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Abstract:

Orientation selectivity in primate visual cortex is organized into cortical columns. Since cortical
columns are at a finer spatial scale than the sampling resolution of standard BOLD fMRI
measurements, analysis approaches have been proposed to peer past these spatial resolution
limitations. It was recently found that these methods are predominantly sensitive to stimulus
vignetting - a form of selectivity arising from an interaction of the oriented stimulus with the
aperture edge. Beyond vignetting, it is not clear whether orientation-selective neural responses
are detectable in BOLD measurements. Here, we leverage a dataset of visual cortical
responses measured using high-field 7T fMRI. Fitting these responses using image-computable
models, we compensate for vignetting and nonetheless find reliable tuning for orientation.
Results further reveal a coarse-scale map of orientation preference that may constitute the
neural basis for known perceptual anisotropies. These findings settle a long-standing debate in
human neuroscience, and provide insights into functional organization principles of visual
cortex.
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Introduction:

Neurons in human visual cortex are organized according to their functional selectivity. A number
of stimulus features are organized in coarse-scale cortical maps. For example, retinotopic visual
cortex is organized as a log-transform of the visual field, with the polar dimensions of visual
space (angle and eccentricity) corresponding to the Cartesian dimensions of the cortical surface
.23 Additionally, receptive field size * ° and preferred spatial frequency ° increase
monotonically with visual eccentricity. Selectivity to other visual features, such as ocular
dominance and temporal frequency, are organized at a fine spatial scale, often forming columns
through the cortical depth "8 %% As in primates and carnivores "', orientation selectivity in
humans has been shown to also be organized at a fine spatial scale, in cortical columns that are
approximately 0.7-0.8 mm in width across the cortical surface of primary visual cortex '2.

In addition to the fine-scale columnar architecture, fMRI studies have offered evidence for a
coarse-scale organization of orientation preference "> '* > 6, Because of the relatively low
spatial resolution of standard fMRI measurements (typically around 2 x 2 x 2 mm), these studies
do not reveal the fine-scale columnar architecture. Rather, these studies have leveraged the
broad spatial coverage afforded by fMRI to reveal a radial bias of orientation preference: voxels
respond more strongly to orientations that point from the receptive field center toward fixation.
This radial bias was originally assumed to reflect a physiological map of orientation selectivity 2,
analogous to maps of receptive field location and spatial frequency selectivity. However, this
radial bias map, it turns out, does not necessarily reflect solely a physiological map. Instead, it
was shown to likely be, in large part, the result of stimulus vignetting, an interaction between the
edges of the stimulus aperture and the spatial frequency envelope of the stimulus " '®. The
principle underlying vignetting is that the Fourier spectrum changes in the vicinity of a change in
contrast, such as an edge. In typical orientation mapping experiments, the assumption is that
each condition contains a single orientation. But because of vignetting, this isn’t true: different
regions in the image contain different orientations and different Fourier power. Specifically, at
the stimulus edge, there is more power for the radial orientation than for other orientations.
These observations challenge the interpretation of a large body of studies over the past 20
years that were presumed to measure orientation-selective responses in humans .

If previous fMRI studies do not provide clear evidence regarding a physiological map of
orientation selectivity, how is orientation actually represented in human visual cortex? Does the
human brain contain a map for orientation selectivity at a coarse spatial scale, distinct from
columnar architecture? Alternatively, is the presumed fine-scale columnar map the sole
organizational principle for orientation in visual cortex? The answer to these questions has been
obfuscated by stimulus vignetting: if there is indeed a coarse-scale map for orientation, it may
be entirely eclipsed by stimulus vignetting.

To overcome these challenges, we apply a computational framework for studying orientation
selectivity that explicitly models the effects of stimulus vignetting in order to access orientation-
selective signals that would be otherwise obscured. To this end, we leverage a massive 7T fMRI
dataset, the Natural Scenes Dataset (NSD), consisting of extensive sampling of responses to
natural scene stimuli in a small number of intensively-studied participants 2% 2" 22, The large
number of measurements and unique stimuli, combined with the high signal-to-noise ratio
(SNR) of the fMRI measurements, enables us to robustly fit models that include dozens of
parameters per voxel.

Image-computable models have been used to study a wide range of questions in visual
neuroscience 232425 To assess orientation selectivity, our modeling approach exploits two
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image-computable models based on the steerable pyramid %°. The constrained model, which
includes both visual field position tuning and spatial frequency tuning, but pools equally across
orientation-selective filters, is sensitive to the effects of stimulus vignetting ’. This model is
based on the model used previously to demonstrate vignetting '/, and it can fully explain
responses modulated by total Fourier power. However, because the orientation filters at each
level are pooled before the filter responses are computed, the model cannot capture any
information about orientation. In other words, any apparent orientation selectivity in the model
output is entirely due to stimulus vignetting. The full model, on the other hand, which allows
unequal contributions from orientation-selective filters, is sensitive to orientation-selectivity
beyond the effects of stimulus vignetting (Fig 1). Combined, the pair of models enables us to
assess voxel-wise orientation selectivity while simultaneously accounting for the impact of
stimulus vignetting. The modeling results reveal the existence of physiological maps for
orientation preference.
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Results:

Both constrained and full models explain roughly similar amounts of variance

The NSD dataset contains measurements of 7T BOLD fMRI responses from 8 participants who
each viewed 9,000-10,000 distinct color natural scenes (22,000-30,000 trials) over the course
of 30—40 scan sessions 2. We fit two models characterizing V1 voxel responses to the natural
scene stimuli. Both models fit voxel responses as a weighted sum of steerable pyramid filters.
The constrained model pools across orientation, and is therefore effectively composed of a
range of spatial frequency filters across the visual field. In contrast, the full model includes
flexible weights for both spatial frequency and orientation tuned filters (Fig 1). In order to
evaluate how well each model fits the data, we cross-validated both models and measured the
variance explained by each model on out-of-sample data.
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Fig 1. Analysis pipeline for a single voxel. Top, full model. Bottom, constrained model.
Natural scene images were converted to grayscale and passed as input to a steerable pyramid
(shown here with only 4 orientations and 3 spatial frequencies for visualization purposes). Each
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filter yielded an energy response that was sampled by the voxel pRF, resulting in a scalar output
for each filter. Linear regression was performed on the response amplitudes observed for each
voxel with filter output values as predictors. This procedure yielded a set of model weights,
which were subsequently used to simulate responses to a range of gratings in order to
determine the voxel’s preferred orientation and spatial frequency. The constrained model
(bottom) was identical to the full model except for an additional step of summing model outputs
across orientations. As a result, the constrained model involves a weight for each spatial
frequency filter but enforces equal contribution across orientation. Example images shown here
were created by the authors for illustration only and were not used in the study.

The constrained and the full models explained a similar portion of variance in the BOLD
measurements (mean R?: full 0.0311, constrained 0.0310)(Fig 2A). If BOLD activity reflects
orientation selectivity, we would expect the constrained model to be unable to account for
modulations driven by local orientation differences between images. The full model, however,
includes orientation tuning, and therefore should be able to account for this additional response
variability, assuming that the parameters that characterize orientation tuning can be reliably
estimated. But we found that both models performed comparably, explaining similar amounts of
variance, with the constrained model slightly but significantly outperforming the full model
(median R?: full 0.0204, constrained 0.0212; two-sided Wilcoxon signed-rank test p-value<10"
19). Moreover, cross-validated R? was highly correlated between the two models (r=0.9835,
p<1079), likely reflecting gross differences in signal-to-noise ratio across voxels (Fig 2B).

At first glance, these results suggest that there is no reliable orientation tuning to be modeled.
However, since the full model has many more free parameters than the constrained model (57
vs. 8 parameters), we expect that, for voxels with low SNR, the full model would likely result in
overfitting. For voxels with high SNR, on the other hand, the full model may be able to capture
orientation tuning and lead to higher cross-validated R? values. Therefore, inspecting model
performance only using summary statistics (e.g. median or mean) does not provide a complete
picture, and it is necessary to analyze how model performance varies across voxels.
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Fig 2. Both constrained and full models fit voxel responses. A. Distribution of R? values for
full (pink) and constrained (blue) models. Distributions for both models were similar, with the
constrained model R? median slightly but significantly higher (p=7.4x10""", two-sided Wilcoxon
rank sum test). B. R? values for full model as a function of R? values for constrained model. C.
R? values for constrained model as a function of pRF R2 D. R? values for full model as a
function of pRF R?. E. R? values for full model minus R? for constrained model as function of
PRF R?. F. R? values for full model minus R? for constrained model as function of pRF
eccentricity. G. pRF R? values as function of pRF eccentricity. Solid lines in C-G indicate a
running mean computed over 20 bins.

Model performance depends on voxel SNR

For each individual voxel, model filter outputs were sampled using a population receptive field
(pRF) estimated for that voxel from an independent pRF-mapping experiment that was
conducted as part of the NSD dataset. In both the constrained and full models, the estimated
pRF determined the portion of stimulus from which the model output is sampled (see Methods:
pRF sampling). Hence, any error in estimating the size or location of the pRF would propagate
forward, adversely affecting the model fits. Specifically, if the pRF estimate is inaccurate, the
model would attempt to explain BOLD activity based on the portion of the natural scene image
dictated by the pRF estimate, while the voxel would in fact be driven by another portion of the
image. Therefore, it is likely that model performance depends on the quality of the pRF
estimate.

Sorting voxels according to pRF R?, we found that this was indeed the case. R? of both models
were correlated with pRF R? (Constrained: r=0.5859, p<10~°; Full: r=0.5728, p<10~°). Our
interpretation is that pRF R?is a good proxy for voxelwise SNR, and that voxels with high SNR
will tend to have both high-quality pRF estimates and good model performance on the natural
scene responses (Fig 2C,D). We furthermore found that the amount of additional variance that
the full model explained beyond the constrained model was also correlated with voxel pRF R?
(r=0.2418, p<10™°) (Fig 2E). This result implies that in cases of low SNR, including orientation
tuning in an encoding model will likely result in overfitting, and that doing so is unlikely to reveal
reliable orientation selectivity. However, for high SNR voxels in the NSD dataset used here, we
are able to estimate reliable orientation selectivity that improves generalization on out-of-sample
data. Additional analyses (Fig 2G) indicate that voxels with high SNR tend to lie away from the
fovea, and it is for these more peripheral voxels that we can reliably estimate orientation
selectivity.

Coarse-scale map of orientation selectivity

Explicitly modeling voxel responses enabled us to capture robust orientation selectivity that is
not due to stimulus vignetting. What is the source of this orientation tuning? Although the voxel
size in the NSD dataset (1.8 x 1.8 x 1.8 mm) is much larger than the size of orientation columns,
fMRI studies using multivariate decoding methods have suggested that even with large fMRI
voxels (3 x 3 x 3 mm), V1 voxel responses might exhibit robust orientation biases originating
from random sampling of cortical columns 2”22 Therefore, we ask: is orientation preference
scattered in a salt-and-pepper fashion, suggesting a random bias from orientation column
sampling, or is orientation preference organized in a systematic map across the cortical
surface?
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To assess the potential organization of orientation selectivity, we plotted voxel orientation
preference in visual space (Fig 3A). We observe a clear coarse-scale map of orientation:
preferred orientation varies smoothly across visual angle. This observation implies that voxels
with nearby pRF locations have similar orientation preference, unlike the expectation based on
salt-and-pepper organization. Indeed, when we visualize cortical maps of estimated orientation
preference, we see in V1 a clear progression of orientation that mimics the well-known
organization of visual field angle (Fig 3B).
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Fig 3. Orientation preference changes smoothly across visual space and V1. A,
Orientation preferences plotted in visual space. Each line represents a single voxel and is
positioned at the voxel’s pRF center. Hue and orientation of the line indicate preferred
orientation. Line length, width, and scale reflect the amount of variance (R?) explained by the
constrained model. Solid square at +/- 4.2 deg indicates the size of the natural-scene stimuli.
See also individual subject plots in Supplemental Fig S1. B, Orientation and pRF polar angle
maps overlaid on left and right inflated ‘fsaverage’ surfaces. For angle map and unthresholded
orientation map, all vertices in V1, V2, V3, and V4 are plotted. For the thresholded orientation
map, only vertices with the top 50% full model R? are plotted. See also individual subject maps
in Supplemental Fig S2.

The gradual progression of orientation preference across the visual field and cortical surface
provides evidence against a random-sampling bias of orientation columns. Instead, this
observation reveals an organizational principle for visual cortex, namely, a coarse-scale spatial
map for orientation preference.

Radial map of orientation selectivity

The orientation map appears to resemble a radial map (Fig 3A), but quantitative analysis is
necessary to test this hypothesis. We quantified the similarity of the orientation map to a radial
map by computing the angular deviation of each voxel’s orientation preference from the
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preference predicted by a perfectly radial map (Fig 4, right). Deviation from radial as a function
of pRF eccentricity resembled an inverted U (Fig 5A): deviation was maximal at the fovea and at
high (>5 deg) eccentricities, and lowest at intermediate (2-4 deg) eccentricities. We also
compared the measured orientation map to two alternative possibilities: a vertical map and a
cardinal map (Fig 4; Fig 5A). Deviation from the ideal radial map was lower than for either the
ideal vertical or the ideal cardinal maps (Fig 5B, C), indicating that orientation selectivity in V1 is
approximately organized in a radial map.

N S SV
IVl EHAE N

X position X position X position
Fig 4. Schematic of three ideal orientation maps. Ideal maps of orientation preference
plotted in visual space. Each line represents a single ideal voxel and is positioned at the voxel’s
PRF center. Orientation of the line indicates preferred orientation. Left, vertical map. Center,
cardinal map. Right, radial map.

y position

Deviation from radial was not uniform across pRF polar angle (Fig 5A, right), but was lowest at
the horizontal and vertical meridians (Fig 5A, orange), similar to the deviation from cardinal (Fig
5A, green). Confirming this observation, deviation from radial was linearly correlated with
angular distance from the closest meridian (r=0.141, p<107®). However, voxel-wise SNR is a
potential limiting factor in this analysis, since voxel-wise SNR (as indexed by pRF R?) correlates
slightly negatively with distance from the meridians (r=-0.055, p<107?). Nevertheless, when
controlling for the effect of pRF R?, the partial correlation between radial deviation and distance
from meridian remained strong (r=0.133, p<10*). We interpret this to mean that modulation of
the radial bias by distance from the meridian is a feature of the coarse-scale orientation map,
rather than a trivial result of anisotropies in pRF SNR across the visual field.

10
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Fig 5. Coarse-scale bias is mostly radial in organization. A. Deviation of preferred
orientation from ideal vertical (blue), cardinal (green), and radial (orange) maps, as function of
PRF eccentricity (left) and pRF angle (right). B. Deviation from vertical minus deviation from
radial, as function of pRF eccentricity (left) and pRF angle (right). Gray lines, individual subjects.
Orange points, significantly lower deviation from radial than from vertical (p<0.05, one-way t-
test, 7 degrees of freedom, no correction for multiple comparisons). C. Deviation from cardinal
minus deviation from radial as function of pRF eccentricity (left) and pRF angle (right). Gray
lines, individual subjects. Orange points, significantly lower deviation from radial than from
cardinal (p<0.05, one-way t-test, 7 degrees of freedom, no correction for multiple comparisons).
D. Deviation from radial as function of angular distance from closest meridian. E. pRF R? as
function of angular distance from meridian.

Ideal radial and vertical maps are identical at the vertical meridian, and differ maximally at the

horizontal meridian (Fig 4). Therefore, comparing the empirical orientation map with radial and
vertical maps around the vertical meridian will not be particularly informative. Around the

11
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horizontal meridian, however, radial and vertical maps differ maximally. We therefore expected
deviation from vertical to be roughly equal to deviation from radial around the vertical meridian.
Around the horizontal meridian, on the other hand, we expected deviation from radial to differ
maximally from deviation from vertical. Consistent with this expectation, deviation from radial
was significantly lower than deviation from vertical around the horizontal meridian, but not at the
vertical meridian (Fig 5B, right).

We found that radial and cardinal maps are identical at the horizontal and vertical meridians,
and differ maximally at oblique (diagonal) angles (Fig 4). Therefore, deviation from radial and
cardinal should differ maximally around oblique angles and minimally around the meridians.
Again, this was indeed the case: deviation from radial was significantly lower than from cardinal
only at oblique angles of the visual field (Fig 5C, right).

Deviation from radial was significantly lower than deviation from cardinal at intermediate
eccentricities (Fig 5C, left). This may be related to lower pRF R? around the fovea (Fig 2G).
Therefore, we cannot determine whether the radial bias is weakest at low eccentricities, or
whether the larger deviation is entirely due to less accurate pRF estimates, while the strength of
the radial map is in fact constant across eccentricities.

We conclude that the radial map is strongest around the meridians (i.e. at cardinal angles), and
is weakest around oblique angles.

Controlling for analysis pipeline

We have assumed thus far that orientation selectivity in the full model reflects variance that
cannot be explained by the constrained model. We wondered if this result could somehow be an
artifact of our modeling procedures, given the complexity of the model fitting pipeline. For
example, it is conceivable that orientation selectivity in the full model (i.e. the weights the model
assigns to different orientation filters) in fact reflects variance that can be explained by the
constrained model as well, but with other combinations of regressors. One example of this type
of confound is stimulus vignetting ', where apparent orientation selectivity in fact reflects spatial
frequency tuning and not orientation tuning. Perhaps stimulus vignetting or other sources of
response variance that do not genuinely reflect orientation tuning effectively masquerade as the
orientation selectivity observed in the full model.

To test this possibility directly, we first regressed out all variance that was explained by the
constrained model from the experimental data. We then fit the full model to these residual data.
If orientation selectivity of the full model reflects variance that can be explained by a
combination of parameters in the constrained model, we would expect that regressing out that
variance would leave the full model with no orientation-selective variance left to fit. If, on the
other hand, orientation selectivity in the full model reflects only variance that cannot be
explained by the constrained model (i.e. true orientation tuning) then regressing out variance
explained by the constrained model should have no effect on the full model orientation
selectivity.

Consistent with the second scenario, the map derived from analyzing the residuals (Fig 6A-B,
left) was nearly identical to the original map (Fig 3). Complementarily, fitting the full model to the
variance explained by the constrained model (i.e., the output predicted by the constrained
model) resulted in a random map of orientation preference (Fig 6A-B, right). This indicates that
the orientation selectivity in the full model cannot be explained by the constrained model.

12
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Fig 6. Control analyses demonstrate that the full model indeed captures orientation
selectivity that cannot be derived from the constrained model. A, Schematic Venn diagram
illustrating the control analyses. First, the constrained model was fit. The full model was then fit
either to the residual (left) or the output (right) of the constrained model. B, Orientation map in
visual space derived from the two analyses. Same format as Fig 3A. The orientation map on the
left is nearly identical to the map estimates from the original data (see Fig 3A), indicating that
the full model capitalizes on variance not modeled by the constrained model. In contrast, the
orientation map on the right has no discernable organization, demonstrating that the constrained
model cannot explain variance reflecting orientation selectivity.
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Discussion:

Summary

By analyzing a unique, extensive visual fMRI dataset using a model-based framework, we
obtained robust estimates of orientation selectivity in human visual cortex. Unlike previous fMRI
studies in which measurements of orientation selectivity were potentially confounded by
interactions between the oriented stimuli and the stimulus aperture, the orientation selectivity
that we report here cannot be attributed to stimulus vignetting. We uncovered a radial bias of
orientation selectivity that is coarse-scale and widespread throughout the extent of V1. The
radial bias that we describe here is distinct from the spatial pattern expected by the sampling of
cortical columns. This coarse-scale orientation bias may be a fundamental organizational
principle of human V1, providing a physiological basis for well-documented behavioral biases in
orientation judgements.

Multiple scales of stimulus representation in human visual cortex

The human brain likely contains multiple representations of stimulus orientation at different
spatial scales, co-existing within the same cortical visual area but arising from distinct neural
computations. The first, and most familiar, is the fine-scale, columnar organization. The
orientations of visual features are represented in an orderly pinwheel-like progression within
each hypercolumn across the cortical surface %% *'*2, While orientation columns have not been
measured directly in humans using electrophysiological methods, based on postmortem
measurements of ocular dominance columns in humans 3, orientation columns are likely to
be less than a millimeter wide along the cortical surface. In addition to this fine-scale columnar
structure, a number of fMRI studies have also reported a second, coarse-scale map-like
organization for orientation selectivity that is at the scale of the retinotopic organization of V1 ™*
4 spanning tens of centimeters, orders of magnitude larger than cortical columns. For the
purposes of this discussion, we define a pattern of cortical activity to be ‘fine-scale’ if it has
features that are smaller than the point-spread function of a conventional fMRI voxel
(~2x2x2mm). According to this definition, the radial bias that we report here is clearly coarse-
scale.

The presence of both fine- and coarse-scale patterns of orientation selectivity raises two
fundamental questions. The first regards the scale of information leveraged by multi-voxel
pattern analysis (MVPA) methods to decode orientation. In a landmark study, Kamitani and
Tong ?” demonstrated that it is possible to use a linear classifier to decode the orientation of a
grating presented to the subject on an individual trial. Cortical columns are irregularly organized
with respect to the rectilinear voxel grid, which, it was posited, could lead to small biases in
voxel responses that are decodable with MVPA. The conjecture that MVPA methods are
sensitive to fine-scale signals had a profound impact on fMRI research, well beyond visual
neuroscience, because it implied the feasibility of studying neural representations in the human
brain that are instantiated at a spatial scale smaller than an fMRI voxel 8. However, it has been
surprisingly difficult to fully support or fully refute this claim, especially in light of an alternative
account suggesting that MVPA is primarily sensitive to the coarse-scale orientation bias . This
uncertainty has engendered ongoing and unresolved debate 3% 3¢ 37 38.39.40,41,42,43.44 ' The
current study does not directly bear on this debate. Here, we quantified orientation information
in fMRI BOLD responses using a neurally-inspired image-computable model. While our results
reaffirm the existence of a prominent coarse-scale organization for orientation (i.e., a radial
bias), we did not use MVPA, nor did we explicitly model the scale of orientation information with
a spatial model of the cortical surface. One fruitful approach may be to build spatial models of
V1 34546 which could provide a computational platform for testing hypotheses regarding spatial

14
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scale of information and explicitly test the sensitivity of MVPA methods to different spatial scales
of orientation information.

The second question concerns the neural response properties that give rise to the coarse-scale
orientation bias. While the cortical architecture giving rise to fine-scale orientation columns is
relatively well understood *"*®*° much less is known about the origin of the coarse-scale bias.
It was initially presumed that the coarse-scale bias stems from a pattern of cortical organization
in which neurons with similar patterns of orientation selectivity form gradients over large swaths
of cortex 3. This idea was challenged by the insightful work of Carlson '8, who demonstrated
through simulation that the radial bias could arise from properties of the stimulus aperture or
‘vignette’, rather than from the pattern of orientation selectivity in the brain. This proposal
suggested that stimuli with the same underlying orientation could be shown through different
vignettes and this could reverse the observed orientation selectivity. These predictions have
been confirmed empirically "7, suggesting that orientation selectivity measured with fMRI is
indeed influenced to some degree by stimulus vignetting.

Is stimulus vignetting the primary driver of the coarse-scale orientation biases reported in
previous fMRI studies? The magnitude of stimulus vignetting reported in Roth, Heeger " was
roughly commensurate with the magnitude of the radial bias reported in previous studies of
orientation selectivity '*, suggesting that the radial bias could, in theory, be due to stimulus
vignetting. fMRI studies have reported a radial bias using a wide range of stimulus parameters,
i.e. different spatial frequencies and aperture sizes. Further theoretical simulations
(Supplementary Fig 4) suggest that each of these configurations could produce stimulus
vignetting, depending on the location of the edge in the retinotopic map, the spatial frequency
channels that contribute most to the voxel’'s response, and the form of response normalization
assumed. On the other hand, there have been reports of orientation decoding away from the
stimulus edge, suggesting orientation information in fMRI measurements that are not due to
vignetting (Kamitani and Tong 2’ Supplementary Figure 3; Wardle, Ritchie *'). These
considerations have, up to now, left the field at an impasse, with no clear way to characterize
true coarse-scale orientation selectivity in the face of a potential stimulus confound. Here, we
turned to natural scene stimuli and an image-computable modelling approach to overcome
these challenges. By explicitly modelling the spatial frequency and orientation content of each
image, we account for the presence of a stimulus aperture, enabling the accurate
characterization of orientation selectivity in human visual cortex.

The characterization of a coarse-scale orientation bias does not preclude a contribution from
cortical columns. It is likely the case that orientation-selective signals measured with fMRI are
multi-scale ** *?, reflecting a contribution of both fine- and coarse-scale orientation signals, with
the relative contribution dependent on critical experimental parameters, such as fMRI voxel size,
acquisition method (gradient echo, spin echo, or VASO *°), proximity of a voxel to veins °" %2, as
well the stimulus protocol itself >3. These considerations imply that various reports of orientation
selectivity over the years may have differentially emphasized fine- and/or coarse-scale
components of the signal depending on which combination of these parameters were used.
Further work, perhaps using an extension of the image-computable model that we have
developed here, may be able to tease apart the relative contribution of each of these
orientation-selective signals.

Multiple coarse-scale biases

Here we report a radial bias of orientation preference in visual cortex, extending a number of
prior BOLD fMRI studies ' '* 5165 But while the radial bias in previous fMRI studies may
have been entirely a result of stimulus vignetting, the radial bias we report here is not
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explainable by the constrained model (Fig 6), and therefore reflects a coarse-scale orientation
map distinct from stimulus vignetting. In addition to a radial bias that was most pronounced in
the periphery, a previous study identified a vertical bias at mid-eccentricities, closer to the fovea
16, We tested for such a vertical bias, but found no evidence to support this possibility. At
intermediate eccentricities, orientation preference was significantly closer to radial than to
vertical, although close to fixation, the radial preference was not significant (Fig 5B). This may
be a result of lower SNR around fixation, as reflected in the lower pRF R? values (Fig 2G).
Therefore, we cannot definitively rule out a vertical bias at fixation, as reported by Freeman,
Heeger .

A cardinal bias has been identified previously in human visual cortex *°, in other primates *¢ °":
%8 and in carnivores such as ferrets ° % ¢ and cats %% %% ¢ The cardinal bias is typically
described as a stronger response to vertical and horizontal orientations compared to oblique
orientations. To enable a comparison to the radial map, we defined a cardinal map as a stronger
response to the meridian closest to the pRF center, which is radial only for pRFs along the
meridian (Fig 4, center). This definition describes an orientation map, relating orientation
preference to retinotopic preference. The cardinal map as we defined it entails a cardinal bias,
since when averaging across all of V1 *°, cardinal orientations evoke the strongest responses.

Although the orientation map was closer to a radial map than to the cardinal map, we did find
that the radial bias was strongest around the vertical and horizontal meridians. This pattern can
be described as cardinal modulation of a radial map, and is consistent with previous fMRI
findings '°.

What physiological factors underly the cardinal modulation of the radial map? It is possible that
the radial bias is stronger around the meridians because of stronger SNR in those regions, or
because of small artifacts away from the meridians caused by cortical unfolding and veins 5 6"
8 However, we believe such artifacts and SNR differences should manifest similarly in the pRF
data, yet we found that the lower pRF R? (Fig 5E) could not fully explain the weaker radial bias
away from the meridians. Similarly, a fine-scale columnar bias could potentially cause voxel
preference to deviate from the radial orientation, but we would expect such an effect to take
place uniformly across all polar angles. Instead, we believe it more likely that the cardinal
modulation reflects the true nature of the radial bias: it is possible there are two co-existing
biases, a cardinal and a radial, or that neurons around the meridians show a stronger
preference for the radial orientation.

Source of coarse-scale orientation bias

How does the coarse-scale orientation map form? The mechanism is likely related to the source
of orientation selectivity itself, which is still debated. When orientation-selective neurons were
first discovered in cat visual cortex, their tuning properties were proposed to arise from
convergence of center-surround neurons in lateral geniculate nucleus (LGN) that were
themselves not orientation selective ®. Local interactions between V1 neurons have also been
shown to amplify orientation selectivity °, suggesting that orientation selectivity arises from both
the convergence of feedforward input and local circuit interactions. But it has also been
suggested that orientation selectivity is computed earlier in the visual pathway, and that it is to
some degree inherited by V1 neurons. Multiple lines of evidence point towards orientation
selectivity being present already in some LGN neurons " 7273 74.75.76 gnd gven in retinal
ganglion cells 778 79.80.81 raising the possibility that orientation selectivity in V1 reflects
computations at earlier processing stages. Consistent with this possibility, retinal size relative to
V1 size predicts across species whether orientation preference will be arranged in cortical
columns or scattered in a salt-and-pepper fashion #2. The coarse-scale orientation map may be
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the result of the same mechanisms that form orientation selectivity, or it may involve other
unique factors. Determining the source of the coarse-scale orientation bias, and whether it
differs from sources of fine-scale selectivity, will require additional research involving
measurements at a range of spatial scales.

A number of distinct neurophysiological mechanisms could, in theory, give rise to the coarse-
scale bias uncovered here. For example, the radial bias could reflect a higher number of
neurons preferring the radial orientation. Alternatively, the radial bias could reflect a higher firing
rate for neurons preferring the radial orientation. A third possibility is that neurons preferring the
radial orientation could have a narrower tuning bandwidth. All three of these scenarios presume
a higher mean population firing rate in response to radial stimulus orientations, which would
presumably translate to larger BOLD fMRI responses 3848586 Since BOLD fMRI measures a
hemodynamic signal and is an indirect measure of neural activity, it is also possible that the
orientation tuning we measured here reflects synaptic inputs from either feedforward or
feedback projections, or local field potentials ¢ 88, Future electrophysiology studies in humans
and non-human primates may shed more light on the relationship between the coarse-scale
orientation bias and the underlying neurophysiology.

An alternate possibility is that coarse-scale orientation biases are an emergent property of visual
cortex. When the visual system is modeled with large, unconstrained models, certain
anisotropies and biases emerge, including a cardinal bias ° and a radial bias ° °'. These
biases are due to statistics of the images used to train the models. Image statistics may underlie
orientation biases in human visual cortex as well % %, although it is unclear whether biases
evident in neural networks account for similar biases we have observed in human visual cortex.

Natural scenes vs. oriented gratings

Most prior fMRI studies of orientation selectivity have relied on oriented gratings. This approach
stems from a long and successful history in visual neurophysiology dating back to Enroth-Cugell
and Robson %. Such ‘synthetic’ grating stimuli are optimal for driving individual V1 neurons
because they can be presented at full-contrast, and because the parameters of the stimuli (size,
position, and spatial frequency) can be carefully tailored to the individual neuron being recorded.
However, such gratings may be less appropriate when studying large neural populations, as
with fMRI, since a single voxel reflects the pooled activity of many neurons with a wide range of
selectivities, and therefore no single grating will be optimal for every neuron contributing to the
voxel’s response '°. Natural scene stimuli are inherently broadband along multiple dimensions,
and hence may be more appropriate for studying population responses. However, natural scene
stimuli do have, on average, lower contrast than gratings, and will not drive individual V1
neurons at their maximal firing rates. Thus, natural scenes might not be the most efficient set of
stimuli for estimating the voxel-wise encoding models used in the current study. Nonetheless,
this loss of efficiency is counteracted by the massive number of trials in the dataset.

Image-computable models and V1

A previous study * decoded natural images from BOLD responses in visual cortex by fitting
encoding models to individual voxels. One finding was that including orientation tuning did not
improve decoding beyond the accuracy obtained with only spatial frequency tuning 9% Supplemental
Fioure 8 This result seems to be at odd with our findings here. However, direct comparison
between these studies is somewhat complicated. First, in a decoding approach, performance is
sensitive to responses across multiple voxels and how they jointly encode stimuli. Such an
approach yields results that are more difficult to interpret compared to a more straightforward
approach in which properties of individual voxels are examined. Second, although modeling
orientation tuning in addition to spatial frequency tuning did not lead to improved decoding
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accuracy, when spatial frequency was absent or assumed to be identical across the entire
region-of-interest, including orientation tuning did improve decoding. Thus, the results of the
present study are not necessarily inconsistent with the previous study. Finally, it is important to
note that estimation of model parameters for the Gabor wavelet encoding model used in the
previous study was performed using gradient descent with early stopping. This type of
regularization (early stopping) reduces variance at the expense of introducing bias, and the
exact nature of this bias is dependent, in a complex way, on the statistics of the model inputs
(e.g., orientation statistics in natural images). A major advantage of the approach used in the
present study is the use of unregularized ordinary least-squares for parameter estimation, which
was made possible by the combination of the sheer size of the NSD dataset and the pRF
constraints incorporated into our models. This approach avoids complications associated with
regularization and facilitates accurate interpretation of voxel selectivity.

The image-computable model that we used here was based on the steerable pyramid %, a sub-
band image transform that decomposes an image into orientation and spatial frequency
channels (see Methods: Steerable Pyramid). In our previous study of stimulus vignetting '/, we
made two simplifying assumptions. First, because most of the power in the stimulus was at a
single spatial frequency, we only analyzed the response of the model at a single spatial
frequency channel centered at the spatial frequency of the stimulus (Fig S4). This approach
provided good qualitative fits to the fMRI data, and we further confirmed that an alternative
approach of averaging across all the channels did not change the model predictions (Fig S4). In
the present study, such an approach is not feasible since the naturalistic images are broadband
in spatial frequency. Instead, our modeling approach enabled fitting weights to all model
channels, essentially estimating a spatial frequency tuning curve for each voxel. An alternative
approach would be to weigh the different channels according to independent measures of
spatial frequency tuning for each voxel ® * . The Natural Scenes Dataset could then be used to
fit only the weights on orientation channels, which may result in more accurate estimates of
orientation preference because of the smaller number of free parameters.

The second simplifying assumption involves scaling of the channel outputs. For each orientation
and spatial frequency, the pyramid includes a quadrature pair: two RFs with different phases.
The sum of the squares of the responses of the two RFs is typically taken, yielding an ‘energy’
response, which uniformly tiles all orientations and spatial frequencies °” %, This energy
response is often nonlinearly scaled in order to better match the contrast-response function of
V1 neurons. However, determining the model architecture and normalization pool appropriate
for an fMRI voxel is not trivial and very much an area of active investigation %1% 101.102 "yye
acknowledge that the form of scaling could have an impact on the size and spatial extent of
vignetting. Determining the most appropriate scaling is an important issue that remains
unresolved. In the context of the current study, we think it unlikely that the main results are
sensitive to the particular regime of scaling employed.

Behavioral correlates of the coarse-scale bias

Understanding the stimulus selectivity of neurons and their organization is fundamental for
understanding how neural computations lead to visual perception. In particular, coarse-scale
organizations are likely critical elements of neural accounts of behavior, since large populations
of neurons are likely to contribute to the final behavioral readout.

A behavioral radial bias has been reported by several psychophysics studies: sensitivity is

higher to radial orientations than to other orientations '* 102 104.195  Another well-known bias is
the oblique effect: across the visual field sensitivity is higher to cardinal orientations (vertical or
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horizontal) than to oblique orientations (diagonal) 104 105 106.107. 198 The physiological orientation
selectivity measured here may underlie both behavioral effects. The radial map may be the
source of the behavioral radial bias, while the cardinal modulation may underlie the behavioral
oblique effect. It has been suggested that fMRI response amplitudes reflect the neural SNR,
which in turn determines the perceptual performance '®. In that case, a stronger fMRI response
to the radial orientation should correspond to higher perceptual performance for stimuli with
radial orientations.

A major endeavor in neuroscience is to link brain properties with behavioral readout, and visual
neuroscience has made significant progress toward this goal. Recently it has been shown that
V1 size and cortical magnification in individual subjects is correlated with contrast sensitivity "%
. Similarly, the extent of cortical magnification in V1 corresponds to orientation discrimination
performance in individual participants 2. If the coarse-scale map revealed here constitutes the
neural basis for behavioral anisotropies, we hypothesize that individual differences in the
orientation map that we report here are related to individual differences in perception.
Successfully demonstrating such a correspondence would provide a crucial link between brain
and behavior.
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Methods:

Natural Scenes Dataset:

The fMRI data analyzed here is from the Natural Scenes Dataset (NSD;
http://naturalscenesdataset.org) ?°. The NSD dataset contains measurements of fMRI
responses from 8 participants who each viewed 9,000—10,000 distinct color natural scenes
(22,000-30,000 trials) over the course of 30—40 scan sessions. Scanning was conducted at 7T
using whole-brain gradient-echo EPI at 1.8-mm resolution and 1.6-s repetition time. Images
were taken from the Microsoft Common Objects in Context (COCO) database ''*, square
cropped, and presented at a size of 8.4° x 8.4°. A special set of 1,000 images were shared
across subjects; the remaining images were mutually exclusive across subjects. Images were
presented for 3 s with 1-s gaps in between images. Subjects fixated centrally and performed a
long-term continuous recognition task on the images. The fMRI data were pre-processed by
performing one temporal interpolation (to correct for slice time differences) and one spatial
interpolation (to correct for head motion). A general linear model was then used to estimate
single-trial beta weights. Cortical surface reconstructions were generated using FreeSurfer, and
both volume- and surface-based versions of the beta weights were created.

In this study, we used the 1.8-mm volume preparation of the NSD data and version 3 of the
NSD single-trial betas in percent signal change units (betas_fithrf GLMdenoise_RR). The
results in this study are based on data from all NSD scan sessions, from all 8 subjects who
participated in the NSD study.

Stimuli:

NSD images were originally 425 x 425 pixels, and were then upsampled for display purposes to
714 x 714 pixels. We reproduced this upsampling in our stimulus preparation, and padded the
images with a gray border on all four sides (mimicking the scanner display environment),
resulting in a final image dimension of 1024 x 1024 pixels (12.05° x 12.05°). A semitransparent
red fixation point was added at the center to simulate the actual stimulation experienced by the
subjects during the experiment. Images were converted to grayscale by averaging across the 3
color channels. To speed up subsequent computations, the images were then downsampled to
512 x 512 pixels. To enable cross-validation, the set of 10,000 images assigned to each subject
was randomly divided into 2 partitions of 5,000 images each. For subjects who completed fewer
than 40 sessions, only the viewed images were used, which resulted in a slightly different
number of images included in each partition.

Steerable Pyramid:

We built two models based on the steerable pyramid %°: a full model and a constrained model.
The full model simulates each neuron in V1 with a receptive field that is tuned for both spatial
frequency and orientation, and then allows for variable weighting of these model neurons. The
constrained model also simulates populations of V1 neurons, but enforces equal weighting of
model neurons across orientation by summing across orientation subbands of the pyramid. It is
possible to create steerable pyramid models with a wide range of parameters, each instantiating
different hypotheses regarding the tuning properties of individual neurons.

We used a steerable pyramid with 8 orientations, 7 spatial frequency levels, and a spatial
frequency bandwidth of 1 octave, resulting in tuning profiles that resemble those of individual V1
neurons ™. The pyramid, and the full model, had a total of 56 filters. After summing across the
8 orientation filters, the constrained model consisted of 7 filters. The number of spatial
frequency levels was determined by the size of the image (512 x 512) and the spatial frequency
tuning bandwidth (1 octave). This results in 7 filters, with preferred spatial frequencies of 128,
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64, 32, 16, 8, 4, and 2 cycles per image. These values were then converted to cycles per
degree given the size of the image in degrees (12.05°): 21.85, 10.93, 5.46, 2.73, 1.37, 0.68,
and 0.34 cycles/degree (cpd) (Fig S3). In our previous work with the steerable pyramid we used
only the level corresponding to the stimulus spatial frequency. In this study all levels were fit to
the data. We chose to have 8 orientations, 2 more than in our previous study, in order to
increase the accuracy of the estimated orientation preference, while maintaining tuning width
that was comparable to those measured in primate electrophysiological recordings ''*. For each
orientation and spatial frequency, the pyramid includes a quadrature pair: two RFs with different
phases. We take the sum of the squares of the responses of the two RFs, yielding an ‘energy’
response, which uniformly tiles all orientations and spatial frequencies " %.

PRF modeling:

pRF estimates are included in the NSD, where full details are found %°. Briefly,

pRFs were estimated based on a single session (6 runs, 300 s each) of a pRF mapping
experiment. Stimuli consisted of slowly moving apertures (bars, wedges, and rings) filled with a
dynamic colorful texture, that appeared within a circular region of 8.4 deg diameter. Subjects
performed a color change detection task at fixation. pRFs were estimated using the
Compressive Spatial Summation (CSS) model ''.

Regions of interest:

Regions of interest V1, V2, V3, hV4 were defined in the NSD dataset based on the pRF maps.
In this study we analyzed all 4 regions but focused on V1 where orientation selectivity has been
studied most extensively. Results are presented for V1 only, except for the surface maps (Fig 3,
Supplemental Fig 2) which show all regions.

PRF sampling:
The output of each filter in the steerable pyramid was sampled by each voxel’'s pRF by
multiplying the 2D pRF with the filter output. The pRF was modeled as a 2D isotropic (circular)
Gaussian, using the ‘size’ parameter as the Gaussian’s standard deviation. (Note that the ‘size’
parameter, as estimated as part of NSD, reflects the response of the modeled pRF to point
stimuli and takes into account the exponent used in the CSS model.) For filter k of image j (F'¥),
the sampled output for voxel i with a pRF centered at (x;, y;) and standard deviation of g;, is
computed as dot product between the pRF and the filter:
) )y

() (7 =Sy By e o0
The full model had 56 sampled outputs per image, for each voxel. For the constrained model,
sampled outputs were summed across orientations. Thus, the constrained model had 7
sampled outputs per image, for each voxel.

Multiple regression:
We modeled the responses of voxel i, y;, as a linear combination of the sampled filter outputs
plus noise:

) yi=fi-Bi+sg
Here f; is a matrix consisting of voxel i’'s sampled outputs for all filters of all images and a
constant term (images x filters+1). B; is a vector of beta weights (filters+1 x 1), and ¢; is a set of
residuals (images x 1).

Beta weights were estimated using ordinary least-squares:
(3) Bi = (£"F)7;"y;
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Note that each voxel not only had different beta weights but also different predictors due to the
incorporation of each voxel's unique pRF, thus distinguishing this regression from a general
linear model analysis of the voxel responses.

To assess model accuracy, we performed cross-validation. After estimating model parameters
on one half of the data, the regression prediction was calculated as:

(4) 5Pt =1 - By

where f; is constructed for the other half of the data, and f; are the betas weights estimated
using the other partition. The residual of this prediction is given by

(5) 7" =y, —giP =y — £ - B;

Cross-validated R? is then computed as

SS(yirESid)
RZ=1-22
(6) R; SS(yi—vy1)
where y, is the mean response across images, and SS denotes the sum of squares.

Regression was performed separately for the full model and for the constrained model on each
of the 2 partitions. Regression coefficients and R? values were then averaged across partitions.

Inferring preferred orientation and spatial frequency:

After estimating the optimal weights for each voxel, we simulated an electrophysiology
experiment for quantifying neural tuning, by probing the model with gratings at different
orientations and spatial frequencies and measuring its predicted response. Full contrast gratings
were 512x512 pixels at 30 spatial frequencies ranging from a single (horizontal) cycle in the
image (0.083) to the Nyquist frequency (21.25 cpd), spaced exponentially. For each spatial
frequency, gratings were oriented at 30 different angles, spaced uniformly between 0 and pi. All
gratings were then passed through the steerable pyramid, and each filter's outputs were
summed. Voxel responses to the gratings were simulated by multiplying the model outputs for
each grating with the voxel’s filter weights. Preferred spatial frequency of a voxel was estimated
by first averaging simulated responses across orientations and then computing the mean
frequency, weighted by response amplitudes. Similarly, preferred orientation of a voxel (for the
full model) was estimated by averaging across frequencies and then computing the circular
mean, weighted by response amplitudes. For all weighted means, the minimal weight was first
subtracted from all weights to eliminate any negative weights.

Cortical surface maps

In order to create a group map on the cortical surface, each subject’s data in volume space was
transformed to surface space using nearest-neighbor interpolation, using the mrTools toolbox in
Matlab ''°: each vertex was assigned the value of a single voxel, and multiple vertices could
inherit values from the same voxel. Next, all subjects’ surface data were transformed to a single
cortical space, FreeSurfer’'s ‘fsaverage’ space. For the group map, we computed the circular
mean across subjects for each vertex in V1-V4, weighted by the full model R? values. The
resulting map of mean orientation preference was displayed on the ‘fsaverage’ inflated cortical
surface (Fig 3B).

Quantifying coarse-scale biases
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We quantified the strength of the coarse-scale orientation map by comparing it to an ideal,
perfectly radial map, as well as ideal vertical and cardinal maps (see Fig 4). For each voxel, we
computed the circular distance from the preferred orientation to the predicted preferred
orientation. For the radial map the predicted preferred orientation was the radial orientation,
according to the voxel’s pRF angle (Fig 4, right). For the cardinal map the predicted orientation
was vertical for pRF angles closer to the vertical meridian than to the horizontal meridian, and
horizontal for pRF angles closer to the horizontal meridian than to the vertical meridian (Fig 4,
center). For the vertical map the predicted orientation was vertical for all voxels (Fig 4, left). To
average across voxels, we divided voxels into 20 bins according to voxel pRF eccentricity, pRF
angle, and pRF R?. For eccentricity binning, bin width increased exponentially with eccentricity.
Voxels with pRF R? values below zero were excluded from binning. To compare between the
strength of the radial bias and other alternative biases, we averaged across voxels within each
bin separately for each subject, and subject means were then submitted to a paired-sample t-
test, with 7 degrees of freedom.

Control analysis: analyzing regression residuals

For this analysis, after performing multiple regression with the constrained model as predictors,
we took the residuals from the same partition used to estimate the beta weights. We then
performed regression on the residuals, this time using the full model.

Control analysis: analyzing regression prediction

For this analysis after performing multiple regression with the constrained model as predictors,
we multiplied the regression coefficients of the same partition with the predictors to get the
regression prediction. We then performed regression on the prediction, using the full model as
predictors.

Data availability:

The NSD dataset is freely available at http://naturalscenesdataset.org. Images used for NSD
were taken from the Common Objects in Context database (https://cocodataset.org). Source
data are provided with this paper.

Code availability:

Code for analyzing the data and generating the figures is available

at: https://github.com/elimerriam/nsdOtopy .
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Supplemental Fig S1. Orientation maps are consistent across participants. Same color
legend and scaling as Fig 3A. Orientation preferences plotted in visual space. Each line
represents a single voxel and is positioned at the voxel’s pRF center. Hue and orientation of the
line indicate preferred orientation. Line length, width, and scale reflect the amount of variance
(R?) explained by the constrained model. Solid square at +/- 4.2 deg indicates the size of the
natural-scene stimuli.
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Supplemental Fig S2. Orientation surface maps are consistent across individuals. Same
color legend as Fig 3B. Individual subject orientation maps (top, thresholded; middle,
unthresholded) and pRF polar angle maps (bottom) overlaid on left and right inflated ‘fsaverage’
surfaces. For angle map and unthresholded orientation map, all vertices in V1, V2, V3, and V4
are plotted. For thresholded orientation map only vertices with the top 50% full model R? are
plotted.
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Supplemental Fig S3. Full model and constrained model filters in Fourier space. The full
model allows unequal contributions from orientation-selective filters, and is therefore sensitive to
orientation-selectivity beyond the effects of stimulus vignetting. The constrained model pools
equally across orientation-selective filters, and therefore has no orientation selectivity, but due to
spatial frequency tuning it accounts for effects of stimulus vignetting.
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Supplemental Fig S4. Response of constrained model filters to circular apertured gratings
at various spatial frequencies. Responses to vertical orientation minus responses to horizontal
orientation are shown for all 7 filters, for 5 different grating spatial frequencies. Stimulus is 512
x 512 pixels, here simulated to span 10 x 10 degrees of visual angle. For each spatial frequency,
responses are averaged across 8 different phases. Unscaled responses (middle row for each
spatial frequency) shows responses scaled from the minimum (black) to maximum (white) for
each individual filter. This enables one to see how the spatial patterns change across the different
filters, but doesn’t convey a sense of the relative magnitude. In the bottom row of each spatial
frequency the gray scale for all panels ranges from the minimum to maximum across all filters
(‘scaled’). The filter response corresponding to the stimulus frequency has the largest response,
ranging from black to white, but other filters have smaller responses, which are therefore washed
out and almost invisible. The model filter that corresponds to the grating spatial frequency
(marked with a red box) exhibits a radial bias, while the adjacent filters show an opposite effect.
However, when scaling all filters to the same maximal value it becomes apparent that the effects
in adjacent filters are much weaker than that of the filter with the maximal response. Therefore,
as long as the spatial frequency of the stimulus is matched to the preferred spatial frequency
tuning of a local population of neurons in a voxel, and assuming a circular aperture, vignetting
should result in a radial bias.



