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Abstract 40 

To what extent is the size of the blood-oxygen-level-dependent (BOLD) response influenced 41 
by factors other than neural activity? In a re-analysis of three neuroimaging datasets (male 42 
and female human participants), we find large systematic inhomogeneities in the BOLD 43 
response magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses, 44 
expressed in units of percent signal change, are up to 50% larger along the representation of 45 
the horizontal meridian than the vertical meridian. To assess whether this surprising effect 46 
can be interpreted as differences in local neural activity, we quantified several factors that 47 
potentially contribute to the size of the BOLD response. We find relationships between BOLD 48 
response magnitude and cortical thickness, curvature, depth and macrovasculature. These 49 
relationships are consistently found across subjects and datasets and suggest that variation 50 
in BOLD response magnitudes across cortical locations reflects, in part, differences in anatomy 51 
and vascularization. To compensate for these factors, we implement a regression-based 52 
correction method and show that after correction, BOLD responses become more 53 
homogeneous across V1. The correction reduces the horizontal/vertical difference by about 54 
half, indicating that some of the difference is likely not due to neural activity differences. We 55 
conclude that interpretation of variation in BOLD response magnitude across cortical 56 
locations should consider the influence of the potential confounding factors of thickness, 57 
curvature, depth and vascularization. 58 

Significance statement 59 

The magnitude of the BOLD signal is often used as a surrogate of neural activity, but the exact 60 
factors that contribute to its strength have not been studied on a voxel-wise level. Here, we 61 
examined several anatomical and measurement-related factors to assess their relationship 62 
with BOLD signal magnitude. We find that BOLD magnitude correlates with cortical anatomy, 63 
depth and macrovasculature. To remove the contribution of these factors, we propose a 64 
simple, data-driven correction method that can be used in any functional magnetic resonance 65 
imaging (fMRI) experiment. After accounting for the confounding factors, BOLD magnitude 66 
becomes more spatially homogenous. Our correction method improves the ability to make 67 
more accurate inferences about local neural activity from fMRI data. 68 

Introduction 69 

The blood-oxygen-level-dependent (BOLD) signal measured by fMRI is an important tool for 70 
non-invasive study of the human nervous system. However, the neural mechanisms 71 
underlying BOLD remain an active area of investigation (Herman et al., 2017). One clear 72 
conclusion is that the BOLD signal is strongly influenced by neural activity (Arthurs et al., 2000; 73 
Heeger et al., 2000; Attwell and Iadecola, 2002; Heeger and Ress, 2002; Logothetis, 2002; Lee 74 
et al., 2010; Siero et al., 2014). For a given location in the brain, and within a constrained 75 
paradigm (e.g., viewing different images and measuring the response that they elicit in visual 76 
cortex), the BOLD signal magnitude appears to be lawfully related to basic measures of neural 77 
activity. For example, as stimulus contrast increases, neural firing rates and BOLD magnitude 78 
increase in proportion (Heeger et al., 2000). Similarly, increase in coherence of stimulus 79 
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motion boosts BOLD magnitude and firing rates in V5/MT (Britten et al., 1993; Rees et al., 80 
2000). When comparing different experimental paradigms or different brain locations, 81 
however, it is less clear how to interpret differences in the magnitude of the BOLD signal. For 82 
example, seeing a stimulus and expecting a stimulus can both elicit robust BOLD signals in V1, 83 
but the underlying neural activity is very different in the two paradigms (Sirotin and Das, 2009; 84 
Herman et al., 2017). It is also the case that similar BOLD signal magnitudes in two locations 85 
may be linked to very different underlying neural activity. These two limitations are reviewed 86 
by (Logothetis, 2008). 87 
 88 
There are several reasons to believe that BOLD signal magnitudes, even within a fixed 89 
experimental paradigm, are influenced by factors that are not directly related to neural 90 
activity. The BOLD response, quantified in terms of percent signal change, can be especially 91 
high in voxels containing large veins (Menon et al., 1993; Kim et al., 1994; Hoogenraad et al., 92 
1999; Kay et al., 2019) or unusually low, delayed, and/or displaced in voxels near cerebral 93 
sinuses (Winawer et al., 2010; Jamison et al., 2017). The choice of MRI sequence, field 94 
strength (van der Zwaag et al., 2009), and sequence parameters like echo time (Gorno-95 
Tempini et al., 2002) can also affect BOLD signal magnitude, and these effects may vary across 96 
the brain (Herman et al., 2017). Indeed, it has been reported that BOLD may vary across the 97 
cortex up to 40% simply due to different orientation of vasculature relative to the direction 98 
of the static magnetic field (Gagnon et al., 2015a; Gagnon et al., 2016; Viessmann et al., 2019). 99 
Furthermore, recent high-resolution fMRI studies have shown that BOLD signal magnitude 100 
clearly depends on cortical depth. It is highest in the superficial depths which are positioned 101 
near large pial veins and decreases with depth (Polimeni et al., 2010; Koopmans et al., 2011; 102 
Zimmermann et al., 2011; Yu et al., 2014; Fracasso et al., 2016a; Fracasso et al., 2016b; 103 
Dumoulin, 2017; Dumoulin et al., 2018; Kay et al., 2019; Self et al., 2019; van Dijk et al., 2020).  104 
 105 
In this paper, we study variations in BOLD signal magnitude within a fixed paradigm, focusing 106 
our efforts on primary visual cortex (V1). We believe that by focusing on a single brain region 107 
in well-controlled visual paradigms, we are in the best position to derive sound 108 
interpretations of differences in BOLD signal magnitudes across the cortex. In three distinct 109 
datasets, we demonstrate large differences between the meridian locations: the BOLD 110 
magnitude in V1 is up to 50% higher along the representation of the horizontal meridian than 111 
along the representation of the vertical meridian. We then investigate the potential basis of 112 
these inhomogeneities by analyzing factors that are in principle distinct from neural activity. 113 
As non-neural factors we consider cortical curvature, cortical thickness, cortical depth, 114 
presence of macrovasculature (as indexed by bias-corrected EPI intensity), angle with respect 115 
to B0 magnetic field and radiofrequency (RF) coil bias. We motivate the selection of these 116 
factors in the Methods. We find that several of these factors are systematically related to 117 
observed variation in BOLD magnitudes across V1. To remove their influence, we propose a 118 
simple correction method and show that the correction increases BOLD signal homogeneity 119 
across V1, reducing the difference in response across the horizontal and vertical meridians by 120 
about half. 121 
 122 
 123 
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Methods 124 

Datasets 125 
 126 
We used three publicly available visual fMRI datasets: the Human Connectome Project (HCP) 127 
7T Retinotopy Dataset (Benson et al., 2018), the Natural Scenes Dataset (NSD) (Allen et al., 128 
2021), and the Temporal Decomposition Method (TDM) Dataset (Kay et al., 2020). All data 129 
were acquired on 7T MR scanners using gradient-echo pulse sequences (technical details 130 
provided in Table 1). The datasets varied in stimulus properties and experimental design. HCP 131 
stimuli consisted of rings, wedges, and bars in a retinotopic mapping experiment; NSD stimuli 132 
consisted of natural scene images; and TDM stimuli consisted of high-contrast rings presented 133 
at different eccentricities. Experimental details are shown in Figure 1. The analyses performed 134 
in this paper start with pre-processed data from each dataset.  135 
 136 

 137 
Figure 1 – Datasets used in this study. Stimulus images for each of the datasets are shown. For TDM, stimuli 138 
consisted of 6 rings varying in eccentricity. For NSD, stimuli consisted of natural scene images. For HCP, the 139 
experiment consisted of several retinotopic mapping runs that included expanding and contracting rings, 140 
rotating wedges, and moving bars filled with a colorful object-based texture. Additional acquisition details are 141 
provided in Table 1.  142 

Dataset TDM NSD HCP 
Field strength  7T 7T 7T 
TR 2200 ms 1600 ms 1000 ms 
TE 22.4 ms 22.0 ms 22.2 ms 
Flip angle 80 62 45 
Number of slices 84 84 85 
Matrix size 200 ´ 162 120 ´ 120 130 ´ 130 
Field of view 160 mm ´ 129.6 mm 216 mm ´ 216 mm 208 mm ´ 208 mm 
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Nominal spatial 
resolution 

0.8 mm 1.8 mm 1.6 mm 

Multiband factor 2 3 5 
iPAT factor 3 2 2 
Partial Fourier 6/8 7/8 7/8 

Table 1 – Details on the fMRI pulse sequence used in each of the datasets. Each column describes different 143 
dataset. 144 

Extracting BOLD magnitude 145 
 146 
From each dataset, we extracted a measure of BOLD signal magnitude at each cortical surface 147 
vertex. For TDM, we started with the pre-processed fMRI time-series data provided with the 148 
dataset and analyzed the data with a GLM. Specifically, we convolved a canonical HRF with 149 
stimulus onsets to create a regressor for each experimental condition, and then used these 150 
regressors with GLMdenoise (Kay et al., 2013b) to estimate a beta weight for each condition. 151 
We computed the maximum beta weight across all conditions for each voxel as the measure 152 
of BOLD signal magnitude. These results are defined at six different depths (equidistant from 153 
10% to 90% of the cortical thickness) in each subject’s native surface space. (Depth 154 
assignment was achieved by a spatial interpolation of each fMRI volume at the locations of 155 
the six depth-dependent cortical surfaces; see Kay et al. (2020) for details.) For NSD, we took 156 
the ‘meanbeta’ values (1 mm data preparation, beta version 2) provided with the dataset; 157 
these values indicate the average BOLD percent signal change observed across all stimulus 158 
trials and all scan sessions. We then mapped these values to the 3 depth surfaces provided in 159 
NSD (positioned at 25%, 50%, and 75% of the cortical thickness). The HCP dataset was 160 
previously analyzed (Benson et al., 2018) with a population receptive field (pRF) model 161 
(Dumoulin and Wandell, 2008) implemented in analyzePRF (Kay et al., 2013a). The model 162 
includes a gain parameter that describes the amplitude of the BOLD response of a given voxel 163 
(or vertex) to the object-based texture (covering the entire pRF) for a single repetition time 164 
(TR = 1 s). We quantified BOLD in terms of percent signal change (%BOLD) by dividing the gain 165 
parameter by mean signal intensity and multiplying by 100. The results are prepared in 166 
FreeSurfer’s fsaverage space. 167 
 168 
Visual field mapping 169 
 170 
We used retinotopic mapping to divide the primary visual cortex into a set of regions. For 171 
HCP, we used polar angle and eccentricity estimates available from the data release. For the 172 
TDM and NSD datasets, we mapped Benson’s polar angle and eccentricity atlas using 173 
neuropythy software (Benson and Winawer, 2018). We use the following convention for all 3 174 
datasets: the upper vertical meridian corresponds to 0 deg, the horizontal meridian 175 
corresponds to 90 deg, and the lower vertical meridian corresponds to 180 deg. Note that the 176 
polar angle estimates are rescaled for the correlation and linear regression analysis (see next 177 
section). We used Benson’s definition of the extent of visual areas V1, V2, and V3 for all 3 178 
datasets (Benson et al., 2014). 179 
 180 
 181 
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Quantification of non-neural factors 182 
 183 
In the TDM and NSD datasets, we quantified several factors that might be related to variation 184 
in the magnitude of the BOLD signal across cortical locations. We focused on factors that can 185 
be easily extracted from either functional or anatomical data that are typically acquired in an 186 
fMRI experiment. For the purposes of the present study, we consider only within-subject 187 
factors rather than across-subject factors, with the goal of removing non-neural influences on 188 
the variation of BOLD magnitudes across voxels. We note that there are several other factors 189 
that influence variation of overall BOLD magnitude across subjects like caffeine use (Liu et al., 190 
2004), vascular age (Tsvetanov et al., 2021), and heart rate (Chang et al., 2009). Below, we 191 
describe each of the within-subject factors that we considered in the present study. 192 
 193 
Curvature was obtained from FreeSurfer outputs (Dale et al., 1999; Fischl and Dale, 2000), 194 
and refers to the geometry of the folding pattern of the cortical surface. Negative values 195 
correspond to gyri while positive values correspond to sulci. Curvature is quantified as 1/r, 196 
where r is the radius of an inscribed circle measured in mm.  197 
 198 
Thickness was also obtained from FreeSurfer outputs. It is measured in mm and corresponds 199 
to the distance between the outermost (close to cerebrospinal fluid) and innermost (close to 200 
white matter) boundaries of gray matter. Curvature and thickness are well known to vary 201 
across visual cortex. Their relationship with %BOLD remains unknown and has not been 202 
investigated in detail, especially on a voxel-by-voxel basis. We include these factors in our 203 
analysis to assess whether these anatomical factors have systematic relationships with BOLD 204 
magnitude.   205 
 206 
Mean bias-corrected EPI was calculated as the mean signal intensity in the fMRI data divided 207 
by the estimated RF coil bias (details below). The units range from approximately 0 to 2, and 208 
indicate percentages (e.g., 0.5 means 50% of the strength of typical signal intensities). Mean 209 
bias-corrected EPI values can be viewed as high spatial frequency changes in signal intensity 210 
across space. We include this factor in the analysis as mean bias-corrected EPI was previously 211 
found to be a good predictor for venous effects (Kay et al., 2019). Proximity to veins often 212 
results in increased BOLD magnitude. 213 

 214 
Depth was estimated by generating 6 cortical surfaces (for TDM) or 3 cortical surfaces (for 215 
NSD) equally spaced between 10% and 90% (for TDM) or 25% and 75% (for NSD) of the 216 
distance from the pial surface to the boundary between gray and white matter. These 217 
surfaces are numbered from 1 to n, where 1 is outermost and n is innermost. We include 218 
depth as a factor as it is well known that BOLD magnitude is highest in superficial depths and 219 
decreases towards the white matter (Polimeni et al., 2010). 220 

 221 
Angle with respect to B0 was calculated by considering the angle (theta) between the pial 222 
surface normal and the direction of the B0 static magnetic field as estimated from NIFTI 223 
header information. Angle was quantified in degrees and was normalized as abs(theta–90) 224 
such that a final value of 0 deg indicates that the cortical surface is parallel to the magnetic 225 
field and a final value of 90 deg indicates that the cortical surface is perpendicular to the 226 
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magnetic field. We include angle with respect to B0 in the analysis because previous reports 227 
showed that the BOLD magnitude varies with B0 angle (Gagnon et al., 2015b).  228 
 229 
RF coil bias was taken to be the result of fitting a 3D polynomial to the mean signal intensity 230 
in the fMRI data. The values are in raw scanner units and represent low spatial frequency 231 
changes in the intensity of voxels. This estimation method has been used previously (Kay et 232 
al., 2019). We include RF coil bias as a control in our analysis. In theory, there should not be a 233 
systematic relationship between RF coil bias and BOLD magnitude, as we express BOLD 234 
magnitudes at each voxel in terms of percent signal change (as is typically done in the field), 235 
and percent signal change is sensitive to an overall scale factor on the signal. 236 
 237 
In sum, all of these factors are known to vary across the cortical surface of V1. The exact 238 
biophysical mechanisms that might explain their impact on %BOLD are in some cases 239 
unknown (e.g., curvature). In other cases, we expect that some factors should not bear 240 
systematic relationships to %BOLD (e.g., RF coil bias). In general, the work here is intended to 241 
be a first step towards understanding the influence of potential non-neural contributions to 242 
variations in %BOLD across individual voxels within a given subject. 243 
 244 
Quantification of neural factors 245 
 246 
Polar angle was obtained from Benson’s atlas (Benson et al., 2014), representing the visual 247 
field angle to which each cortical location is optimally tuned. For the purposes of our analyses, 248 
we normalize polar angle such that 0 deg corresponds to the horizontal meridian and 90 deg 249 
corresponds to the upper and lower vertical meridians. We include polar angle as a positive 250 
control: we expect that polar angle should bear a systematic relationship with BOLD 251 
magnitude, as this is the original observation that motivated the present study. 252 
 253 
Definition of regions of interest 254 
 255 
Using the visual field mapping results, we defined regions of interest (ROIs) corresponding to 256 
the representation of the horizontal and vertical meridians within V1. The ROIs were defined 257 
by limiting the eccentricity to the maximum stimulus eccentricity used in each dataset and 258 
limiting the angle to a specific range (e.g., to create a V1 ROI for the upper vertical meridian 259 
with a width of 20 deg, we created a mask where polar angle estimates were higher than 0 260 
and lower than 20). 261 
 262 
Modelling variation in BOLD signal magnitude 263 
 264 
To account for non-neural contribution to %BOLD, we used a multiple regression model. The 265 
modeled data (Y) consisted of the %BOLD value observed at each surface vertex in visual areas 266 
V1–V3. Although this study focuses on BOLD homogeneity in V1, we include %BOLD in V1–267 
V3. This is because we are attempting to establish relationships that might generalize across 268 
different cortical regions. Furthermore, if we were to include only vertices in V1, we would be 269 
at high risk of removing genuine neural activity differences (e.g. those that may exist between 270 
the horizontal and vertical meridians) that correlate with the non-neural factors. 271 
 272 
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The variables used to model the data included thickness, curvature, depth and mean bias-273 
corrected EPI intensity. (Only these four factors showed evidence of being substantially 274 
related to BOLD magnitude; see Results.) The variables were standardized (z-scored) and, 275 
together with a constant term, were included as predictors in the design matrix (X). Ordinary 276 
least-squares estimates for beta weights were obtained in the following linear model: 277 
 278 

𝑌 = 𝑋β + 𝑛   (Eq. 1) 279 
 280 

where 𝑌 is the %BOLD magnitude at each vertex, 𝑋 is the 5-column design matrix,	𝛽 is a set 281 
of beta weights (5 per vertex), and n is a set of residuals. 282 
 283 
Major cortical sulci 284 
 285 
In several figures we show outlines of major cortical sulci. These include the calcarine sulcus 286 
(CALC), parieto-occipital sulcus (POS), intraparietal sulcus (IPS), occipitotemporal sulcus (OTS), 287 
and superior temporal sulcus (STS). These sulci were manually labelled on the fsaverage 288 
surface and then mapped to each individual’s native surface.  289 

 290 
Data and code availability 291 
 292 
The datasets used in this paper are freely available online: NSD 293 
(http://naturalscenesdataset.org), HCP (https://osf.io/bw9ec/), and TDM 294 
(https://osf.io/j2wsc/). Code that reproduces the main figures in this paper is available at 295 
https://github.com/jk619/meridianbias/. Associated data files are available at 296 
https://osf.io/2nc4x/. 297 

Results 298 

Stronger BOLD responses along the V1 horizontal meridian 299 
  300 
We examined BOLD response magnitudes in three freely available datasets: the Natural 301 
Scenes Dataset (NSD; Allen et al., 2021), the data used for the Temporal Decomposition 302 
Method (TDM; Kay et al., 2020), and the Human Connectome Project 7T Retinotopy Dataset 303 
(HCP; Benson et al., 2018). Each dataset contains BOLD responses to different types of visual 304 
stimulation (see Methods). We defined one region of interest (ROI) for the horizontal 305 
meridian (HM) and one for the vertical meridian (VM) (Figure 2A–B). These ROIs represent a 306 
wedge-shaped region in the visual field centered at the horizontal meridian with a width of 307 
40 deg (horizontal) and two wedges abutting the vertical meridian each with a width of 20 308 
deg (vertical). 309 
 310 
In each of the three datasets, we compared BOLD magnitudes expressed in percent signal 311 
change (%BOLD) observed for the VM with BOLD magnitudes observed for the HM (Figure 312 
2C–E). In each dataset, we find higher %BOLD in the HM ROIs compared to the VM ROIs. We 313 
summarize this difference with an asymmetry ratio: (HM–VM)/mean(HM,VM). All datasets 314 
show strong asymmetry, with an asymmetry ratio of ~30%. Positive values for the asymmetry 315 
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ratio indicate greater response for the horizontal meridian. (Note that if the asymmetry is 316 
expressed as a percentage of the smaller vertical meridian response, the increase reflected in 317 
the larger horizontal meridian response is up to ~50%.)   318 
 319 

 320 
 321 
Figure 2 – BOLD magnitude is higher at the horizontal meridian in V1. A) Polar angle map of group-average HCP 322 
subject (999999) with V1 boundary outlined in dotted black lines. B) Horizontal and vertical regions of interest 323 
(ROIs) are indicated in gray and magenta, respectively. White text indicates major brain sulci (see Methods). C-324 
E) Mean BOLD magnitude for horizontal and vertical ROIs in the three datasets. Error bars indicate standard 325 
error across subjects. 326 

One possibility is that the horizontal and vertical V1 BOLD responses are in fact similar, but 327 
the vertical ROIs appear to have lower signal due to mixing with signal from V2. V2 and V1 328 
border along the vertical meridian representation, and blurring might occur either in 329 
acquisition or in pre-processing and analysis. To further our understanding of the V1 response 330 
asymmetries, we re-computed asymmetry ratios using smaller wedges at many locations 331 
(Figure 3A). Note that, because we use smaller wedges, the asymmetry at the cardinal 332 
meridians is different from Figure 2. While the asymmetry is strongest at the cardinal 333 
meridians, some horizontal/vertical asymmetry is found at least 30 deg away from the 334 
meridians in all three datasets (Figure 3B). This argues against the explanation that the 335 
asymmetry is caused by spillover from V2.  336 
 337 
 338 
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 339 
Figure 3 – BOLD asymmetries generalize to off-cardinal locations. To further understand V1 BOLD asymmetry, 340 
we manipulated the location of the wedge ROIs in 5-deg increments. A) The upper row shows the visual field 341 
location of wedge ROIs and the lower row shows the corresponding cortical locations (flattened left 342 
hemisphere). For clarity, we show only every other set of ROIs. B) Asymmetry ratio as a function of angular 343 
distance from the cardinal meridians. Error bars indicate standard error across subjects. 344 

HM/VM asymmetry persists at inner cortical depths 345 
  346 
The BOLD signal is strongly influenced by properties of the brain’s vasculature. Uneven venous 347 
contributions across the brain can cause variation in BOLD magnitude (Menon et al., 1993; 348 
Kim et al., 1994; Hoogenraad et al., 1999; Kay et al., 2019). One possibility is that the meridian 349 
asymmetries we observe arise from non-uniformities in the vascular network. To investigate 350 
this possibility, we took advantage of the sub-millimeter resolution of the TDM dataset and 351 
examined HM/VM asymmetry as a function of depth. Because macroscopic venous effects 352 
are larger in the superficial cortex due to large pial veins (Duvernoy et al., 1981; Turner, 2002; 353 
Polimeni et al., 2010; Kay et al., 2019), by sampling BOLD responses from deeper depths, we 354 
minimize contributions from pial veins. We find that the HM/VM asymmetry is larger at the 355 
superficial depths, suggesting that part of the asymmetry may be due to differential 356 
properties in macroscopic vasculature (Figure 4). This depth effect is systematic: every subject 357 
shows higher asymmetry at the superficial depth than the middle depth. Nonetheless, there 358 
remains a substantial horizontal/vertical asymmetry at all depths (Figure 4), suggesting that 359 
macroscopic vessels near the pial surface are not the entire explanation. At the innermost 360 
depth sampled, which is least influenced by pial vessels, the HM/VM asymmetry is 26% 361 
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(average across subjects) and is positive in each of the 5 subjects. The middle depths appear 362 
to have the least asymmetry. This could be due to a difference in neural responses at 363 
intermediate depths, which generally correspond to input-related cortical layers.  364 

 365 
  366 
Figure 4 – BOLD asymmetry in V1 persists at inner depths. We exploit the high-resolution TDM dataset to 367 
discriminate V1 BOLD responses across depth and estimate response asymmetries as a function of depth 368 
(asymmetry is calculated in the same way as in Figure 3). The presence of asymmetry at the innermost depth 369 
suggests that response asymmetries exist even with minimal contribution of large pial veins.  370 

Assessing and modeling non-neural contributions to BOLD signal magnitude 371 
  372 
In addition to vascular effects, other factors unrelated to neural activity evoked by the 373 
experimental manipulation may influence variation in %BOLD across the cortical surface. 374 
These additional factors are often neglected in fMRI analysis pipelines. Although some of the 375 
factors are known to vary across the cortex, their influence on the BOLD signal is poorly 376 
understood. Here, we attempt to understand how these factors may be related to BOLD 377 
magnitude variations. To the best of our knowledge, we are unaware of any previous study 378 
that has examined this issue in detail, especially at the level of individual voxels (or vertices) 379 
within individual subjects.  380 
 381 
We first identified a list of possible confounding factors (beyond cortical depth, which we 382 
have already introduced) based on consideration of basic anatomical properties of the brain 383 
and the nature of fMRI measurement. These factors are cortical curvature, cortical thickness, 384 
RF coil bias, mean bias-corrected EPI signal intensity, and angle with respect to B0. Each of 385 
these factors can be interpreted as spatial maps, with a value at each vertex on the cortical 386 
surface mesh. The five maps can be obtained from standard anatomical scans (T1-weighted) 387 
or from the fMRI measurements themselves without additional MRI experiments (see 388 
Methods for details). Example surface visualizations of these maps together with %BOLD are 389 
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shown in Figure 5. We hypothesize that inhomogeneities in some of these maps might explain 390 
some of the observed inhomogeneity in %BOLD across V1. 391 

 392 
 393 
Figure 5 – Variation in anatomical and acquisition factors across cortex. Each sphere shows data mapped on 394 
the left hemisphere for subject S1 in the NSD dataset. Below each surface map is a histogram of the plotted 395 
values. White outlines indicate major cortical sulci. %BOLD represents the average response to the natural scene 396 
stimuli used in the NSD dataset. Some of the spatial variability in %BOLD might be due to variability in the 397 
depicted non-neural factors. 398 

 399 
To understand the potential relationships amongst these five identified factors and %BOLD, 400 
we first performed voxel-wise correlation analyses. For these analyses, we used the TDM 401 
dataset, as its high spatial resolution facilitates the identification of vascular effects (Kay et 402 
al., 2019). We examined data from V1–V3 where neural activity magnitudes can be expected 403 
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to be relatively homogeneous (although biases were reported before;  Liu et al., 2006) given 404 
the simple contrast patterns used. In Figure 6A, we show pairwise correlations across these 405 
five quantities, as well as retinotopic polar angle preference (rescaled between 0 and 90; see 406 
Methods) and cortical depth. We find that %BOLD correlates substantially with four factors: 407 
curvature (r = 0.26), thickness (r = –0.17), mean bias-corrected EPI intensity (r = –0.25), and 408 
depth (r = –0.27). We do not find a strong correlation between %BOLD and polar angle. 409 
Although results from Figure 2C–E, Figure 3C and Figure 4 suggest a strong negative 410 
correlation, the previous analysis included data only from V1. Here we analyze vertices from 411 
V1-V3 where this relationship becomes weaker (r = –0.05). Overall, we can summarize as 412 
follows: %BOLD extracted from V1–V3 tends to be higher at locations that correspond to sulci, 413 
in thinner parts of the cortex, in voxels with lower mean bias-corrected EPI intensities, and at 414 
more superficial depths.  415 
 416 
Examination of correlations amongst factors yields additional insights (Figure 6A). The 417 
strongest correlation that we find is between curvature and thickness (r = –0.28), indicating 418 
that sulci tend to be thin. Curvature is correlated with mean bias-corrected EPI (r = 0.16) and 419 
with polar angle (r = –0.19), and thickness is correlated with polar angle (r = 0.15). Our 420 
interpretation of these effects is that venous effects tend be stronger in gyri (consistent with 421 
previous findings in Kay et al., 2019), and that the correlations related to polar angle simply 422 
reflect the tendency for horizontal meridian representations to fall on sulci (e.g. the calcarine 423 
sulcus). Overall, these complex relationships suggest that making sense of non-neural 424 
influences on %BOLD requires a broad perspective that considers multiple factors. 425 
 426 

 427 
 428 
Figure 6 – Modeling variations in BOLD signal magnitude. A) Correlation (Pearson’s r) between a variety of 429 
factors and %BOLD extracted from V1–V3 from the TDM dataset. Main plot shows results from data 430 
concatenated across all subjects, while inset plots show results from individual-subject data. P-values indicate 431 
significance of one sample t-test across subjects; *p < 0.05; **p < 0.01; ***p < 0.001. B) Regression model for 432 
%BOLD. Based on the results of panel A, we selected curvature, thickness, depth and mean bias-corrected EPI 433 
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as the main non-neural factors that confound %BOLD. These four factors were then used in a multiple linear 434 
regression model to predict %BOLD (top). The amount of variance explained by the model is shown in the inset. 435 

Correcting BOLD signal magnitude for non-neural factors 436 
 437 
We now explore whether we can develop a statistical model to compensate for the influence 438 
of non-neural factors on %BOLD. We operate under the assumption that any observed 439 
correlation between the factors and %BOLD is incidental and does not reflect genuine neural 440 
activity variation. Our model is a multiple regression model (Figure 6B, top) that uses the main 441 
factors of curvature, thickness, depth and mean bias-corrected EPI intensity as continuous 442 
variables and attempts to determine a weighted sum of these factors that optimally accounts 443 
for variations in %BOLD across cortical locations (see Methods for details).  444 
 445 
Fitting the model, we find a strong positive contribution of curvature and negative 446 
contributions of thickness, mean bias-corrected EPI intensity and depth (Figure 6B, bottom), 447 
consistent with the earlier voxel-wise correlation analyses. Estimated beta weights are fairly 448 
consistent across subjects, and the model on average across subjects explains 26% of the 449 
variance in %BOLD. A multiple regression model using all 6 factors (adding RF coil bias and 450 
angle with respect to B0) resulted in only minimally larger explained variance, 27% vs. 26%, 451 
consistent with the earlier correlation analyses indicating that RF coil bias and angle with 452 
respect to B0 bear little or no relationship with %BOLD. 453 
 454 
To better understand the relationship between the identified non-neural factors and %BOLD, 455 
we construct a 2D histogram relating the model fit (BOLD prediction based on non-neural 456 
factors obtained by multiplying the design matrix and estimated beta weights) and %BOLD 457 
(Figure 7A). This reveals a clear nonlinear relationship. To accommodate this nonlinearity, we 458 
fit a nonlinear function relating the linear model fit and %BOLD (blue line in Figure 7A). Finally, 459 
we remove the contribution of non-neural factors by dividing %BOLD observed at each 460 
cortical location by the fit of the nonlinear model. We divide %BOLD by the model fit rather 461 
than subtracting the model fit, as we believe that the influence of non-neural factors on 462 
%BOLD might impose a type of ‘gain’ field on fMRI responses observed in a given experiment. 463 
For example, if there is an excess of macrovasculature in a voxel, we would expect the overall 464 
amplitude of the BOLD response from the voxel to be scaled. Note that our method of 465 
rescaling BOLD magnitudes does not change the pattern of responses across different 466 
experimental conditions within a voxel (while a subtractive approach would). For example, if 467 
the response to condition A is 25% higher than the response to condition B, this will continue 468 
to be the case after rescaling.  469 
 470 
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 471 
Figure 7 – Correction of V1 BOLD inhomogeneity. A) Removal of non-neural factors. First, linear combinations 472 
of non-neural factors are used to predict %BOLD within V1–V3 using the TDM dataset. The model is fit on data 473 
concatenated from all 5 TDM subjects. The model is augmented with a nonlinear power-law function (blue line), 474 
which is controlled by a gain parameter (p(1)), an exponent parameter (p(2)), and a constant term (p(3)). B) Each 475 
voxel’s BOLD responses are divided by the model fit, yielding the corrected %BOLD. C) BOLD signal magnitude 476 
within V1 before and after the correction (TDM dataset, subject S3, most superficial depth). Asterisk indicates 477 
the fovea and dashed lines indicate the boundary between V1 and V2. After correction, some vertices with very 478 
high BOLD are eliminated (see white arrows). Within each plot, the color range extends from 0 to the maximum. 479 
Each map has an associated histogram that shows all values extracted from V1.  480 

The result of the proposed correction procedure is shown in Figure 7B. We see that after the 481 
correction procedure, the distribution of BOLD response becomes flatter, indicating the 482 
efficacy of the procedure. (Note that what is important is the shape of the distribution of the 483 
values, not necessarily the magnitudes of the values.) Increased homogeneity of BOLD 484 
magnitude is also visible on the cortical surface (Figure 7C). 485 
 486 
To understand whether our method generalizes across datasets, we used the same procedure 487 
and performed correction on the NSD dataset. We summarize the effect of the correction by 488 
showing the correlations between %BOLD and non-neural factors before and after the 489 
correction (Figure 8A). The pattern of results before correction (Figure 8A, top) is consistent 490 
across the TDM and NSD datasets, except for the reduced correlation with bias-corrected EPI 491 
in NSD (see Discussion). Importantly, correlations after the correction are substantially 492 
reduced, indicating the efficacy of the method. 493 
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To check whether accounting for non-neural factors increases the homogeneity of BOLD, we 494 
quantified the variation of BOLD magnitudes across V1 before and after the correction. 495 
Variation was quantified using the semi-interquartile range divided by the median (SIR). 496 
Intuitively, if the spread of BOLD magnitudes is small (i.e., %BOLD is relatively homogeneous), 497 
SIR will be low, whereas if the spread of BOLD magnitudes is large (i.e., %BOLD is relatively 498 
homogeneous), SIR will be high. We find that across subjects, the SIR decreases from 0.42 499 
before correction to 0.34 after correction for TDM and decreases from 0.48 to 0.42 for NSD.  500 
 501 
We now return to the experimental effect that motivated this study, namely, BOLD response 502 
asymmetries across the horizontal and vertical meridians in V1. We quantify the asymmetry 503 
before and after correction (Figure 8B). We find that after accounting for the non-neural 504 
factors, the asymmetry drops for TDM from 49.2% to 25.1% and from 40% to 18% for NSD. 505 
We thus suggest that some of the observed differences in BOLD response magnitudes are due 506 
to non-neural factors. 507 
 508 
 509 

 510 
 511 
Figure 8 – The effect of BOLD inhomogeneity correction. A) Voxel-wise correlation between the various factors 512 
and %BOLD before and after correction. After correction, correlations are reduced, indicating that the corrected 513 
data are less influenced by the non-neural factors. B) Dependence of %BOLD on polar angle in V1 before and 514 
after the correction for TDM dataset and NSD datasets. The asymmetry drops by about half. 515 

In the results demonstrated in this paper, the correction method reduces inhomogeneities 516 
between the horizontal and vertical meridians. But more generally, it is possible that in other 517 
datasets, the method may reveal activity differences that are masked by non-neural factors. 518 
For example, voxel A might have a lower neural response than voxel B, but voxel A might 519 
reside close to a large vein which would tend to increase %BOLD. In conventional fMRI 520 
analyses, both voxels might show similar BOLD magnitude, even though the underlying neural 521 
activity is different. The methods proposed in this paper can be viewed as an attempt to 522 
obtain better estimates of underlying neural activity. 523 
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Discussion 524 

In this paper, we used three publicly available datasets to assess the degree of homogeneity 525 
of BOLD signal magnitude in primary visual cortex. We found that stimulus-evoked BOLD 526 
responses, expressed as percent signal change, are up to 50% stronger along the horizontal 527 
meridian than the vertical meridian. To investigate whether these magnitude differences can 528 
be attributed to differences in local neural activity, we systematically evaluated the potential 529 
contribution of several non-neural factors to the observed effect. We found that BOLD signal 530 
magnitude correlates with curvature, thickness, depth and macrovasculature (as indexed by 531 
bias-corrected EPI intensities). Using a regression-based correction procedure, we were able 532 
to increase the homogeneity of BOLD signal magnitude and found that the meridian 533 
differences were reduced by half.  534 
 535 
Spatial variations in BOLD magnitude 536 
 537 
This study tackles the issue of the neural basis of variation in BOLD signal magnitude. 538 
Specifically, we address variation in BOLD across cortical locations for a fixed experimental 539 
manipulation, as opposed to variation in BOLD across experimental manipulations for a fixed 540 
cortical location. The latter has been heavily studied (Heeger et al., 2000; Logothetis et al., 541 
2001; Heeger and Ress, 2002; Logothetis and Wandell, 2004; Mishra et al., 2021), whereas 542 
the former has not yet been systematically studied to the best of our knowledge. If there are 543 
indeed non-neural factors that influence BOLD signal variation, taking this into account is 544 
critical when interpreting differences in fMRI responses across brain regions.  545 
 546 
We acknowledge that a challenge in understanding the neural basis of the BOLD signal is that 547 
directly comparable ground-truth measurements of neural activity are typically not available. 548 
Moreover, the BOLD signal only indirectly measures the neural response, and its magnitude 549 
likely depends on many aspects of neural activity. Increased BOLD signal might be a 550 
consequence of more neurons firing, more spikes per neuron, changes in neural correlation, 551 
changes in subthreshold activity, and/or changes in what kinds of neurons are most active. 552 
Our approach currently does not try to distinguish amongst these causes. 553 
 554 
In our analyses, we relied on the working assumption that the experimental paradigms of the 555 
three datasets (combined with suitable averaging and analysis procedures) are expected to 556 
generate relatively homogeneous patterns of neural activity in early visual cortex. Of course, 557 
this may not be exactly the case.  558 
 559 
Non-neural factors that affect BOLD magnitude 560 
 561 
Mean bias-corrected EPI. Mean bias-corrected EPI is a convenient marker for macrovascular 562 
contributions to the fMRI signal (Kay et al., 2019). Vertices contaminated by venous effects 563 
show lower intensity values in mean EPI images and often result in high %BOLD magnitude. 564 
In the TDM dataset, we found this to be the case and were able to remove, to some extent, 565 
venous effects using the described correction method. We did not, however, find a strong 566 
relationship between mean bias-corrected EPI and %BOLD magnitude in the NSD dataset. We 567 
suggest that the reason for this apparent discrepancy is that effective discovery of venous 568 
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contributions requires high-resolution data where voxel size approaches the scale of 1 mm or 569 
better. Another important issue to consider is the cerebral sinuses. The sinuses are the largest 570 
veins that drain blood from the brain and they exert major effects at certain specific cortical 571 
locations. Complicating matters is the fact that the sinuses also produce low EPI intensity, but 572 
instead of boosting BOLD magnitude they seem to reduce it, resulting in low %BOLD (Winawer 573 
et al., 2010; Jamison et al., 2017). In the present study, we do not attempt to isolate or analyze 574 
the effects of the cerebral sinuses, though preliminary analyses indicate that the sinuses do 575 
not provide a simple explanation of the horizontal/vertical asymmetry (data not shown). 576 
 577 
Cortical anatomy. We find that curvature and thickness correlate with BOLD signal magnitude 578 
(see Figure 6A). It is known that many anatomical properties vary with thickness and with 579 
curvature (Jiang et al., 2021): (i) total neuron count is higher in gyri than it is in sulci (Hilgetag 580 
and Barbas, 2005), (ii) gyri tend to be thicker than sulci (Welker, 1990; Hilgetag and Barbas, 581 
2005), (iii) venous effects (resulting in higher BOLD signal amplitude) are more prominent in 582 
gyri than they are in sulci (Kay et al., 2019); and (iv) there may even be intrinsic causal 583 
relationships between curvature and thickness during anatomical development (Hilgetag and 584 
Barbas, 2005). However, the exact anatomical and biophysical mechanisms that might link 585 
curvature and thickness to BOLD signal magnitudes are largely unknown, to our knowledge. 586 
This is an important issue for future research. Here, we operate under the working 587 
assumption that correlations between the BOLD signal and curvature or thickness reflect 588 
incidental factors unrelated to local neural activity. We therefore assume that a correction 589 
which removes their influence from the BOLD signal is desirable. 590 
 591 
Orientation of pial veins. It has been reported that regions where the cortical surface is 592 
oriented perpendicular to the main magnetic field produce lower BOLD signal than regions 593 
where the surface is oriented parallel (Gagnon et al., 2015a; Fracasso et al., 2018). The 594 
proposed explanation is that this effect is caused by the orientation of pial veins, which lie 595 
parallel to the cortical surface. Our analyses did not replicate this result and indicated little 596 
relationship between BOLD magnitude and angle with respect to B0 (see Figure 6A). One 597 
possible explanation could be related to our pre-processing approach, in which fMRI signals 598 
are sampled specifically in the gray matter and away from the pial veins that reside on top of 599 
the gray matter. This may have dampened effects related to the pial veins. Nonetheless, the 600 
prior literature would have predicted some B0 effect even at inner cortical depths (Viessmann 601 
et al., 2019). Alternatively, it is possible that the orientation effects depend in some way on 602 
pulse sequence parameters, or the specific brain area being studied. A detailed examination 603 
of different datasets would be necessary to resolve these discrepancies.  604 
 605 
RF coil effects. Due to cortical folding, gyri tend to be closer to the RF coil than sulci. Locations 606 
that are further from the coil might have lower mean signal intensities and therefore lower 607 
SNR (Srirangarajan et al., 2021), but this should not affect BOLD magnitudes expressed in 608 
terms of percent signal change. We are not aware of any mechanism that would alter the 609 
percent signal change in brain locations that are further away from the RF coil. Indeed, we did 610 
not find any relationship between RF coil bias and BOLD magnitude (see Figure 6A). 611 
 612 
 613 
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Correction for the impact of non-neural factors 614 
 615 
Our results show that voxel-wise %BOLD is likely contaminated by several non-neural factors.  616 
To account for these factors, we developed a regression-based correction method. The goal 617 
of this method was to introduce a simple, data-driven approach that can be applied 618 
irrespectively of the specific experiment or brain region that is under consideration. The 619 
underlying premise of the method is that by removing the contribution of non-neural factors, 620 
the resulting measures would constitute a better representation of the underlying neural 621 
activity. After application of the method, we found that %BOLD becomes more homogenous 622 
and correlations between %BOLD and non-neural factors become significantly reduced. Thus, 623 
our results indicate that some variation in %BOLD that might be interpreted as change in 624 
neural activity likely reflects the variation of non-neural factors.  625 
 626 
We believe the results presented in this paper constitute a first step towards developing a 627 
cogent strategy for compensating for non-neural biases in BOLD signal magnitudes. 628 
Suppressing the influence of non-neural factors has potential applications in pre-surgical 629 
planning, where fMRI is routinely used to map motor, speech, and visual areas. The value of 630 
fMRI for presurgical planning is currently limited by the accuracy of localizing neural 631 
responses (Silva et al., 2018a). BOLD-derived maps that are a better representation of neural 632 
activity could lead to more accurate neurosurgical interventions. 633 
 634 
It remains to be seen whether the remaining asymmetry across the horizontal and vertical 635 
meridians in V1 is a result of genuine neural activity differences, or an effect of other non-636 
neural factors that we were unable to quantify in the present study (which might require 637 
additional MRI acquisition measures and/or higher resolution data). It is conceivable that 638 
genuine neural activity differences may exist across the horizontal and vertical meridian 639 
locations in V1. For example, there is greater cortical magnification along the horizontal than 640 
vertical meridian (Silva et al., 2018b; Benson et al., 2021; Himmelberg et al., 2021; 641 
Himmelberg et al., 2022), and it is plausible that this might be accompanied by differences in 642 
the strength of neural responses.  643 
 644 
Although our method is aimed towards more meaningful quantification of the BOLD signal, it 645 
differs conceptually from quantitative BOLD (qBOLD) approaches (He and Yablonskiy, 2007; 646 
Yablonskiy et al., 2013; Cherukara et al., 2019). On the one hand, qBOLD attempts to model 647 
the BOLD signal in terms of its underlying metabolic and hemodynamic components (e.g., 648 
blood flow, blood volume, oxygenation extraction), and this in principle may yield measures 649 
more closely related to neural activity. On the other hand, the approach we have taken in this 650 
paper is to apply analytic methods to BOLD data that consider inhomogeneities that may exist 651 
across the brain, with the goal of better estimating local neural activity. Note that the two 652 
approaches are not mutually exclusive: one might imagine assessing whether the magnitude 653 
of qBOLD measures co-vary with non-neural factors across the brain. 654 
 655 
There are other methods that can be used to suppress the contribution of non-neural factors 656 
to BOLD signal magnitudes. By identifying early and late components of evoked hemodynamic 657 
responses, a temporal decomposition method can be used to estimate BOLD response 658 
components more closely linked to the microvasculature, which presumably more closely 659 
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reflect local neural activity (Kay et al., 2020). Another analysis method focuses on BOLD 660 
fluctuations where estimates of slow oscillations (< 0.1 Hz) are used to suppress vascular-661 
related effects (Kazan et al., 2016). Similarly, some methods use the amplitude of fluctuations 662 
in resting-state data to rescale the BOLD signal (Di et al., 2013; Guidi et al., 2020). Finally, 663 
acquisition methods, such as spin-echo pulse sequences, can be used to suppress unwanted 664 
venous effects. Note that all these methods concern effects of the macrovasculature, but 665 
systematic biases in BOLD signal magnitudes may in theory persist even if BOLD responses 666 
were fully restricted to the microvasculature. Further investigation is necessary to resolve 667 
these possibilities.  668 
 669 
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