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Summary
The ocean transports, mixes, and transforms chemical constituents on a multitude of time and
length scales. Observations and models are both essential for making sense of this complex
system. However, the days of just publishing data without any quantitative modelling are
over, increasing pressure on sea-going oceanographers that are expected to be proficient in
the use of biogeochemical models. And while the simplest of these models consist of only
a few boxes (e.g., the two-box model of Archer et al., 2000), with solutions that are easily
obtained by hand or on a simple desktop computer, the most advanced models have high-
resolution three-dimensional meshes that require high-performance computing (HPC) clusters
and a considerable amount of computational-science expertise (e.g., the MITgcm, Campin et
al., 2021). A high barrier to entry for modelling in oceanography hinders advances in the field.
AIBECS.jl (Pasquier, 2021) is a JuliaOcean-affiliated package written in Julia (Bezanson et
al., 2017), which aims to lower this barrier by providing an easy-to-use, open-source, and
modular framework for simulating global marine tracers in steady-state and biogeochemical
parameter fitting.
A conceptual model of the cycle of any marine tracer essentially requires two components. (i)
A model of how the tracer is transported (be it the ocean currents and eddies, gravitational
settling, or a combination of those), and (ii) a model of the local sources and sinks at any
location. AIBECS.jl is built on this concept and allows users to build numerical models of
marine tracers by selecting a circulation and/or vertical transport of the tracer with particles
and local sources and sinks. Tools for generating the steady-state equations, solving them,
and then diagnosing and plotting the simulated tracers are also provided, either directly by
AIBECS.jl, by its dependencies, or by satellite packages in the AIBECS and Julia ecosystem.
Box (1979) has remarked that, by definition, all models are wrong because they make sim-
plifying assumptions. These assumptions can give rise to model parameters that can capture
fundamental characteristics of the system. Once the model of the cycle of a marine tracer
is implemented, it is thus natural to try to estimate biogeochemical parameters by minimiz-
ing model–observation mismatches, which may improves the skill of the model. Parameter
optimization is generally more efficiently performed when first and second derivatives are avail-
able, and these derivatives can also be used to estimate parameter sensitivity (Thacker, 1989).
AIBECS.jl was designed with parameter fitting in mind and provides, along with satellite pack-
ages, tools for generating first- and second-order derivatives automatically and efficiently.
The AIBECS.jl package builds on the vision of the AWESOME OCIM (A Working Environ-
ment for Simulating Ocean Movement and Elemental cycling within the Ocean Circulation
Inverse Model, or AO, John et al., 2020), which was designed to make three-dimensional
element-cycling models more broadly accessible. Written in Julia — chosen for of its combined
expressive power and efficiency and offering a truly open-source solution — the AIBECS.jl
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framework improves on the AO on a number of fronts to target education and research. Sim-
ple AIBECS.jl simulations can be produced in minutes in interactive notebooks while resource-
hungry projects, e.g., for optimizing models with multiple tracers interacting nonlinearly within
a high-resolution mesh, can be easily version-controlled, hosted, and run on HPC clusters.
Through a simple user interface, AIBECS.jl provides access to a variety of steady-state ocean
circulation models. These currently include the Ocean Circulation Inverse Model (OCIM) v0.1
(Primeau et al., 2013), v1.0 (DeVries, 2014; DeVries & Primeau, 2011), and v2.0 (DeVries
& Holzer, 2019), and the MITgcm-built Ocean Comprehensible Atlas (OCCA) ocean-state
estimate model (Forget, 2010), of which the downloads are handled by the DataDeps.jl pack-
age (White et al., 2019). AIBECS.jl also offers classic two-box and three-box models (Archer
et al., 2000; Sarmiento & Gruber, 2006). The OceanGrids.jl package, on which AIBECS de-
pends, provides the underlying grid configuration types as well as regridding and interpolating
routines. Swapping the underlying circulation model and grid requires a single-line-of-code
change, facilitating intercomparison projects. As new circulation models that are represented
in matrix form are made publicly available, they will be added to the collection. These could
include past- and future-ocean circulation models, for paleoceanographic or climate-change
studies, for example.
AIBECS.jl also provides extra functionality to facilitate the generation of numerical models.
Tooling to simulate gravitational settling of tracers with non-buoyant particles is provided
by the transportoperator function. In addition, AIBECS provides access to a number
of predefined fields that can be used to generate source and sink processes. Fine-resolution
(1-arc-minute) topography from the ETOPO1 dataset (Amante & Eakins, 2009) can be used
for a refined interception of particulate fluxes by subgrid topographic features not captured by
coarser circulation models. For aeolian deposition, AIBECS.jl includes aerosol-type- and region-
of-origin-partitioned dust deposition fields (Chien et al., 2016; Kok et al., 2021). Datasets
for global river discharge (Dai, 2017; Dai & Trenberth, 2002) and surface groundwater dis-
charge (Luijendijk et al., 2019, 2020) are included. For hydrothermal-sourced tracers, the
helium fluxes from the Earth’s mantle computed with the OCIM v1.0 and v2.0 are available
when loading the corresponding circulation models (DeVries, 2014; DeVries & Holzer, 2019).
AIBECS.jl also provides access to the data included with the AWESOME OCIM framework
(John et al., 2020), namely data from the Global Ocean Data Analysis Project (GLODAP,
Lauvset et al., 2016; Olsen et al., 2016), P-cycling modelled fields from Weber et al. (2018),
nepheloid layers (Gardner, Richardson, & Mishonov, 2018; Gardner, Richardson, Mishonov,
& Biscaye, 2018; Taburet et al., 2019), as well as other data already present within AIBECS
or satellite packages. Also useful to global biogeochemistry modelling are data from the
World Ocean Atlas (Garcia et al., 2018) that can be downloaded, assisted by external pack-
age WorldOceanAtlasTools.jl (Pasquier, 2019). Similarly, GEOTRACES data (Schlitzer et
al., 2018) can be handled by the GEOTRACES.jl package (although GEOTRACES requires
manual download of the data). More advanced usage such as optimization is facilitated by
the F1Method.jl package (Pasquier, 2020), which provides efficient gradient and Hessian com-
putations of objective functions defined through AIBECS.jl, which can then be directly fed to
optimization routines from, e.g., the Optim.jl package (Mogensen & Riseth, 2018). Finally,
plotting recipes for the Plots.jl package (Breloff, 2021), are available.
Internally, AIBECS.jl uses a quasi-Newton solver (Kelley, 2003) translated from MATLAB to
Julia and tailored to the context of marine tracers to solve/simulate tracers. AIBECS uses
forward-mode auto-differentiation from the ForwardDiff.jl package (Revels et al., 2016) for
the nonlinear parts of the system of ordinary differential equations to generate the Jacobian
required for the solver. Metadata such as units and prior distributions can be attached to
model parameters, which are handled with the help of the UnPack.jl, FieldMetadata.jl, Flat-
ten.jl, DataFrames.jl, Distributions.jl (Besançon et al., 2021; Lin et al., 2019), Unitful.jl, and
Bijectors.jl dependencies.
The AIBECS.jl package is registered with Julia’s default package registry (GENERAL), such
that installation takes a single line of code from within Julia. The package documentation,
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which is built through continuous integration (CI), includes tutorials and how-to guides that
are both available online for consultation and as runnable Jupyter notebooks. Continuous
integration through GitHub actions also includes a fairly complete suite of tests.

Statement of need
Pioneered by Schlitzer (1993) to study the ocean circulation using ventilation tracers such
as radiocarbon (see also Schlitzer, 2000), the low computational costs of steady-state cir-
culation models allow for efficient optimization and inference/estimation of biogeochemical
parameters. Today, despite reduced resolution and steady-state assumption, data-constrained
matrix-transport models such as the OCIM are at the forefront of oceanographic research.
This is evidenced for example by the growing number of high-profile studies that use such
models for parameter estimation published in recent years (e.g., DeVries et al., 2017, 2012,
2013; DeVries, 2014; DeVries & Deutsch, 2014; DeVries & Weber, 2017; Roshan & DeVries,
2017; Teng et al., 2014; Wang et al., 2019; Weber et al., 2016; Weber & Deutsch, 2010).
However, although the steady-state assumption and matrix representation simplify the simu-
lation of tracers compared to traditional Ocean General Circulation Models (OGCMs), most
studies that employ a steady-state matrix representation of marine cycling remain difficult to
reproduce without significant computer-science and modelling expertise because they are built
on private implementations. Comparisons between different circulation models are moreover
complicated by the lack of standardization across models.
Hence, there is a need to facilitate the use of steady-state ocean-circulation models by provid-
ing: (i) an integrated framework for handling a number of different ocean-circulation models
with tools for swapping circulations (including interpolating from one model grid to another),
(ii) a user-friendly interface for translating mathematical models of biogeochemical cycles into
the corresponding code (e.g., for sources, sinks, and vertical transport of tracers), and (iii)
solvers for efficient simulations, optimization, diagnosis, and statistical analysis.
AIBECS.jl provides a free, open-source, unified framework for biogeochemical-tracer-modelling
studies that use steady-state circulation models. Among other advantages over existing so-
lutions (i.e., the AO), AIBECS.jl offers better computational efficiency, enhanced versatility,
composability with other Julia packages, and ease of reproducibility (granted by version con-
trol and Julia’s package manager) and improved syntax, which are pillars of modern scientific
dissemination. Thus, AIBECS users may include sea-going oceanographers and educators who
will benefit from its simplicity, as well as more experienced modellers who can leverage its
computational advantages. AIBECS.jl has been used for teaching and is currently used for
research focused on marine trace metals.
The publication of circulation models as transport matrices from existing general circulation
models (Bardin et al., 2014, 2016; Khatiwala et al., 2005; Khatiwala, 2007; Kvale et al.,
2017; Zanna et al., 2019), and hopefully, future publication of transport matrix estimates
from standard ocean general circulation models (e.g., Chamberlain et al., 2019) will increase
the collection of circulations available from AIBECS.jl. Of particular interest to the broader
community to facilitate the simulation of past and future marine biogeochemical states would
be transport matrix models extracted from the Climate Model Intercomparison Project (CMIP),
which includes past and future simulations of the ocean circulation.
Further devepment could include exposing advanced Grren-function-based diagnostic tools
(e.g., Holzer et al., 2021; Pasquier & Holzer, 2018), coupling tracers on different grids,
Newton–Krylov solvers for cyclo-stationary states (e.g., CYCLOCIM: Huang et al., 2021), or
time-dependent solvers for transient biogeochemical simualtions provided, e.g., by the SciML
ecosystem (Rackauckas & Nie, 2017). Bridging packages could be implemented for improved
composability with statistical packages (e.g., Turing.jl: Ge et al., 2018), optimization tools,
and plotting software (e.g., Makie.jl: Danisch et al., 2021; Danisch & Krumbiegel, 2021).
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