conditional distribution P(·|θ) satisfy

the following conditions with probability 1:
1. µ2�n → µ2 and µ4�n/µ

2
2�n → κ for some µ2 ∈ (0�∞) and κ ∈ (1�∞).

2. Conditional on θ, (δ̂� σ̂� µ̂2� κ̂) converges in probability to (δ�σ�µ2�κ).
Then the CIs in Eq. (13) with σ̂i = σ̂ satisfy the ACI property (15) with probability 1. Fur-

thermore, if θ1� � � � � θn follow an exchangeable distribution and the estimators δ̂, σ̂ , µ̂2, and
κ̂ are exchangeable functions of the data (X ′

1�Y1)′� � � � � (X ′
n�Yn)′, then these CIs satisfy the

EB coverage property (14).

Theorem 4.1 follows immediately from Theorem C.2 in Appendix C. In order to cover
both the EB coverage condition (14) and the average coverage condition (15), Theo-
rem 4.1 considers a random sequence of parameters θ1� � � � � θn, and shows average cover-
age conditional on these parameters. See Appendix C for a formulation with θ treated as
nonrandom.

The condition on the moments µ2 and κ avoids degenerate cases such as when µ2 = 0,
in which case the EB point estimator θ̂i shrinks each preliminary estimate Yi all the way
to X ′

i δ̂. Note also that the theorem does not require that δ̂ be the ordinary least squares
(OLS) estimate in a regression of Yi onto Xi, and that δ be the population analog; one
can define δ in other ways, the theorem only requires that δ̂ be a consistent estimate of
it. The definition of δ does, however, affect the plausibility of the moment independence
assumption in Eq. (10) needed for conditional coverage results stated in Appendix C.8

REMARK 4.1: As shown in Appendix C, if CIs satisfy the average coverage condi-
tion (15) given θ1� � � � � θn, they will typically also satisfy the stronger condition

1
n

n∑

i=1

I{θi ∈ CIi}≥ 1 − α+ oP(·|θ)(1)� (16)

8The specification of µ1i =X ′
iδ also affects the EBCI width through its effect on µ2 and κ.
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where oP(·|θ)(1) denotes a sequence that converges in probability to zero conditional on θ
(Eq. (16) implies Eq. (15) since the left-hand side is uniformly bounded). That is, at least
a fraction 1−α of the n CIs contain their respective true parameters, asymptotically. This
is analogous to the result that for estimation, the difference between the squared error
1
n

∑n

i=1(θ̂i − θi)2 and the MSE 1
n

∑n

i=1 E[(θ̂i − θi)2|θ] typically converges to zero.

4.2. Relative Efficiency

The robust EBCI in Eq. (12), unlike the parametric EBCI θ̂i ± z1−α/2σi

√
wEB�i, does not

rely on the normality assumption in Eq. (9) for its validity. We now show that this robust-
ness does not come at a high cost in terms of efficiency: if the normality assumption (9) in
fact holds, the efficiency loss is limited unless the signal-to-noise ratio µ2/σ

2
i is very small.

There are two reasons for the inefficiency of the robust EBCI. First, the robust EBCI
only makes use of the second and fourth moment of the conditional distribution of θi −
X ′

iδ, rather than its full distribution. Second, if we only have knowledge of these two
moments, it is no longer optimal to center the EBCI at the estimator θ̂i: one may need to
consider other, perhaps nonlinear, shrinkage estimators, as we do below in Section 6.1.

We decompose the sources of inefficiency by studying the relative length of the ro-
bust EBCI relative to the EBCI that picks the amount of shrinkage optimally. For the
latter, we maintain assumption (10), and consider a more general class of estimators
θ̃(wi) = µ1�i +wi(Yi −µ1�i). For tractability, we focus on fixed-length CIs based on linear
shrinkage estimators, but allow the amount of shrinkage wi to be optimally determined.
The normalized bias of θ̃(wi) is given by bi = (1/wi − 1)εi/σi, which leads to the EBCI

µ1�i +wi(Yi −µ1�i) ± cvaα

(
(1 − 1/wi)2µ2/σ

2
i �κ

)
wiσi�

The half-length of this EBCI, cvaα((1 − 1/wi)2µ2/σ
2
i �κ)wiσi, can be numerically mini-

mized as a function of wi to find the EBCI length-optimal shrinkage. Denote the mini-
mizer by wopt(µ2/σ

2
i �κ�α). Like wEB�i, the optimal shrinkage depends on µ2 and σ2

i only
through the signal-to-noise ratio µ2/σ

2
i . Numerically evaluating the minimizer shows that

wopt(·�κ�α) ≥ wEB�i for κ ≥ 3 and α ∈ {0�05�0�1}. The resulting EBCI is optimal among
all fixed-length EBCIs centered at linear estimators under (10), and we call it the optimal
robust EBCI.9

Figure 2 plots the ratio of lengths of the optimal robust EBCI and robust EBCI relative
to the parametric EBCI, for α= 0�05. The figure shows that to maintain efficiency relative
to the normal benchmark, it is important to impose the fourth moment constraint. If this
constraint is imposed, the efficiency loss of the robust EBCI is modest unless the signal-to-
noise ratio is very small: if wEB�i ≥ 0�1 (which is equivalent to µ2/σ

2
i ≥ 1/9), the efficiency

loss is at most 11�4% for α = 0�05; up to half of the efficiency loss is due to not using the
optimal shrinkage. For α = 0�1 (not plotted), the results are very similar; in particular, if
wEB�i ≥ 0�1, the efficiency loss is at most 12�9%.

When the signal-to-noise ratio is very small, so that wEB�i < 0�1, the efficiency loss of
the robust EBCI is higher (up to 39% for α = 0�05 or 0�1). Using the optimal robust
EBCI ensures that the efficiency loss is below 20%, irrespective of the signal-to-noise
ratio. On the other hand, when the signal-to-noise ratio is small, any of these CIs will be

9Since the optimal robust EBCI is always shorter than the robust EBCI in Eq. (12), the former is preferable
on efficiency grounds. It may not contain the MSE-optimal point estimator θ̂i , however.
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FIGURE 2.—Relative efficiency of robust EBCI (Rob) and optimal robust EBCI (Opt) relative to the nor-
mal benchmark, for α = 0�05. The figure plots ratios of Rob length, 2 cvaα(σ2

i /µ2�κ) · σiµ2/(µ2 + σ2
i ), and

Opt length, 2 cvaα((1 − 1/wopt(µ2/σ
2
i �κ�α))2µ2/σ

2
i �κ) · σiwopt(µ2/σ

2
i �κ�α), relative to the parametric EBCI

length 2z1−α/2

√
µ2/(µ2 + σ2

i )σi as a function of the shrinkage factor wEB�i = µ2/(µ2 + σ2
i ), which maps the

signal-to-noise ratio µ2/σ
2
i to the interval [0�1].

significantly tighter than the unshrunk CI Yi ± z1−α/2σi. To illustrate this point, Figure 3
plots the efficiency of the robust EBCI that imposes the second moment constraint only,
relative to this unshrunk CI. It can be seen from the figure that shrinkage methods allow
us to tighten the CI by 44% or more when µ2/σ

2
i ≤ 0�1.

4.3. Undercoverage of Parametric EBCI

The parametric EBCI θ̂i ± z1−α/2w
1/2
EB�iσi is an EB version of a Bayesian credible inter-

val that treats (9) as a prior. We now assess its potential undercoverage when Eq. (9) is
violated.

FIGURE 3.—Efficiency of robust EBCI θ̂i ± cvaα(σ2
i /µ2�κ = ∞) · σµ2/(µ2 + σ2

i ) relative to the unshrunk
CI Yi ± z1−α/2σi . The figure plots the ratio of the length of the robust EBCI relative to the unshrunk CI as a
function of the shrinkage factor wEB�i = µ2/(µ2 + σ2

i ).
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FIGURE 4.—Maximal non-coverage probability of parametric EBCI, α ∈{0�05�0�10}. The vertical line marks
the “rule of thumb” value wEB�i = 0�3, above which the maximal coverage distortion is less than 5 percentage
points for these two values of α.

Given knowledge of only the second moment µ2 of εi = Yi −X ′
iδ, the maximal under-

coverage of this interval is given by

ρ(1/wEB�i − 1� z1−α/2/
√
wEB�i)� (17)

since wEB�i = µ2/(µ2 + σ2
i ). Here ρ is the non-coverage function defined in Eq. (5). Fig-

ure 4 plots the maximal non-coverage probability as a function of wEB�i, for significance
levels α = 0�05 and α = 0�10. The figure suggests a simple “rule of thumb”: if wEB�i ≥ 0�3,
the maximal coverage distortion is less than 5 percentage points for these values of α.

The following lemma confirms that the maximal non-coverage is decreasing in wEB�i, as
suggested by the figure. It also gives an expression for the maximal non-coverage across
all values of wEB�i (which is achieved in the limit wEB�i → 0).

LEMMA 4.1: The non-coverage probability (17) of the parametric EBCI is weakly decreas-
ing as a function of wEB�i, with the supremum given by 1/max{z2

1−α�1}.

The maximal non-coverage probability 1/max{z2
1−α/2�1} equals 0�260 for α = 0�05 and

0�370 for α= 0�10. For α> 2�(−1) ≈ 0�317, the maximal non-coverage probability is 1.
If we additionally impose knowledge of the kurtosis of εi, the maximal non-coverage

of the parametric EBCI can be similarly computed using Eq. (11), as illustrated in the
application in Section 7.

4.4. Monte Carlo Simulations

Here we show through simulations that the robust EBCI achieves accurate average
coverage in finite samples.

4.4.1. Design

The DGP is a simple linear fixed effects panel data model. We first draw θi, i = 1� � � � � n,
i.i.d. from a random effects distribution specified below. Then we simulate panel data
from the model

Wit = θi +Uit� i = 1� � � � � n� t = 1� � � � �T�
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where the errors Uit are mean zero and i.i.d. across (i� t) and independent of the θi’s.
The unshrunk estimator of θi is the sample average of Wit for unit i, with standard error
obtained from the usual unbiased variance estimator:

Yi =
1
T

T∑

t=1

Wit� σ̂i =

√√√√ 1
T (T − 1)

T∑

t=1

(Wit −Yi)2�

We draw Uit from one of two distributions: (1) a normal distribution and (2) a (shifted)
chi-squared distribution with 3 degrees of freedom. In case (1), Yi is exactly normal con-
ditional on θi, but σ̂2

i does not exactly equal var(Yi|θi) for finite T . In case (2), Yi is
non-normal and positively skewed (conditional on θi) for finite T .

We consider six random effects distributions for θi (see Supplemental Material Ap-
pendix E.1 (Armstrong, Kolesár, and Plagborg-Møller (2022)) for detailed definitions):
(i) normal (kurtosis κ = 3); (ii) scaled chi-squared with 1 degree of freedom (κ = 15);
(iii) two-point distribution (κ ≈ 8�11); (iv) three-point distribution (κ = 2); (v) the least
favorable distribution for the robust EBCI that exploits only second moments (κ depends
on µ2, see Appendix B); and (vi) the least favorable distribution for the parametric EBCI.

Given T , we scale the θi distribution to match one of four signal-to-noise ratios
µ2/ var(Yi|θi) ∈ {0�1�0�5�1�2}, for a total of 6 × 4 = 24 DGPs for each distribution of
Uit . We shrink toward the grand mean (Xi = 1 for all i). We construct the robust EBCIs
following the baseline implementation in Section 3.2 (with ωi = 1/n), as well as a version
that does not impose constraints on the kurtosis.

As T → ∞, we recover the idealized setting in Section 2, with (Yi − θi)/
√

var(Yi|θi)
converging in distribution to a standard normal (conditional on θi), and σ̂2

i / var(Yi|θi)
converging in probability to 1, for each i.

4.4.2. Results

Table I shows that the 95% robust EBCIs achieve good average coverage when the
panel errors Uit are normally distributed. This is true for all DGPs, panel dimensions n

TABLE I

MONTE CARLO SIMULATION RESULTS, PANEL DATA WITH NORMAL ERRORS.

Robust, µ2 only Robust, µ2 & κ Parametric

T 10 20 ∞ ora 10 20 ∞ ora 10 20 ∞ ora

Panel A: Average coverage (%), minimum across 24 DGPs
n= 100 92.1 93.7 94.0 95.0 91.8 93.2 93.2 94.6 79.2 79.7 79.3 86.9
n= 200 91.9 93.4 92.9 95.0 91.8 93.3 92.9 94.8 80.7 80.3 81.0 86.3
n= 500 91.9 93.6 94.8 95.0 91.9 93.5 94.3 94.9 84.2 85.1 85.1 85.6

Panel B: Relative average length, average across 24 DGPs
n= 100 1.09 1.10 1.11 1.16 1.03 1.02 1.02 1.00 0.81 0.82 0.83 0.86
n= 200 1.09 1.10 1.12 1.16 1.02 1.02 1.01 1.00 0.81 0.82 0.84 0.86
n= 500 1.10 1.11 1.13 1.16 1.04 1.03 1.01 1.00 0.82 0.83 0.84 0.86

Note: Normally distributed errors. Nominal average confidence level 1 − α = 95%. All EBCI procedures use baseline estimate of
µ̂2 and (if applicable) κ̂, except columns labeled “ora,” which use oracle values of µ2 and κ. Columns T = ∞ and “ora” use oracle
standard errors σi . For each DGP, “average coverage” and “average length” refer to averages across units i = 1� � � � � n and across 2000
Monte Carlo repetitions. Average CI length is measured relative to the robust EBCI that exploits the oracle values of µ2 , κ, and σi
(but not of the grand mean δ=E[θ]).
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TABLE II

MONTE CARLO SIMULATION RESULTS, PANEL DATA WITH CHI-SQUARED ERRORS.

Robust, µ2 only Robust, µ2 & κ Parametric

T 10 20 50 ora 10 20 50 ora 10 20 50 ora

Panel A: Average coverage (%), minimum across 24 DGPs
n= 100 87.9 90.9 93.1 95.0 87.8 90.8 92.6 94.7 79.9 79.3 79.3 87.0
n= 200 87.9 90.8 93.0 94.9 87.8 90.8 92.8 94.8 77.8 79.8 80.3 86.2
n= 500 87.8 90.8 93.0 95.0 87.8 90.7 92.9 94.9 82.0 84.1 84.8 85.6

Panel B: Relative average length, average across 24 DGPs
n= 100 1.05 1.08 1.10 1.16 1.01 1.02 1.02 1.00 0.79 0.81 0.82 0.86
n= 200 1.04 1.08 1.10 1.16 0.99 1.00 1.00 1.00 0.78 0.81 0.82 0.86
n= 500 1.05 1.09 1.11 1.16 0.99 1.00 1.00 1.00 0.79 0.82 0.83 0.86

Note: Chi-squared distributed errors. See caption for Table I. Results for T = ∞ are by definition the same as in Table I.

and T , and whether we exploit one or both of the (estimated) moments µ2 and κ. When
the time dimension T equals 10, the maximal coverage distortion across all DGPs and all
cross-sectional dimensions n ∈ {100�200�500} is 3.2 percentage points. For T ≥ 20, the
coverage distortion of the robust EBCIs is always below 2.1 percentage points.

Table II shows that coverage distortions are somewhat larger when the panel errors
Uit are chi-squared distributed and T is small. The robust EBCIs undercover by up to
7.2 percentage points when T = 10 due to the pronounced non-normality of Yi given θi.
However, the distortion is at most 4.3 percentage points when T = 20, and at most 2.4
percentage points when T ≥ 50. The coverage distortion due to non-normality when T is
small is similar to the coverage distortion of the usual unshrunk CI (not reported).

Importantly, in all cases considered in Tables I and II, the worst-case coverage dis-
tortion of the parametric EBCI substantially exceeds that of the corresponding robust
EBCIs, sometimes by more than 10 percentage points. Nevertheless, the cost of robust-
ness in terms of extra CI length is modest and consistent with the theoretical results in
Section 4.2.

Both the estimation of the standard errors σi and the estimation of the moments µ2

and κ contribute to the finite-sample coverage distortions. The “ora” columns in Table I
exploit the oracle (true) values of µ2, κ, and σi =

√
var(Yi|θi), while the T = ∞ columns

use oracle standard errors but not oracle moments. By comparing these columns, we see
that estimation of µ2 and κ is responsible for modest coverage distortions when n = 100
or 200. However, estimation of the standard errors σi also contributes to the distortions,
as can be seen by comparing the T = 10 and T = ∞ columns.

In Supplemental Material Appendix E.2, we show that the robust EBCI also has good
coverage in a heteroscedastic design calibrated to the empirical application in Section 7
below.

5. COMPARISON WITH OTHER APPROACHES

Here we compare our EBCI procedure with other approaches to confidence interval
construction in the normal means model. We also discuss other related inference prob-
lems.
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5.1. Average Coverage versus Alternative Coverage Concepts

The average coverage requirement in Eq. (15) is less stringent than the usual (point-
wise) notion of frequentist coverage that P(θi ∈ CIi|θ) ≥ 1 − α for all i. An even stronger
coverage requirement is that of simultaneous coverage: P(∀i : θi ∈ CIi|θ) ≥ 1−α. As out-
lined in footnote 3, under the pointwise coverage criterion, one cannot achieve substantial
reductions in length relative to the unshrunk CI. Under the simultaneous coverage crite-
rion, it is likewise impossible to substantially improve upon the usual sup-t confidence
band based on the unshrunk estimates (Cai, Low, and Ma (2014)). Thus, undercoverage
for some θi’s must be tolerated if one wants to use shrinkage to improve CI length.

The fact that our EBCIs achieve improvements in average length at the expense of
undercovering for certain units i is analogous to well-known properties of EB point esti-
mators. We now show that the units i for which our EBCI undercovers are quantitatively
similar to the units for which the shrinkage estimator θ̂i has higher MSE than the un-
shrunk estimator Yi. Let εi = θi−X ′

iδ be the “shrinkage error” defined in Section 3.1. The
pointwise coverage of our EBCI is decreasing in the normalized shrinkage error |εi|/

√
µ2,

for a fixed signal-to-noise ratio µ2/σ
2
i .10 Hence, the units i for which our EBCI undercov-

ers are those whose covariate-predicted value X ′
iδ fails to approximate their true effect

θi well. The MSE of the shrinkage estimator (for an individual unit i), normalized by the
MSE of the unshrunk estimator, is similarly increasing in |εi|/

√
µ2.11

Figure 5 shows that the knife-edge value of |εi|/
√
µ2 for which the pointwise coverage

of our EBCI equals 1 − α is quantitatively close to the value of |εi|/
√
µ2 for which the

MSE of the shrinkage estimator equals that of the unshrunk estimator. In other words, to
the extent that one worries about undercoverage for certain types of θi values, one should
simultaneously worry about the relative performance of the shrinkage point estimator for
those same values.

FIGURE 5.—Value of |εi|/
√
µ2, as a function of wEB�i , such that the MSE of the shrinkage point estimator

equals that of the unshrunk estimator (MSE), and such that the coverage of the robust EBCI with κ = ∞
equals the nominal average coverage 1 − α (coverage), for α= 0�05.

10The pointwise coverage (conditional on Xi) equals 1 − r(
√

1/wEB�i − 1 · |εi|/
√
µ2� cvaα(1/wEB�i − 1�κ)),

with r defined in Eq. (4) and wEB�i = µ2/(µ2 + σ2
i ).

11The ratio of MSEs equals E[(θ̂i − θi)2|θi�Xi]/σ2
i =w2

EB�i + (1 −wEB�i)wEB�i · |εi|/
√
µ2.
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We stress that the pointwise coverage depends on the unobservable shrinkage error εi,
which cannot be gauged directly from the observables (Yi�Xi). If one wishes to avoid
systematic differences in coverage across units i with different genders, say (i.e., one is
worried that εi correlates with gender), one can simply add gender to the set of covariates
Xi: the baseline procedure in Section 3.2 ensures control of average coverage conditional
on the covariates Xi. In Section 6.2, we show how to adapt our EBCIs to settings where
one focuses the analysis on a subset of units i based on the values of their unshrunk
estimates Yi (e.g., keeping only the estimates that exceed a given threshold).

From a Bayesian point of view, our robust EBCI can be viewed as an uncertainty inter-
val that is robust to the choice of prior distribution in the unconditional gamma-minimax
sense: the coverage probability of this CI is at least 1 − α when averaged over the distri-
bution of the data and over the prior distribution for θi, for any prior distribution that
satisfies the moment bounds. This follows directly from the derivations in Section 2, rein-
terpreting the random effects distribution for θi as a prior distribution. In contrast, condi-
tional gamma-minimax credible intervals, discussed recently by Giacomini, Kitagawa, and
Uhlig (2019, p. 6), are too stringent in our setting. This notion requires that the posterior
credibility of the interval be at least 1 − α regardless of the choice of prior, in any data
sample, which would require reporting the entire parameter space (up to the moment
bounds).

5.2. Finite-Sample versus Asymptotic Coverage

Our procedures are asymptotically valid as n → ∞, as proved in Section 4.1. These
asymptotics do not capture the impact of estimation error in the “hyper-parameters” σ̂i,
δ̂, µ̂2, and κ̂, or the impact of lack of exact normality of the Yi’s, on the finite-sample
performance of the EBCIs. As detailed in Section 3.2 and Appendix A, we do apply
a finite-sample adjustment to the moments µ̂2 and κ̂, which is motivated by the same
heuristic arguments that Morris (1983a,b) used to motivate finite-sample adjustments to
the parametric EBCI.12 The promising simulation results in Section 4.4 notwithstanding,
these adjustments do not ensure exact average coverage control in finite samples.13

Our results are thus analogous to standard results on coverage of Eicker–Huber–White
CIs in cross-sectional OLS: asymptotic validity follows by consistency of the OLS variance
estimate and asymptotic normality of the outcomes, while adjustments to account for
finite-sample issues (such as the HC2 or HC3 variance estimators studied in MacKinnon
and White (1985)) are justified heuristically. Deriving EBCIs with finite-sample cover-
age guarantees is an interesting problem that we leave for future research; the problem
appears to be challenging even in the context of constructing parametric EBCIs.

5.3. Local versus Global Optimality

Our EBCIs are designed to provide uncertainty assessments to accompany linear
shrinkage estimates that, as the Introduction argues, have been popular in applied work.

12An alternative approach would be to adapt the bootstrap adjustment proposed by Carlin and Louis (2000,
Chapter 3.5.3) in the context of parametric EBCI construction (see also Efron (2019)). As with the Morris
(1983a,b) adjustment, we are not aware of a formal result justifying it.

13One could account for hyper-parameter uncertainty by computing the critical value
supσ̃i�µ̃2�κ̃∈Ĉi

cvaα(σ̃2
i /µ̃2� κ̃) over an initial confidence set Ĉi for the hyper-parameters, coupled with a

Bonferroni adjustment of the confidence level 1 − α. This approach appears to be highly conservative in
practice.
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Our procedure’s global validity, as well as local near-optimality when the θi’s are normal
(cf. Section 4.2), is analogous to Eicker–Huber–White CIs for OLS estimators: these CIs
are optimal under normal homoscedastic regression errors, but remain valid when this
assumption is dropped.

Similarly to the Eicker–Huber–White CIs, our EBCIs are not globally efficient: when
the θi’s are not Gaussian, it is generally inefficient to restrict attention to CIs that are
centered at a linear point estimator and have fixed width. While we expect our EBCIs to
remain near-efficient under mild departures from normality, substantial efficiency gains
may be possible if the effect size distribution is, for example, heavy-tailed or bimodal.14

Section 6.1 shows how our method can be adapted to construct EBCIs that are locally
near-optimal under non-normal baseline priors using nonlinear shrinkage, such as soft
thresholding. Since the distribution of θi is nonparametrically identified under the nor-
mal model (8), it is in principle possible to construct EBCIs that are globally efficient
using nonparametric methods. In the context of the homoscedastic model with no co-
variates in Eq. (1), various approaches to nonparametric point estimation of the θi’s
have been proposed, including kernels (Brown and Greenshtein (2009)), splines (Efron
(2019)), or nonparametric maximum likelihood (Kiefer and Wolfowitz (1956), Jiang and
Zhang (2009), Koenker and Mizera (2014)). An interesting problem for future research
is to adapt these methods to EBCI construction, while ensuring asymptotic validity, good
finite-sample performance, and allowing for covariates, heteroscedasticity, and possible
dependence across i.

5.4. Other Inference Problems

A number of alternative inference procedures have been proposed in the context of
the normal means model. Efron (2015) developed a formula for the frequentist standard
error of EB estimators, but this cannot be used to construct CIs without a corresponding
estimate of the bias. There is a substantial literature on shrinkage confidence balls, that is,
confidence sets of the form {θ :

∑n

i=1(θi − θ̂i)2 ≤ ĉ} (see Casella and Hwang (2012), for a
review). While theoretically interesting, these sets can be difficult to visualize and report
in practice.15

Finally, while we focus on CI length in our relative efficiency comparisons, our ap-
proach can be fruitfully applied when the goal of CI construction is to discern non-null
effects, rather than to construct short CIs. In particular, suppose one forms a test of the
null hypothesis H0�i : θi = θ0 for some null value θ0 by rejecting when θ0 /∈ CIi, where CIi
is our robust EBCI given in (12). In Supplemental Material Appendix F, we show that the
test based on our EBCI has higher average power than the usual z-test based on the un-
shrunk estimate when X ′

iδ (the regression line toward which we shrink) is far enough from
the null value θ0, and that these power gains can be substantial. Furthermore, such tests
can be combined with corrections from the multiple testing literature to form procedures
that asymptotically control the false discovery rate (FDR), a commonly used criterion for
multiple testing.16

14Indeed, if the true effect distribution puts mass 1/2 on θi = K and θi = −K, then, as K gets large, our
EBCIs become arbitrarily conservative relative to an oracle that reports the highest posterior density set under
this prior.

15Confidence balls can be translated into average coverage intervals using Chebyshev’s inequality (see
Wasserman (2006, Chapter 5.8)). However, such intervals are very conservative compared to the ones we
construct.

16In particular, Storey (2002) showed that the Benjamini and Hochberg (1995) procedure asymptotically
controls the FDR so long as the p-values do not exhibit too much statistical dependence and the proportion of
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6. EXTENSIONS

We now discuss two extensions of our method: adapting our intervals to general, possi-
bly nonlinear shrinkage, and constructing intervals that achieve coverage conditional on
Yi falling into a pre-specified interval.

6.1. General Shrinkage

Our method can be generalized to cover general, possibly nonlinear shrinkage based
on possibly non-Gaussian data. Let S(y;χ� X̃i) ⊆ R be a family of candidate confidence
sets for a parameter θi, which depends on the data Yi = y , a tuning parameter χ ∈R to be
selected below, and covariates X̃i (that include any known nuisance parameters) that we
treat as fixed. We assume that S is increasing in χ, in the sense of set containment, and
that the non-coverage probability conditional on θ satisfies

P
(
θi /∈ S(Yi;χ� X̃i)|θ� X̃ (n)

)
= r̃(ai�χ)� (18)

where ai is some function of θi, X̃ (n) = (X̃1� � � � � X̃n), and r̃ is a known function (perhaps
computed numerically or through simulation). Similarly to linear shrinkage in the normal
means model, Eq. (18) may only hold approximately if the set S depends on estimated
parameters (such as standard error estimates or tuning parameters), or if we use a large-
sample approximation to the distribution of Yi. We assume that ai satisfies the moment
constraints EF [g(ai)|X̃ (n)] = m, where g is a p-vector of moment functions, and the ex-
pectation is over the conditional distribution F of ai conditional on X̃ (n).17 To guarantee
EB coverage, we compute the maximal non-coverage

ρg(m�χ) = sup
F

EF

[
r̃(a�χ)

]
� EF

[
g(a)

]
=m� (19)

analogously to Eq. (11). This is a linear program, which can be computed numerically to a
high degree of precision even with several constraints; see Appendix B for details. Given
an estimate m̂ of the moment vector m, we form a robust EBCI as

S(Yi; χ̂� X̃i)� where χ̂= inf
{
χ : ρg(m̂�χ) ≤ α

}
� (20)

EXAMPLE 6.1—Linear shrinkage in the normal model: The setting in Section 3.1 ob-
tains if we set X̃i = (Xi�σi) and S(y;χ� X̃i) ={(1−wEB�i)X ′

iδ+wEB�iYi ±χwEB�iσi}. Here
ai is given by the normalized bias bi = (1/wEB�i − 1)(θi − X ′

iδ)/σi, and the function r̃ is
given by the function r(b�χ) defined in (4). Our baseline implementation uses constraints
on the second and fourth moments, g(ai) = (a2

i � a
4
i ).

rejected null hypotheses does not converge too quickly to zero. While Storey (2002) assumed that the uncor-
rected tests control size in the classical sense, the argument goes through essentially unchanged so long as the
tests invert CIs that satisfy (16), which holds so long as the CIs do not exhibit too much statistical dependence,
as discussed in Remark 4.1. We note, however, that this does not hold for modifications of the Benjamini and
Hochberg (1995) procedure that use initial estimates of the proportion of true null hypotheses.

17The moment functions g need not be simple moments, and could incorporate constraints used for selection
of hyper-parameters, such as constraints on the marginal data distribution or, if an unbiased risk criterion is
used, the constraint that the derivative of the risk equals zero at the selected prior hyper-parameters.
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EXAMPLE 6.2—Nonlinear soft thresholding: Consider for simplicity the homoscedastic
normal model Yi|θi ∼ N(θi�σ

2) without covariates. A popular alternative to linear esti-
mators is the soft thresholding estimator θ̂ST�i = sign(Yi) max{|Yi| −

√
2σ2/µ2�0} (e.g.,

Abadie and Kasy (2019)). It equals the posterior mode corresponding to a baseline
Laplace prior with second moment µ2, which has density π0(θ) = 1√

2µ2
exp(−|θ|

√
2/µ2)

(Johnstone (2019, Example 2.5)). To construct a robust EBCI that always contains the
soft thresholding estimator, we calibrate the corresponding highest posterior density set:

S(Yi;χ) =
{
t ∈ R : log

σ−1φ
(
(Yi − t)/σ

)
π0(t)∫ ∞

−∞
σ−1φ

(
(Yi − θ̃)/σ

)
π0(θ̃) dθ̃

+χ≥ 0
}
� (21)

where φ is the standard normal density. This set is available in closed form and takes
the form of an interval (see Supplemental Material Appendix G.1). Here ai = θi, and the
function r̃(a�χ) in (18) can be computed via numerical integration.

In contrast to the EBCIs in Example 6.1 (which may be viewed as calibrating the high-
est posterior density set under a normal prior), the Laplace prior π0 leads to nonlinear
shrinkage and an EBCI whose length depends on the data Yi. This reflects the subopti-
mality of linear shrinkage and fixed-length intervals under the Laplace prior.

In Supplemental Material Appendix G.1, we show that the resulting robust EBCI that
imposes the constraint E[θ2

i ] = µ2 not only has robust EB coverage (by definition), it also
achieves substantial expected length improvements when the θi’s are in fact Laplace dis-
tributed. For α = 0�05 and µ2/σ

2 ≤ 0�2, the expected length under the Laplace distribu-
tion of the soft thresholding EBCI is at least 49% smaller than the length of the unshrunk
CI. This exceeds the length reduction achieved by the linear robust EBCI shown in Fig-
ure 3.

EXAMPLE 6.3—Poisson shrinkage: Supplemental Material Appendix G.2 constructs a
robust EBCI for the rate parameter θi in a Poisson model Yi|θi ∼ Poisson(θi). This exam-
ple demonstrates that our general approach does not require normality of the data.

EXAMPLE 6.4—Linear estimators in other settings: While our focus has been on EB
shrinkage, our approach applies to other settings in which an estimator θ̂i is approxi-
mately normally distributed with non-negligible bias. In particular, suppose (θ̂i − θi)/ sei

is distributed N(ai�1), where sei is the standard deviation of the estimate θ̂i, which for
simplicity we take to be known. This holds whenever θ̂i is a linear function of jointly nor-
mal observations W1� � � � �WN , that is, θ̂i =

∑N

j=1 kijWj for some deterministic weights kij .
Examples include series, kernel, or local polynomial estimators in a nonparametric re-
gression with fixed covariates and normal errors. We can construct a confidence interval
for θi as θ̂i ± χ · sei, in which case Eq. (18) holds with r̃ = r given in Eq. (4). It follows
from Theorem C.1 in Appendix C that if the moment constraints m on the normalized
bias in Eq. (19) are replaced by consistent estimates, the resulting robust EBCI will satisfy
the average coverage property (15) in large samples. We leave a full treatment of these
applications for future research.

6.2. Coverage After Selection

In some applications, researchers may be primarily interested in parameters corre-
sponding to those units i whose initial estimates Yi fall in a given interval [ι1� ι2], where
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−∞ ≤ ι1 < ι2 ≤ ∞. For example, in a teacher value added application, we may only be
interested in the ability θi of those teachers i whose fixed effects estimates Yi are posi-
tive, corresponding to setting ι1 = 0 and ι2 = ∞. Because of the selection on outcomes,
naïvely applying our baseline EBCI procedure to the selected sample {i : Yi ∈ [ι1� ι2]} does
not yield the desired average coverage across the selected units i. We now show how to
correct for the selection bias in the simple homoscedastic model Yi|θi ∼ N(θi�σ

2) with-
out covariates from Section 2 (reintroducing the extra model features in Section 3.1 only
complicates notation).

We seek a critical value χ such that the average coverage of the CI [θ̂i ± χwEBσ] is at
least 1 − α conditional on the sample selection, that is,

P
(
θi ∈ θ̂i ±χwEBσ|Yi ∈ [ι1� ι2]

)
≥ 1 − α (22)

under repeated sampling of (Yi� θi), regardless of the distribution for θi (we maintain
focus on linear shrinkage for simplicity, but our approach extends to nonlinear shrinkage
using the ideas in Section 6.1). Straightforward calculations show that the non-coverage,
conditional on θi and on selection, equals

r̃ι1�ι2 (θi�χ)

= P
(
θi /∈ θ̂i ±χwEBσ|Yi ∈ [ι1� ι2]� θi

)

= min
{

1 −
�
(
min

{
χ− bi� (ι2 − θi)/σ

})
−�

(
max

{
−χ− bi� (ι1 − θi)/σ

})

�
(
(ι2 − θi)/σ

)
−�

(
(ι1 − θi)/σ

) �1
}
�

where bi = (1 − 1/wEB)θi/σ as in Section 2. Among all distributions for θi consistent with
the conditional moment µ̃2�ι1�ι2 = E[θ2

i|Yi ∈ [ι1� ι2]], the worst-case non-coverage proba-
bility, conditional on selection, is given by

ρ̃ι1�ι2 (µ̃2�ι1�ι2�χ) ≡ sup
F

EF

[
r̃ι1�ι2 (θi�χ)

]
s.t. EF

[
θ2
i

]
= µ̃2�ι1�ι2�

where EF denotes expectation under θi ∼ F . This is an infinite-dimensional linear pro-
gram that can be solved numerically to a high degree of accuracy; cf. Appendix B.
To achieve robust conditional coverage, we solve numerically for the χ such that
ρ̃ι1�ι2 (µ̃2�ι1�ι2�χ) = α.

We can estimate the conditional second moment µ̃2�ι1�ι2 as follows. Denote the log
marginal density of Yi by ℓ(y) ≡ log

∫
φ(y − θ) dŴ0(θ), where Ŵ0 is the true distribution

of θi. Tweedie’s formulas (e.g., Efron (2019, Eq. (26))) imply

µ̃2�ι1�ι2 =E
[
θ2
i|Yi ∈ [ι1� ι2]

]
= 1 +E

[(
Yi + ℓ′(Yi)

)2 + ℓ′′(Yi)|Yi ∈ [ι1� ι2]
]
� (23)

Let ℓ̂(y) be a kernel estimate of the log marginal density function of the data Y1� � � � �Yn.
Then the estimate

̂̃µ2�ι1�ι2
≡ 1 +

∑

i : Yi∈[ι1�ι2]

{(
Yi + ℓ̂′(Yi)

)2 + ℓ̂′′(Yi)
}

#
{
i : Yi ∈ [ι1� ι2]

}

will be consistent as n → ∞ for µ̃2�ι1�ι2 in (23) under mild regularity conditions.
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The criterion (22) can be viewed as the EB analogue of the criterion P(θi ∈ CIi|Yi ∈
[ι1� ι2]� θ) ≥ 1 − α, which requires frequentist coverage conditional on the event {Yi ∈
[ι1� ι2]}. The latter criterion has been considered in the recent “selective inference” lit-
erature (Benjamini and Yekutieli (2005), Lee, Sun, Sun, and Taylor (2016), Hung and
Fithian (2019), Andrews, Kitagawa, and McCloskey (2021)). In contrast to this literature,
we cannot allow ι1 to be given by the maximum of the initial estimates (as in Andrews,
Kitagawa, and McCloskey (2021)), as we require ι1 and ι2 to converge in probability to
distinct nonrandom limits. On the other hand, weakening the notion of frequentist cov-
erage to EB (or average) coverage allows for improvements in the length of the intervals,
similar to the analysis in Section 4.2 in the absence of selection.

7. EMPIRICAL APPLICATION

We illustrate our methods using the data and model in Chetty and Hendren (2018),
who were interested in the effect of neighborhoods on intergenerational mobility.

7.1. Framework

We follow Chetty and Hendren (2018) in using two definitions of a “neighborhood ef-
fect” θi. The first focuses on effects for children growing up in low-income families, and
defines θi as the effect of spending an additional year of childhood in commuting zone
(CZ) i on children’s rank in the income distribution at age 26, for children with parents
at the 25th percentile of the national income distribution. The second definition is analo-
gous, except it focuses on children growing up in high-income families, and consequently
conditions on children with parents at the 75th percentile. Chetty and Hendren (2018)
argued that these definitions approximately capture the mean rank effects for children
in below-median and above-median income families. Using de-identified tax returns for
all children born between 1980 and 1986 who move across CZs exactly once as children,
Chetty and Hendren (2018) exploited variation in the age at which children move between
CZs to obtain preliminary fixed effects estimates Yi of θi.

Since these preliminary estimates are measured with noise, to predict θi, Chetty and
Hendren (2018) shrunk Yi toward average outcomes of permanent residents of CZ i (chil-
dren with parents at the same percentile of the income distribution who spent all of their
childhood in the CZ). To give a sense of the accuracy of these forecasts, Chetty and Hen-
dren (2018) reported estimates of their unconditional MSE (i.e., treating θi as random),
under the implicit assumption that the moment independence assumption in Eq. (10)
holds. Here we complement their analysis by constructing robust EBCIs associated with
these forecasts.

Our sample consists of 595 U.S. CZs, with population over 25,000 in the 2000 census:
this is the sample for which Chetty and Hendren (2018) reported baseline estimates Yi of
the effects θi. These baseline estimates are normalized so that their population-weighted
mean is zero. We may therefore interpret θi as the effect relative to an “average” CZ. We
follow the baseline implementation from Section 3.2 with standard errors σ̂i reported by
Chetty and Hendren (2018), and covariates Xi corresponding to a constant and the aver-
age outcomes for permanent residents. In line with the original analysis, we use precision
weights ωi = 1/σ̂2

i when constructing the estimates δ̂, µ̂2, and κ̂.

7.2. Results

Columns (1) and (2) in Table III summarize the main estimation and efficiency re-
sults. The shrinkage magnitude and relative efficiency results are similar for children with
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TABLE III

STATISTICS FOR 90% EBCIS FOR NEIGHBORHOOD EFFECTS.

Baseline Nonparametric

(1) (2) (3) (4)
Percentile 25th 75th 25th 75th

Panel A: Summary statistics
E[√µ2�i] 0�079 0�044 0�076 0�042
E[κi] 778�5 5948�6 1624�9 43�009�9
E[µ2i/σ

2
i ] 0�142 0�040 0�139 0�072

δ̂intercept −1�441 −2�162 −1�441 −2�162
δ̂perm. resident 0�032 0�038 0�032 0�038
E[wEB�i] 0�093 0�033 0�093 0�033
E[wopt�i] 0�191 0�100 0�191 0�100
E[non-cov of parametric EBCIi] 0�227 0�278 0�210 0�292

Panel B: E[half-lengthi]
Robust EBCI 0�195 0�122 0�186 0�116
Optimal robust EBCI 0�149 0�090 0�145 0�094
Parametric EBCI 0�123 0�070 0�123 0�070
Unshrunk CI 0�786 0�993 0�786 0�993

Panel C: Efficiency relative to robust EBCI
Optimal robust EBCI 1�312 1�352 1�289 1�238
Parametric EBCI 1�582 1�731 1�509 1�648
Unshrunk CI 0�248 0�123 0�237 0�117

Note: Columns (1) and (2) correspond to shrinking Yi as in the baseline implementation that imposes Eq. (10), so that
µ2i = E[(θi − X′

i
δ)2|Xi�σi] and κi = E[(θi − X′

i
δ)4|Xi�σi]/µ

2
2i do not vary with i. Columns (3) and (4) use nonparametric esti-

mates of µ2i and κi , using the nearest neighbor estimator described in Appendix A.1. The number of nearest neighbors J = 422
(column (3)) and J = 525 (column (4)) is selected using cross-validation. For all columns, δ̂ = (δ̂intercept� δ̂perm. resident) is computed
by regressing Yi onto a constant and outcomes for permanent residents. “Optimal Robust EBCI” refers to a robust EBCI based
on length-optimal shrinkage wopt�i , described in Section 4.2. “E[non-cov of parametric EBCIi]”: average of maximal non-coverage
probability of parametric EBCI, given the estimated moments.

parents at the 25th and 75th percentiles of the income distribution. In both columns, the
estimate of the kurtosis κ is large enough so that it does not affect the critical values or the
form of the optimal shrinkage: specifications that only impose constraints on the second
moment yield identical results.18 In line with this finding, a density plot of the t-statistics
(reported as Figure S2 in Armstrong, Kolesár, and Plagborg-Møller (2020)) exhibits a fat
lower tail. As a robustness check, columns (3) and (4) show that results based on non-
parametric moment estimates (see Remark 3.2 and Appendix A.1) are very similar to
our baseline specification. Indeed, the R2 gain in predicting ε̂2

i − σ̂2
i using µ̂2i is less than

0�001 in both specifications, indicating that there is little evidence in the data against the
moment independence assumption.

The baseline robust 90% EBCIs are 75.2–87.7% shorter than the usual unshrunk CIs
Yi ± z1−α/2σ̂i. To interpret these gains in dollar terms, for children with parents at the 25th
percentile of the income distribution, a percentile gain corresponds to an annual income
gain of $818 (Chetty and Hendren (2018, p. 1183)). Thus, the average half-length of the
baseline robust EBCIs in column (1) implies CIs of the form ±$160 on average, while the

18The truncation in the κ̂ formula in our baseline algorithm in Section 3.2 binds in columns (1) and (2),
although the non-truncated estimates 345.3 and 5024.9 are similarly large; using these non-truncated estimates
yields identical results.
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FIGURE 6.—Neighborhood effects for New York and 90% robust EBCIs for children with parents at the
p = 25 percentile of the national income distribution, plotted against mean outcomes of permanent residents.
Gray lines correspond to CIs based on unshrunk estimates represented by circles, and black lines correspond
to robust EBCIs based on EB estimates represented by squares that shrink toward a dotted regression line
based on permanent residents’ outcomes. Baseline implementation as in Section 3.2.

unshrunk CIs are of the form ±$643 on average. These large gains are a consequence of
a low signal-to-noise ratio µ2/σ

2
i in this application. Because the shrinkage magnitude is

so large on average, the tail behavior of the bias matters, and since the kurtosis estimates
suggest these tails are fat, it is important to use the robust critical value: the parametric
EBCI exhibits average potential size distortions of 12.7–17.8 percentage points. Indeed,
for over 90% of the CIs in the specifications in columns (1) and (2), the shrinkage coeffi-
cient wEB�i falls below the “rule of thumb” threshold of 0.3 derived in Section 4.3.

To visualize these results, Figure 6 plots the unshrunk 90% CIs based on the prelimi-
nary estimates, as well as robust EBCIs based on EB estimates for cities in the state of
New York for children with parents at the 25th percentile. While the EBCIs for large CZs
like New York City or Buffalo are similar to the unshrunk CIs, they are much tighter for
smaller CZs like Plattsburgh or Watertown, with point estimates that shrink the prelimi-
nary estimates Yi most of the way toward the regression line X ′

i δ̂.
In summary, shrinkage allows us to considerably tighten the CIs based on prelimi-

nary estimates. This is true even though the CIs effectively only use second moment
constraints—imposing kurtosis constraints does not affect the critical values in this ap-
plication.

APPENDIX A: MOMENT ESTIMATES

The EBCI in our baseline implementation has valid EB coverage asymptotically as n →
∞, so long as the estimates µ̂2 and κ̂ are consistent. While the particular choice of the
estimates µ̂2 and κ̂ does not affect the CI asymptotically, finite-sample considerations can
be important for small to moderate values of n. In particular, unrestricted moment-based
estimates of µ2 and κ may fall below their theoretical lower bounds of 0 and 1, in which
case it is not clear how to define the EBCI.19 To address this issue, in analogy to finite-

19Formally, our results are asymptotic and require µ2 > 0 and κ > 1, so that these issues do not occur when
n is large enough. We discuss the difficulty of providing finite-sample coverage guarantees in Section 5.
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sample corrections to parametric EBCIs proposed in Morris (1983a,b), Appendix A.1
derives two finite-sample corrections to the unrestricted estimates that approximate a
Bayesian estimate under a flat hyperprior on (µ2�κ). We verify that these corrections
give good coverage in an extensive set of Monte Carlo designs in Section 4.4. We also
discuss implementation of nonparametric moment estimates. Appendix A.2 discusses the
choice of weights ωi.

A.1. Finite n Corrections and Nonparametric Moment Estimates

To derive our estimates of µ2 and κ, we first consider unrestricted estimation under
the moment independence condition (10). For µ2, this condition implies the moment
condition E[(Yi − X ′

iδ)2 − σ2
i |Xi�σi] = µ2. Replacing Yi − X ′

iδ with the residual ε̂i =
Yi −X ′

i δ̂ yields the estimate

µ̂2�UC =

n∑

i=1

ωiW2i

n∑

i=1

ωi

� W2i = ε̂2
i − σ̂2

i � (24)

for any weights ωi =ωi(Xi� σ̂i). Here, UC stands for “unconstrained,” since the estimate
µ̂2�UC can be negative. To incorporate the constraint µ2 > 0, we use an approximation to
a Bayesian approach with a flat prior on the set [0�∞). A full Bayesian approach to es-
timating µ2 would place a hyperprior on possible joint distributions of Xi, σi, θi, which
could potentially lead to using complicated functions of the data to estimate µ2. For sim-
plicity, we compute the posterior mean given µ̂2�UC, and we use a normal approximation
to the likelihood. Since the posterior distribution only uses knowledge of µ̂2�UC, we refer
to this as a flat prior limited information Bayes (FPLIB) approach.

To derive this formula, first note that, if m̂ is an estimate of a parameter m with m̂|m ∼
N(m�V ), then under a flat prior for m on [0�∞), the posterior mean of m is given by

b(m̂�V ) = m̂+
√
V φ(m̂/

√
V )/�(m̂/

√
V )�

where φ and � are the standard normal pdf and cdf, respectively. Furthermore, if
m̂ =

∑n

i=1 ωiZi/
∑n

i=1 ωi, where the Zi’s are independent with mean m conditional on
the weights ω = (ω1� � � � �ωn)′, then an unbiased estimate of the variance of m̂ given ω is
given by

V (Z�ω) =

n∑

i=1

ω2
i

(
Z2

i − m̂2
)

(
n∑

i=1

ωi

)2

−
n∑

i=1

ω2
i

�

Conditioning on the Xi’s and σi’s (and ignoring sampling variation in δ̂ and the σ̂i’s), we
can then apply this formula to µ̂2�UC, with Zi =W2i, where W2i is given in (24). This gives
the FPLIB estimate for µ2:

µ̂2�FPLIB = b
(
µ̂2�UC� V (W2�ω)

)
�
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To derive the FPLIB estimate for κ, we begin with an unconstrained estimate of µ4 =
E[(θi −X ′

iδ)4]. The moment independence condition (10) delivers the moment condition
µ4 = E[(Yi − X ′

iδ)4 + 3σ4
i − 6σ2

i (Yi − X ′
iδ)2|Xi�σi], which leads to the unconstrained

estimate

µ̂4�UC =

n∑

i=1

ωiW4i

n∑

i=1

ωi

� W4i = ε̂4
i − 6σ̂2

i ε̂
2
i + 3σ̂4

i �

To avoid issues with small values of estimates of µ2 in the denominator, we apply the
FPLIB approach to an estimate of µ4 − µ2

2, using a flat prior on the parameter space
[0�∞). Using the delta method leads to approximating the variance of µ̂4�UC − µ̂2

2�UC with
the variance of

∑n

i=1 ωi(W4i − 2µ2W2i)/
∑n

i=1 ωi, so that the FPLIB estimate of µ4 −µ2
2 is

b(µ̂4�UC − µ̂2
2�UC� V (W4 − 2µ̂2�FPLIBW2�ω)), and the FPLIB estimate of κ is

κ̂FPLIB = 1 +
b
(
µ̂4�UC − µ̂2

2�UC� V (W4 − 2µ̂2�FPLIBW2�ω)
)

µ̂2
2�FPLIB

�

As a further simplification, we derive approximations in which the posterior mean for-
mula b(m̂�V ) is replaced by a simple truncation formula. We refer to this approach as
posterior mean trimming (PMT). In particular, suppose we apply the formula b(m̂�V ) to
an estimator m̂ such that m̂≥ m0 and V ≥ V0 by construction, where m0 < 0. Then the pos-
terior mean satisfies b(m̂�V ) ≥ b(m0� V0) (Pinelis (2002, Proposition 1.2)). Thus, a simple
approximation to the FPLIB estimator is to truncate m̂ from below at b(m0� V0). To ob-
tain an even simpler formula, we use the approximation b(m0� V0) = −V0/m0 + O(V 3/2

0 )
(Pinelis (2002, Proposition 1.3)), which holds as V0 → 0 (or, equivalently, as n → ∞,
provided the estimator m̂ is consistent). The variance of µ̂2�UC conditional on (Xi�σi)
is bounded below by 2

∑n

i=1 ω
2
iσ

4
i /(
∑n

i=1 ωi)2, and µ̂2�UC ≥ −
∑n

i=1 ωiσ
2
i /
∑n

i=1 ωi, so we

can use V0/m0 = − 2
∑n

i=1 ω
2
i
σ4
i∑n

i=1 ωiσ
2
i
·
∑n

i=1 ωi
, which gives the PMT estimator

µ̂2�PMT = max

{
µ̂2�UC�

2
n∑

i=1

ω2
iσ

4
i

n∑

i=1

ωiσ
2
i ·

n∑

i=1

ωi

}
�

For κ, we simplify our approach to deriving a trimming rule by treating µ2 as known, and

considering the variance of the infeasible estimate κ̂∗
UC =

∑n
i=1 ωi (ε̂4

i
−6σ̂2

i
µ2−3σ̂4

i
)

µ2
2
∑n

i=1 ωi
. Using the

above truncation formula for κ̂∗
UC − 1 along with the fact that κ̂∗

UC ≥
∑n

i=1 ωi(−6σ̂2
i µ2−3σ̂4

i )

µ2
2
∑n

i=1 ωi
and

the lower bound 8
∑

iω
2
i (2µ3

2σ
2
i + 21µ2

2σ
4
i + 48µ2σ

6
i + 12σ8

i )/µ4
2(
∑

iωi)2 on the variance

yields V0/m0 = − 8
∑

iω
2
i

(2µ3
2σ

2
i
+21µ2

2σ
4
i
+48µ2σ

6
i
+12σ8

i
)

µ2
2(
∑

iωi)
∑n

i=1 ωi (µ2
2+6σ̂2

i
µ2+3σ̂4

i
)

. To simplify the trimming rule even further,

we only use the leading term of V0/m0 as µ2 → 0, V0/m0 = − 32
∑

iω
2
i
σ8
i

µ2
2(
∑

iωi)
∑n

i=1 ωiσ̂
4
i

+ o(1/µ2
2).
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Plugging in µ̂2�PMT in place of the unknown µ2 then gives the PMT estimator

κ̂PMT = max

{
µ̂4�UC

µ̂2
2�PMT

�1 +
32

n∑

i=1

ω2
i σ̂

8
i

µ̂2
2�PMT

n∑

i=1

ωi ·
n∑

i=1

ωiσ̂
4
i

}
�

The estimators in step 1 of our baseline implementation in Section 3.2 correspond to
µ̂2�PMT and κ̂PMT, due to their slightly simpler form relative to the FPLIB estimators. In
unreported simulations based on the designs described in Section 4.4 and Supplemental
Material Appendix E.2, we find that EBCIs based on FPLIB lead to even smaller finite-
sample coverage distortions than those based on the baseline implementation that uses
PMT, at the expense of slightly longer average length.

To implement the nonparametric estimates κ̂i and µ̂2i in Remark 3.2, we use the
nearest-neighbor estimator that, for each i, computes the PMT estimates µ̂2�PMT and κ̂PMT

described above, using only the J observations closest to i, rather than the full sample
of n observations. We define distance as a Euclidean distance on (Xi�σi), after scaling
elements of this vector by their standard deviations. Under regularity conditions, the re-
sulting estimates will be consistent for µ2i and κi, so long as J → ∞ and J/n → 0. We
select J using leave-one-out cross-validation, using the squared prediction error in pre-
dicting W2i as the criterion. For simplicity, we use the same J for estimating the kurtosis
as that used for estimating the second moment.

A.2. Choice of Weighting

Under condition (10), the weights ωi used to estimate µ2 and κ can be any function
of Xi, σi. Furthermore, while δ̂ can be essentially arbitrary as long as it converges in
probability to some δ such that Eq. (10) holds, that equation will often be motivated by
the assumption that the conditional mean of θi is linear in Xi,

E
[
θi −X ′

iδ|Xi�σi

]
= 0� (25)

Under this condition, the weights ωi used to estimate δ can also be any function of Xi, σi.
Thus, under conditions (10) and (25), the choice of weighting can be guided by ef-

ficiency concerns. In general, the optimal weights are different for each of the three
estimates of δ, µ2, and κ, and implementing them requires first-stage estimates of the
variances of Yi, W2i, and W4i, conditional on (Xi�σi) (with W2i and W4i defined in Ap-
pendix A.1). To avoid estimation of these variances, consider the limiting case where the
signal-to-noise ratio goes to 0, µ2/mini σ

2
i → 0. The resulting weights will be near-optimal

under a low signal-to-noise ratio, when precise estimation of these parameters is relatively
more important for accurate coverage (under a high signal-to-noise ratio, shrinkage is
limited, and estimation error in these parameters has little effect on coverage). Let us
also ignore estimation error in δ for simplicity, and suppose that the Yi’s are independent
conditional on (θi�Xi�σi). Then, as µ2/mini σ

2
i → 0, the weights σ̂−2

i , σ̂−4
i , and σ̂−8

i , for
estimating δ, µ2, and µ4, respectively, become optimal. For simplicity, the baseline imple-
mentation in Section 3.2 uses the same weights ωi for each of the estimates; the choice
ωi = σ̂−2

i targets optimal estimation of δ. However, one could relax this constraint, and
use the weights σ̂−4

i and σ̂−8
i for estimating µ2 and µ4 instead. The choice ωi = 1/n has the
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advantage of simplicity; one may also motivate it by robustness concerns when Eq. (10)
fails, though our preferred robustness check is to use nonparametric moment estimates,
as outlined in Remark 3.2.

APPENDIX B: COMPUTATIONAL DETAILS

To simplify the statement of the results below, let r0(b�χ) = r(
√
b�χ), and put m2 =

σ2/µ2. The next proposition shows that, if only a second moment constraint is imposed,
the maximal non-coverage probability ρ(m2�χ), defined in Eq. (5), has a simple solution:

PROPOSITION B.1: Consider the problem in Eq. (5). The solution is given by

ρ(m2�χ) =

⎧
⎨
⎩
r0(0�χ) + m2

t0

(
r0(t0�χ) − r0(0�χ)

)
if m2 < t0,

r0(m2�χ) otherwise.

Here t0 = 0 if χ<
√

3; otherwise t0 is the unique solution to r0(t�χ) +u ∂

∂u
r0(u�χ) = r0(u�χ).

The proof of Proposition B.1 shows that ρ(m2�χ) corresponds to the least concave
majorant of the function r0.

The next result shows that, if in addition to a second moment constraint, we impose a
constraint on the kurtosis, the maximal non-coverage probability can be computed as a
solution to two nested univariate optimizations:

PROPOSITION B.2: Suppose κ > 1 and m2 > 0. Then the solution to the problem

ρ(m2�κ�χ) = sup
F

EF

[
r(b�χ)

]
s.t. EF

[
b2
]
= m2�EF

[
b4
]
= κm2

2�

is given by ρ(m2�κ�χ) = r0(m2�χ) if m2 ≥ t0, with t0 defined in Proposition B.1. If m2 < t0,
then the solution is given by

inf
0<x0≤t0

{
r0(x0�χ) + (m2 − x0)r ′

0(x0�χ) +
(
(x0 −m2)2 + (κ− 1)m2

2

)
sup

0≤x≤t0

δ(x;x0)
}
� (26)

where r ′
0(x0�χ) = ∂r0(x0�χ)/∂x0, δ(x;x0) = r0(x�χ)−r0(x0�χ)−(x−x0)r′0(x0�χ)

(x−x0)2 if x �= x0, and δ(x0;
x0) = limx→x0 δ(x;x0) = 1

2
∂2

∂x2
0
r0(x0�χ).

If m2 ≥ t0, then imposing a constraint on the kurtosis does not help to reduce the maxi-
mal non-coverage probability, and ρ(m2�κ�χ) = ρ(m2�χ).

REMARK B.1—Least favorable distributions: It follows from the proof of these propo-
sitions that distributions maximizing Eq. (5)—the least favorable distributions for the nor-
malized bias b—have two support points if m2 ≥ t0, namely, −√

m2 and
√
m2 (since the

rejection probability r(b�χ) depends on b only through its absolute value, any distribu-
tion with these two support points maximizes Eq. (5)). If m2 < t0, there are three support
points, b= 0 with probability 1 −m2/t0 and b= ±√

t0 with total probability m2/t0 (again,
only the sum of the probabilities is uniquely determined). If the kurtosis constraint is
also imposed, then there are four support points, ±√

x0 and ±√
x, where x and x0 opti-

mize Eq. (26).
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Finally, the characterization of the solution to the general program in Eq. (19) depends
on the form of the constraint function g. To solve the program numerically, discretize the
support of F to turn the problem into a finite-dimensional linear program, which can be
solved using a standard linear solver. In particular, we solve the problem

ρg(m�χ) = sup
p1�����pK

K∑

k=1

pkr(xk�χ) s.t.
K∑

k=1

pkg(xk) =m�

K∑

k=1

pk = 1�pk ≥ 0�

Here x1� � � � � xK denote the support points of b, with pk denoting the associated proba-
bilities.

APPENDIX C: COVERAGE RESULTS

This appendix provides coverage results that generalize Theorem 4.1. Appendix C.1
introduces the general setup. Appendix C.2 provides results for general shrinkage esti-
mators that satisfy an approximate normality assumption. Appendix C.3 considers a gen-
eralization of our baseline specification in the EB setting, and states a generalization of
Theorem 4.1.

C.1. General Setup and Notation

Let θ̂1� � � � � θ̂n be estimates of θ1� � � � � θn, with standard errors se1� � � � � sen. The standard
errors may be random variables that depend on the data. We are interested in coverage
properties of the intervals CIi = {θ̂i ± sei · χi} for some χ1� � � � �χn, which may be chosen
based on the data. In some cases, we will condition on some variable X̃i when defining
EB coverage or average coverage. Let X̃ (n) = (X̃1� � � � � X̃n)′ and let χ(n) = (χ1� � � � �χn)′.

As discussed in Section 4.1, the average coverage criterion does not require thinking of
θ as random. To save on notation, we will state most of our average coverage results and
conditions in terms of a general sequence of probability measures P̃ = P̃ (n) and triangular
arrays θ and X̃ (n). We will use EP̃ to denote expectation under P̃ . We can then obtain
EB coverage statements by considering a distribution P for the data and θ, X̃ (n) and an
additional variable ν such that these conditions hold for the measure P̃(·) = P(·|θ� ν� X̃ (n))
for θ, ν, X̃ (n) in a probability 1 set. The variable ν is allowed to depend on n, and can
include nuisance parameters as well as additional variables.

It will be useful to formulate a conditional version of the average coverage crite-
rion (15), to complement the conditional version of EB coverage discussed in the main
text. Due to discreteness of the empirical measure of the X̃i’s, we consider coverage
conditional on each set in some family A of sets. To formalize this, let IX �n = {i ∈
{1� � � � � n}: X̃i ∈ X}, and let NX �n = #IX �n. The sample average non-coverage on the set
X is then given by

ANCn

(
χ(n);X

)
= 1

NX �n

∑

i∈IX �n

I
{
θi /∈{θ̂± sei ·χi}

}
= 1

NX �n

∑

i∈IX �n

I
{
|Zi|>χi

}
�

where Zi = (θ̂i−θi)/sei. We consider two notions of average coverage control, conditional
on the set X ∈A:

ANCn(χ;X ) ≤ α+ oP̃ (1)� (27)
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and

lim sup
n

EP̃

[
ANCn(χ;X )

]
= lim sup

n

1
NX �n

∑

i∈IX �n

P̃
(
|Zi|>χi

)
≤ α� (28)

Since ANCn(χ;X ) is uniformly bounded, (27) implies (28). Furthermore, if we integrate
with respect to some distribution on ν, X̃ (n) such that (28) holds with P̃(·) = P(·|θ� ν� X̃ (n))
almost surely, we get (again by uniform boundedness) lim supnE[ANCn(χ;X )|θ] ≤ α,
which, if X contains all X̃i’s with probability 1, is condition (15) from the main text.

Now consider EB coverage, as defined in Eq. (14) in the main text, but conditioning on
X̃i. We consider EB coverage under a distribution P for the data, X̃ (n), θ, and ν, where ν
includes additional nuisance parameters and covariates, and where the average coverage
condition (28) holds with P(·|θ� ν� X̃ (n)) playing the role of P̃ with probability 1. Suppose
X̃i is discretely distributed under P , and that the exchangeability condition

P(θi ∈ CIi|I{x̃}�n) = P(θj ∈ CIj|I{x̃}�n) for all i� j ∈ I{x̃}�n (29)

holds with probability 1. Then, for each j,

P(θj ∈ CIj|X̃j = x̃)

= P(θj ∈ CIj|j ∈ I{x̃}�n) =E
[
P(θj ∈ CIj|I{x̃}�n)|j ∈ I{x̃}�n

]

= E

[
1

N{x̃}�n

∑

i∈I{x̃}

P(θi ∈ CIi|I{x̃})|j ∈ I{x̃}�n

]
�

Plugging in P(·|θ� ν� X̃ (n)) for P̃ in the coverage condition (28), taking the expectation
conditional on I{x̃}�n, and using uniform boundedness, it follows that the lim inf of the
term in the conditional expectation is no less than 1 − α. Then, by uniform boundedness
of this term,

lim inf
n→∞

P(θj ∈ CIj|X̃j = x̃) ≥ 1 − α� (30)

This is a conditional version of the EB coverage condition (14) from the main text.

C.2. Results for General Shrinkage Estimators

We assume that Zi = (θ̂i − θi)/sei is approximately normal with variance 1 and mean
bi under the sequence of probability measures P̃ = P̃ (n) . To formalize this, we consider a
triangular array of distributions satisfying the following conditions.

ASSUMPTION C.1: For some random variables b̃i and constants bi�n, Zi − b̃i satisfies

lim
n→∞

max
1≤i≤n

∣∣P̃(Zi − b̃i ≤ t) −�(t)
∣∣= 0

for all t ∈ R and, for all X ∈A and any ε > 0, 1
NX �n

∑
i∈IX �n

P̃(|b̃i − bi�n| ≥ ε) → 0.

Note that, when applying the results with P̃(·) given by the sequence of measures
P(·|θ� ν� X̃ (n)), the constants bi�n will be allowed to depend on θ, ν, X̃ (n).
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Let g : R → R
p be a vector of moment functions. We consider critical values χ̂(n) =

(χ̂1� � � � � χ̂n) based on an estimate of the conditional expectation of g(bi�n) given X̃i, where
the expectation is taken with respect to the empirical distribution of X̃i, bi�n. Due to the
discreteness of this measure, we consider the behavior of this estimate on average over
sets X ∈ A. We assume that there exists a function m : X → R

p that plays the role of
the conditional expectation of g(bi�n) given X̃i, along with estimates m̂i of m(X̃i), which
satisfy the following assumptions.

ASSUMPTION C.2: For all X ∈ A, NX �n → ∞, 1
NX �n

∑
i∈IX �n

(g(bn�i) − m(X̃i)) → 0, and,

for all ε > 0, 1
NX �n

∑
i∈IX �n

P̃(‖m̂i −m(X̃i)‖ ≥ ε) → 0.

ASSUMPTION C.3: For every X ∈ A and every ε > 0, there is a partition X1� � � � �XJ ∈ A

of X and m1� � � � �mJ such that, for each j and all x ∈ Xj , m(x) ∈ Bε(mj), where Bε(m) =
{m̃ : ‖m̃−m‖ ≤ ε}.

ASSUMPTION C.4: For some compact set M in the interior of the set of values of∫
g(b)dF (b) where F ranges over all probability measures on R, we have m(x) ∈ M for

all x.

Let ρg(m�χ) and cvaα�g(m) be defined as in Section 6,

cvaα�g(m) = inf
{
χ : ρg(m�χ) ≤ α

}
where ρg(m�χ) = sup

F

EF

[
r(b�χ)

]
s.t.EF

[
g(b)

]
=m�

Let χ̂i = cvaα�g(m̂i). We will consider the average non-coverage ANCn(χ̂(n);X ) of the
collection of intervals {θ̂i ± sei · χ̂i}.

THEOREM C.1: Suppose that Assumptions C.1, C.2, C.3, and C.4 hold, and that, for some
j, limb→∞ gj(b) = limb→−∞ gj(b) = ∞ and infb gj(b) ≥ 0. Then, for all X ∈A,

EP̃ANCn

(
χ̂(n);X

)
≤ α+ o(1)�

If, in addition, Zi − b̃i is independent over i under P̃ , then ANCn(χ̂(n);X ) ≤ α+ oP̃ (1).

C.3. Empirical Bayes Shrinkage Toward Regression Estimate

We now apply the general results in Appendix C.2 to the EB setting. As in Section 3,
we consider unshrunk estimates Y1� � � � �Yn of parameters θ = (θ1� � � � � θn)′, along with
regressors X (n) = (X1� � � � �Xn) and variables X̃ (n) = (X̃1� � � � � X̃n)′, which include σi, and
which play the role of the conditioning variables (the setting in Section 3 obtains as a
special case with X̃i = (Xi�σi)). The initial estimate Yi has standard deviation σi, and we
observe an estimate σ̂i. We obtain average coverage results by considering a triangular
array of probability distributions P̃ = P̃ (n), in which the Xi’s, σi’s, and θi’s are fixed. EB
coverage can then be obtained for a distribution P of the data, θ, and some nuisance pa-
rameter ν̃ such that these conditions hold almost surely with P(·|θ� ν̃� X̃ (n)�X (n)) playing
the role of P̃ .

We generalize the baseline specification in the main text, and consider

θ̂i = X̂ ′
i δ̂+w(γ̂� σ̂i)

(
Yi − X̂ ′

i δ̂
)
�
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where X̂i is an estimate of Xi (this allows some elements of Xi to be estimated rather
than observed directly, such as when σi is included in Xi), δ̂ is any random vector that
depends on the data (such as the OLS estimator in a regression of Yi on Xi), and γ̂ is a
tuning parameter that determines shrinkage and may depend on the data. This leads to
the standard error sei =w(γ̂� σ̂i)σ̂i so that the t-statistic is

Zi =
θ̂i − θi

sei

=
X̂ ′

i δ̂+w(γ̂� σ̂i)
(
Yi − X̂ ′

i δ̂
)
− θi

w(γ̂� σ̂i)σ̂i

= Yi − θi

σ̂i

+
[
w(γ̂� σ̂i) − 1

](
θi − X̂ ′

i δ̂
)

w(γ̂� σ̂i)σ̂i

�

We use estimates of moments of the bias of positive integer order ℓ1 < · · ·< ℓp. Let µ̂ℓ be
an estimate of the ℓth moment of θi −X ′

iδ, and suppose that this moment is independent
of σi in a sense formalized below. Then an estimate of the ℓjth moment of the bias is

m̂i�j = [w(γ̂�σ̂i)−1]ℓj µ̂ℓj

w(γ̂�σ̂i)
ℓj σ̂

ℓj
i

. Let m̂i = (m̂1� � � � � m̂p)′. The EBCI is then given by θ̂i ± w(γ̂� σ̂i)σ̂i ·
cvaα�g(m̂i), where gj(b) = bℓj . We obtain the baseline specification in Section 3.2 when
p = 2, ℓ1 = 2, ℓ2 = 4, γ̂ = µ̂2, and w(µ̂2� σ̂i) = µ̂2/(µ̂2 + σ̂2

i ).
We make the following assumptions.

ASSUMPTION C.5: limn→∞ max1≤i≤n|P̃((Yi − θi)/σ̂i ≤ t) −�(t)| = 0.

Supplemental Material Appendix D.1 gives primitive conditions for Assumption C.5,
and verifies them in a linear fixed effects panel data model. These conditions involve
considering a triangular array of parameter values such that sampling error and empiri-
cal moments of the parameter value sequence are of the same order of magnitude, and
defining θi to be a scaled version of the corresponding parameter.

ASSUMPTION C.6: The standard deviations σi are bounded away from zero. In addition,
for some δ and γ, δ̂ and γ̂ converge to δ and γ under P̃ , and, for any ε > 0,

lim
n→∞

max
1≤i≤n

P̃
(
|σ̂i − σi| ≥ ε

)
= 0 and lim

n→∞
max
1≤i≤n

P̃
(
|X̂i −Xi| ≥ ε

)
= 0�

ASSUMPTION C.7: The variable X̃i takes values in S1 × · · · × Ss where, for each k, either
Sk = [xk�xk] (with −∞< xk < xk <∞) or Sk is a finitely discrete set with minimum element

xk and maximum element xk. In addition, X̃i1 = σi (the first element of X̃i is given by σi).
Furthermore, for some µ0 such that (µ0�ℓ1� � � � �µ0�ℓp) is in the interior of the set of values of∫
g(b) dF (b) where F ranges over probability measures on R where gj(b) = bℓj and some

constant K, the following holds. Let A denote the collection of sets S̃1 × · · · × S̃s where S̃k

is a positive Lebesgue measure interval contained in [xk�xk] in the case where Sk = [xk�xk],
and S̃k is a nonempty subset of Sk in the case where Sk is finitely discrete. For any X ∈ A,
NX �n → ∞ and

1
NX �n

∑

i∈IX �n

(
θi −X ′

iδ
)ℓj → µ0�ℓj �

1
NX �n

∑

i∈IX �n

|θi|ℓj ≤K� and
1

NX �n

∑

i∈IX �n

‖Xi‖ℓj ≤K�

In addition, the estimate µ̂ℓj converges in probability to µ0�ℓj under P̃ for each j.
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THEOREM C.2: Let θ̂i and sei be given above and let χ̂i = cvaα�g(m̂i) where m̂i is given
above and g(b) = (bℓ1� � � � � bℓp) for some positive integers ℓ1� � � � � ℓp, at least one of which
is even. Suppose that Assumptions C.5, C.6, and C.7 hold, and that w() is continuous in an
open set containing {γ}× S1 and is bounded away from zero on this set. Let A be as given in
Assumption C.7. Then, for all X ∈A, EP̃ANCn(χ̂(n);X ) ≤ α+o(1). If, in addition, (Yi� σ̂i)
is independent over i under P̃ , then ANCn(χ̂(n);X ) ≤ α+ oP̃ (1).

As a consequence of Theorem C.2, we obtain, under the exchangeability condition (29),
conditional EB coverage, as defined in Eq. (30), for any distribution P of the data and θ,
ν̃ such that the conditions of Theorem C.2 hold with probability 1 with the sequence
of probability measures P(·|θ� ν̃�X (n)� X̃ (n)) playing the role of P̃ . This follows from the
arguments in Appendix C.1.

COROLLARY C.1: Let θ, ν, X (n), X̃ (n), Yi follow a sequence of distributions P such

that the conditions of Theorem C.2 hold with X̃i taking on finitely many values, and

P(·|θ� ν�X (n)� X̃ (n)) playing the role of P̃ with probability 1, and such that the exchange-

ability condition (29) holds. Then the intervals CIi ={θ̂i ±w(γ̂� σ̂i)σ̂i · cvaα�g(m̂i)} satisfy the
conditional EB coverage condition (30).

The first part of Theorem 4.1 (average coverage) follows by applying Theorem C.2 with
the conditional distribution P(·|θ) playing the role of P̃ . The second part (EB coverage)
follows immediately from Corollary C.1.

REFERENCES

ABADIE, ALBERTO, AND MAXIMILIAN KASY (2019): “Choosing Among Regularized Estimators in Empirical
Economics: The Risk of Machine Learning,” The Review of Economics and Statistics, 101 (5), 743–762. https:
//doi.org/10.1162/rest_a_00812. [2587]

ANDREWS, ISAIAH, TORU KITAGAWA, AND ADAM MCCLOSKEY (2021): “Inference on Winners,” Unpublished
manuscript, Harvard University. [2569,2589]

ANGRIST, JOSHUA D., PETER D. HULL, PARAG A. PATHAK, AND CHRISTOPHER R. WALTERS (2017): “Lever-
aging Lotteries for School Value-Added: Testing and Estimation,” The Quarterly Journal of Economics, 132
(2), 871–919. https://doi.org/10.1093/qje/qjx001. [2567]

ARMSTRONG, TIMOTHY B., AND MICHAL KOLESÁR (2018): “Optimal Inference in a Class of Regression Mod-
els,” Econometrica, 86 (2), 655–683. https://doi.org/10.3982/ECTA14434. [2569]

ARMSTRONG, TIMOTHY B., MICHAL KOLESÁR, AND MIKKEL PLAGBORG-MØLLER (2020): “Robust Empirical
Bayes Confidence Intervals,” arXiv:2004.03448v2. [2575,2590]

(2022): “Supplement to ‘Robust Empirical Bayes Confidence Intervals’,” Econometrica Supplemental
Material, 90, https://doi.org/10.3982/ECTA18597. [2570,2581]

BENJAMINI, YOAV, AND YOSEF HOCHBERG (1995): “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society. Series B (Methodological), 57
(1), 289–300. [2585,2586]

BENJAMINI, YOAV, AND DANIEL YEKUTIELI (2005): “False Discovery Rate–Adjusted Multiple Confidence
Intervals for Selected Parameters,” Journal of the American Statistical Association, 100 (469), 71–81. https:
//doi.org/10.1198/016214504000001907. [2589]

BONHOMME, STÉPHANE, AND MARTIN WEIDNER (2021): “Posterior Average Effects,” Journal of Business &
Economic Statistics, forthcoming. https://doi.org/10.1080/07350015.2021.1984928. [2569]

BROWN, LAWRENCE D., AND EITAN GREENSHTEIN (2009): “Nonparametric Empirical Bayes and Compound
Decision Approaches to Estimation of a High-Dimensional Vector of Normal Means,” The Annals of Statis-
tics, 37 (4), 1685–1704. https://doi.org/10.1214/08-AOS630. [2585]

CAI, T. TONY, MARK LOW, AND ZONGMING MA (2014): “Adaptive Confidence Bands for Nonparametric
Regression Functions,” Journal of the American Statistical Association, 109 (507), 1054–1070. https://doi.org/
10.1080/01621459.2013.879260. [2569,2583]



ROBUST EMPIRICAL BAYES CONFIDENCE INTERVALS 2601

CARLIN, BRADLEY P., AND THOMAS A. LOUIS (2000): Bayes and Empirical Bayes Methods for Data Analysis
(second Ed.). New York, NY: Chapman & Hall/CRC. [2571,2576,2584]

CASELLA, GEORGE, AND J. T. GENE HWANG (2012): “Shrinkage Confidence Procedures,” Statistical Science,
27 (1), 51–60. https://doi.org/10.1214/10-STS319. [2585]

CHETTY, RAJ, AND NATHANIEL HENDREN (2018): “The Impacts of Neighborhoods on Intergenerational
Mobility II: County-Level Estimates,” The Quarterly Journal of Economics, 133 (3), 1163–1228. https:
//doi.org/10.1093/qje/qjy006. [2567,2569,2575,2589,2590]

CHETTY, RAJ, JOHN N. FRIEDMAN, AND JONAH E. ROCKOFF (2014): “Measuring the Impacts of Teachers
I: Evaluating Bias in Teacher Value-Added Estimates,” American Economic Review, 104 (9), 2593–2632.
https://doi.org/10.1257/aer.104.9.2593. [2567]

EFRON, BRADLEY (2010): Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Predic-
tion. New York, NY: Cambridge University Press. https://doi.org/10.1017/CBO9780511761362. [2569]

(2015): “Frequentist Accuracy of Bayesian Estimates,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 77 (3), 617–646. https://doi.org/10.1111/rssb.12080. [2585]

(2019): “Bayes, Oracle Bayes and Empirical Bayes,” Statistical Science, 34 (2), 177–201. https://doi.
org/10.1214/18-STS674. [2584,2585,2588]

FINKELSTEIN, AMY, MATTHEW GENTZKOW, PETER HULL, AND HEIDI WILLIAMS (2017): “Adjusting Risk
Adjustment—Accounting for Variation in Diagnostic Intensity,” New England Journal of Medicine, 376 (7),
608–610. https://doi.org/10.1056/NEJMp1613238. [2567]

GIACOMINI, RAFFAELLA, TORU KITAGAWA, AND HARALD UHLIG (2019): “Estimation Under Ambiguity,”
Cemmap Working Paper 24/19. [2584]

GREENSHTEIN, EITAN, AND YA’ACOV RITOV (2019): “Comment: Empirical Bayes, Compound Decisions and
Exchangeability,” Statistical Science, 34 (2), 224–228. https://doi.org/10.1214/19-STS709. [2569]

HANSEN, BRUCE E. (2016): “Efficient Shrinkage in Parametric Models,” Journal of Econometrics, 190 (1),
115–132. https://doi.org/10.1016/j.jeconom.2015.09.003. [2568]

HULL, PETER (2020): “Estimating Hospital Quality With Quasi-Experimental Data,” Unpublished manuscript,
University of Chicago. [2567]

HUNG, KENNETH, AND WILLIAM FITHIAN (2019): “Rank Verification for Exponential Families,” The Annals
of Statistics, 47 (2), 758–782. https://doi.org/10.1214/17-AOS1634. [2569,2589]

IGNATIADIS, NIKOLAOS, AND STEFAN WAGER (2021): “Confidence Intervals for Nonparametric Empiri-
cal Bayes Analysis,” Journal of the American Statistical Association, forthcoming. https://doi.org/10.1080/
01621459.2021.2008403. [2569]

JACOB, BRIAN A., AND LARS LEFGREN (2008): “Can Principals Identify Effective Teachers? Evidence on
Subjective Performance Evaluation in Education,” Journal of Labor Economics, 26 (1), 101–136. https:
//doi.org/10.1086/522974. [2567]

JAMES, WILLARD, AND CHARLES M. STEIN (1961): “Estimation With Quadratic Loss,” in Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, ed. by Jerzy Neyman. Berkeley,
CA: University of California Press, 361–379, https://projecteuclid.org/euclid.bsmsp/1200512173. [2568,2570]

JIANG, WENHUA, AND CUN-HUI ZHANG (2009): “General Maximum Likelihood Empirical Bayes Estimation
of Normal Means,” The Annals of Statistics, 37 (4), 1647–1684. https://doi.org/10.1214/08-AOS638. [2585]

JOHNSTONE, IAIN M. (2019): Gaussian Estimation: Sequence and Multiresolution Models. Book draft, https:
//statweb.stanford.edu/~imj/GE_09_16_19.pdf. [2587]

KANE, THOMAS, AND DOUGLAS STAIGER (2008): “Estimating Teacher Impacts on Student Achievement: An
Experimental Evaluation,”. Technical Report 14607, National Bureau of Economic Research, Cambridge,
MA. https://doi.org/10.3386/w14607. [2567]

KIEFER, JACK, AND JACOB WOLFOWITZ (1956): “Consistency of the Maximum Likelihood Estimator in the
Presence of Infinitely Many Incidental Parameters,” The Annals of Mathematical Statistics, 27 (4), 887–906.
https://doi.org/10.1214/aoms/1177728066. [2585]

KOENKER, ROGER, AND IVAN MIZERA (2014): “Convex Optimization, Shape Constraints, Compound De-
cisions, and Empirical Bayes Rules,” Journal of the American Statistical Association, 109 (506), 674–685.
https://doi.org/10.1080/01621459.2013.869224. [2585]

LEE, JASON D., DENNIS L. SUN, YUEKAI SUN, AND JONATHAN E. TAYLOR (2016): “Exact Post-Selection In-
ference, With Application to the Lasso,” The Annals of Statistics, 44 (3), 907–927. https://doi.org/10.1214/
15-AOS1371. [2589]

LIU, LAURA, HYUNGSIK ROGER MOON, AND FRANK SCHORFHEIDE (2022): “Forecasting With a Panel Tobit
Model,” arXiv:2110.14117. [2569]

MACKINNON, JAMES G., AND HALBERT WHITE (1985): “Some Heteroskedasticity-Consistent Covariance
Matrix Estimators With Improved Finite Sample Properties,” Journal of Econometrics, 29 (3), 305–325.
https://doi.org/10.1016/0304-4076(85)90158-7. [2584]



2602 T. B. ARMSTRONG, M. KOLESÁR, AND M. PLAGBORG-MØLLER

MORRIS, CARL N. (1983a): “Parametric Empirical Bayes Confidence Intervals,” in Scientific Inference, Data
Analysis, and Robustness, ed. by George E. P. Box, Tom Leonard, and Chien-Fu Wu. New York, NY: Aca-
demic Press, 25–50. https://doi.org/10.1016/B978-0-12-121160-8.50008-9. [2576,2584,2592]

(1983b): “Parametric Empirical Bayes Inference: Theory and Applications,” Journal of the American
Statistical Association, 78 (381), 47–55. https://doi.org/10.1080/01621459.1983.10477920. [2567,2568,2571,

2576,2584,2592]
NYCHKA, DOUGLAS (1988): “Bayesian Confidence Intervals for Smoothing Splines,” Journal of the American

Statistical Association, 83 (404), 1134–1143. https://doi.org/10.1080/01621459.1988.10478711. [2569]
PINELIS, IOSIF (2002): “Monotonicity Properties of the Relative Error of a Padé Approximation for Mills’

Ratio,” Journal of Inequalities in Pure & Applied Mathematics, 3 (2), http://eudml.org/doc/122588. [2593]
PRATT, JOHN W. (1961): “Length of Confidence Intervals,” Journal of the American Statistical Association, 56

(295), 549–567. https://doi.org/10.2307/2282079. [2568]
STOREY, JOHN D. (2002): “A Direct Approach to False Discovery Rates,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 64 (3), 479–498. https://doi.org/10.1111/1467-9868.00346. [2585,2586]
WAHBA, GRACE (1983): “Bayesian “Confidence Intervals” for the Cross-Validated Smoothing Spline,” Journal

of the Royal Statistical Society: Series B (Methodological), 45 (1), 133–150. https://doi.org/10.1111/j.2517-6161.
1983.tb01239.x. [2569]

WASSERMAN, LARRY (2006): All of Nonparametric Statistics. New York, NY: Springer. https://doi.org/10.1007/
0-387-30623-4. [2569,2585]

XIE, XIANCHAO, SAMUEL KOU, AND LAWRENCE D. BROWN (2012): “SURE Estimates for a Heteroscedastic
Hierarchical Model,” Journal of the American Statistical Association, 107 (500), 1465–1479. https://doi.org/
10.1080/01621459.2012.728154. [2575]

Guest Co-editor Alberto Abadie handled this manuscript.

Manuscript received 15 June, 2020; final version accepted 9 June, 2022; available online 15 July, 2022.


	Introduction
	Simple Example
	Practical Implementation
	Motivating Model and Robust EBCI
	Baseline Implementation

	Main Results
	Coverage Under Baseline Implementation
	Relative Efﬁciency
	Undercoverage of Parametric EBCI
	Monte Carlo Simulations
	Design
	Results


	Comparison With Other Approaches
	Average Coverage versus Alternative Coverage Concepts
	Finite-Sample versus Asymptotic Coverage
	Local versus Global Optimality
	Other Inference Problems

	Extensions
	General Shrinkage
	Coverage After Selection

	Empirical Application
	Framework
	Results

	Appendix A: Moment Estimates
	Finite n Corrections and Nonparametric Moment Estimates
	Choice of Weighting

	Appendix B: Computational Details
	Appendix C: Coverage Results
	General Setup and Notation
	Results for General Shrinkage Estimators
	Empirical Bayes Shrinkage Toward Regression Estimate

	References

