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ABSTRACT

We study the low-rank phase retrieval problem, where the ob-
jective is to recover a sequence of signals (typically images)
given the magnitude of linear measurements of those signals.
Existing solutions involve recovering a matrix constructed by
vectorizing and stacking each image. These solutions model
this matrix to be low-rank and leverage the low-rank prop-
erty to decrease the sample complexity required for accurate
recovery. However, when the number of available measure-
ments is more limited, these low-rank matrix models can of-
ten fail. We propose an algorithm called Tucker-Structured
Phase Retrieval (TSPR) that models the sequence of images
as a tensor rather than a matrix that we factorize using the
Tucker decomposition. This factorization reduces the number
of parameters that need to be estimated, allowing for a more
accurate reconstruction. We demonstrate the effectiveness of
our approach on real video datasets under several different
measurement models.

Index Terms— phase retrieval, tensor recovery, non-
convex optimization

1. INTRODUCTION

Phase retrieval, or quadratic sensing, is a problem that arises
from a wide range of imaging domains such as X-ray crystal-
lography [1], Fourier ptychography [2,3], and astronomy [4].
In each of these domains, the measurement acquisition pro-
cess generally involves an optical sensor that captures the
diffracted patterns of the object of interest. However, the
physical limitations of these sensors only allow us to observe
the intensities (or magnitudes) of these patterns. The objec-
tive of phase retrieval is then to recover this object x € C",
given a sampling matrix A € C"*™ and measurements y €
R™, where y = |A*x| (or equivalently y = |A*x|?) and
* represents the Hermitian (or conjugate) transpose. The im-
portance of solving the phase retrieval problem in these imag-
ing domains have led to many convex and non-convex solu-
tions [5-10]. However, the theoretical guarantees of all ex-
isting methods require the system to be over-determined (i.e.
m > n). This requirement, which is also considered the
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bottleneck of phase retrieval, mainly comes from the non-
convex nature of the problem. In order to converge to the
optimal solution, one needs enough samples to guarantee that
the initial estimate of the signal is close to the true signal with
high probability. This initial estimation step is called spectral
initialization, where the term “spectral” comes from the use
eigenvectors (or singular vectors) of properly designed matri-
ces from data [11]. This step has been shown to be essential
for solving the phase retrieval problem, and many variants of
this step have been proposed in the literature.

Recently, there has been a surge of interest in solving the
low-rank phase retrieval problem [12—15]. This problem can
be viewed as a dynamic extension of the standard phase re-
trieval problem, where the objective is to recover a matrix
of vectorized images rather than a single image. Formally,
we want to estimate a low-rank matrix X € C"*9, where
X = [x1,X2...,Xg], given sampling matrices A;, € C"*™
and measurements y, = |Afxg|, K = 1,...,¢. Note that in
this problem formulation, we assume that there is a separate,
independent set of sampling matrices Ay, for each signal xy.
Unlike the phase retrieval problem, this problem has several
solutions that have strong theoretical guarantees even for the
under-determined setting (i.e. m < n). These algorithms ex-
ploit the low-rank property of the matrix X with the extra set
of sampling matrices in order to naturally reduce the sample
complexity. However, our empirical results suggest that there
is perhaps a gap between theory and practice, and that these
solutions fail to accurately recover the images in the under-
determined setting. In fact, in these settings, we observe that
these algorithms often do not converge.

In this paper, we propose an algorithm called Tucker-
Structured Phase Retrieval (TSPR) that models the sequence
of images as a tensor rather than a matrix. With a tensor
model, we can decompose the tensor using the Tucker de-
composition [16], allowing us to estimate fewer parameters
than the matrix counterpart. In the literature, it has been
shown that this idea of modelling the parameters as a tensor
have been effective in solving many other statistical esti-
mation problems [17-19]. The reduction in the number of
parameters also decreases the number of degrees of freedom,
suggesting that recovery is possible with a smaller sample
complexity. We empirically show that this idea also works
for low-rank phase retrieval, on real video datasets with mea-
surements generated from real and complex Gaussian vectors
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and coded diffraction patterns. Our results show that in all
of these measurement settings, TSPR outperforms existing
algorithms in both the under and over-determined regimes.

2. UNSTRUCTURED LOW-RANK PHASE
RETRIEVAL

There are several provably efficient algorithms for solving
the low-rank phase retrieval problem that vectorize each
image and recover a low-rank matrix [12, 13, 15, 20]. We
call such methods “unstructured” because they assume no
structure in the images. Recently, Nayer et al. proposed Alt-
MinLowRaP [13] which improves AltMinTrunc [12, 15] to
solve the unstructured low-phase retrieval problem. AltMin-
LowRaP alternately minimizes the factor matrices U € C"*"
and B € C?*" of the low-rank matrix X = UB*. Updating
the factor matrix U consisted of minimizing the objective
function

al"génin > IChyr — AjUby|3, (h
k

where by, is the k-th row of the matrix B and Cj, is a di-
agonal phase matrix. Note that this objective function sums
over all of the columns in X, as the k-th column of X can be
written as x; = Uby. The intuition behind this summation
can be viewed as each of the vectorized images x;, differing
by by, while sharing the same span(U). Optimizing for U
involved minimizing this objective function using conjugate
gradient least squares (CGLS) while keeping by, fixed. The
factor matrix B was initialized and updated by solving an r-
dimensional noisy phase retrieval problem for each row B,
b. To see this, we can rewrite each of the measurements as

Yike = (@i 5, Xk)| = [(@ik, Ubg)| = [(U*a; i, br)|. (2)

Given an estimate of U, we can solve for each by using
any phase retrieval method, such as Reshaped Wirtinger Flow
(RWF). Thus, AltMinLowRaP runs RWF ¢ times (once for
each image) to estimate by, given the sampling matrix U*a, .

Due to the non-convex nature of this problem, the factor
matrix U was initialized via a spectral method. The matrix U
was initialized by taking the top r eigenvectors of the surro-
gate matrix

1 =
~ mg ; ]; Virdindiplie <otz oy @)
for some trimming threshold «.. The intuition behind this ma-
trix is that given enough samples, the expectation of this ma-
trix is equivalent to

Ely: raika) ;] = 2xpxp + x4 [|°L. )

Thus, the subspace spanned by the top r eigenvectors of Y
can recover exactly U. The double summation over the mea-
surements and samples in the surrogate matrix and truncation

is what guaranteed AltMinLowRaP a smaller sample com-
plexity over existing methods. Our algorithm is an empirical
improvement over AltMinLowRaP. Although we do not yet
have a theoretical analysis of the sample complexity, our re-
sults suggest that our algorithm can work better in practice.

3. TUCKER-STRUCTURED PHASE RETRIEVAL

Our algorithm models the sequence of ¢ images as a tensor
by reshaping and stacking each of the vectorized images from
X € C"into X € C™t*"2 where n = nins. The objective
of TSPR is to recover this tensor X € C"1*"2X4 where X
can be factorized using the Tucker decomposition written as

X=Gx1Dx;Ex3F, ®)

where G € C"t*"2X73 g the core tensor and D € Cnt*",
E € C"*"2 and F € C9%"2 are the factor matrices. Here,
r1 and ro refer to the ranks of the frontal slices of the tensor
(an image), whereas r3 refers to the temporal rank that corre-
sponds to the “rank” in the standard model which vectorizes
the images. We want to solve for these factors by first ini-
tializing them via a spectral method and then estimate using
alternating minimization and CGLS.

Spectral Initialization: The idea behind our spectral initial-
ization step is to construct a tensor that is close to X with
high probability. Upon constructing this tensor, we can use
higher-order SVD (HOSVD) [21] to initialize our core ten-
sor and factor matrices. We adopt the initialization technique
of Truncated Wirtinger Flow (TWF) [9] to obtain an initial
estimate of the vectorized image x;. After finding an initial
estimate for each image, we can reshape x;, into its original
dimensions and stack them to create the initial tensor. This
initialization step is outlined in Algorithm 1.

Alternating Minimization: Upon initialization, we can al-
ternately update the core tensor and each factor matrix us-
ing CGLS and RWF. Recall that in AltMinLowRaP, we min-
imized an objective function that was formed by plugging in
x; = Ubyg. Similarly, we can minimize the same function,
but by rewriting x;, using our Tucker factors. Specifically, we
rewrite each xj, as x;, = (fx @ E®@ D)vec(G), where f}, is the
k-th row of the factor matrix F'. The reason behind writing xy,
in terms of f}, is the same reasoning used for the unstructured
case — each image xy, differs by f;,. By plugging in xj, the
update steps of the core tensor G and factor matrices D and
E consists of minimizing the function

> ICkyk — Aj(fe ®E®@ D)vec(G)[5.  (6)
k

To update each row vector fj, note that we can rewrite y; 5, as

[(aik, M3(G)(E@ D) )|  (7)
= |[(M3(G)(E® D)*a; k, fk)|, ()

Yik = |<a¢,k, ch>|
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where M, (G) is the k-th mode matricization of the tensor
G. With this formulation, updating each f;, simplifies to solv-
ing a noisy r-dimensional phase retrieval problem with sam-
pling matrix M3(G)(E ® D)*a; ;. We can use any classical
phase retrieval method to solve for fj,, but we use RWF [10]
to directly compare the performance of TSPR with AltMin-
LowRaP. This update step is summarized in Algorithm 2, and
the details for implementation are available in the longer ver-
sion of this paper.

4. NUMERICAL EXPERIMENTS

We compare the performance of TSPR with two closely re-
lated algorithms, AltMinTrunc and AltMinLowRaP, using
two real video datasets, Mouse and Plane. We consider
measurements generated by real Gaussian matrices, complex
Gaussian matrices, and coded diffraction patterns (CDP). To
quantitatively compare these algorithms, we use the phase-
invariant matrix distance [13] defined as

q
mat—distQ()A(7 X) = Z dist? (X, Xk ), &)
k=1

where X is the true matrix, X is the reconstructed matrix and

dist(%,x) = min [x — eV 1% (10)
$€[0,27]

Some of the results went through a “model correction” step
as proposed by Nayer et al. [13]. We provide additional in-
formation on this correction step in the longer version of this
paper. We also provide a reconstruction of the videos as a
supplement and display single frames in this paper.
Experiments with the Mouse Dataset: The mouse dataset is
a video of a mouse moving slowly towards a camera, provided
by Nayer et al. [13]. The mouse video consisted of 90 frames,
where each frame was downsized to be of dimensions 40 x 80.
Upon constructing the tensor X € C0x80x90 '\e generated
measurements according to the model

Y = |AZVCC(Xk)|, k= 17 -4, (11)

where each column of Aj was drawn either from a; ; ~
N(0,T) (real Gaussian distribution) or a;  ~ CN(0,1I) (cir-
cularly complex Gaussian distribution). We compare the three
algorithms in two under-determined settings under these mea-
surements. The numerical results are recorded in Table 1 with
two of the reconstructed frames shown in Figure 1. In Table
1, we can see that TSPR outperformed the other two algo-
rithms in both under-determined settings by estimating less
parameters. In fact, we observe that for two different ranks,
AltMinTrunc did not converge and had a resulting error that
was significantly higher than the others. These values were
obtained by running 7" = 20 iterations of the total algorithm
and Trw r = 25 where applicable. For the trimming thresh-
old, we used a value of o = 3, as suggested in TWF [9].

Algorithm 1 TSPR Initialization

Input: Observations: {y; x|l <i < m,1 <k < ¢}, Sam-
pling vectors: {a; ;|1 <4 <m,1 <k < ¢}, Trim-
ming threshold: «, ranks = [r1, 79, 73]

fork=1,...,qdo

Compute Ay =

1
\ m 2oiet Yik-
Compute z;, as leading eigenvector of

m
_ 2 . * .
Y = Zyi,kal,kaz’,kl{\yi,k|2§a2)\£}
i=1

Compute X = ./ m)\ka.

Reshape x;, € C™ into X, € C"1*"2,

end

Stack tensor into X = [Xy, Xa, ..., X,].

Initialize factors D°, E, FO, G° = HOSVD(X, ranks)
Output: D° E°, F°, G°

Algorithm 2 Tucker-Structured Phase Retrieval (TSPR)

Input: Observations: {y; |1 <i <m,1 <k < ¢}, Sam-
pling vectors: {a; ;|1 < i <m,1 <k < ¢}, Initial
factors: DO, E?, FO, G, Iterations 7", RWF Iterations

Trwr
fort=1,...,Tdo
fork=1,...,qdo

Update f; ™' = RWF([D!,E*, G, A}], yi, Trw r)
Compute X' = (f;7' @ E! ® D!)vec(G")
Update phases C}"' = Diag(Phase(A}vec(X:)))
end
Update D!, Et*!, G**! by minimizing (6)

end
Reconstruct tensor X© = GT x; DT x5 ET x5 FT
Output: XT

The ranks were generally chosen by trial and error, and the re-
sults did not go through a model correction step, as it seemed
to increase the errors numerically. We would also like to note
that although TSPR yielded a lower numerical reconstruction
error, we can see in Figure 1 that the reconstructed image is
still not as clear as the original image. This is an intrinsic
tradeoff of the Tucker model, as each frame may not be ex-
actly low-rank. We want to choose the ranks corresponding
to the image dimensions (i.e. 71,72) to be small so that we
can get convergence up to some modelling error, but not too
small such that the reconstructed images are unclear. Based
on our experiments, we observed that for ranks r; and 79, us-
ing ranks slightly less than half of the dimensions of image
(i.e. 1 < 0.5n7 and 7y < 0.5n9) worked well, whereas for
r3 (or r in the matrix model), we can be more conservative in
our choices and choose a value much smaller.

Experiments with the Plane Dataset: The plane dataset is
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Experiment Samples | # of Parameters Algorithm Rank Distance
Mouse (Real) m = 0.25n 5750 TSPR r = [20, 25, 5] 2.851
16450 AltMinLowRaP r=>5 6.175
16450 AltMinTrunc r=>5 7.277
Mouse (Complex) | m = 0.75n 5750 TSPR r = [20, 25, 5] 1.217
8700 r = [20, 25, 10] 1.170
16450 AltMinLowRaP r=>5 4.379
32900 r =10 3.435

16450 AltMinTrunc r=>5 78.118

32900 r =10 77.319

Plane (CDP) m=2n 5600 TSPR r = [15, 20, 10] 0.437
8075 r = [20, 25, 10] 0.571
14525 r = [30, 35, 10] 1.008
22900 AltMinLowRaP r =10 0.869
22900 AltMinTrunc r =10 0.894

Table 1: Results for the experiments with the Mouse and Plane datasets. The value n refers to the dimensions of x; and m
refers to the number of measurements generated for each xj. The # of parameters value refers to the total number of parameters
that need to be solved for all images x;. The distance metric is the phase-invariant distance defined in equation (9).

Original TSPR AltMinLowRaP  AltMinTrunc

Fig. 1: Results from recovering a video of a moving mouse
from complex Gaussian measurements. Rows 1 and 2: recon-
structed images of frames 60 and 70, respectively.

o

Original TSPR AltMinLowRaP  AltMinTrunc
Fig. 2: Results from recovering a video of a plane from CDP
measurements. Rows 1 and 2: reconstructed images of frames

10 and 80, respectively.

a video of a plane slowly landing on a runway, also provided
by Nayer et al. [13]. The plane video consisted of 90 frames,
where each frame was downsized to be of dimensions 40 x 55
for efficiency. Upon constructing the tensor X € C40x55%90,
we generated measurements according to the CDP model

yir = [FMpvec(Xy)|, l=1,...,L, k=1,...q, (12)

where F is the discrete Fourier transform (DFT) matrix and

M is a diagonal mask matrix with elements drawn randomly
from {1,—1,j,—j}. Since the CDP model can only gener-
ate measurements m = Ln for each image for some integer
L, the objective of this experiment was to show the effective-
ness of TSPR in the over-determined setting. Upon running
all three algorithms with the same parameters as the Mouse
dataset, each result went through a model correction step. In
Figure 2, we see that while all three algorithms can visually
reconstruct the frames of this video, Table 1 shows that the
errors for TSPR are lower. However, the errors are only lower
for certain values of the Tucker rank. This is most likely be-
cause as these ranks increase, the total number of parameters
slowly converge to that of the unstructured methods, making
recovery more difficult.

5. CONCLUSION

In this paper, we showed that by modelling the sequence of
images as a tensor, we can obtain a more accurate reconstruc-
tion in both the under and over-sampled regimes. Our algo-
rithm, TSPR, adopted a mixture of optimization techniques
from AltMinLowRaP and Truncated Wirtinger Flow to im-
prove upon existing methods. TSPR involved a spectral ini-
tialization method that used higher-order SVD with alternat-
ing minimization via conjugate gradient least squares. Cur-
rently, TSPR lacks the theoretical guarantees in comparison
to unstructured solutions. One important avenue for future
research can be to extend our algorithm but with theoretical
guarantees on the sample complexity required for accurate re-
covery. Our results show that there exist Tucker-structured
models with better performance; we believe that perhaps find-
ing a more principled approach for choosing these ranks is an
important challenge for future work.
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