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Abstract:  16 
 17 
Orientation selectivity in primate visual cortex is organized into cortical columns. Since cortical 18 
columns are at a finer spatial scale than the sampling resolution of standard BOLD fMRI 19 
measurements, analysis approaches have been proposed to peer past these spatial resolution 20 
limitations. It was recently found that these methods are predominantly sensitive to stimulus 21 
vignetting - a form of selectivity arising from an interaction of the oriented stimulus with the 22 
aperture edge. Beyond vignetting, it is not clear whether orientation-selective neural responses 23 
are detectable in BOLD measurements. Here, we leverage a dataset of visual cortical 24 
responses measured using high-field 7T fMRI. Fitting these responses using image-computable 25 
models, we compensate for vignetting and nonetheless find reliable tuning for orientation. 26 
Results further reveal a coarse-scale map of orientation preference that may constitute the 27 
neural basis for known perceptual anisotropies. These findings settle a long-standing debate in 28 
human neuroscience, and provide insights into functional organization principles of visual 29 
cortex. 30 
 31 
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Introduction:  36 
 37 
Neurons in human visual cortex are organized according to their functional selectivity. A number 38 
of stimulus features are organized in coarse-scale cortical maps. For example, retinotopic visual 39 
cortex is organized as a log-transform of the visual field, with the polar dimensions of visual 40 
space (angle and eccentricity) corresponding to the Cartesian dimensions of the cortical surface 41 
1, 2, 3. Additionally, receptive field size 4, 5 and preferred spatial frequency 6 increase 42 
monotonically with visual eccentricity. Selectivity to other visual features, such as ocular 43 
dominance and temporal frequency, are organized at a fine spatial scale, often forming columns 44 
through the cortical depth 7, 8, 9, 10. As in primates and carnivores 11, orientation selectivity in 45 
humans has been shown to also be organized at a fine spatial scale, in cortical columns that are 46 
approximately 0.7-0.8 mm in width across the cortical surface of primary visual cortex 12. 47 
 48 
In addition to the fine-scale columnar architecture, fMRI studies have offered evidence for a 49 
coarse-scale organization of orientation preference 13, 14, 15, 16. Because of the relatively low 50 
spatial resolution of standard fMRI measurements (typically around 2 x 2 x 2 mm), these studies 51 
do not reveal the fine-scale columnar architecture. Rather, these studies have leveraged the 52 
broad spatial coverage afforded by fMRI to reveal a radial bias of orientation preference: voxels 53 
respond more strongly to orientations that point from the receptive field center toward fixation. 54 
This radial bias was originally assumed to reflect a physiological map of orientation selectivity 13, 55 
analogous to maps of receptive field location and spatial frequency selectivity. However, this 56 
radial bias map, it turns out, does not necessarily reflect solely a physiological map. Instead, it 57 
was shown to likely be, in large part, the result of stimulus vignetting, an interaction between the 58 
edges of the stimulus aperture and the spatial frequency envelope of the stimulus 17, 18. The 59 
principle underlying vignetting is that the Fourier spectrum changes in the vicinity of a change in 60 
contrast, such as an edge. In typical orientation mapping experiments, the assumption is that 61 
each condition contains a single orientation. But because of vignetting, this isn’t true: different 62 
regions in the image contain different orientations and different Fourier power. Specifically, at 63 
the stimulus edge, there is more power for the radial orientation than for other orientations. 64 
These observations challenge the interpretation of a large body of studies over the past 20 65 
years that were presumed to measure orientation-selective responses in humans 19.   66 
 67 
If previous fMRI studies do not provide clear evidence regarding a physiological map of 68 
orientation selectivity, how is orientation actually represented in human visual cortex? Does the 69 
human brain contain a map for orientation selectivity at a coarse spatial scale, distinct from 70 
columnar architecture? Alternatively, is the presumed fine-scale columnar map the sole 71 
organizational principle for orientation in visual cortex? The answer to these questions has been 72 
obfuscated by stimulus vignetting: if there is indeed a coarse-scale map for orientation, it may 73 
be entirely eclipsed by stimulus vignetting. 74 
 75 
To overcome these challenges, we apply a computational framework for studying orientation 76 
selectivity that explicitly models the effects of stimulus vignetting in order to access orientation-77 
selective signals that would be otherwise obscured. To this end, we leverage a massive 7T fMRI 78 
dataset, the Natural Scenes Dataset (NSD), consisting of extensive sampling of responses to 79 
natural scene stimuli in a small number of intensively-studied participants 20, 21, 22. The large 80 
number of measurements and unique stimuli, combined with the high signal-to-noise ratio 81 
(SNR) of the fMRI measurements, enables us to robustly fit models that include dozens of 82 
parameters per voxel.  83 
 84 
Image-computable models have been used to study a wide range of questions in visual 85 
neuroscience 17, 23, 24, 25. To assess orientation selectivity, our modeling approach exploits two 86 



 4 

image-computable models based on the steerable pyramid 26. The constrained model, which 87 
includes both visual field position tuning and spatial frequency tuning, but pools equally across 88 
orientation-selective filters, is sensitive to the effects of stimulus vignetting 17. This model is 89 
based on the model used previously to demonstrate vignetting 17, and it can fully explain 90 
responses modulated by total Fourier power. However, because the orientation filters at each 91 
level are pooled before the filter responses are computed, the model cannot capture any 92 
information about orientation. In other words, any apparent orientation selectivity in the model 93 
output is entirely due to stimulus vignetting. The full model, on the other hand, which allows 94 
unequal contributions from orientation-selective filters, is sensitive to orientation-selectivity 95 
beyond the effects of stimulus vignetting (Fig 1). Combined, the pair of models enables us to 96 
assess voxel-wise orientation selectivity while simultaneously accounting for the impact of 97 
stimulus vignetting. The modeling results reveal the existence of physiological maps for 98 
orientation preference.  99 
  100 
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Results:  101 
 102 
Both constrained and full models explain roughly similar amounts of variance 103 
The NSD dataset contains measurements of 7T BOLD fMRI responses from 8 participants who 104 
each viewed 9,000–10,000 distinct color natural scenes (22,000–30,000 trials) over the course 105 
of 30–40 scan sessions 22. We fit two models characterizing V1 voxel responses to the natural 106 
scene stimuli. Both models fit voxel responses as a weighted sum of steerable pyramid filters. 107 
The constrained model pools across orientation, and is therefore effectively composed of a 108 
range of spatial frequency filters across the visual field. In contrast, the full model includes 109 
flexible weights for both spatial frequency and orientation tuned filters (Fig 1). In order to 110 
evaluate how well each model fits the data, we cross-validated both models and measured the 111 
variance explained by each model on out-of-sample data.  112 

 113 
Fig 1. Analysis pipeline for a single voxel. Top, full model. Bottom, constrained model. 114 
Natural scene images were converted to grayscale and passed as input to a steerable pyramid 115 
(shown here with only 4 orientations and 3 spatial frequencies for visualization purposes). Each 116 
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filter yielded an energy response that was sampled by the voxel pRF, resulting in a scalar output 117 
for each filter. Linear regression was performed on the response amplitudes observed for each 118 
voxel with filter output values as predictors. This procedure yielded a set of model weights, 119 
which were subsequently used to simulate responses to a range of gratings in order to 120 
determine the voxel’s preferred orientation and spatial frequency. The constrained model 121 
(bottom) was identical to the full model except for an additional step of summing model outputs 122 
across orientations. As a result, the constrained model involves a weight for each spatial 123 
frequency filter but enforces equal contribution across orientation. Example images shown here 124 
were created by the authors for illustration only and were not used in the study.  125 
 126 
 127 
The constrained and the full models explained a similar portion of variance in the BOLD 128 
measurements (mean R2: full 0.0311, constrained 0.0310)(Fig 2A). If BOLD activity reflects 129 
orientation selectivity, we would expect the constrained model to be unable to account for 130 
modulations driven by local orientation differences between images. The full model, however, 131 
includes orientation tuning, and therefore should be able to account for this additional response 132 
variability, assuming that the parameters that characterize orientation tuning can be reliably 133 
estimated. But we found that both models performed comparably, explaining similar amounts of 134 
variance, with the constrained model slightly but significantly outperforming the full model 135 
(median R2: full 0.0204, constrained 0.0212; two-sided Wilcoxon signed-rank test p-value<10-136 
10). Moreover, cross-validated R2 was highly correlated between the two models (r=0.9835, 137 
p<10-30), likely reflecting gross differences in signal-to-noise ratio across voxels (Fig 2B). 138 
 139 
At first glance, these results suggest that there is no reliable orientation tuning to be modeled. 140 
However, since the full model has many more free parameters than the constrained model (57 141 
vs. 8 parameters), we expect that, for voxels with low SNR, the full model would likely result in 142 
overfitting. For voxels with high SNR, on the other hand, the full model may be able to capture 143 
orientation tuning and lead to higher cross-validated R2 values. Therefore, inspecting model 144 
performance only using summary statistics (e.g. median or mean) does not provide a complete 145 
picture, and it is necessary to analyze how model performance varies across voxels.  146 
 147 
 148 

 149 
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 150 
Fig 2. Both constrained and full models fit voxel responses. A. Distribution of R2 values for 151 
full (pink) and constrained (blue) models. Distributions for both models were similar, with the 152 
constrained model R2 median slightly but significantly higher (p=7.4x10-11, two-sided Wilcoxon 153 
rank sum test). B. R2 values for full model as a function of R2 values for constrained model. C. 154 
R2 values for constrained model as a function of pRF R2. D. R2 values for full model as a 155 
function of pRF R2. E. R2 values for full model minus R2 for constrained model as function of 156 
pRF R2. F. R2 values for full model minus R2 for constrained model as function of pRF 157 
eccentricity. G. pRF R2 values as function of pRF eccentricity. Solid lines in C-G indicate a 158 
running mean computed over 20 bins. 159 
 160 
 161 
Model performance depends on voxel SNR 162 
For each individual voxel, model filter outputs were sampled using a population receptive field 163 
(pRF) estimated for that voxel from an independent pRF-mapping experiment that was 164 
conducted as part of the NSD dataset. In both the constrained and full models, the estimated 165 
pRF determined the portion of stimulus from which the model output is sampled (see Methods: 166 
pRF sampling). Hence, any error in estimating the size or location of the pRF would propagate 167 
forward, adversely affecting the model fits. Specifically, if the pRF estimate is inaccurate, the 168 
model would attempt to explain BOLD activity based on the portion of the natural scene image 169 
dictated by the pRF estimate, while the voxel would in fact be driven by another portion of the 170 
image. Therefore, it is likely that model performance depends on the quality of the pRF 171 
estimate. 172 
 173 
Sorting voxels according to pRF R2, we found that this was indeed the case. R2 of both models 174 
were correlated with pRF R2 (Constrained: r=0.5859, p<10-30; Full: r=0.5728, p<10-30). Our 175 
interpretation is that pRF R2 is a good proxy for voxelwise SNR, and that voxels with high SNR 176 
will tend to have both high-quality pRF estimates and good model performance on the natural 177 
scene responses (Fig 2C,D). We furthermore found that the amount of additional variance that 178 
the full model explained beyond the constrained model was also correlated with voxel pRF R2 179 
(r=0.2418, p<10-30) (Fig 2E). This result implies that in cases of low SNR, including orientation 180 
tuning in an encoding model will likely result in overfitting, and that doing so is unlikely to reveal 181 
reliable orientation selectivity. However, for high SNR voxels in the NSD dataset used here, we 182 
are able to estimate reliable orientation selectivity that improves generalization on out-of-sample 183 
data. Additional analyses (Fig 2G) indicate that voxels with high SNR tend to lie away from the 184 
fovea, and it is for these more peripheral voxels that we can reliably estimate orientation 185 
selectivity. 186 
 187 
Coarse-scale map of orientation selectivity 188 
 189 
Explicitly modeling voxel responses enabled us to capture robust orientation selectivity that is 190 
not due to stimulus vignetting. What is the source of this orientation tuning? Although the voxel 191 
size in the NSD dataset (1.8 x 1.8 x 1.8 mm) is much larger than the size of orientation columns, 192 
fMRI studies using multivariate decoding methods have suggested that even with large fMRI 193 
voxels (3 x 3 x 3 mm), V1 voxel responses might exhibit robust orientation biases originating 194 
from random sampling of cortical columns 27, 28, 29. Therefore, we ask: is orientation preference 195 
scattered in a salt-and-pepper fashion, suggesting a random bias from orientation column 196 
sampling, or is orientation preference organized in a systematic map across the cortical 197 
surface? 198 
 199 
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To assess the potential organization of orientation selectivity, we plotted voxel orientation 200 
preference in visual space (Fig 3A). We observe a clear coarse-scale map of orientation: 201 
preferred orientation varies smoothly across visual angle. This observation implies that voxels 202 
with nearby pRF locations have similar orientation preference, unlike the expectation based on 203 
salt-and-pepper organization. Indeed, when we visualize cortical maps of estimated orientation 204 
preference, we see in V1 a clear progression of orientation that mimics the well-known 205 
organization of visual field angle (Fig 3B). 206 
  207 
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 208 

 209 
 210 
Fig 3. Orientation preference changes smoothly across visual space and V1. A, 211 
Orientation preferences plotted in visual space. Each line represents a single voxel and is 212 
positioned at the voxel’s pRF center. Hue and orientation of the line indicate preferred 213 
orientation. Line length, width, and scale reflect the amount of variance (R2) explained by the 214 
constrained model. Solid square at +/- 4.2 deg indicates the size of the natural-scene stimuli. 215 
See also individual subject plots in Supplemental Fig S1. B, Orientation and pRF polar angle 216 
maps overlaid on left and right inflated ‘fsaverage’ surfaces. For angle map and unthresholded 217 
orientation map, all vertices in V1, V2, V3, and V4 are plotted. For the thresholded orientation 218 
map, only vertices with the top 50% full model R2 are plotted. See also individual subject maps 219 
in Supplemental Fig S2. 220 
 221 
The gradual progression of orientation preference across the visual field and cortical surface 222 
provides evidence against a random-sampling bias of orientation columns. Instead, this 223 
observation reveals an organizational principle for visual cortex, namely, a coarse-scale spatial 224 
map for orientation preference.   225 
 226 
 227 
Radial map of orientation selectivity  228 
The orientation map appears to resemble a radial map (Fig 3A), but quantitative analysis is 229 
necessary to test this hypothesis. We quantified the similarity of the orientation map to a radial 230 
map by computing the angular deviation of each voxel’s orientation preference from the 231 
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preference predicted by a perfectly radial map (Fig 4, right). Deviation from radial as a function 232 
of pRF eccentricity resembled an inverted U (Fig 5A): deviation was maximal at the fovea and at 233 
high (>5 deg) eccentricities, and lowest at intermediate (2-4 deg) eccentricities. We also 234 
compared the measured orientation map to two alternative possibilities: a vertical map and a 235 
cardinal map (Fig 4; Fig 5A). Deviation from the ideal radial map was lower than for either the 236 
ideal vertical or the ideal cardinal maps (Fig 5B, C), indicating that orientation selectivity in V1 is 237 
approximately organized in a radial map. 238 
 239 

 240 
Fig 4. Schematic of three ideal orientation maps. Ideal maps of orientation preference 241 
plotted in visual space. Each line represents a single ideal voxel and is positioned at the voxel’s 242 
pRF center. Orientation of the line indicates preferred orientation. Left, vertical map. Center, 243 
cardinal map. Right, radial map. 244 
 245 
Deviation from radial was not uniform across pRF polar angle (Fig 5A, right), but was lowest at 246 
the horizontal and vertical meridians (Fig 5A, orange), similar to the deviation from cardinal (Fig 247 
5A, green). Confirming this observation, deviation from radial was linearly correlated with 248 
angular distance from the closest meridian (r=0.141, p<10-38). However, voxel-wise SNR is a 249 
potential limiting factor in this analysis, since voxel-wise SNR (as indexed by pRF R2) correlates 250 
slightly negatively with distance from the meridians (r=-0.055, p<10-6). Nevertheless, when 251 
controlling for the effect of pRF R2, the partial correlation between radial deviation and distance 252 
from meridian remained strong (r=0.133, p<10-34). We interpret this to mean that modulation of 253 
the radial bias by distance from the meridian is a feature of the coarse-scale orientation map, 254 
rather than a trivial result of anisotropies in pRF SNR across the visual field.  255 
 256 
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 257 
Fig 5. Coarse-scale bias is mostly radial in organization. A. Deviation of preferred 258 
orientation from ideal vertical (blue), cardinal (green), and radial (orange) maps, as function of 259 
pRF eccentricity (left) and pRF angle (right). B. Deviation from vertical minus deviation from 260 
radial, as function of pRF eccentricity (left) and pRF angle (right). Gray lines, individual subjects. 261 
Orange points, significantly lower deviation from radial than from vertical (p<0.05, one-way t-262 
test, 7 degrees of freedom, no correction for multiple comparisons). C. Deviation from cardinal 263 
minus deviation from radial as function of pRF eccentricity (left) and pRF angle (right). Gray 264 
lines, individual subjects. Orange points, significantly lower deviation from radial than from 265 
cardinal (p<0.05, one-way t-test, 7 degrees of freedom, no correction for multiple comparisons). 266 
D. Deviation from radial as function of angular distance from closest meridian. E. pRF R2 as 267 
function of angular distance from meridian. 268 
 269 
Ideal radial and vertical maps are identical at the vertical meridian, and differ maximally at the 270 
horizontal meridian (Fig 4). Therefore, comparing the empirical orientation map with radial and 271 
vertical maps around the vertical meridian will not be particularly informative. Around the 272 
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horizontal meridian, however, radial and vertical maps differ maximally. We therefore expected 273 
deviation from vertical to be roughly equal to deviation from radial around the vertical meridian. 274 
Around the horizontal meridian, on the other hand, we expected deviation from radial to differ 275 
maximally from deviation from vertical. Consistent with this expectation, deviation from radial 276 
was significantly lower than deviation from vertical around the horizontal meridian, but not at the 277 
vertical meridian (Fig 5B, right).  278 
 279 
We found that radial and cardinal maps are identical at the horizontal and vertical meridians, 280 
and differ maximally at oblique (diagonal) angles (Fig 4). Therefore, deviation from radial and 281 
cardinal should differ maximally around oblique angles and minimally around the meridians. 282 
Again, this was indeed the case: deviation from radial was significantly lower than from cardinal 283 
only at oblique angles of the visual field (Fig 5C, right).  284 
 285 
Deviation from radial was significantly lower than deviation from cardinal at intermediate 286 
eccentricities (Fig 5C, left). This may be related to lower pRF R2 around the fovea (Fig 2G). 287 
Therefore, we cannot determine whether the radial bias is weakest at low eccentricities, or 288 
whether the larger deviation is entirely due to less accurate pRF estimates, while the strength of 289 
the radial map is in fact constant across eccentricities. 290 
 291 
We conclude that the radial map is strongest around the meridians (i.e. at cardinal angles), and 292 
is weakest around oblique angles.  293 
 294 
 295 
Controlling for analysis pipeline 296 
We have assumed thus far that orientation selectivity in the full model reflects variance that 297 
cannot be explained by the constrained model. We wondered if this result could somehow be an 298 
artifact of our modeling procedures, given the complexity of the model fitting pipeline. For 299 
example, it is conceivable that orientation selectivity in the full model (i.e. the weights the model 300 
assigns to different orientation filters) in fact reflects variance that can be explained by the 301 
constrained model as well, but with other combinations of regressors. One example of this type 302 
of confound is stimulus vignetting 17, where apparent orientation selectivity in fact reflects spatial 303 
frequency tuning and not orientation tuning. Perhaps stimulus vignetting or other sources of 304 
response variance that do not genuinely reflect orientation tuning effectively masquerade as the 305 
orientation selectivity observed in the full model.  306 
 307 
To test this possibility directly, we first regressed out all variance that was explained by the 308 
constrained model from the experimental data. We then fit the full model to these residual data. 309 
If orientation selectivity of the full model reflects variance that can be explained by a 310 
combination of parameters in the constrained model, we would expect that regressing out that 311 
variance would leave the full model with no orientation-selective variance left to fit. If, on the 312 
other hand, orientation selectivity in the full model reflects only variance that cannot be 313 
explained by the constrained model (i.e. true orientation tuning) then regressing out variance 314 
explained by the constrained model should have no effect on the full model orientation 315 
selectivity.  316 
 317 
Consistent with the second scenario, the map derived from analyzing the residuals (Fig 6A-B, 318 
left) was nearly identical to the original map (Fig 3). Complementarily, fitting the full model to the 319 
variance explained by the constrained model (i.e., the output predicted by the constrained 320 
model) resulted in a random map of orientation preference (Fig 6A-B, right). This indicates that 321 
the orientation selectivity in the full model cannot be explained by the constrained model.  322 
 323 
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 324 
Fig 6. Control analyses demonstrate that the full model indeed captures orientation 325 
selectivity that cannot be derived from the constrained model. A, Schematic Venn diagram 326 
illustrating the control analyses. First, the constrained model was fit. The full model was then fit 327 
either to the residual (left) or the output (right) of the constrained model. B, Orientation map in 328 
visual space derived from the two analyses. Same format as Fig 3A. The orientation map on the 329 
left is nearly identical to the map estimates from the original data (see Fig 3A), indicating that 330 
the full model capitalizes on variance not modeled by the constrained model. In contrast, the 331 
orientation map on the right has no discernable organization, demonstrating that the constrained 332 
model cannot explain variance reflecting orientation selectivity.  333 
  334 
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Discussion: 335 
 336 
Summary 337 
By analyzing a unique, extensive visual fMRI dataset using a model-based framework, we 338 
obtained robust estimates of orientation selectivity in human visual cortex. Unlike previous fMRI 339 
studies in which measurements of orientation selectivity were potentially confounded by 340 
interactions between the oriented stimuli and the stimulus aperture, the orientation selectivity 341 
that we report here cannot be attributed to stimulus vignetting. We uncovered a radial bias of 342 
orientation selectivity that is coarse-scale and widespread throughout the extent of V1. The 343 
radial bias that we describe here is distinct from the spatial pattern expected by the sampling of 344 
cortical columns. This coarse-scale orientation bias may be a fundamental organizational 345 
principle of human V1, providing a physiological basis for well-documented behavioral biases in 346 
orientation judgements.  347 
 348 
Multiple scales of stimulus representation in human visual cortex 349 
The human brain likely contains multiple representations of stimulus orientation at different 350 
spatial scales, co-existing within the same cortical visual area but arising from distinct neural 351 
computations. The first, and most familiar, is the fine-scale, columnar organization. The 352 
orientations of visual features are represented in an orderly pinwheel-like progression within 353 
each hypercolumn across the cortical surface 30, 31, 32. While orientation columns have not been 354 
measured directly in humans using electrophysiological methods, based on postmortem 355 
measurements of ocular dominance columns in humans 33, 34, orientation columns are likely to 356 
be less than a millimeter wide along the cortical surface. In addition to this fine-scale columnar 357 
structure, a number of fMRI studies have also reported a second, coarse-scale map-like 358 
organization for orientation selectivity that is at the scale of the retinotopic organization of V1 13, 359 
14, spanning tens of centimeters, orders of magnitude larger than cortical columns. For the 360 
purposes of this discussion, we define a pattern of cortical activity to be ‘fine-scale’ if it has 361 
features that are smaller than the point-spread function of a conventional fMRI voxel 362 
(~2´2´2mm).  According to this definition, the radial bias that we report here is clearly coarse-363 
scale. 364 
 365 
The presence of both fine- and coarse-scale patterns of orientation selectivity raises two 366 
fundamental questions. The first regards the scale of information leveraged by multi-voxel 367 
pattern analysis (MVPA) methods to decode orientation. In a landmark study, Kamitani and 368 
Tong 27 demonstrated that it is possible to use a linear classifier to decode the orientation of a 369 
grating presented to the subject on an individual trial. Cortical columns are irregularly organized 370 
with respect to the rectilinear voxel grid, which, it was posited, could lead to small biases in 371 
voxel responses that are decodable with MVPA. The conjecture that MVPA methods are 372 
sensitive to fine-scale signals had a profound impact on fMRI research, well beyond visual 373 
neuroscience, because it implied the feasibility of studying neural representations in the human 374 
brain that are instantiated at a spatial scale smaller than an fMRI voxel 28. However, it has been 375 
surprisingly difficult to fully support or fully refute this claim, especially in light of an alternative 376 
account suggesting that MVPA is primarily sensitive to the coarse-scale orientation bias 13. This 377 
uncertainty has engendered ongoing and unresolved debate 35, 36, 37, 38, 39, 40, 41, 42, 43, 44. The 378 
current study does not directly bear on this debate. Here, we quantified orientation information 379 
in fMRI BOLD responses using a neurally-inspired image-computable model. While our results 380 
reaffirm the existence of a prominent coarse-scale organization for orientation (i.e., a radial 381 
bias), we did not use MVPA, nor did we explicitly model the scale of orientation information with 382 
a spatial model of the cortical surface. One fruitful approach may be to build spatial models of 383 
V1 3, 45, 46, which could provide a computational platform for testing hypotheses regarding spatial 384 
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scale of information and explicitly test the sensitivity of MVPA methods to different spatial scales 385 
of orientation information. 386 
 387 
The second question concerns the neural response properties that give rise to the coarse-scale 388 
orientation bias. While the cortical architecture giving rise to fine-scale orientation columns is 389 
relatively well understood 47, 48, 49, much less is known about the origin of the coarse-scale bias. 390 
It was initially presumed that the coarse-scale bias stems from a pattern of cortical organization 391 
in which neurons with similar patterns of orientation selectivity form gradients over large swaths 392 
of cortex 13. This idea was challenged by the insightful work of Carlson 18, who demonstrated 393 
through simulation that the radial bias could arise from properties of the stimulus aperture or 394 
‘vignette’, rather than from the pattern of orientation selectivity in the brain. This proposal 395 
suggested that stimuli with the same underlying orientation could be shown through different 396 
vignettes and this could reverse the observed orientation selectivity. These predictions have 397 
been confirmed empirically 17, suggesting that orientation selectivity measured with fMRI is 398 
indeed influenced to some degree by stimulus vignetting. 399 
 400 
Is stimulus vignetting the primary driver of the coarse-scale orientation biases reported in 401 
previous fMRI studies? The magnitude of stimulus vignetting reported in Roth, Heeger 17 was 402 
roughly commensurate with the magnitude of the radial bias reported in previous studies of 403 
orientation selectivity 13, suggesting that the radial bias could, in theory, be due to stimulus 404 
vignetting. fMRI studies have reported a radial bias using a wide range of stimulus parameters, 405 
i.e. different spatial frequencies and aperture sizes. Further theoretical simulations 406 
(Supplementary Fig 4) suggest that each of these configurations could produce stimulus 407 
vignetting, depending on the location of the edge in the retinotopic map, the spatial frequency 408 
channels that contribute most to the voxel’s response, and the form of response normalization 409 
assumed. On the other hand, there have been reports of orientation decoding away from the 410 
stimulus edge, suggesting orientation information in fMRI measurements that are not due to 411 
vignetting (Kamitani and Tong 27 Supplementary Figure 3; Wardle, Ritchie 41). These 412 
considerations have, up to now, left the field at an impasse, with no clear way to characterize 413 
true coarse-scale orientation selectivity in the face of a potential stimulus confound. Here, we 414 
turned to natural scene stimuli and an image-computable modelling approach to overcome 415 
these challenges. By explicitly modelling the spatial frequency and orientation content of each 416 
image, we account for the presence of a stimulus aperture, enabling the accurate 417 
characterization of orientation selectivity in human visual cortex. 418 
 419 
The characterization of a coarse-scale orientation bias does not preclude a contribution from 420 
cortical columns. It is likely the case that orientation-selective signals measured with fMRI are 421 
multi-scale 38, 42, reflecting a contribution of both fine- and coarse-scale orientation signals, with 422 
the relative contribution dependent on critical experimental parameters, such as fMRI voxel size, 423 
acquisition method (gradient echo, spin echo, or VASO 50), proximity of a voxel to veins 51, 52, as 424 
well the stimulus protocol itself 53. These considerations imply that various reports of orientation 425 
selectivity over the years may have differentially emphasized fine- and/or coarse-scale 426 
components of the signal depending on which combination of these parameters were used. 427 
Further work, perhaps using an extension of the image-computable model that we have 428 
developed here, may be able to tease apart the relative contribution of each of these 429 
orientation-selective signals. 430 
 431 
Multiple coarse-scale biases 432 
Here we report a radial bias of orientation preference in visual cortex, extending a number of 433 
prior BOLD fMRI studies 13, 14, 15, 16, 54. But while the radial bias in previous fMRI studies may 434 
have been entirely a result of stimulus vignetting, the radial bias we report here is not 435 
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explainable by the constrained model (Fig 6), and therefore reflects a coarse-scale orientation 436 
map distinct from stimulus vignetting. In addition to a radial bias that was most pronounced in 437 
the periphery, a previous study identified a vertical bias at mid-eccentricities, closer to the fovea 438 
16. We tested for such a vertical bias, but found no evidence to support this possibility. At 439 
intermediate eccentricities, orientation preference was significantly closer to radial than to 440 
vertical, although close to fixation, the radial preference was not significant (Fig 5B). This may 441 
be a result of lower SNR around fixation, as reflected in the lower pRF R2 values (Fig 2G). 442 
Therefore, we cannot definitively rule out a vertical bias at fixation, as reported by Freeman, 443 
Heeger 16. 444 
  445 
A cardinal bias has been identified previously in human visual cortex 55, in other primates 56, 57, 446 
58, and in carnivores such as ferrets 59, 60, 61 and cats 62, 63, 64, 65. The cardinal bias is typically 447 
described as a stronger response to vertical and horizontal orientations compared to oblique 448 
orientations. To enable a comparison to the radial map, we defined a cardinal map as a stronger 449 
response to the meridian closest to the pRF center, which is radial only for pRFs along the 450 
meridian (Fig 4, center). This definition describes an orientation map, relating orientation 451 
preference to retinotopic preference. The cardinal map as we defined it entails a cardinal bias, 452 
since when averaging across all of V1 55, cardinal orientations evoke the strongest responses. 453 
 454 
Although the orientation map was closer to a radial map than to the cardinal map, we did find 455 
that the radial bias was strongest around the vertical and horizontal meridians. This pattern can 456 
be described as cardinal modulation of a radial map, and is consistent with previous fMRI 457 
findings 15.  458 
 459 
What physiological factors underly the cardinal modulation of the radial map? It is possible that 460 
the radial bias is stronger around the meridians because of stronger SNR in those regions, or 461 
because of small artifacts away from the meridians caused by cortical unfolding and veins 66, 67, 462 
68. However, we believe such artifacts and SNR differences should manifest similarly in the pRF 463 
data, yet we found that the lower pRF R2 (Fig 5E) could not fully explain the weaker radial bias 464 
away from the meridians. Similarly, a fine-scale columnar bias could potentially cause voxel 465 
preference to deviate from the radial orientation, but we would expect such an effect to take 466 
place uniformly across all polar angles. Instead, we believe it more likely that the cardinal 467 
modulation reflects the true nature of the radial bias: it is possible there are two co-existing 468 
biases, a cardinal and a radial, or that neurons around the meridians show a stronger 469 
preference for the radial orientation. 470 
 471 
Source of coarse-scale orientation bias 472 
How does the coarse-scale orientation map form? The mechanism is likely related to the source 473 
of orientation selectivity itself, which is still debated. When orientation-selective neurons were 474 
first discovered in cat visual cortex, their tuning properties were proposed to arise from 475 
convergence of center-surround neurons in lateral geniculate nucleus (LGN) that were 476 
themselves not orientation selective 69. Local interactions between V1 neurons have also been 477 
shown to amplify orientation selectivity 70, suggesting that orientation selectivity arises from both 478 
the convergence of feedforward input and local circuit interactions. But it has also been 479 
suggested that orientation selectivity is computed earlier in the visual pathway, and that it is to 480 
some degree inherited by V1 neurons. Multiple lines of evidence point towards orientation 481 
selectivity being present already in some LGN neurons 71, 72, 73, 74, 75, 76 and even in retinal 482 
ganglion cells 77, 78, 79, 80, 81, raising the possibility that orientation selectivity in V1 reflects 483 
computations at earlier processing stages. Consistent with this possibility, retinal size relative to 484 
V1 size predicts across species whether orientation preference will be arranged in cortical 485 
columns or scattered in a salt-and-pepper fashion 82. The coarse-scale orientation map may be 486 
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the result of the same mechanisms that form orientation selectivity, or it may involve other 487 
unique factors. Determining the source of the coarse-scale orientation bias, and whether it 488 
differs from sources of fine-scale selectivity, will require additional research involving 489 
measurements at a range of spatial scales. 490 
 491 
A number of distinct neurophysiological mechanisms could, in theory, give rise to the coarse-492 
scale bias uncovered here. For example, the radial bias could reflect a higher number of 493 
neurons preferring the radial orientation. Alternatively, the radial bias could reflect a higher firing 494 
rate for neurons preferring the radial orientation. A third possibility is that neurons preferring the 495 
radial orientation could have a narrower tuning bandwidth. All three of these scenarios presume 496 
a higher mean population firing rate in response to radial stimulus orientations, which would 497 
presumably translate to larger BOLD fMRI responses 83, 84, 85, 86. Since BOLD fMRI measures a 498 
hemodynamic signal and is an indirect measure of neural activity, it is also possible that the 499 
orientation tuning we measured here reflects synaptic inputs from either feedforward or 500 
feedback projections, or local field potentials 87, 88. Future electrophysiology studies in humans 501 
and non-human primates may shed more light on the relationship between the coarse-scale 502 
orientation bias and the underlying neurophysiology. 503 
 504 
An alternate possibility is that coarse-scale orientation biases are an emergent property of visual 505 
cortex. When the visual system is modeled with large, unconstrained models, certain 506 
anisotropies and biases emerge, including a cardinal bias 89 and a radial bias 90, 91. These 507 
biases are due to statistics of the images used to train the models. Image statistics may underlie 508 
orientation biases in human visual cortex as well 92, 93, although it is unclear whether biases 509 
evident in neural networks account for similar biases we have observed in human visual cortex. 510 
 511 
Natural scenes vs. oriented gratings 512 
Most prior fMRI studies of orientation selectivity have relied on oriented gratings. This approach 513 
stems from a long and successful history in visual neurophysiology dating back to Enroth-Cugell 514 
and Robson 94. Such ‘synthetic’ grating stimuli are optimal for driving individual V1 neurons 515 
because they can be presented at full-contrast, and because the parameters of the stimuli (size, 516 
position, and spatial frequency) can be carefully tailored to the individual neuron being recorded. 517 
However, such gratings may be less appropriate when studying large neural populations, as 518 
with fMRI, since a single voxel reflects the pooled activity of many neurons with a wide range of 519 
selectivities, and therefore no single grating will be optimal for every neuron contributing to the 520 
voxel’s response 19. Natural scene stimuli are inherently broadband along multiple dimensions, 521 
and hence may be more appropriate for studying population responses. However, natural scene 522 
stimuli do have, on average, lower contrast than gratings, and will not drive individual V1 523 
neurons at their maximal firing rates. Thus, natural scenes might not be the most efficient set of 524 
stimuli for estimating the voxel-wise encoding models used in the current study. Nonetheless, 525 
this loss of efficiency is counteracted by the massive number of trials in the dataset.   526 
 527 
Image-computable models and V1 528 
A previous study 95 decoded natural images from BOLD responses in visual cortex by fitting 529 
encoding models to individual voxels. One finding was that including orientation tuning did not 530 
improve decoding beyond the accuracy obtained with only spatial frequency tuning 95; Supplemental 531 
Figure 8. This result seems to be at odd with our findings here. However, direct comparison 532 
between these studies is somewhat complicated. First, in a decoding approach, performance is 533 
sensitive to responses across multiple voxels and how they jointly encode stimuli. Such an 534 
approach yields results that are more difficult to interpret compared to a more straightforward 535 
approach in which properties of individual voxels are examined. Second, although modeling 536 
orientation tuning in addition to spatial frequency tuning did not lead to improved decoding 537 
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accuracy, when spatial frequency was absent or assumed to be identical across the entire 538 
region-of-interest, including orientation tuning did improve decoding. Thus, the results of the 539 
present study are not necessarily inconsistent with the previous study. Finally, it is important to 540 
note that estimation of model parameters for the Gabor wavelet encoding model used in the 541 
previous study was performed using gradient descent with early stopping. This type of 542 
regularization (early stopping) reduces variance at the expense of introducing bias, and the 543 
exact nature of this bias is dependent, in a complex way, on the statistics of the model inputs 544 
(e.g., orientation statistics in natural images). A major advantage of the approach used in the 545 
present study is the use of unregularized ordinary least-squares for parameter estimation, which 546 
was made possible by the combination of the sheer size of the NSD dataset and the pRF 547 
constraints incorporated into our models. This approach avoids complications associated with 548 
regularization and facilitates accurate interpretation of voxel selectivity. 549 
 550 
The image-computable model that we used here was based on the steerable pyramid 26, a sub-551 
band image transform that decomposes an image into orientation and spatial frequency 552 
channels (see Methods: Steerable Pyramid). In our previous study of stimulus vignetting 17, we 553 
made two simplifying assumptions. First, because most of the power in the stimulus was at a 554 
single spatial frequency, we only analyzed the response of the model at a single spatial 555 
frequency channel centered at the spatial frequency of the stimulus (Fig S4). This approach 556 
provided good qualitative fits to the fMRI data, and we further confirmed that an alternative 557 
approach of averaging across all the channels did not change the model predictions (Fig S4). In 558 
the present study, such an approach is not feasible since the naturalistic images are broadband 559 
in spatial frequency. Instead, our modeling approach enabled fitting weights to all model 560 
channels, essentially estimating a spatial frequency tuning curve for each voxel. An alternative 561 
approach would be to weigh the different channels according to independent measures of 562 
spatial frequency tuning for each voxel 6, 96 . The Natural Scenes Dataset could then be used to 563 
fit only the weights on orientation channels, which may result in more accurate estimates of 564 
orientation preference because of the smaller number of free parameters.   565 
 566 
The second simplifying assumption involves scaling of the channel outputs. For each orientation 567 
and spatial frequency, the pyramid includes a quadrature pair: two RFs with different phases. 568 
The sum of the squares of the responses of the two RFs is typically taken, yielding an ‘energy’ 569 
response, which uniformly tiles all orientations and spatial frequencies 97, 98. This energy 570 
response is often nonlinearly scaled in order to better match the contrast-response function of 571 
V1 neurons. However, determining the model architecture and normalization pool appropriate 572 
for an fMRI voxel is not trivial and very much an area of active investigation 99, 100, 101, 102. We 573 
acknowledge that the form of scaling could have an impact on the size and spatial extent of 574 
vignetting. Determining the most appropriate scaling is an important issue that remains 575 
unresolved. In the context of the current study, we think it unlikely that the main results are 576 
sensitive to the particular regime of scaling employed. 577 
 578 
 579 
Behavioral correlates of the coarse-scale bias 580 
Understanding the stimulus selectivity of neurons and their organization is fundamental for 581 
understanding how neural computations lead to visual perception. In particular, coarse-scale 582 
organizations are likely critical elements of neural accounts of behavior, since large populations 583 
of neurons are likely to contribute to the final behavioral readout. 584 
 585 
A behavioral radial bias has been reported by several psychophysics studies: sensitivity is 586 
higher to radial orientations than to other orientations 14, 103, 104, 105. Another well-known bias is 587 
the oblique effect: across the visual field sensitivity is higher to cardinal orientations (vertical or 588 
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horizontal) than to oblique orientations (diagonal) 104, 105, 106, 107, 108. The physiological orientation 589 
selectivity measured here may underlie both behavioral effects. The radial map may be the 590 
source of the behavioral radial bias, while the cardinal modulation may underlie the behavioral 591 
oblique effect. It has been suggested that fMRI response amplitudes reflect the neural SNR, 592 
which in turn determines the perceptual performance 109. In that case, a stronger fMRI response 593 
to the radial orientation should correspond to higher perceptual performance for stimuli with 594 
radial orientations. 595 
 596 
A major endeavor in neuroscience is to link brain properties with behavioral readout, and visual 597 
neuroscience has made significant progress toward this goal. Recently it has been shown that 598 
V1 size and cortical magnification in individual subjects is correlated with contrast sensitivity 110, 599 
111. Similarly, the extent of cortical magnification in V1 corresponds to orientation discrimination 600 
performance in individual participants 112. If the coarse-scale map revealed here constitutes the 601 
neural basis for behavioral anisotropies, we hypothesize that individual differences in the 602 
orientation map that we report here are related to individual differences in perception. 603 
Successfully demonstrating such a correspondence would provide a crucial link between brain 604 
and behavior. 605 
 606 
 607 
  608 
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Methods: 609 
 610 
Natural Scenes Dataset: 611 
The fMRI data analyzed here is from the Natural Scenes Dataset (NSD; 612 
http://naturalscenesdataset.org) 20. The NSD dataset contains measurements of fMRI 613 
responses from 8 participants who each viewed 9,000–10,000 distinct color natural scenes 614 
(22,000–30,000 trials) over the course of 30–40 scan sessions. Scanning was conducted at 7T 615 
using whole-brain gradient-echo EPI at 1.8-mm resolution and 1.6-s repetition time. Images 616 
were taken from the Microsoft Common Objects in Context (COCO) database 113, square 617 
cropped, and presented at a size of 8.4° x 8.4°. A special set of 1,000 images were shared 618 
across subjects; the remaining images were mutually exclusive across subjects. Images were 619 
presented for 3 s with 1-s gaps in between images. Subjects fixated centrally and performed a 620 
long-term continuous recognition task on the images. The fMRI data were pre-processed by 621 
performing one temporal interpolation (to correct for slice time differences) and one spatial 622 
interpolation (to correct for head motion). A general linear model was then used to estimate 623 
single-trial beta weights. Cortical surface reconstructions were generated using FreeSurfer, and 624 
both volume- and surface-based versions of the beta weights were created. 625 
In this study, we used the 1.8-mm volume preparation of the NSD data and version 3 of the 626 
NSD single-trial betas in percent signal change units (betas_fithrf_GLMdenoise_RR). The 627 
results in this study are based on data from all NSD scan sessions, from all 8 subjects who 628 
participated in the NSD study.  629 
 630 
Stimuli: 631 
NSD images were originally 425 ´ 425 pixels, and were then upsampled for display purposes to 632 
714 ´ 714 pixels. We reproduced this upsampling in our stimulus preparation, and padded the 633 
images with a gray border on all four sides (mimicking the scanner display environment), 634 
resulting in a final image dimension of 1024 ´ 1024 pixels (12.05° x 12.05°). A semitransparent 635 
red fixation point was added at the center to simulate the actual stimulation experienced by the 636 
subjects during the experiment. Images were converted to grayscale by averaging across the 3 637 
color channels. To speed up subsequent computations, the images were then downsampled to 638 
512 ´ 512 pixels. To enable cross-validation, the set of 10,000 images assigned to each subject 639 
was randomly divided into 2 partitions of 5,000 images each. For subjects who completed fewer 640 
than 40 sessions, only the viewed images were used, which resulted in a slightly different 641 
number of images included in each partition.  642 
 643 
Steerable Pyramid: 644 
We built two models based on the steerable pyramid 26: a full model and a constrained model. 645 
The full model simulates each neuron in V1 with a receptive field that is tuned for both spatial 646 
frequency and orientation, and then allows for variable weighting of these model neurons. The 647 
constrained model also simulates populations of V1 neurons, but enforces equal weighting of 648 
model neurons across orientation by summing across orientation subbands of the pyramid. It is 649 
possible to create steerable pyramid models with a wide range of parameters, each instantiating 650 
different hypotheses regarding the tuning properties of individual neurons.  651 
 652 
We used a steerable pyramid with 8 orientations, 7 spatial frequency levels, and a spatial 653 
frequency bandwidth of 1 octave, resulting in tuning profiles that resemble those of individual V1 654 
neurons 114. The pyramid, and the full model, had a total of 56 filters. After summing across the 655 
8 orientation filters, the constrained model consisted of 7 filters. The number of spatial 656 
frequency levels was determined by the size of the image (512 ´ 512) and the spatial frequency 657 
tuning bandwidth (1 octave). This results in 7 filters, with preferred spatial frequencies of 128, 658 
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64, 32, 16, 8, 4, and 2 cycles per image. These values were then converted to cycles per 659 
degree given the size of the image in degrees (12.05°):  21.85, 10.93, 5.46, 2.73, 1.37, 0.68, 660 
and 0.34 cycles/degree (cpd) (Fig S3). In our previous work with the steerable pyramid we used 661 
only the level corresponding to the stimulus spatial frequency. In this study all levels were fit to 662 
the data. We chose to have 8 orientations, 2 more than in our previous study, in order to 663 
increase the accuracy of the estimated orientation preference, while maintaining tuning width 664 
that was comparable to those measured in primate electrophysiological recordings 114. For each 665 
orientation and spatial frequency, the pyramid includes a quadrature pair: two RFs with different 666 
phases. We take the sum of the squares of the responses of the two RFs, yielding an ‘energy’ 667 
response, which uniformly tiles all orientations and spatial frequencies 97, 98.  668 
 669 
pRF modeling: 670 
pRF estimates are included in the NSD, where full details are found 20. Briefly,  671 
pRFs were estimated based on a single session (6 runs, 300 s each) of a pRF mapping 672 
experiment. Stimuli consisted of slowly moving apertures (bars, wedges, and rings) filled with a 673 
dynamic colorful texture, that appeared within a circular region of 8.4 deg diameter. Subjects 674 
performed a color change detection task at fixation. pRFs were estimated using the 675 
Compressive Spatial Summation (CSS) model 101.  676 
 677 
Regions of interest: 678 
Regions of interest V1, V2, V3, hV4 were defined in the NSD dataset based on the pRF maps. 679 
In this study we analyzed all 4 regions but focused on V1 where orientation selectivity has been 680 
studied most extensively. Results are presented for V1 only, except for the surface maps (Fig 3, 681 
Supplemental Fig 2) which show all regions. 682 
 683 
pRF sampling: 684 
The output of each filter in the steerable pyramid was sampled by each voxel’s pRF by 685 
multiplying the 2D pRF with the filter output. The pRF was modeled as a 2D isotropic (circular) 686 
Gaussian, using the ‘size’ parameter as the Gaussian’s standard deviation. (Note that the ‘size’ 687 
parameter, as estimated as part of NSD, reflects the response of the modeled pRF to point 688 
stimuli and takes into account the exponent used in the CSS model.) For filter k of image j (F!,#), 689 
the sampled output for voxel 𝑖 with a pRF centered at (𝑥$ , 𝑦$) and standard deviation of 𝜎$, is 690 
computed as dot product between the pRF and the filter:  691 
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The full model had 56 sampled outputs per image, for each voxel. For the constrained model, 693 
sampled outputs were summed across orientations. Thus, the constrained model had 7 694 
sampled outputs per image, for each voxel. 695 
 696 
Multiple regression: 697 
We modeled the responses of voxel 𝑖, y*, as a linear combination of the sampled filter outputs 698 
plus noise: 699 

(2) y* = f* ∙ β* + ε* 700 
 701 
Here 𝑓$ is a matrix consisting of voxel 𝑖’s sampled outputs for all filters of all images and a 702 
constant term (images x filters+1). 𝛽$ is a vector of beta weights (filters+1 x 1), and ε* is a set of 703 
residuals (images x 1).  704 
 705 
Beta weights were estimated using ordinary least-squares: 706 

(3) β6 * =	 (f*+f*)),f*+y* 707 
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 708 
Note that each voxel not only had different beta weights but also different predictors due to the 709 
incorporation of each voxel’s unique pRF, thus distinguishing this regression from a general 710 
linear model analysis of the voxel responses.  711 
 712 
To assess model accuracy, we performed cross-validation. After estimating model parameters 713 
on one half of the data, the regression prediction was calculated as: 714 

(4) y8*-./0 = f* ∙ β9 * 715 
 716 
where f*  is constructed for the other half of the data, and β9 * are the betas weights estimated 717 
using the other partition. The residual of this prediction is given by 718 

(5) y8*./1*0 = y* − y8*-./0 = y* − f* ∙ β9 * 719 
 720 
Cross-validated 𝑅2 is then computed as   721 

(6) 𝑅$2 = 1 − 33(56#
-./#0)

33(5#)518 )
 722 

where y9=  is the mean response across images, and SS denotes the sum of squares. 723 
 724 
Regression was performed separately for the full model and for the constrained model on each 725 
of the 2 partitions. Regression coefficients and R2 values were then averaged across partitions. 726 
 727 
 728 
Inferring preferred orientation and spatial frequency: 729 
After estimating the optimal weights for each voxel, we simulated an electrophysiology 730 
experiment for quantifying neural tuning, by probing the model with gratings at different 731 
orientations and spatial frequencies and measuring its predicted response. Full contrast gratings 732 
were 512´512 pixels at 30 spatial frequencies ranging from a single (horizontal) cycle in the 733 
image (0.083) to the Nyquist frequency (21.25 cpd), spaced exponentially. For each spatial 734 
frequency, gratings were oriented at 30 different angles, spaced uniformly between 0 and pi. All 735 
gratings were then passed through the steerable pyramid, and each filter’s outputs were 736 
summed. Voxel responses to the gratings were simulated by multiplying the model outputs for 737 
each grating with the voxel’s filter weights. Preferred spatial frequency of a voxel was estimated 738 
by first averaging simulated responses across orientations and then computing the mean 739 
frequency, weighted by response amplitudes. Similarly, preferred orientation of a voxel (for the 740 
full model) was estimated by averaging across frequencies and then computing the circular 741 
mean, weighted by response amplitudes. For all weighted means, the minimal weight was first 742 
subtracted from all weights to eliminate any negative weights. 743 
 744 
Cortical surface maps 745 
In order to create a group map on the cortical surface, each subject’s data in volume space was 746 
transformed to surface space using nearest-neighbor interpolation, using the mrTools toolbox in 747 
Matlab 115: each vertex was assigned the value of a single voxel, and multiple vertices could 748 
inherit values from the same voxel. Next, all subjects’ surface data were transformed to a single 749 
cortical space, FreeSurfer’s ‘fsaverage’ space. For the group map, we computed the circular 750 
mean across subjects for each vertex in V1-V4, weighted by the full model R2 values. The 751 
resulting map of mean orientation preference was displayed on the ‘fsaverage’ inflated cortical 752 
surface (Fig 3B). 753 
 754 
Quantifying coarse-scale biases 755 
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We quantified the strength of the coarse-scale orientation map by comparing it to an ideal, 756 
perfectly radial map, as well as ideal vertical and cardinal maps (see Fig 4). For each voxel, we 757 
computed the circular distance from the preferred orientation to the predicted preferred 758 
orientation. For the radial map the predicted preferred orientation was the radial orientation, 759 
according to the voxel’s pRF angle (Fig 4, right). For the cardinal map the predicted orientation 760 
was vertical for pRF angles closer to the vertical meridian than to the horizontal meridian, and 761 
horizontal for pRF angles closer to the horizontal meridian than to the vertical meridian (Fig 4, 762 
center). For the vertical map the predicted orientation was vertical for all voxels (Fig 4, left). To 763 
average across voxels, we divided voxels into 20 bins according to voxel pRF eccentricity, pRF 764 
angle, and pRF R2. For eccentricity binning, bin width increased exponentially with eccentricity. 765 
Voxels with pRF R2 values below zero were excluded from binning. To compare between the 766 
strength of the radial bias and other alternative biases, we averaged across voxels within each 767 
bin separately for each subject, and subject means were then submitted to a paired-sample t-768 
test, with 7 degrees of freedom.   769 
 770 
Control analysis: analyzing regression residuals  771 
For this analysis, after performing multiple regression with the constrained model as predictors, 772 
we took the residuals from the same partition used to estimate the beta weights. We then 773 
performed regression on the residuals, this time using the full model. 774 
 775 
Control analysis: analyzing regression prediction  776 
For this analysis after performing multiple regression with the constrained model as predictors, 777 
we multiplied the regression coefficients of the same partition with the predictors to get the 778 
regression prediction. We then performed regression on the prediction, using the full model as 779 
predictors. 780 
 781 
 782 
 783 
Data availability:  784 
The NSD dataset is freely available at http://naturalscenesdataset.org. Images used for NSD 785 
were taken from the Common Objects in Context database (https://cocodataset.org). Source 786 
data are provided with this paper. 787 
 788 
Code availability: 789 
Code for analyzing the data and generating the figures is available 790 
at: https://github.com/elimerriam/nsdOtopy 116. 791 
  792 
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Supplemental Fig S1. Orientation maps are consistent across participants. Same color 
legend and scaling as Fig 3A. Orientation preferences plotted in visual space. Each line 
represents a single voxel and is positioned at the voxel’s pRF center. Hue and orientation of the 
line indicate preferred orientation. Line length, width, and scale reflect the amount of variance 
(R2) explained by the constrained model. Solid square at +/- 4.2 deg indicates the size of the 
natural-scene stimuli. 
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Supplemental Fig S2. Orientation surface maps are consistent across individuals. Same 
color legend as Fig 3B. Individual subject orientation maps (top, thresholded; middle, 
unthresholded) and pRF polar angle maps (bottom) overlaid on left and right inflated ‘fsaverage’ 
surfaces. For angle map and unthresholded orientation map, all vertices in V1, V2, V3, and V4 
are plotted. For thresholded orientation map only vertices with the top 50% full model R2 are 
plotted. 
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Supplemental Fig S3. Full model and constrained model filters in Fourier space. The full 
model allows unequal contributions from orientation-selective filters, and is therefore sensitive to 
orientation-selectivity beyond the effects of stimulus vignetting. The constrained model pools 
equally across orientation-selective filters, and therefore has no orientation selectivity, but due to 
spatial frequency tuning it accounts for effects of stimulus vignetting.  
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Supplemental Fig S4. Response of constrained model filters to circular apertured gratings 
at various spatial frequencies. Responses to vertical orientation minus responses to horizontal 
orientation are shown for all 7 filters, for 5 different grating spatial frequencies. Stimulus is 512 
´ 512 pixels, here simulated to span 10 ´ 10 degrees of visual angle. For each spatial frequency, 
responses are averaged across 8 different phases. Unscaled responses (middle row for each 
spatial frequency) shows responses scaled from the minimum (black) to maximum (white) for 
each individual filter. This enables one to see how the spatial patterns change across the different 
filters, but doesn’t convey a sense of the relative magnitude. In the bottom row of each spatial 
frequency the gray scale for all panels ranges from the minimum to maximum across all filters 
(‘scaled’). The filter response corresponding to the stimulus frequency has the largest response, 
ranging from black to white, but other filters have smaller responses, which are therefore washed 
out and almost invisible. The model filter that corresponds to the grating spatial frequency 
(marked with a red box) exhibits a radial bias, while the adjacent filters show an opposite effect. 
However, when scaling all filters to the same maximal value it becomes apparent that the effects 
in adjacent filters are much weaker than that of the filter with the maximal response. Therefore, 
as long as the spatial frequency of the stimulus is matched to the preferred spatial frequency 
tuning of a local population of neurons in a voxel, and assuming a circular aperture, vignetting 
should result in a radial bias. 
 
 
 


