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Abstract (249/250 words)

The brain mechanisms of memory consolidation remain elusive. Here we examine blood oxygen level-
dependent (BOLD) correlates of image recognition through the scope of multiple influential systems
consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic
resonance imaging human study in which ~135,000 trials of image recognition were conducted over the
span of a year among 8 subjects. We find that early- and late-stage image recognition associates with
both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a
multivariate classifier. Supporting Multiple-Trace Theory (MTT), parts of the MTL activation time-
course show remarkable fit to a 20-year-old MTT time-dynamical model predicting early trace intensity
increases and slight subsequent interference (R?>0.90). These findings contrast a simplistic, yet common
view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL
trace signature of memory consolidation should also reflect synaptic ‘desaturation’ as evidenced by an
increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among
surviving memories is positively linked to the rate-of-removal (i.e., forgetting) of competing traces.
Moreover, an image-feature and time interaction of M'TL and visual cortex functional connectivity
suggests that consolidation mechanisms improve the specificity of a distributed trace. These
neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged,
offline process. While recognition can potentially involve cognitive processes outside of memory retrieval
(e.g., re-encoding), our work largely favors M'T'T and desaturation as perhaps complementary
consolidative memory mechanisms.

Significance Statement (120/120)
How do the neural correlates of recognition change over time? We study natural scene image
recognition spanning a year with 7-Tesla functional magnetic resonance imaging of the human brain.
We find that the medial temporal lobe (M'TL) contribution to recognition persists over 200 days,
supporting Multiple-Trace Theory and contradicting a Trace Transfer (from MTL to cortex) point of
view. We then test the hypothesis that the signal-to-noise ratio of traces increases over time, presumably
a consequence of synaptic ‘de-saturation’ in the weeks following learning. Indeed, the fMRI trace
signature associates with the rate of removal of competing traces and reflects a time-related
enhancement of image-feature selectivity. We conclude that multiple MTL traces and improved signal-
to-noise may underlie systems-level memory consolidation
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Introduction

Systems consolidation refers to the reorganization of a memory trace with prolonged time and
experience across large-scale neuronal networks!. The precise mechanisms underlying this process
remain unclear, but the end result includes the stabilization of certain memories, the equally vital
forgetting of non-essential information?, as well as the transformation of some memories into more
behaviorally adaptive or gist-like representations?. Influential theories of systems-level consolidation are
largely built upon the seminal observations that varying medial temporal lobe (M'TL) damage causes an
mverse memory effect, whereby the ability to recognize recently encoded memories is reduced while many
older memories (weeks to years) remain intact*.

Theoretical approaches to explain these findings began with The Standard Consolidation
Theory (SCT), which proposed that M'TL contributions to any memory trace diminish over time®.
Alternatively, Multiple-Trace Theory (MTT), put forward in 1997, clarified inconsistencies of this
standpoint with many experiments showing that M'TL lesions caused more severe retrograde amnesia
for episodic than for semantic memories®’. For example, Bright et al.® showed limited retrograde
amnesia for a variety of tests of public events and personalities (semantic memory) while, for
autobiographical episodes, a retrograde amnesia extended back further. Episodic memories contain
elements often in the form of visual images? that are recollected within some overlaying context!?. MTT
posited that an episodic memory must rely on the MTL, and on multiple content-relevant cortical
modules, across its entire lifespan, not just the beginning. Early MTT developments emphasized that
episodic memory reactivations—which occur during conscious recall or recognition, but also during
‘offline’ memory replays!'! within waking quiescence and sleep!>!3—lead to a rich distributed network of
multiple, overlaid traces in the MTL over time. This process, coined as ‘trace expansion’, would
presumably provide memory protection from partial lesions.!* Within the human fMRI literature, there
are conflicting reports'* showing both SC'T-predicted decreases in hippocampus activity during
recall©g15-17) and M'TT-predicted increases in hippocampus activity during recall©¢18-20), Most of this
prior work has a limited time perspective (with only 3 or less time points), and brain measurements were
not acquired with high-field fMRI. Moreover, while multiple time-dynamical analytic models of MTL
trace intensity have been inspired by the non-linear probability time-curves of retrograde amnesia?!, to
our knowledge there has not yet been any application of these mathematical formulations to functional
human neuroimaging data due of the paucity of time-points and samples.

The analysis of the connectivity between the MTL and the neocortex offers a crucial perspective
of systems-level memory consolidation?. Intracranial human studies are now establishing precise timing
links between the hippocampus and content-relevant cortex necessary for memory retrieval?> 26, For
instance, Norman et al.?® investigated autobiographical memory remoteness spanning days, weeks, and
months. They demonstrated that hippocampal ripples, high-frequency (~80-100 Hz in humans)
oscillatory events in hippocampal local field potentials, correlate with memory remoteness and promote
communication across large-scale networks. According to the authors, their findings “support theories
that emphasize richer hippocampal representations of remote memories (e.g., the multiple trace
theory)”26, which conflicts with SCT. SCT emphasizes that the MTL’s role should be diminished over
time. While SC'T doesn’t posit that M'TL traces are entirely removed, a simplistic but common narrative
derives itself from SCT: that fully consolidated memories (episodic or semantic) may completely lose
their dependency on the hippocampus!??7-28 which we refer to hereon as “I'race Transfer”. The validity
of these viewpoints, M'TT, SCT, and Trace Transfer, remains unclear.

Mechanistic underpinnings of systems consolidation may rely on an increased signal-to-noise
ratio of traces, although this has not been explicitly addressed by either SC'T or MTT. Specifically,
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because most learning involves strengthening synaptic connections throughout the brain, intense
learning is poised to increase cellular needs for energy and supplies, move synapses close to saturation,
and decrease signal-to-noise ratios?. Sleep is the principal mechanism that renormalizes net synaptic
strength and restores cellular homeostasis, while maintaining certain memory traces?’. In this regard,
retaining memories—through sleep or other consolidation mechanisms—may result in the
reorganization of the synaptic landscape to promote desaturation, and thus improve signal-to-noise
ratios of surviving traces at the systems-level. Simulation models and recent studies in mice have indeed
supported this perspective3? 32, However, more evidence is necessary to advance this hypothesis.

Here we utilize the recently acquired, publicly available Natural Scenes Dataset (NSD), an
unprecedented resource to study memory consolidation®3. Over 300 days, eight subjects participated in
weekly 7-Tesla functional magnetic resonance imaging (fMRI) scans while exposed to the NSD;
~135,000 trials (~2/3 of total trials) involved subjects seeing an image that was previously presented in
the experiment. We first examined the relevance memory consolidation models in describing trace
evolution. Does natural scene image recognition, which we presume to be episodic in nature, continually
rely on the MTL over time as MT'T suggests, or are these traces transferred to cortex as suggested by the
Trace Transfer thesis? Furthermore, in regard to MTT, can MTL time dynamics be explained by a
precise mathematical model formulated in the early MTT literature? And can the timescale (days vs.
minutes) of trace evolution be distinguished from different mathematical frameworks? In the latter part
of this work, we investigated the hypothesis that increased signal-to-noise ratio of brain traces would
occur over time. Specifically, we tested whether the relative BOLD enhancement of surviving traces over
time 1s linked to the concomitant deletion of other traces (i.e., forgetting). Finally, because the MTL is
proposed to bind content-relevant cortical modules, we assessed whether the specific MTL connectivity
changes according to specific image-feature content.

Results

Data Volume and Memory Performance

The NSD experiment used ultra-high-field fMRI (7T, whole-brain, 7o*-weighted gradient-echo
EPI, 1.8-mm resolution, 1.6-s TR) to acquire blood oxygen level-dependent BOLD responses in each of
8 participants who viewed 9,000-10,000 distinct, color natural scenes (22,500-30,000 trials) in 3040
weekly scan sessions over the course of a year. In each scan session, 750 images were shown. A trial here
1s defined as one 4-second image presentation (3 second image presentation followed by 1 second
fixation). Images were from Microsoft’s Common Objects in Context (COCO) image database
(www.cocodataset.org). As participants fixated a central point, they performed a continuous recognition
task in which they judged whether they had seen each image at any time during the experiment, either
in the current scan session or any previous scan session (Figure 1A). Hereon “rep0” designates a trial
where a novel image was shown, and “repl” and “rep2” designate repetition trials upon their second
and third presentations, respectively. Most repetitions (repl/rep2) were acquired in sessions and trials
that were temporally near a preceding presentation (Figure 1B,C); the exact placement of all trials was
chosen according to a mixture of a von Mises and uniform distribution (see33).

The NSD dataset demonstrates that subjects not only could accurately recognize images within a
session (average = 90.69% hit rate), but their recognition persisted over an extended period of time. In
Figure 1C we plot the adjusted hit rate, which is the hit rate (rate of repl/rep2 remembered) minus the
false positive rate (rate of rep0 images identified as old, plotted for reference) over 10-day windows. The
adjusted hit rate for repl and rep2 images remains above zero even at 200 days. While the volume of
applicable repetition trials decreases as the time-window from the previous repetition gets longer, there
still are ample samples even at the 200-210 day time-window: N=714 repl, N=496 rep?2 trials. While the
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NSD maximum distance extended for 300 days, our analysis was limited to 210 days because the
adjusted hit rate rapidly approached 0 after this time point (in addition to smaller sample size). For an
extended discussion of the memory metrics of this NSD, see ref33.

MTL Activation During Recognition Increases Over Time, In Support of MTT

For this study, anatomical regions-of-interest included the most commonly considered parcels of
the M'TL: the hippocampus proper (HP), parahippocampal cortex (PhC), perirhinal cortex (PrC), and
entorhinal cortex (ErC) (Figure 2A). Because of a broad literature supporting a differential long-axis of
the hippocampus proper?*, we split HP into an anterior and posterior portions.

We first assessed whether the M'TL activation significantly increased over time among
recognized images, which M'T'T would suggest under the assumption that BOLD activation can indeed
be used as a proxy for ‘trace density’. We compared activations per each M'TL region between within-
session image recognition (Day 0) and outside-session (> Day 0) recognition among successful repl &
rep? trials. We indeed found that outside-session image recognition activation was significantly greater in
each MTL parcel besides the posterior HP (Bonferroni-corrected p < 0.05) (Figure 2B). Upon further
separating the data among each subject, we found that medium effect sizes were present in PhC and PrC
(d~0.3), while small effect sizes were present in the anterior HP and ErC (d~0.1) (Figure 2C). To further
characterize these increases, we plotted the activation time-course of each parcel with LOWESS plots
(Figure 2D,E).

Classifier Model Shows MTL and Cortex Remain Steady Across Time

To investigate changes in brain regions’ contributions to recognition over time, we applied a
multivariate classifier model of BOLD activations to predict successful vs. unsuccessful recognition. This
pattern analysis approach allowed us to quantify sets of brain regions that optimally contributed to
image recognition, with the goal of comparing Trace Transfer (i.e. decreasing MTL and increasing
Visual contributions with time) vs. MTT models (i.e., maintenance or increase of M'TL and Visual
contributions over time). A multivariate logistic regression classifier was applied with the MTL and
Visual sets on their own and in combination with one another (5,25, and 30 ROIs, respectively) in
outside- vs. within-session recognition (Figure 3A). We report the cross-validation balanced accuracy in
classifying correct vs. incorrect responses among repl recognized images. To simplify any
interpretations, we focused on repl images for this and all following analyses (Figures 3-6), which do not
incorporate “re-consolidation” effects. The Trace Transfer model would assume that MTL would be
most predictive of recognition early (with little to no contribution from the visual system), and the visual
system would be most predictive of recognition later, with little to no contribution from the MTL.

The trace contributions between early and late recognition were not significantly different,
neither the main effect of session (within vs. outside; F=3.0 p=0.12) nor the session x regions-of-interest
(ROI) interaction (F=1.3, p = 0.29). The main effect of ROI combinations (BOLD activations within
MTL, Visual System, and MTL + Visual System sets) was highly significant (F=46.8,p<0.0001): for the
outside-session recognition condition (Figure 3B), the 25 visual ROIs and the 5 MTL ROIs in
combination showed the best mean balanced accuracy at 59.6%. This was significantly better than the
visual system (58.6%), at a p (corrected) of 0.027. The Medial Temporal Lobe showed 56.4% balanced
accuracy. Early recognition (within-session) accuracies included the MTL+VS-63.1%, Visual System-
61.9%, Medial Temporal Lobe-58.2%. We also provide a supplementary analysis separating early
memory, intermediate memory, and later stage memory, which did not alter our initial conclusion since
there was no significant effect across time-points (Sup. Figure 3).

Time-Dynamical Modeling Further Corroborates MTT
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We next evaluated the time-evolution of MTL activation with two time-dynamical models. The
first model we test is derived according to MT'T principles (Figure 4A). The second model is the
Memory-Chain Model®. The latter model is most representative of Trace Transfer, as it hypothesizes a
complete trace transfer from a lower-level store to a higher-level store (from working memory neural
systems to the medial temporal lobe, or from medial temporal lobe to neocortical system).

The MTT model by Nadel and colleagues?! assumed that (a) MTL traces expand over time, (b)
this expansion rate decays with time (with a preferential effect on more recent memories to expand as
opposed to older memories), and (c) these traces are vulnerable to natural degradation or interference
(replacement with newer traces). The Multiple-Trace Model that was applied to the BOLD data here is
provided below (1):

t
. t

TI, = e 4 eE_Ktafef dx
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X

K
X
Parameters referenced here include trace intensity Ty, the average intensity of traces per

memory at time stamp 7; K 1s the constant forgetting rate; a is the total replication rate, which is
constant ; o quantifies the replication rate decay function, which decreases exponentially with memory
age.

The Memory-Chain Model?> assumes that memory representations in a store decline in strength
while trying to induce new representations in higher-level more permanent stores; one process induces
another, more permanent process. The Memory Chain Model can potentially be applicable to either the
within-session (short) or outside-session (long) timescale. A complete removal of the early-store gives the
following “relative-retrograde” curve where only the late-store can contribute to a memory:

_ _at_l -1
lezc‘h(lﬂ—el)_Fl 2)
2

a, represents the early-chain decline and a, is the late-chain decline. p; and u, are the early-
chain and late-chain growth parameters, respectively. ¢ is a constant that marks the height of the
asymptote.

Both neurobiological models were fit to MTL activations in the within-session (Figure 4B) and
outside-session (Figure 4C) timescale. The Memory Chain model showed strong fits to the within-session
timescale: anterior hippocampus R?=0.8, PrC R?=0.93 and PhC R?=0.88. The Multiple-Trace model
showed poor within-session fits: anterior hippocampus R?=0.34, PrC R?=0.64 and PhC R?=0.51.
However, this model performance shifted when analyzing the outside-session timescale. The Multiple-
Trace model here showed an excellent outside-session fit: R2=0.97 and R?=0.91 in PhC and PrC
respectively compared to the Memory Chain Model (R?=0.68 and R?=0.50).

As hypothesized, the outside-session timescale was fit well by the MT'T mathematical model.
While a separate Memory-Chain mathematical model explained outside-session evolution quite well,
which is valuable in its own right, it could not explain the prolonged evolution of memory traces as well
as MTT. Using a least squares optimizer from the Imfit Python package?® to obtain Bayesian
Information Criteria (BIC), we indeed found better PrC/PhC Multiple-Trace Model vs. Memory Chain
Model fits for outside-session evolution (PrC/PhC BIC = -129/-133 vs. -102/-95.9, respectively).

Does increased Signal-to-Noise Ratio Underlie Relative BOLD Enhancement?
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To investigate the hypothesis that an increase in signal-to-noise ratios underlies trace
consolidation with time, we tested for a potential association between change in memory performance
(forgetting) and the increase in MTL activation upon recognition. Specifically, we hypothesized that the
increased rate of forgetting here should represent reduced noise among those surviving memories, which
should thus translate to a stronger averaged BOLD signal among the surviving memory traces.

In computing the subject-specific derivative of memory recognition across sessions (hit rate), we
found considerable variation across subjects. Still, the peak of the memory loss rate usually occurred at
around 5 days, and the derivative stabilized at around 15-20 days (Figure 5A). Crucially, we found that
the peak forgetting rate of repl images significantly correlated with the peak increase in M'TL activation
of surviving memory traces (i.e., those correctly recognized) within the PrC (r=-0.88, Bonferroni-corrected
p=0.008) and PhC (r=-0.82, Bonferroni-corrected p=0.02; Figure 5B). Anterior HP (r=-0.71) and
posterior HP (r=-0.51) were not significant. Furthermore, when we tested the association of the outside-
session repl peak forgetting rate with the increases in PrC/PhC BOLD activation of rep] trials within a
session, we did not find any significant effect (Figure 5C).

Changes in Connectivity for Feature-Specific Recognition Over Time

We next tested whether specific features of the images modulated changes in MTL connectivity.
Thus, we asked whether changes in MTL connectivity to neocortex were dependent on the type of
image recognized. We focused on face images and confined this connectivity analysis to the specialized
occipital face area (OFA) and two fusiform face areas (FFA1, FFA2) as provided by the NSD project for
each subject. This line of results was more focused on image-features since the M'TL serves to bind
specific, content-relevant cortical modules?3. We had a priori interest in the PrC as a ‘seed’ because of its
selectivity to faces and object memory37-38. Using the cortical face areas as separate dependent variables,
we performed a three-way (seed x time x face) interaction test with a linear mixed-effects model (Figure
6B), to test whether in these regions the decline in connectivity differed between face images, which can
be considered the “signal”, and no-face (noise) images.

The strongest interaction effect for each face-selective region peaked within a window of 1-20
days since the most recent image presentation. The interaction peak effect was strongest in the OFA
(Bora_interaction = 0.025 +/-0.013, p=0.0001), but the other face-selective regions were also significant
(Brra1 interaction = 0.019 +/-0.012, p = 0.002; Brraz interaction = 0.019 +/-0.01, p = 0.005). These
interactions were further investigated post-hoc by calculating the correlations within the session of interest
and face vs. no-face groupings at the peak magnitude of the interaction effect (trials 1-20 days since the
recent image presentation). This analysis suggested that the interaction effect was driven by a more
significant decrease in connectivity in non-face image recognition over time (Figure 6).

To evaluate the specificity of this effect to the outside-session timescale (i.e., across days), we also
applied the same connectivity analysis to the short within-session timescale (i.e., across trials). There was
no significant (Bonferroni p < 0.05) seed x time x face interaction on the within-session timescale (Sup.
Figure 4) in either the PrC-OFA, PrC-FFALI, or PrC-FFA2 connectivity.

Discussion

In this work we used the recently released Natural Scenes Dataset to test either M'T'T or Trace
Transfer in understanding systems consolidation. We employ “I'race Transfer” to represent a more
simplistic narrative of SCT, where MTL traces are thought to perhaps entirely transfer from MTL to
cortex. Specifically, we found that increased M'TL activity is associated with recognition at both early
and late time-points. The time-dynamical properties of the M'TL suggest that surviving traces become
more robust in the weeks after encoding and persist over extended periods of time (>200 days) with
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slight decline. Our classifier analysis also demonstrated that both the MTL and visual cortex supported
image recognition at early and late time-points, which distinctly contrasts with the concept of Trace
Transfer. Furthermore, the PrC and PhC outside-session evolution showed an excellent fit to an early
mathematical model of M'TL trace strength by Nadel et al.?!.

The applied MT'T time-dynamical model is based on the idea that episodic memories expand
their traces within the MTL over time upon repeated reactivations?! or implicit/offline reactivations!©.
This process 1s thought to offer a protective effect to partial MTL damage, whereby any intact trace
could contribute to successful recognition if others are lost. Extra-hippocampal M TL structures (PhC
and PrC) showed the strongest evidence for increased activation across sessions, yet the anterior HP and
ErC still demonstrated a small but significant group-wise effect of increased activation when considering
outside-session vs. within-session recognition. This small but significant effect in anterior HP should be
emphasized, as it relies on the vast sample size, timescale, and high-field resolution of the current
experiment. Perhaps related to shortcomings among those attributes, one recent image recognition
experiment did not find such a significant effect using the entire hippocampus as an ROI'*. While there
are difficulties in interpreting the BOLD activations only with respect to memory retrieval as opposed
other cognitive processes (see Limitations), these results may indeed reflect a richer trace contribution of
the MTL over time. Lesions in extra-hippocampal MTL regions (PrC/PhC/ErC) have indeed been
implicated in more severe amnesia when compared to damage restricted to HP3%39, And while there are
undoubtedly functional intricacies and interactions within the MTL, from our understanding the early
work of SCT* and MTT?! lumped together the PrC, ErC, PhC and hippocampus proper for their
model formulations. We believe this to be a useful dichotomy (M'TL vs. cortex), which guided our
analyses here.

The precise fit of the MTT time-dynamical model to the outside-session activation data is
remarkable when considering that it was formulated roughly 20 years ago. The separate Memory Chain
Model did not perform nearly as well on the outside-session timescale as the Multiple-Trace Model.
However, the Memory Chain Model did perform well on the within-session timescale. This model
presupposes that a rapidly declining initial chain (assumed here to be cortical areas involved in working
memory) is transferring traces to a more permanent chain (assumed here to be MTL). In summary, the
shift of model performance from the short to long timescale suggests that a differential mechanistic
process 1s indeed occurring for systems-level (i.e., outside-session) transformations.

A classifier model to predict image recognition via a multivariate pattern analysis provided more
evidence against Trace Transfer. Specifically, the results of this analysis do not indicate a
representational transfer from MTL to the neocortex (specifically, visual cortex) for natural scene image
recognition. Instead, trace contributions (as measured by predictive ability to discriminate successful
recognition) from the visual system and M'TL occur at both early and late time-points. Also, our classifier
analysis showed the best accuracy for the MTL and visual cortex in combination, and only at outside-
session recognition. This may be another indicator of improved specificity in M'TL and visual cortex
connectivity (among a backdrop of decreased connectivity for the broader M'TL and visual cortex) that
resulted in better predictive capability of recognition.

The significant association between the magnitude of overall memory decline and increased
PrC/PhC activation among remembered repl trials (across subjects) is interesting to consider in the
context of trace expansion. While trace “replicas” may indeed be instantiated with time as initially
proposed, we offer evidence that a growing signal-to-noise ratio (i.e., reduced noise over time) in the
MTL may be a complementary factor3? supporting memory consolidation. In other words, as many
memory traces with similar “time-stamps” degrade at a rapid rate, the neural signature of the intact ones
could expand accordingly because of the reduction of interference/noise by competing traces. The
relative increases in BOLD responses over those days may thus result from the preservation of some



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

traces in the context of a net decrease in synaptic strength during that time, or from the formation of
multiple traces?.

Functional connectivity of the cortex with the hippocampus is known to increase when events are
remembered as opposed to forgotten*!. In support of a role of the hippocampus to ‘bind’ disparate
cortical modules*?, recent work found that distinct inter-network connections of the MTL (perirhinal and
parahippocampal aspects) with neocortical areas indeed tracked the precision of remembering certain
episodic memory aspects by their item-feature or spatial-context quality*3. A content-general
connectivity analysis (Sup. Figure 2) shows broad decreases in MTL-VS connectivity upon recognition
over time. This analysis appears to be more in line with SCT predictions of “fast-changing” MTL-VS
diminishing connections to potentially be replaced with slower cortico-cortical connections.
Furthermore, we don’t know to what extent that image recognition here may be transitioning from an
episodic to semantic representation over time (which both theories allow). One possibility is that the
decrease in MTL BOLD activity after the peak—which MTT describes as a decreasing trace-replication
rate combined with interference—may allow for semantic representations to form in cortical
representations, which SC'T emphasizes. Future work may shed more light on this question.

While the positive effects of sleep on memory consolidation and integration are well established,
the underlying mechanisms remain highly debated. According to the synaptic homeostasis hypothesis
sleep allows a renormalization of synaptic weights after learning has led to a net increase in synaptic
strength, a claim supported by molecular, ultrastructural and electrophysiological evidence?%.
Renormalization keeps the high energy costs of synaptic activity under control and avoids synaptic
saturation. It also promotes memory consolidation by increasing the signal to noise ratio, because sleep-
dependent synaptic weakening is hypothesized to be selective and afford relative protection to the
synapses engaged by new learning. Supporting this idea, a recent study found that sleep promotes the
consolidation of a motor skill by broadly weakening synapses that did not potentiate during encoding,
thus providing a relative advantage to the “learned” synapses®2. Another proposed mechanism for sleep-
dependent memory consolidation is the further strengthening, during sleep, of the synaptic connections
potentiated by learning!3#*. This process is thought to occur by the sequential reactivation of specific
neurons and synapses during cortical slow oscillations and hippocampal sharp-wave ripples*>*7. The
current experiment was not designed to test whether the offline consolidation of some memories
occurred during sleep or wake, but an obvious difference between within- and outside-session
recognition 1is that multiple sessions are separated by several days, which include multiple episodes of
sleep. We found that the peak forgetting rate of repl images was correlated with the peak increase in
MTL activation of survwing memory traces. Furthermore, while there were widespread decreases in
recognition-related connectivity over time between MTL and visual cortex, specific functional
connections relevant to image features (faces) remained resilient as compared to no-face images. Like
the correlation between peak forgetting rate and BOLD activation of surviving memory traces, the
interaction between time and feature-related connectivity was present over the weeks following the
encoding of successfully recognized images but not over minutes and hours within the encoding session.
Therefore, the successful recognition of some images depended on the forgetting rate of all other images
over weeks but not within a single session. Similarly, the successful recognition of face images was
associated with a decline in functional connectivity between M'TL and cortical face areas over weeks but
not within a single session, and this decline was mainly driven by the no-face images. This offline, long-
term (across sessions) effect may reflect feature-irrelevant “noise removal” among the surviving,
distributed traces. The OFA encodes low-level image-based properties, while FFA-1/2 encode complex
social traits®®. We assume MTL connectivity to these cortical modules is necessarily maintained for face
recognition at the expense of MTL connectivity to those same cortical modules during recognition of
scene images without faces.
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In principle, an increase in the signal to noise ratio is compatible both with synaptic down-
selection??? and with sleep-dependent synaptic strengthening!3#*. On the other hand, the finding that
BOLD activation of surviving memory traces was correlated with peak forgetting rate may be more in
line with the idea that sleep serves to maintain overall synaptic strength, which requires protecting some
synapses at the expenses of others. In summary, the qualitative difference between memory
consolidation within and outside sessions suggests that factors other than simple passage of time may be
involved. Whether sleep is one such factor, and the underlying mechanisms, will require direct
experimental tests.

Limitations

We interpret changes in brain activity upon image recognition over time as associated with
retrieval-related, recollection processes (or ‘trace density’) to compare memory theories. However, there
are other cognitive processes occurring simultaneously to retrieval that are likely contributing to the
BOLD signal. These include (a) cognitive effort (i.e., task difficulty), (b) familiarity as opposed to
recollection, or (c) re-encoding. Regarding cognitive effort, our reported PrC/PhC MTL time-evolution
curves don’t reflect a simple linear increase to ultimate peak, as might be expected when only
considering task difficulty. Instead, this curve is parabolic, which M'T'T concisely parameterizes with
trace ‘growth rate’, ‘growth rate decrease’, and ‘interference’. With familiarity, the present analysis did
not employ the common “Remember vs. Know” study paradigm*?-5°, which treats recognition
confidence as a proxy of episodic vs. semantic memory systems. The inferotemporal cortex and even
PrC have been previously implicated in image familiarity detection, but the direction of such modulation
in the PrC is unclear®!. In one item recognition task by Ritchey et al.’, no significant difference was
found in anterior HP, PrC, and PhC activity via a Recollection vs. Familiarly contrast in either
immediate or delayed time-points. Finally, re-encoding likely occurred during repetition trials, and its
impact on the analyzed BOLD signal is unknown. The combination of these factors must be considered
while interpreting the current results.

Methods

We analyzed data from the Natural Scenes Dataset, which is freely available at
http://naturalscenesdataset.org. The 8 participants included two males and six females, and an age
range of 19-32 years (see Sup. Table 1). The starting point for all analyses in this work were the version
3 betas “b3” as shared through the NSD project. These betas correspond to the percent BOLD signal
change (relative to the blank image presented) before the image stimulus. We provide a basic
explanation of b3 betas in the Supporting Information, an exhaustive explanation regarding the b3
extraction can be found in the original data paper?3.

Regions-of-Interest

All analyses included regions-of-interest, where betas were averaged over that space: 5 medial
temporal lobe regions, 25 visual system regions, and 3 specialized face cortex regions. The automated
segmentation of the hippocampus (ASHS) tool (ashs-fastashs_2.0.0) was applied using the IKND
Magdeburg Young Adult 7T Atlas®? to segment the medial temporal into bilateral anterior hippocampus
(ant hp), bilateral posterior hippocampus (pos hp), bilateral entorhinal cortex (ErC), bilateral perirhinal
cortex (PrC), and bilateral parahippocampal cortex (PhC). Anterior/posterior hippocampus were
separated at y = -27 (MNI reference).

When investigating the visual system (Figures 3/6), 25 ROIs were utilized from the Kastner
atlas’3. Three face ROIs (utilized in Figure 6) were derived per subject through the NSD fLoc experiment



418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442

443
444
445
446
447
448

449
450
451
452
453
454
455
456
457

458

459
460
461
462

10

(separate from the continuous recognition NSD experiment). These ROIs included the occipital face
area (OFA), and two fusiform face areas (FFA1, FFA2). In a supplementary analysis, the Yeol7 network
parcel was also used®.

Outside vs. Within-Session Recognition

In Figures 2B/2D/2E, raw betas are shown to display the percentage blood-oxygenation level
dependent (BOLD) activation per trial. Correctly recognized, repl/rep?2 trials were extracted from all
sessions. A linear logistic regression classifier was applied to different groups of features (MTL, VS,
MTL+VS). Only repl trials were considered, and only the betas were further grouped (per session) to be
standardized before analysis. Models were trained within each subject according to a randomly shuffled
k-fold (inner=20 splits; outer=40 splits) nested cross validation procedure (via sklearn’s cross_val_score
method). Mean balanced accuracy, grand averaged across sessions and subjects, was applied as our
metric of interest. Differences in balanced accuracies between feature sets were identified with a mixed-
effects model accounting for random intercepts of subjects. A difference among balanced accuracies was
tested with a two-way, repeated measures ANOVA (using a mean aggregate function per subject). Each
sample here corresponds to the balanced accuracy of one cross-validation fold, and there were 40 folds
per subject. Because feature groupings were found to be significantly different in the ANOVA, post-hoc
differences were then assessed between feature groupings (e.g., Within-Session M'TL vs. Within-Session

VS).

Memory Model Fits
Using eight simple assumptions, the Multiple-Trace Theory model?! is based on the following
first-order differential equation (3) and initial condition (4):

9 - _ ) P _
P u(t,t) + xu(t, t) = ab(t—1) Z0 +6(t—1) (3)

u(t,0) =0 (4)

Furthermore, their primary model assumed an exponential decrease in trace formation rate with
memory age (5):

t—-1

p(pT,t) =€ o (5)

Parameters referenced here include p, the mean number of traces per memory at time stamp 7; t

corresponds to the total time-points in the model; k 1s the constant forgetting rate that can be interpreted

as the total trace formation rate times the probability that a newly created trace will destroy a given trace

by interference; a is the total replication rate, which is constant; p is the replication rate decay function,

which decreases Z is a normalization constant; 6 is a heavidside step function; § is the Kronecker delta.
The Memory-Chain Model is derived from a two-process intensity model:

T, = pye- %t 4 B2 (pmazt _ p-aity (6)
a;—ay

a, represents the early-chain decline and a, is the late-chain decline. p; and pu, are the early-chain and
late-chain growth parameters, respectively. Of note, a, is assumed to be much larger than a; and thus
was taken to be zero in Equation 2.
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Mean changes in repl beta activation since time after the last image presentation were extracted
by encoding dummy variables (days since most recent image presentation) in a linear mixed-effects
model. For Figure 5, the M'T'T model was fit to the outside-session data per subject. The percent
increase was calculated based on the peak of the model fit. More information is provided in Supporting
Information. Furthermore, in a supplementary analysis, we investigated potential shifts in signal
‘baseline’ across sessions (see Supporting Information). Toward this end, we regressed out the session-of-
recognition variable. Our findings and interpretations remained consistent after this procedure.

Connectivity

A seed by time by face interaction was assessed with a linear mixed-effects model. Trials included
in the model varied with a maximum cutoff of days since most recent image repetition, and was tested at
max day of 10, 20, 30, 40, 50, 75, 100, 125, 150, and 200. The number of trials per category that
powered this analysis is provided in Sup. Table 3, which provides evidence against any potential bias due
to sample size. No interaction effect remained significant when the analysis was limited to images that
were not successfully recognized. A content-general connectivity analysis was also applied between all
MTL and VS ROIs (Sup. Figure 2) and is described in the Supporting Information.
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Figure Legends

Figure 1. Natural Scenes Dataset: Stimuli, Hit Rates, and Data Volume. (A) Example of
image presentations and their repetition “repl” (image previously seen once) or “rep2” (image previously
seen twice) designations. For each 4 second trial, each subject was asked whether they had seen the
image before. (B) Unmarked lines on top (Y axis, left) show the within-session hit rate, i.e. proportion of
repetition images recognized, which remains high (average = 91%). Red crosses and blue circles mark
the number of trials across subjects at that specific time point (binned every 10 days) for Rep 1 and
Rep2, respectively (Y axis, right). Time since last image repetition (repl minus rep0, or rep2 minus rep!l)
1s on x-axis, in trials. (C) Unmarked lines on top (Y axis, left) show adjusted hit rate (hit rate — false
positive rate) where random guessing would result in an adjusted hit rate of O (dashed line). Red crosses
and blue circles mark the number of trials across subjects at that specific time point (binned every 10
days) for Rep 1 and Rep2, respectively (Y axis, right). Time since last image repetition (repl-rep0 or
rep2-repl) over extended time period (1-200 days).

Medium [11x4.44 cm)]

Figure 2. Medial Temporal Lobe Regions-of-Interest & Outside- vs. Within-Session
Recognition Differences in Activation/Evolution. (A) Medial Temporal Lobe regions of interest
identified with automated segmentation of hippocampus (ASHS) tool in one subject. (B) Activation (%
increase in blood-oxygen level dependent signal after image presentation) differences between within-
session vs. outside-session recognition conditions, per MTL ROI, along with associated p-value and
effect size. (C) Differences in effect-size among outside- minus within-session recognition among subjects.
Significance corresponds to Bonferroni-corrected p < 0.05. (Bottom) Evolution of activation across trials,
within-session (D), and across days, outside-session (E). Locally weighted scatter plot smoothing
(LOWESS) 1s shown in black, and the mean is shown with a dotted line. Only correctly recognized
repl/rep?2 trials are shown. Error estimates on scatter plots are 95% bootstrap confidence intervals.
Medium [11x6.44 cm)]

Figure 3. Early and Late Trace Contributions from ROI Activation Patterns. (A) ROI
activations used as features in classifier analysis (from Subject 1). Colors correspond to combined N=5
Medial Temporal Lobe parcels and N=25 Visual System (Kastner Atlas) designations. (B) Recognition
success was tested per subject on repl images by using a logistic regression model with a combination of
ROI feature sets. Training/testing was done per subject. Marked x’s show significance (P<0.05)
pertaining to distribution of balanced accuracy (average of sensitivity and specificity, also plotted) of 500
iterations of shuffled labels. N=25,753 Early (or, within-session) repl image samples and N=46,091 late
(outside-session) repl image samples were collected. MTL — Medial Temporal Lobe included 5 ASHS
ROIs, VS = Visual System included 25 Kastner Atlas ROIs, and in combination (“ALL”) there were 30
distinct ROIs. Boxes/whiskers entail 25t-75t/5th-95%h percentile.

Small [9x4.84 cm]

Figure 4. Memory Chain Model Fits Outside-Session While Multiple-Trace Model Fits
Within-Session MTL Evolution (A) Summary of variables within each model. Each model is fit to
PhC/PrC neural activation evolution among (B) within-session and (C) outside-session activation
evolution along with a labeling of associated variables. Analytic model fit to repl/rep2 neural activation
data upon recognition (increases were assessed by parameter estimates from dummy encoding). The
right column designates the explained variance from each corresponding model, averaged from both the
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PrC and PhC fits. Neural activation was uniformly shifted along the y-axis so that the mean of activation
at Day 0 (within-session recognition) was in accordance with each model’s initial condition. Error bars
represent 95 percent confidence intervals of parameter estimate.

Small [6x5 cm]

Figure 5. Overall Forgetting Rate Associates with MTL BOLD Signature of Surviving
Memory Traces Across Individuals. (A) The derivative of the smoothed ‘“forgetting curve’
[remembered trials/(remembered + forgotten trials)] for each subject across 1-15 days since the previous
image repetition for repl presentations. Circles designate the peak forgetting rate for each subject, which
occurs at around 5-9 days and eventually stabilizes at around 15-20 days. Derivative is z-scored from 0-
250 days data. (B) Scatter plots showing the correlations between competing memory loss (x-axis) and
surviving memory BOLD increase (y-axis) for each subject among the anterior HP, posterior HP, PrC
and PhC. PrC and PhC fits were significant, corresponding to p corrected < 0.05. BOLD %-Increase
corresponds to changes from average within-session recognition to peak of curve fit (via multiple-trace
theory model) per subject (see Figure 3). (C) As a control analysis, the peak outside-session repl
forgetting rate was also correlated with the within-session BOLD increases among the PrC/PhC parcels
(increased BOLD at trial 350; y-axis). No significant association was found.

Small [5x4.27 cm]

Figure 6. General and Feature-Specific MTL Connectivity Time Evolutions Feature-
Specific, Consolidative Connectivity: Occipital Face Area (OFA) in red, Fusiform Face Areas | & 2 in
green and blue, and Perirhinal Cortex defined within a given subject. Seed x time (days) x face
interaction beta estimates for each MTL ROI designation within a linear mixed-effects model, where
OFA activation was the dependent variable. Betas were calculated across various timepoint cutofls since
the last image presentation (10,20,30,40,50,...,200). 95% confidence intervals of beta estimates are
displayed, and a circle/asterisk denotes significance at p < 0.05, corrected. Correlations of each
condition of interest, where trials were cutoff to recent repetitions of 20 days or less. Distribution
corresponds to correlations derived from N=1000 bootstrap resamples with replacement. Only correct
repl trials were considered.

Medium [11x4.91 cm)]
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