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Abstract (249/250 words) 15 
The brain mechanisms of memory consolidation remain elusive. Here we examine blood oxygen level-16 
dependent (BOLD) correlates of image recognition through the scope of multiple influential systems 17 
consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic 18 
resonance imaging human study in which ~135,000 trials of image recognition were conducted over the 19 
span of a year among 8 subjects. We find that early- and late-stage image recognition associates with 20 
both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a 21 
multivariate classifier. Supporting Multiple-Trace Theory (MTT), parts of the MTL activation time-22 
course show remarkable fit to a 20-year-old MTT time-dynamical model predicting early trace intensity 23 
increases and slight subsequent interference (R2>0.90). These findings contrast a simplistic, yet common 24 
view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL 25 
trace signature of memory consolidation should also reflect synaptic ‘desaturation’ as evidenced by an 26 
increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among 27 
surviving memories is positively linked to the rate-of-removal (i.e., forgetting) of competing traces. 28 
Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity 29 
suggests that consolidation mechanisms improve the specificity of a distributed trace. These 30 
neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, 31 
offline process. While recognition can potentially involve cognitive processes outside of memory retrieval 32 
(e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary 33 
consolidative memory mechanisms.  34 
 35 

Significance Statement (120/120) 36 
How do the neural correlates of recognition change over time? We study natural scene image 37 
recognition spanning a year with 7-Tesla functional magnetic resonance imaging of the human brain. 38 
We find that the medial temporal lobe (MTL) contribution to recognition persists over 200 days, 39 
supporting Multiple-Trace Theory and contradicting a Trace Transfer (from MTL to cortex) point of 40 
view. We then test the hypothesis that the signal-to-noise ratio of traces increases over time, presumably 41 
a consequence of synaptic ‘de-saturation’ in the weeks following learning. Indeed, the fMRI trace 42 
signature associates with the rate of removal of competing traces and reflects a time-related 43 
enhancement of image-feature selectivity. We conclude that multiple MTL traces and improved signal-44 
to-noise may underlie systems-level memory consolidation45 
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 46 
Introduction 47 

 48 
Systems consolidation refers to the reorganization of a memory trace with prolonged time and 49 

experience across large-scale neuronal networks1. The precise mechanisms underlying this process 50 
remain unclear, but the end result includes the stabilization of certain memories, the equally vital 51 
forgetting of non-essential information2, as well as the transformation of some memories into more 52 
behaviorally adaptive or gist-like representations3. Influential theories of systems-level consolidation are 53 
largely built upon the seminal observations that varying medial temporal lobe (MTL) damage causes an 54 
inverse memory effect, whereby the ability to recognize recently encoded memories is reduced while many 55 
older memories (weeks to years) remain intact4.  56 

Theoretical approaches to explain these findings began with The Standard Consolidation 57 
Theory (SCT), which proposed that MTL contributions to any memory trace diminish over time5. 58 
Alternatively, Multiple-Trace Theory (MTT), put forward in 1997, clarified inconsistencies of this 59 
standpoint with many experiments showing that MTL lesions caused more severe retrograde amnesia 60 
for episodic than for semantic memories6,7.  For example, Bright et al.8 showed limited retrograde 61 
amnesia for a variety of tests of public events and personalities (semantic memory) while, for 62 
autobiographical episodes, a retrograde amnesia extended back further. Episodic memories contain 63 
elements often in the form of visual images9 that are recollected within some overlaying context10. MTT 64 
posited that an episodic memory must rely on the MTL, and on multiple content-relevant cortical 65 
modules, across its entire lifespan, not just the beginning. Early MTT developments emphasized that 66 
episodic memory reactivations—which occur during conscious recall or recognition, but also during 67 
‘offline’ memory replays11 within waking quiescence and sleep12,13—lead to a rich distributed network of 68 
multiple, overlaid traces in the MTL over time. This process, coined as ‘trace expansion’, would 69 
presumably provide memory protection from partial lesions.14 Within the human fMRI literature, there 70 
are conflicting reports14 showing both SCT-predicted decreases in hippocampus activity during 71 
recall(e.g.15–17) and MTT-predicted increases in hippocampus activity during recall(e.g.18–20). Most of this 72 
prior work has a limited time perspective (with only 3 or less time points), and brain measurements were 73 
not acquired with high-field fMRI. Moreover, while multiple time-dynamical analytic models of MTL 74 
trace intensity have been inspired by the non-linear probability time-curves of retrograde amnesia21, to 75 
our knowledge there has not yet been any application of these mathematical formulations to functional 76 
human neuroimaging data due of the paucity of time-points and samples.  77 

The analysis of the connectivity between the MTL and the neocortex offers a crucial perspective 78 
of systems-level memory consolidation3. Intracranial human studies are now establishing precise timing 79 
links between the hippocampus and content-relevant cortex necessary for memory retrieval22–26. For 80 
instance, Norman et al.26 investigated autobiographical memory remoteness spanning days, weeks, and 81 
months. They demonstrated that hippocampal ripples, high-frequency (~80–100 Hz in humans) 82 
oscillatory events in hippocampal local field potentials, correlate with memory remoteness and promote 83 
communication across large-scale networks. According to the authors, their findings “support theories 84 
that emphasize richer hippocampal representations of remote memories (e.g., the multiple trace 85 
theory)”26, which conflicts with SCT. SCT emphasizes that the MTL’s role should be diminished over 86 
time. While SCT doesn’t posit that MTL traces are entirely removed, a simplistic but common narrative 87 
derives itself from SCT: that fully consolidated memories (episodic or semantic) may completely lose 88 
their dependency on the hippocampus12,27,28 which we refer to hereon as “Trace Transfer”. The validity 89 
of these viewpoints, MTT, SCT, and Trace Transfer, remains unclear. 90 

Mechanistic underpinnings of systems consolidation may rely on an increased signal-to-noise 91 
ratio of traces, although this has not been explicitly addressed by either SCT or MTT. Specifically, 92 
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because most learning involves strengthening synaptic connections throughout the brain, intense 93 
learning is poised to increase cellular needs for energy and supplies, move synapses close to saturation, 94 
and decrease signal-to-noise ratios2. Sleep is the principal mechanism that renormalizes net synaptic 95 
strength and restores cellular homeostasis, while maintaining certain memory traces2,29. In this regard, 96 
retaining memories—through sleep or other consolidation mechanisms—may result in the 97 
reorganization of the synaptic landscape to promote desaturation, and thus improve signal-to-noise 98 
ratios of surviving traces at the systems-level. Simulation models and recent studies in mice have indeed 99 
supported this perspective30–32. However, more evidence is necessary to advance this hypothesis. 100 

Here we utilize the recently acquired, publicly available Natural Scenes Dataset (NSD), an 101 
unprecedented resource to study memory consolidation33. Over 300 days, eight subjects participated in 102 
weekly 7-Tesla functional magnetic resonance imaging (fMRI) scans while exposed to the NSD; 103 
~135,000 trials (~2/3 of total trials) involved subjects seeing an image that was previously presented in 104 
the experiment. We first examined the relevance memory consolidation models in describing trace 105 
evolution. Does natural scene image recognition, which we presume to be episodic in nature, continually 106 
rely on the MTL over time as MTT suggests, or are these traces transferred to cortex as suggested by the 107 
Trace Transfer thesis? Furthermore, in regard to MTT, can MTL time dynamics be explained by a 108 
precise mathematical model formulated in the early MTT literature? And can the timescale (days vs. 109 
minutes) of trace evolution be distinguished from different mathematical frameworks? In the latter part 110 
of this work, we investigated the hypothesis that increased signal-to-noise ratio of brain traces would 111 
occur over time. Specifically, we tested whether the relative BOLD enhancement of surviving traces over 112 
time is linked to the concomitant deletion of other traces (i.e., forgetting). Finally, because the MTL is 113 
proposed to bind content-relevant cortical modules, we assessed whether the specific MTL connectivity 114 
changes according to specific image-feature content. 115 
 116 

Results 117 
 118 

Data Volume and Memory Performance 119 
The NSD experiment used ultra-high-field fMRI (7T, whole-brain, T2*-weighted gradient-echo 120 

EPI, 1.8-mm resolution, 1.6-s TR) to acquire blood oxygen level-dependent BOLD responses in each of 121 
8 participants who viewed 9,000–10,000 distinct, color natural scenes (22,500–30,000 trials) in 30–40 122 
weekly scan sessions over the course of a year. In each scan session, 750 images were shown. A trial here 123 
is defined as one 4-second image presentation (3 second image presentation followed by 1 second 124 
fixation). Images were from Microsoft’s Common Objects in Context (COCO) image database 125 
(www.cocodataset.org). As participants fixated a central point, they performed a continuous recognition 126 
task in which they judged whether they had seen each image at any time during the experiment, either 127 
in the current scan session or any previous scan session (Figure 1A). Hereon “rep0” designates a trial 128 
where a novel image was shown, and “rep1” and “rep2” designate repetition trials upon their second 129 
and third presentations, respectively. Most repetitions (rep1/rep2) were acquired in sessions and trials 130 
that were temporally near a preceding presentation (Figure 1B,C); the exact placement of all trials was 131 
chosen according to a mixture of a von Mises and uniform distribution (see33). 132 

The NSD dataset demonstrates that subjects not only could accurately recognize images within a 133 
session (average = 90.69% hit rate), but their recognition persisted over an extended period of time. In 134 
Figure 1C we plot the adjusted hit rate, which is the hit rate (rate of rep1/rep2 remembered) minus the 135 
false positive rate (rate of rep0 images identified as old, plotted for reference) over 10-day windows. The 136 
adjusted hit rate for rep1 and rep2 images remains above zero even at 200 days. While the volume of 137 
applicable repetition trials decreases as the time-window from the previous repetition gets longer, there 138 
still are ample samples even at the 200-210 day time-window: N=714 rep1, N=496 rep2 trials. While the 139 
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NSD maximum distance extended for 300 days, our analysis was limited to 210 days because the 140 
adjusted hit rate rapidly approached 0 after this time point (in addition to smaller sample size). For an 141 
extended discussion of the memory metrics of this NSD, see ref33. 142 
 143 

MTL Activation During Recognition Increases Over Time, In Support of MTT 144 
For this study, anatomical regions-of-interest included the most commonly considered parcels of 145 

the MTL: the hippocampus proper (HP), parahippocampal cortex (PhC), perirhinal cortex (PrC), and 146 
entorhinal cortex (ErC) (Figure 2A). Because of a broad literature supporting a differential long-axis of 147 
the hippocampus proper34, we split HP into an anterior and posterior portions.  148 

We first assessed whether the MTL activation significantly increased over time among 149 
recognized images, which MTT would suggest under the assumption that BOLD activation can indeed 150 
be used as a proxy for ‘trace density’. We compared activations per each MTL region between within-151 
session image recognition (Day 0) and outside-session (> Day 0) recognition among successful rep1 & 152 
rep2 trials. We indeed found that outside-session image recognition activation was significantly greater in 153 
each MTL parcel besides the posterior HP (Bonferroni-corrected p < 0.05) (Figure 2B). Upon further 154 
separating the data among each subject, we found that medium effect sizes were present in PhC and PrC 155 
(d~0.3), while small effect sizes were present in the anterior HP and ErC (d~0.1) (Figure 2C). To further 156 
characterize these increases, we plotted the activation time-course of each parcel with LOWESS plots 157 
(Figure 2D,E).  158 

 159 
Classifier Model Shows MTL and Cortex Remain Steady Across Time 160 

 To investigate changes in brain regions’ contributions to recognition over time, we applied a 161 
multivariate classifier model of BOLD activations to predict successful vs. unsuccessful recognition. This 162 
pattern analysis approach allowed us to quantify sets of brain regions that optimally contributed to 163 
image recognition, with the goal of comparing Trace Transfer (i.e. decreasing MTL and increasing 164 
Visual contributions with time) vs. MTT models (i.e., maintenance or increase of MTL and Visual 165 
contributions over time). A multivariate logistic regression classifier was applied with the MTL and 166 
Visual sets on their own and in combination with one another (5,25, and 30 ROIs, respectively) in 167 
outside- vs. within-session recognition (Figure 3A). We report the cross-validation balanced accuracy in 168 
classifying correct vs. incorrect responses among rep1 recognized images. To simplify any 169 
interpretations, we focused on rep1 images for this and all following analyses (Figures 3-6), which do not 170 
incorporate “re-consolidation” effects. The Trace Transfer model would assume that MTL would be 171 
most predictive of recognition early (with little to no contribution from the visual system), and the visual 172 
system would be most predictive of recognition later, with little to no contribution from the MTL.  173 
 The trace contributions between early and late recognition were not significantly different, 174 
neither the main effect of session (within vs. outside; F=3.0 p=0.12) nor the session x regions-of-interest 175 
(ROI) interaction (F=1.3, p = 0.29). The main effect of ROI combinations (BOLD activations within 176 
MTL, Visual System, and MTL + Visual System sets) was highly significant (F=46.8,p<0.0001): for the 177 
outside-session recognition condition (Figure 3B), the 25 visual ROIs and the 5 MTL ROIs in 178 
combination showed the best mean balanced accuracy at 59.6%. This was significantly better than the 179 
visual system (58.6%), at a p (corrected) of 0.027. The Medial Temporal Lobe showed 56.4% balanced 180 
accuracy. Early recognition (within-session) accuracies included the MTL+VS-63.1%, Visual System-181 
61.9%, Medial Temporal Lobe-58.2%. We also provide a supplementary analysis separating early 182 
memory, intermediate memory, and later stage memory, which did not alter our initial conclusion since 183 
there was no significant effect across time-points (Sup. Figure 5).  184 
 185 

Time-Dynamical Modeling Further Corroborates MTT 186 
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We next evaluated the time-evolution of MTL activation with two time-dynamical models. The 187 
first model we test is derived according to MTT principles (Figure 4A). The second model is the 188 
Memory-Chain Model35. The latter model is most representative of Trace Transfer, as it hypothesizes a 189 
complete trace transfer from a lower-level store to a higher-level store (from working memory neural 190 
systems to the medial temporal lobe, or from medial temporal lobe to neocortical system). 191 

The MTT model by Nadel and colleagues21 assumed that (a) MTL traces expand over time, (b) 192 
this expansion rate decays with time (with a preferential effect on more recent memories to expand as 193 
opposed to older memories), and (c) these traces are vulnerable to natural degradation or interference 194 
(replacement with newer traces). The Multiple-Trace Model that was applied to the BOLD data here is 195 
provided below (1): 196 

 197 
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Parameters referenced here include trace intensity	TI!, the average intensity of traces per 200 

memory at time stamp 𝜏;	 𝜅 is the constant forgetting rate; 𝛼 is the total replication rate, which is 201 
constant ; 𝜎 quantifies the replication rate decay function, which decreases exponentially with memory 202 
age. 203 

The Memory-Chain Model35 assumes that memory representations in a store decline in strength 204 
while trying to induce new representations in higher-level more permanent stores; one process induces 205 
another, more permanent process. The Memory Chain Model can potentially be applicable to either the 206 
within-session (short) or outside-session (long) timescale. A complete removal of the early-store gives the 207 
following “relative-retrograde” curve where only the late-store can contribute to a memory: 208 
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 𝑎! represents the early-chain decline and 𝑎+ is the late-chain decline. 𝜇! and 𝜇+	are the early-212 
chain and late-chain growth parameters, respectively. 𝑐 is a constant that marks the height of the 213 
asymptote. 214 

Both neurobiological models were fit to MTL activations in the within-session (Figure 4B) and 215 
outside-session (Figure 4C) timescale. The Memory Chain model showed strong fits to the within-session 216 
timescale: anterior hippocampus R2=0.8, PrC R2=0.93 and PhC R2=0.88. The Multiple-Trace model 217 
showed poor within-session fits: anterior hippocampus R2=0.34, PrC R2=0.64 and PhC R2=0.51. 218 
However, this model performance shifted when analyzing the outside-session timescale. The Multiple-219 
Trace model here showed an excellent outside-session fit: R2=0.97 and R2=0.91 in PhC and PrC 220 
respectively compared to the Memory Chain Model (R2=0.68 and R2=0.50).  221 

As hypothesized, the outside-session timescale was fit well by the MTT mathematical model. 222 
While a separate Memory-Chain mathematical model explained outside-session evolution quite well, 223 
which is valuable in its own right, it could not explain the prolonged evolution of memory traces as well 224 
as MTT. Using a least squares optimizer from the lmfit Python package36 to obtain Bayesian 225 
Information Criteria (BIC), we indeed found better PrC/PhC Multiple-Trace Model vs. Memory Chain 226 
Model fits for outside-session evolution (PrC/PhC BIC = -129/-133 vs. -102/-95.9, respectively).  227 

 228 
Does increased Signal-to-Noise Ratio Underlie Relative BOLD Enhancement? 229 
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To investigate the hypothesis that an increase in signal-to-noise ratios underlies trace 230 
consolidation with time, we tested for a potential association between change in memory performance 231 
(forgetting) and the increase in MTL activation upon recognition. Specifically, we hypothesized that the 232 
increased rate of forgetting here should represent reduced noise among those surviving memories, which 233 
should thus translate to a stronger averaged BOLD signal among the surviving memory traces.  234 

In computing the subject-specific derivative of memory recognition across sessions (hit rate), we 235 
found considerable variation across subjects. Still, the peak of the memory loss rate usually occurred at 236 
around 5 days, and the derivative stabilized at around 15-20 days (Figure 5A). Crucially, we found that 237 
the peak forgetting rate of rep1 images significantly correlated with the peak increase in MTL activation 238 
of surviving memory traces (i.e., those correctly recognized) within the PrC (r=-0.88, Bonferroni-corrected 239 
p=0.008) and PhC (r=-0.82, Bonferroni-corrected p=0.02; Figure 5B). Anterior HP (r=-0.71) and 240 
posterior HP (r=-0.51) were not significant. Furthermore, when we tested the association of the outside-241 
session rep1 peak forgetting rate with the increases in PrC/PhC BOLD activation of rep1 trials within a 242 
session, we did not find any significant effect (Figure 5C).  243 
 244 

Changes in Connectivity for Feature-Specific Recognition Over Time 245 
We next tested whether specific features of the images modulated changes in MTL connectivity. 246 

Thus, we asked whether changes in MTL connectivity to neocortex were dependent on the type of 247 
image recognized. We focused on face images and confined this connectivity analysis to the specialized 248 
occipital face area (OFA) and two fusiform face areas (FFA1, FFA2) as provided by the NSD project for 249 
each subject. This line of results was more focused on image-features since the MTL serves to bind 250 
specific, content-relevant cortical modules23. We had a priori interest in the PrC as a ‘seed’ because of its 251 
selectivity to faces and object memory37,38. Using the cortical face areas as separate dependent variables, 252 
we performed a three-way (seed x time x face) interaction test with a linear mixed-effects model (Figure 253 
6B), to test whether in these regions the decline in connectivity differed between face images, which can 254 
be considered the “signal”, and no-face (noise) images.  255 

The strongest interaction effect for each face-selective region peaked within a window of 1-20 256 
days since the most recent image presentation. The interaction peak effect was strongest in the OFA 257 
(𝛽012_45'*6,7'485 = 0.025 +/- 0.013, p=0.0001), but the other face-selective regions were also significant 258 
(𝛽112!_45'*6,7'485 = 0.019 +/- 0.012, p = 0.002; 𝛽112+_45'*6,7'485 = 0.019 +/- 0.01, p = 0.005). These 259 
interactions were further investigated post-hoc by calculating the correlations within the session of interest 260 
and face vs. no-face groupings at the peak magnitude of the interaction effect (trials 1-20 days since the 261 
recent image presentation). This analysis suggested that the interaction effect was driven by a more 262 
significant decrease in connectivity in non-face image recognition over time (Figure 6).  263 

To evaluate the specificity of this effect to the outside-session timescale (i.e., across days), we also 264 
applied the same connectivity analysis to the short within-session timescale (i.e., across trials). There was 265 
no significant (Bonferroni p < 0.05) seed x time x face interaction on the within-session timescale (Sup. 266 
Figure 4) in either the PrC-OFA, PrC-FFA1, or PrC-FFA2 connectivity.  267 
 268 

Discussion 269 
  270 

In this work we used the recently released Natural Scenes Dataset to test either MTT or Trace 271 
Transfer in understanding systems consolidation. We employ “Trace Transfer” to represent a more 272 
simplistic narrative of SCT, where MTL traces are thought to perhaps entirely transfer from MTL to 273 
cortex. Specifically, we found that increased MTL activity is associated with recognition at both early 274 
and late time-points. The time-dynamical properties of the MTL suggest that surviving traces become 275 
more robust in the weeks after encoding and persist over extended periods of time (>200 days) with 276 
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slight decline. Our classifier analysis also demonstrated that both the MTL and visual cortex supported 277 
image recognition at early and late time-points, which distinctly contrasts with the concept of Trace 278 
Transfer. Furthermore, the PrC and PhC outside-session evolution showed an excellent fit to an early 279 
mathematical model of MTL trace strength by Nadel et al.21. 280 

The applied MTT time-dynamical model is based on the idea that episodic memories expand 281 
their traces within the MTL over time upon repeated reactivations21 or implicit/offline reactivations10. 282 
This process is thought to offer a protective effect to partial MTL damage, whereby any intact trace 283 
could contribute to successful recognition if others are lost. Extra-hippocampal MTL structures (PhC 284 
and PrC) showed the strongest evidence for increased activation across sessions, yet the anterior HP and 285 
ErC still demonstrated a small but significant group-wise effect of increased activation when considering 286 
outside-session vs. within-session recognition. This small but significant effect in anterior HP should be 287 
emphasized, as it relies on the vast sample size, timescale, and high-field resolution of the current 288 
experiment. Perhaps related to shortcomings among those attributes, one recent image recognition 289 
experiment did not find such a significant effect using the entire hippocampus as an ROI14. While there 290 
are difficulties in interpreting the BOLD activations only with respect to memory retrieval as opposed 291 
other cognitive processes (see Limitations), these results may indeed reflect a richer trace contribution of 292 
the MTL over time. Lesions in extra-hippocampal MTL regions (PrC/PhC/ErC) have indeed been 293 
implicated in more severe amnesia when compared to damage restricted to HP35,39. And while there are 294 
undoubtedly functional intricacies and interactions within the MTL, from our understanding the early 295 
work of SCT40 and MTT21 lumped together the PrC, ErC, PhC and hippocampus proper for their 296 
model formulations. We believe this to be a useful dichotomy (MTL vs. cortex), which guided our 297 
analyses here.    298 

The precise fit of the MTT time-dynamical model to the outside-session activation data is 299 
remarkable when considering that it was formulated roughly 20 years ago. The separate Memory Chain 300 
Model did not perform nearly as well on the outside-session timescale as the Multiple-Trace Model. 301 
However, the Memory Chain Model did perform well on the within-session timescale. This model 302 
presupposes that a rapidly declining initial chain (assumed here to be cortical areas involved in working 303 
memory) is transferring traces to a more permanent chain (assumed here to be MTL). In summary, the 304 
shift of model performance from the short to long timescale suggests that a differential mechanistic 305 
process is indeed occurring for systems-level (i.e., outside-session) transformations.  306 

A classifier model to predict image recognition via a multivariate pattern analysis provided more 307 
evidence against Trace Transfer. Specifically, the results of this analysis do not indicate a 308 
representational transfer from MTL to the neocortex (specifically, visual cortex) for natural scene image 309 
recognition. Instead, trace contributions (as measured by predictive ability to discriminate successful 310 
recognition) from the visual system and MTL occur at both early and late time-points. Also, our classifier 311 
analysis showed the best accuracy for the MTL and visual cortex in combination, and only at outside-312 
session recognition. This may be another indicator of improved specificity in MTL and visual cortex 313 
connectivity (among a backdrop of decreased connectivity for the broader MTL and visual cortex) that 314 
resulted in better predictive capability of recognition.  315 

The significant association between the magnitude of overall memory decline and increased 316 
PrC/PhC activation among remembered rep1 trials (across subjects) is interesting to consider in the 317 
context of trace expansion. While trace “replicas” may indeed be instantiated with time as initially 318 
proposed, we offer evidence that a growing signal-to-noise ratio (i.e., reduced noise over time) in the 319 
MTL may be a complementary factor30 supporting memory consolidation. In other words, as many 320 
memory traces with similar “time-stamps” degrade at a rapid rate, the neural signature of the intact ones 321 
could expand accordingly because of the reduction of interference/noise by competing traces. The 322 
relative increases in BOLD responses over those days may thus result from the preservation of some 323 
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traces in the context of a net decrease in synaptic strength during that time, or from the formation of 324 
multiple traces2.  325 

Functional connectivity of the cortex with the hippocampus is known to increase when events are 326 
remembered as opposed to forgotten41. In support of a role of the hippocampus to ‘bind’ disparate 327 
cortical modules42, recent work found that distinct inter-network connections of the MTL (perirhinal and 328 
parahippocampal aspects) with neocortical areas indeed tracked the precision of remembering certain 329 
episodic memory aspects by their item-feature or spatial-context quality43. A content-general 330 
connectivity analysis (Sup. Figure 2) shows broad decreases in MTL-VS connectivity upon recognition 331 
over time. This analysis appears to be more in line with SCT predictions of “fast-changing” MTL-VS 332 
diminishing connections to potentially be replaced with slower cortico-cortical connections. 333 
Furthermore, we don’t know to what extent that image recognition here may be transitioning from an 334 
episodic to semantic representation over time (which both theories allow). One possibility is that the 335 
decrease in MTL BOLD activity after the peak—which MTT describes as a decreasing trace-replication 336 
rate combined with interference—may allow for semantic representations to form in cortical 337 
representations, which SCT emphasizes. Future work may shed more light on this question. 338 

While the positive effects of sleep on memory consolidation and integration are well established, 339 
the underlying mechanisms remain highly debated. According to the synaptic homeostasis hypothesis 340 
sleep allows a renormalization of synaptic weights after learning has led to a net increase in synaptic 341 
strength, a claim supported by molecular, ultrastructural and electrophysiological evidence2,29. 342 
Renormalization keeps the high energy costs of synaptic activity under control and avoids synaptic 343 
saturation. It also promotes memory consolidation by increasing the signal to noise ratio, because sleep-344 
dependent synaptic weakening is hypothesized to be selective and afford relative protection to the 345 
synapses engaged by new learning. Supporting this idea, a recent study found that sleep promotes the 346 
consolidation of a motor skill by broadly weakening synapses that did not potentiate during encoding, 347 
thus providing a relative advantage to the “learned” synapses32. Another proposed mechanism for sleep-348 
dependent memory consolidation is the further strengthening, during sleep, of the synaptic connections 349 
potentiated by learning13,44. This process is thought to occur by the sequential reactivation of specific 350 
neurons and synapses during cortical slow oscillations and hippocampal sharp-wave ripples45–47. The 351 
current experiment was not designed to test whether the offline consolidation of some memories 352 
occurred during sleep or wake, but an obvious difference between within- and outside-session 353 
recognition is that multiple sessions are separated by several days, which include multiple episodes of 354 
sleep. We found that the peak forgetting rate of rep1 images was correlated with the peak increase in 355 
MTL activation of surviving memory traces. Furthermore, while there were widespread decreases in 356 
recognition-related connectivity over time between MTL and visual cortex, specific functional 357 
connections relevant to image features (faces) remained resilient as compared to no-face images.  Like 358 
the correlation between peak forgetting rate and BOLD activation of surviving memory traces, the 359 
interaction between time and feature-related connectivity was present over the weeks following the 360 
encoding of successfully recognized images but not over minutes and hours within the encoding session. 361 
Therefore, the successful recognition of some images depended on the forgetting rate of all other images 362 
over weeks but not within a single session. Similarly, the successful recognition of face images was 363 
associated with a decline in functional connectivity between MTL and cortical face areas over weeks but 364 
not within a single session, and this decline was mainly driven by the no-face images. This offline, long-365 
term (across sessions) effect may reflect feature-irrelevant “noise removal” among the surviving, 366 
distributed traces. The OFA encodes low-level image-based properties, while FFA-1/2 encode complex 367 
social traits48. We assume MTL connectivity to these cortical modules is necessarily maintained for face 368 
recognition at the expense of MTL connectivity to those same cortical modules during recognition of 369 
scene images without faces.   370 
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In principle, an increase in the signal to noise ratio is compatible both with synaptic down-371 
selection2,29 and with sleep-dependent synaptic strengthening13,44. On the other hand, the finding that 372 
BOLD activation of surviving memory traces was correlated with peak forgetting rate may be more in 373 
line with the idea that sleep serves to maintain overall synaptic strength, which requires protecting some 374 
synapses at the expenses of others. In summary, the qualitative difference between memory 375 
consolidation within and outside sessions suggests that factors other than simple passage of time may be 376 
involved. Whether sleep is one such factor, and the underlying mechanisms, will require direct 377 
experimental tests.  378 

 379 
Limitations 380 

We interpret changes in brain activity upon image recognition over time as associated with 381 
retrieval-related, recollection processes (or ‘trace density’) to compare memory theories. However, there 382 
are other cognitive processes occurring simultaneously to retrieval that are likely contributing to the 383 
BOLD signal. These include (a) cognitive effort (i.e., task difficulty), (b) familiarity as opposed to 384 
recollection, or (c) re-encoding. Regarding cognitive effort, our reported PrC/PhC MTL time-evolution 385 
curves don’t reflect a simple linear increase to ultimate peak, as might be expected when only 386 
considering task difficulty. Instead, this curve is parabolic, which MTT concisely parameterizes with 387 
trace ‘growth rate’, ‘growth rate decrease’, and ‘interference’. With familiarity, the present analysis did 388 
not employ the common “Remember vs. Know” study paradigm49,50, which treats recognition 389 
confidence as a proxy of episodic vs. semantic memory systems. The inferotemporal cortex and even 390 
PrC have been previously implicated in image familiarity detection, but the direction of such modulation 391 
in the PrC is unclear51. In one item recognition task by Ritchey et al.50, no significant difference was 392 
found in anterior HP, PrC, and PhC activity via a Recollection vs. Familiarly contrast in either 393 
immediate or delayed time-points. Finally, re-encoding likely occurred during repetition trials, and its 394 
impact on the analyzed BOLD signal is unknown. The combination of these factors must be considered 395 
while interpreting the current results.  396 
 397 

Methods 398 
 399 

We analyzed data from the Natural Scenes Dataset, which is freely available at 400 
http://naturalscenesdataset.org. The 8 participants included two males and six females, and an age 401 
range of 19–32 years (see Sup. Table 1). The starting point for all analyses in this work were the version 402 
3 betas “b3” as shared through the NSD project. These betas correspond to the percent BOLD signal 403 
change (relative to the blank image presented) before the image stimulus. We provide a basic 404 
explanation of b3 betas in the Supporting Information, an exhaustive explanation regarding the b3 405 
extraction can be found in the original data paper33. 406 
 407 

Regions-of-Interest 408 
All analyses included regions-of-interest, where betas were averaged over that space: 5 medial 409 

temporal lobe regions, 25 visual system regions, and 3 specialized face cortex regions. The automated 410 
segmentation of the hippocampus (ASHS) tool (ashs-fastashs_2.0.0) was applied using the IKND 411 
Magdeburg Young Adult 7T Atlas52 to segment the medial temporal into bilateral anterior hippocampus 412 
(ant hp), bilateral posterior hippocampus (pos hp), bilateral entorhinal cortex (ErC), bilateral perirhinal 413 
cortex (PrC), and bilateral parahippocampal cortex (PhC). Anterior/posterior hippocampus were 414 
separated at y = -27 (MNI reference).  415 

When investigating the visual system (Figures 3/6), 25 ROIs were utilized from the Kastner 416 
atlas53. Three face ROIs (utilized in Figure 6) were derived per subject through the NSD fLoc experiment 417 
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(separate from the continuous recognition NSD experiment). These ROIs included the occipital face 418 
area (OFA), and two fusiform face areas (FFA1, FFA2). In a supplementary analysis, the Yeo17 network 419 
parcel was also used54. 420 

 421 
Outside vs. Within-Session Recognition 422 

In Figures 2B/2D/2E, raw betas are shown to display the percentage blood-oxygenation level 423 
dependent (BOLD) activation per trial. Correctly recognized, rep1/rep2 trials were extracted from all 424 
sessions. A linear logistic regression classifier was applied to different groups of features (MTL, VS, 425 
MTL+VS). Only rep1 trials were considered, and only the betas were further grouped (per session) to be 426 
standardized before analysis. Models were trained within each subject according to a randomly shuffled 427 
k-fold (inner=20 splits; outer=40 splits) nested cross validation procedure (via sklearn’s cross_val_score 428 
method). Mean balanced accuracy, grand averaged across sessions and subjects, was applied as our 429 
metric of interest. Differences in balanced accuracies between feature sets were identified with a mixed-430 
effects model accounting for random intercepts of subjects. A difference among balanced accuracies was 431 
tested with a two-way, repeated measures ANOVA (using a mean aggregate function per subject). Each 432 
sample here corresponds to the balanced accuracy of one cross-validation fold, and there were 40 folds 433 
per subject. Because feature groupings were found to be significantly different in the ANOVA, post-hoc 434 
differences were then assessed between feature groupings (e.g., Within-Session MTL vs. Within-Session 435 
VS).  436 

  437 
Memory Model Fits 438 

Using eight simple assumptions, the Multiple-Trace Theory model21 is based on the following 439 
first-order differential equation (3) and initial condition (4):  440 
 441 
9
9:
µ(τ, t) + κµ(τ, t) = 	αθ(t − τ) ;(<,>,:)

?([	<],:)
+ δ(t − τ)       (3) 442 

 443 
µ(τ, 0) = 0      (4) 444 
 445 
Furthermore, their primary model assumed an exponential decrease in trace formation rate with 446 
memory age (5): 447 
 448 
ρ(𝜇, 𝜏, 𝑡) = 𝑒&

&$!
"      (5) 449 

 450 
Parameters referenced here include	𝜇, the mean number of traces per memory at time stamp 𝜏;	 𝑡 451 
corresponds to the total time-points in the model; 𝜅 is the constant forgetting rate that can be interpreted 452 
as the total trace formation rate times the probability that a newly created trace will destroy a given trace 453 
by interference; 𝛼 is the total replication rate, which is constant; 𝜌 is the replication rate decay function, 454 
which decreases Z is a normalization constant; 𝜃 is a heavidside step function; 𝛿 is the Kronecker delta. 455 
 The Memory-Chain Model is derived from a two-process intensity model: 456 
 457 
𝑟!+ = 𝜇!𝑒&,%' +

/%/(
,%&,(

(𝑒&,(' − 𝑒&,%') (6) 458 
 459 
𝑎! represents the early-chain decline and 𝑎+ is the late-chain decline. 𝜇! and 𝜇+	are the early-chain and 460 
late-chain growth parameters, respectively. Of note, 𝑎+ is assumed to be much larger than 𝑎! and thus 461 
was taken to be zero in Equation 2. 462 
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Mean changes in rep1 beta activation since time after the last image presentation were extracted 463 
by encoding dummy variables (days since most recent image presentation) in a linear mixed-effects 464 
model. For Figure 5, the MTT model was fit to the outside-session data per subject. The percent 465 
increase was calculated based on the peak of the model fit. More information is provided in Supporting 466 
Information. Furthermore, in a supplementary analysis, we investigated potential shifts in signal 467 
‘baseline’ across sessions (see Supporting Information). Toward this end, we regressed out the session-of-468 
recognition variable. Our findings and interpretations remained consistent after this procedure. 469 

 470 
Connectivity 471 

A seed by time by face interaction was assessed with a linear mixed-effects model. Trials included 472 
in the model varied with a maximum cutoff of days since most recent image repetition, and was tested at 473 
max day of 10, 20, 30, 40, 50, 75, 100, 125, 150, and 200. The number of trials per category that 474 
powered this analysis is provided in Sup. Table 3, which provides evidence against any potential bias due 475 
to sample size. No interaction effect remained significant when the analysis was limited to images that 476 
were not successfully recognized. A content-general connectivity analysis was also applied between all 477 
MTL and VS ROIs (Sup. Figure 2) and is described in the Supporting Information.  478 

 479 
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Figure Legends 618 
 619 
Figure 1. Natural Scenes Dataset: Stimuli, Hit Rates, and Data Volume. (A) Example of 620 
image presentations and their repetition “rep1” (image previously seen once) or “rep2” (image previously 621 
seen twice) designations. For each 4 second trial, each subject was asked whether they had seen the 622 
image before. (B) Unmarked lines on top (Y axis, left) show the within-session hit rate, i.e. proportion of 623 
repetition images recognized, which remains high (average = 91%). Red crosses and blue circles mark 624 
the number of trials across subjects at that specific time point (binned every 10 days) for Rep 1 and 625 
Rep2, respectively (Y axis, right). Time since last image repetition (rep1 minus rep0, or rep2 minus rep1) 626 
is on x-axis, in trials. (C) Unmarked lines on top (Y axis, left) show adjusted hit rate (hit rate – false 627 
positive rate) where random guessing would result in an adjusted hit rate of 0 (dashed line). Red crosses 628 
and blue circles mark the number of trials across subjects at that specific time point (binned every 10 629 
days) for Rep 1 and Rep2, respectively (Y axis, right). Time since last image repetition (rep1-rep0 or 630 
rep2-rep1) over extended time period (1-200 days).  631 

Medium [11x4.44 cm] 632 
 633 
Figure 2. Medial Temporal Lobe Regions-of-Interest & Outside- vs. Within-Session 634 
Recognition Differences in Activation/Evolution. (A) Medial Temporal Lobe regions of interest 635 
identified with automated segmentation of hippocampus (ASHS) tool in one subject. (B) Activation (% 636 
increase in blood-oxygen level dependent signal after image presentation) differences between within-637 
session vs. outside-session recognition conditions, per MTL ROI, along with associated p-value and 638 
effect size. (C) Differences in effect-size among outside- minus within-session recognition among subjects. 639 
Significance corresponds to Bonferroni-corrected p < 0.05. (Bottom) Evolution of activation across trials, 640 
within-session (D), and across days, outside-session (E). Locally weighted scatter plot smoothing 641 
(LOWESS) is shown in black, and the mean is shown with a dotted line. Only correctly recognized 642 
rep1/rep2 trials are shown. Error estimates on scatter plots are 95% bootstrap confidence intervals.  643 

Medium [11x6.44 cm]  644 
 645 
Figure 3. Early and Late Trace Contributions from ROI Activation Patterns. (A) ROI 646 
activations used as features in classifier analysis (from Subject 1). Colors correspond to combined N=5 647 
Medial Temporal Lobe parcels and N=25 Visual System (Kastner Atlas) designations. (B) Recognition 648 
success was tested per subject on rep1 images by using a logistic regression model with a combination of 649 
ROI feature sets. Training/testing was done per subject. Marked ‘x’s show significance (P<0.05) 650 
pertaining to distribution of balanced accuracy (average of sensitivity and specificity, also plotted) of 500 651 
iterations of shuffled labels. N=25,753 Early (or, within-session) rep1 image samples and N=46,091 late 652 
(outside-session) rep1 image samples were collected. MTL – Medial Temporal Lobe included 5 ASHS 653 
ROIs, VS – Visual System included 25 Kastner Atlas ROIs, and in combination (“ALL”) there were 30 654 
distinct ROIs. Boxes/whiskers entail 25th-75th/5th-95th percentile. 655 

Small [9x4.84 cm] 656 
 657 

  658 
Figure 4. Memory Chain Model Fits Outside-Session While Multiple-Trace Model Fits 659 
Within-Session MTL Evolution (A) Summary of variables within each model. Each model is fit to 660 
PhC/PrC neural activation evolution among (B) within-session and (C) outside-session activation 661 
evolution along with a labeling of associated variables. Analytic model fit to rep1/rep2 neural activation 662 
data upon recognition (increases were assessed by parameter estimates from dummy encoding). The 663 
right column designates the explained variance from each corresponding model, averaged from both the 664 
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PrC and PhC fits. Neural activation was uniformly shifted along the y-axis so that the mean of activation 665 
at Day 0 (within-session recognition) was in accordance with each model’s initial condition. Error bars 666 
represent 95th percent confidence intervals of parameter estimate. 667 

Small [6x5 cm] 668 
 669 
Figure 5. Overall Forgetting Rate Associates with MTL BOLD Signature of Surviving 670 
Memory Traces Across Individuals. (A) The derivative of the smoothed ‘forgetting curve’ 671 
[remembered trials/(remembered + forgotten trials)] for each subject across 1-15 days since the previous 672 
image repetition for rep1 presentations. Circles designate the peak forgetting rate for each subject, which 673 
occurs at around 5-9 days and eventually stabilizes at around 15-20 days. Derivative is z-scored from 0-674 
250 days data. (B) Scatter plots showing the correlations between competing memory loss (x-axis) and 675 
surviving memory BOLD increase (y-axis) for each subject among the anterior HP, posterior HP,  PrC 676 
and PhC. PrC and PhC fits were significant, corresponding to p corrected < 0.05. BOLD %-Increase 677 
corresponds to changes from average within-session recognition to peak of curve fit (via multiple-trace 678 
theory model) per subject (see Figure 3). (C) As a control analysis, the peak outside-session rep1 679 
forgetting rate was also correlated with the within-session BOLD increases among the PrC/PhC parcels 680 
(increased BOLD at trial 350; y-axis). No significant association was found.  681 

Small [5x4.27 cm] 682 
 683 
Figure 6. General and Feature-Specific MTL Connectivity Time Evolutions Feature-684 
Specific, Consolidative Connectivity: Occipital Face Area (OFA) in red, Fusiform Face Areas 1 & 2 in 685 
green and blue, and Perirhinal Cortex defined within a given subject. Seed x time (days) x face 686 
interaction beta estimates for each MTL ROI designation within a linear mixed-effects model, where 687 
OFA activation was the dependent variable. Betas were calculated across various timepoint cutoffs since 688 
the last image presentation (10,20,30,40,50,…,200). 95% confidence intervals of beta estimates are 689 
displayed, and a circle/asterisk denotes significance at p < 0.05, corrected. Correlations of each 690 
condition of interest, where trials were cutoff to recent repetitions of 20 days or less. Distribution 691 
corresponds to correlations derived from N=1000 bootstrap resamples with replacement. Only correct 692 
rep1 trials were considered.  693 

Medium [11x4.91 cm] 694 
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