
Estimating the Longest Increasing Subsequence in
Nearly Optimal Time

Alexandr Andoni
Columbia University

New York, USA
andoni@cs.columbia.edu

Negev Shekel Nosatzki
Columbia University

New York, USA
ns3049@columbia.edu

Sandip Sinha
Columbia University

New York, USA
sandip@cs.columbia.edu

Clifford Stein
Columbia University

New York, USA
cliff@cs.columbia.edu

Abstract—Longest Increasing Subsequence (LIS) is a funda-
mental statistic of a sequence, and has been studied for decades.
While the LIS of a sequence of length n can be computed
exactly in time O(n log n), the complexity of estimating the
(length of the) LIS in sublinear time, especially when LIS
≪ n, is still open.

We show that for any n ∈ N and λ = o(1), there
exists a (randomized) non-adaptive algorithm that, given a
sequence of length n with LIS ≥ λn, approximates the LIS
up to a factor of 1/λo(1) in no(1)/λ time. Our algorithm
improves upon prior work substantially in terms of both
approximation and run-time: (i) we provide the first sub-
polynomial approximation for LIS in sub-linear time; and (ii)
our run-time complexity essentially matches the trivial sample
complexity lower bound of Ω(1/λ), which is required to obtain
any non-trivial approximation of the LIS.

As part of our solution, we develop two novel ideas
which may be of independent interest. First, we define a
new Genuine-LIS problem, in which each sequence element
may be either genuine or corrupted. In this model, the user
receives unrestricted access to the actual sequence, but does
not know a priori which elements are genuine. The goal is
to estimate the LIS using genuine elements only, with the
minimal number of tests for genuineness. The second idea,
Precision Tree, enables accurate estimations for composition
of general functions from “coarse” (sub-)estimates. Precision
Tree essentially generalizes classical precision sampling, which
works only for summations. As a central tool, the Precision
Tree is pre-processed on a set of samples, which thereafter
is repeatedly used by multiple components of the algorithm,
improving their amortized complexity.

Index Terms—sublinear algorithms, approximation algo-
rithms, randomized algorithms, longest increasing subse-
quence, string algorithms

I. INTRODUCTION

Longest Increasing Subsequence (LIS) is a fundamental
measure of a sequence, and has been studied for decades.

Alexandr Andoni: Research supported in part by NSF grants
(CCF-1617955, CCF-1740833, CCF-2008733), and Simons Foundation
(#491119).
Negev Shekel Nosatzki: Research supported in part by NSF grants (CCF-
1617955 and CCF-1740833), and Simons Foundation (#491119).
Sandip Sinha: Research supported by NSF grants CCF-1714818, CCF-
1822809, IIS-1838154, CCF-1617955, CCF-1740833, and by the Simons
Collaboration on Algorithms and Geometry.
Clifford Stein: Research partly supported by NSF Grants CCF-1714818
and CCF-1822809.

Near linear-time algorithms have been known for a long
time, for example, the Patience Sorting algorithm [29], [32]
finds a LIS of a sequence of length n in time O(n log n). The
celebrated Ulam’s problem asks for the length of a LIS in a
random permutation; see discussion and results in [2]. LIS
is also an important special case of the problem of finding a
Longest Common Subsequence (LCS) between two strings,
as LIS is LCS when one of the strings is monotonically
increasing. Recently, there has been significant progress in
approximation algorithms for LCS of two or more strings
[12], [15], [22], [42]. Moreover, LIS is often a subroutine
in LCS algorithms: for example, when strings are only
mildly repetitive [27, Chapter 12], or more recently in
approximation algorithms [28], [38]. Longest increasing
subsequences have multiple applications in areas such as
random matrix theory, representation theory, and physics [2],
and the related LCS problem also has multiple applications
in bioinformatics, and is used for data comparisons such as
in the diff command.

In the quest for faster algorithms, researchers started
studying whether we can estimate the length of a LIS
(denoted LIS as well) in sublinear time. An early version of
this question underpins one of the first sublinear-time algo-
rithms: to test whether an array is sorted, or monotonically
increasing [18] — i.e., whether the length of the LIS is n or
is at most (1− ϵ)n. [18] gave a O(log n/ϵ) time algorithm,
and this running time was later shown to be tight [1], [20].
Since then, there have been numerous influential results on
testing monotonicity and other similar properties; see, e.g.,
[7], [9]–[11], [14], [16], [19], [40], [41], [45] and the book
[25].

While monotonicity results focus on the case when LIS ≈
n, the case when LIS ≪ n has seen much less progress.
The first result for this regime [44] shows how to (1 + ϵ)-
approximate the length when the LIS is still large: they
distinguish the case when LIS ≥ λn from the case when
LIS ≤ (λ− ϵ)n (for any λ > 0) using (1/ϵ)O(1/ϵ) logO(1) n
time, which only gives a (1 + ϵ)-factor approximation
in truly sublinear time if λ = Ω(log log n/ log n). For
arbitrary λ < 1, assuming that LIS ≥ λn [42] gave an
algorithm that achieves O(1/λ3)-factor approximation of

LIS in Õ(
√
n/λ7) time.1 Recently, [34] improved upon

this result by presenting an algorithm with approximation
O(1/λϵ) and runtime O(n1−Ω(ϵ)(log n/λ)O(1/ϵ)). Indepen-
dently, [37] obtained a non-adaptive O(1/λ)-approximation
algorithm using Õ(

√
r/λ2) queries, where r is the number

of distinct values. The authors of [37] also proved a lower
bound, showing that any non-adaptive algorithm that esti-
mates the LIS to within an additive error of ϵn requires
(log n)Ω(log(1/ϵ)) queries.

To put the above results into context, contrast LIS with
the problem of estimating the weight of a binary vector of
length n: when the weight is at least λn, we can approximate
the weight up to a factor of 1 + ϵ by sampling Oϵ(1/λ)
positions, which is optimal. So far, one cannot rule out
that a similar performance is achievable for estimating LIS
too, in fact for λ as large as 1/ log n. The aforementioned
prior results not only have approximation factors that are
polynomial in 1/λ but also time / sample complexities that
are worse by a polynomial factor in n or 1/λ. Hence the
following guiding question remains open:

Can we estimate the length of LIS in essentially the time
needed to estimate the weight of a binary vector?

A. Our contributions

In this paper we come close to answering the above
question in the affirmative, by obtaining an algorithm that
runs in time near-linear in 1/λ, and achieves sub-polynomial
in 1/λ approximation. We show the following:

Theorem I.1 (Main theorem). For n ∈ N, and any λ =
o(1), there exists a (randomized) non-adaptive algorithm
that, given a sequence of length n with LIS ≥ λn,
approximates the length of LIS up to a 1/λo(1) factor in
O
(
1
λ · n

o(1)
)

time with high probability.

We find this result quite surprising, as one may guess
that when λ ≈ 1/

√
n (which is the LIS length of a random

permutation), one would need to read essentially the entire
sequence (implying a Ω(1/λ2) lower bound on the number
of queries needed). On the contrary, when λ ≈ 1/

√
n,

our run-time (and hence sample complexity) nearly matches
the streaming complexity from [17], [26] (albeit with worse
approximation).

Technical Contributions. Our main technical contributions
are three-fold (see technical overview in Section III):

• We define (the LIS problem in) a new sublinear compu-
tational model, which we call Genuine-LIS and which
may be of independent interest. In the Genuine-LIS
problem, we are given a sequence y ∈ Nn, with

1The formal definition of an approximation algorithm here is one that
has to return L̂IS such that L̂IS ≤ LIS, and the approximation factor
is LIS/L̂IS. Equivalently, one can conceptualize an α-approximation
algorithm (for α ≥ 1) as one that can distinguish the case when LIS ≥ λn
from the case when LIS < λn/α.

a caveat that only some of the elements of y are
“genuine” and the others are “corrupted”, a property
we can test an element for. The goal is to estimate the
length of LIS among the genuine elements of y, using
as few tests as possible, while the values of y are known
to the algorithm “for free”.

• We show how one can efficiently reduce the LIS
problem to Genuine-LIS and vice versa. These reduc-
tions together constitute the backbone of our recursive
algorithm.

• To obtain the promised query complexity, we develop
a new data structure, that we call a Precision-Tree.
This data structure samples non-adaptively (but non-
uniformly) elements of the input y and preprocesses
them for efficient operations on the sampled elements.
This part is the only part of the algorithm that samples
the input string — the aforementioned recursive calls
of LIS and Genuine-LIS problems access this data
structure only. Furthermore, the data structure allows
one to compute accurate estimations for composition
of general functions from “coarse” (sub-)estimates —
a requirement for our recursive approach.

While this paper makes progress in understanding the
complexity of estimating the LIS, the following important
question remains open:

Open Question ((1+ϵ)-approximation). Does there exist an
algorithm that, given a sequence of length n with LIS ≥ λn,
estimates the LIS up to a 1+ ϵ factor in O

(
1
λ · n

o(1)
)

time
with probability 2/3?

We believe that finding an improved approximation algo-
rithm for the Genuine-LIS problem above may lead to a
(1 + ϵ) approximation algorithm for LIS.

We give a technical overview of our algorithm in Sec-
tion III, after setting up preliminaries in Section II. Sec-
tion IV contains the proof of the main theorem, assuming
results proved in the full version of our paper [8]. In
Section V, we develop the Precision-Tree data structure
that is used to improve the sample and time complexity
of the main algorithm. The guarantees of the two primary
subroutines, as well as extensions of these algorithms in
certain ways critical to our final application, are deferred to
the full version [8].

B. Related work

Computing the length of LIS has also been studied in the
streaming model, where settling its complexity is a major
open problem [39]. In this setting, the main question is
to determine the minimum space required to estimate the
length of LIS by an algorithm reading the sequence left-
to-right. [17], [26] gave deterministic one-pass algorithms
to (1 + ϵ)-approximate the LIS using O(

√
n) space, and

matching lower bounds against deterministic algorithms

were given by [17], [21]. These lower bounds are derived us-
ing deterministic communication complexity lower bounds
and provably fail to extend to randomized algorithms [13].
However, no randomized algorithm requiring o(

√
n) space

is known for this problem either. We note that our algorithm
can be used in the streaming setting, yielding streaming
complexity O(n1/2+ϵ) for approximation no(1).

There has been much more success on the “complement”
problem of estimating the distance to monotonicity, i.e.,
dm := n−LIS, in both the sublinear-time and the streaming
settings. In the random-access setting, the problem was first
studied in [1], and later in [44], who gave an algorithm that
achieves (1 + ϵ)-approximation in time poly(1/dm, log n)
for any constant ϵ > 0. These algorithms have been also
used, indirectly, for faster algorithms for estimating Ulam
distance [3], [36] and smoothed edit distance [4].

In the streaming setting, several results were obtained
which achieve O(1)-approximation of dm using polylog(n)
space [17], [26]. This culminated in a randomized (1 +
ϵ)-approximation algorithm using polylog(n) space by
Saks and Seshadhri [43], and a deterministic (1 + ϵ)-
approximation algorithm using polylog(n) space by Nau-
movitz and Saks [35]. [35] also showed space lower bounds
against (1 + ϵ)-approximation streaming algorithms of
Ω(log2 n/ϵ) (deterministic) and Ω̃(log2 n/ϵ) (randomized).

The LIS problem has also been studied recently in other
settings, such as the MPC and the fully dynamic settings.
[30] gave a (1 + ϵ)-approximation, O(1/ϵ2)-round MPC
algorithm for LIS whenever the space per machine is
n3/4+Ω(1). In the dynamic setting, a sequence of works [23],
[33] culminating in [31], gave the first exact dynamic LIS
algorithm with sublinear update time, and also gave a deter-
ministic algorithm with update time no(1) and approximation
factor 1 − o(1). [24] showed conditional lower bounds on
update time for certain variants of the dynamic LIS problem.
Subsequent Work. The main result from this paper was
very recently used for estimating the Longest Common
Subsequence (LCS) problem. In particular, [38] gave the
first sub-polynomial approximation for LCS in linear time,
invoking our algorithm as a sub-routine.

II. PRELIMINARIES

Sequences and intervals. Given a set Ω and n ∈ N, a
sequence y = (y1, y2, · · · , yn) ∈ Ωn is an ordered collection
of elements in Ω. A block sequence y ∈ Ωn×k is a partially
ordered collection of elements in Ω. Abusing notation, we
will also allow for some elements in a block to be “null”
— for example, we write y ∈ Nn×k to also mean y ∈
{N,⊥}n×k, where ⊥ is “null”.

For ℓ ∈ [n], we say that z = (z1, · · · , zℓ) is a subsequence
of y of length ℓ, and denote it by {yij}j , if there exist
integers 1 ≤ i1 < · · · < iℓ ≤ n such that zj = yij for all
j ∈ [ℓ]. We refer to the indices ij as coordinates and the
values yij as element values. For a block sequence y, we

say that z = (z1, · · · , zℓ) is a subsequence of y of length
ℓ, and denote it by {ywj}j , if there exist integers 1 ≤ i1 <
i2 < · · · < iℓ ≤ n such that zj ∈ yij ,∗ for all j ∈ [ℓ].

Define the interval space I ≜ {[a, b] | a, b ∈ N, a ≤ b} ∪
{[a, b) | a ∈ N, b ∈ [1,∞], a < b}. For I ∈ I, we use |I| to
denote |I∩N|, i.e., the number of natural numbers contained
in interval I . We often refer to an x-interval X ∈ I ∩ 2[n]

as an interval of coordinates, and a y-interval Y ∈ I as an
interval of element values.

For a block sequence y ∈ Nn×k and a y-interval Y ∈ I,
we write y∩Y to denote the multi-set of elements in y that
are also in Y . Also, for X ⊆ [n], y(X) is the sequence with
first coordinates restricted to X . We also define y(X,Y) :=
y(X) ∩ Y .

Monotonicity. We define monotone sets as follows:

Definition II.1 (Monotone sets). Fix a (potentially partial)
ordered set (Ω, <). We say that a set P ⊆ N×Ω is monotone
if for all (i, u), (j, v) ∈ P ×P , we have (i) i = j ⇔ u = v;
and (ii) i < j ⇔ u < v.

Note that this definition captures the notion of an increas-
ing subsequence. In particular, for the standard notion of
an increasing subsequence over natural numbers, we take
Ω = N and < as the usual “less than” relation over N
(a total order). However, we will need this more general
definition to consider increasing subsequences over other
partially ordered sets, like the space of intervals I.

For a finite set P ⊂ N × Ω, a longest increasing subse-
quence (LIS) of P is a monotone set Q ⊂ P of maximum
cardinality. We often use OPT to refer to a particular LIS,
and use |OPT| to denote its length.

Distributions. For p ∈ [0, 1], we use Ber(p) to denote
the Bernoulli distribution with success probability p, and
Bin(n, p) to denote the binomial distribution with parame-
ters n and p. By convention, we project p to the range [0, 1]
whenever p > 1 or p < 0.

We use “i.i.d. random variables” to mean that a col-
lection of random variables is independent and identically
distributed, and use “sub-sampling i.i.d. with probability p”
to mean that each element is sampled independently with
equal probability p.

Operations on Vectors, Sets, Functions. For a set A ⊂ R
and a number α, we define A + α := {a + α : a ∈ A}
and αA := {αa : a ∈ A}. We write log to denote binary
logarithm.

The notation ◦ is used for function composition (i.e., g ◦
f(x) = g(f(x)), and ⊕ is used for direct sum. We use the
notation ∗ as argument of a function, by which we mean a
vector of all possible entries. For example, f(∗) is a vector
of f(i) for i ranging over the domain of f (usually clear
from the context).

We use Eb(k) for b, k ∈ N ∪ {∞} to denote the set of
powers of b bounded by k, i.e., Eb(k) ≜ {bi | i ∈ N}∩[1, k].
We also define Eb ≜ Eb(∞). We use R+ to denote the set
of non-negative real numbers.

Approximations. Our constructions generate approxima-
tions which contain both multiplicative and additive terms.
We use the following definition:

Definition II.2 ((α, β)-Approximation). For α ≥ 1 and
β > 0, an (α, β)-approximation q̂ of a quantity q is
an α-multiplicative and β additive estimation of q, i.e.,
q̂ ∈ [q/α− β, q].

The following fact shows that to obtain a multiplicative
approximation which is a function of the LIS, it suffices to
show (α, β)-approximation.

Fact II.3. Suppose we have an algorithm A that for any
n ∈ N, λ ∈ (0, 1), for some q ∈ (0, 1), outputs a (1/λq, λn)-
approximation for some unknown quantity ℓ ∈ [0, n] in time
t. Then there exists an algorithm that outputs ℓ̂ ∈ [Ω(δp), 1]·
ℓ in time t+O(1), where p ≜ q

1−q , as long as ℓ ≥ 2δn.

Proof. The algorithm calls A with parameter λ = δ1+p, and
returns the same output. Then, the upper bound is immediate
by definition of (α, β)-approximation. For the lower bound,
as long as ℓ ≥ 2δn, we have that:

ℓ̂ ≥ δq(1+p) · ℓ− δ1+p · n ≥ δp · ℓ− 1
2δ

p · ℓ ≥ 1
2δ

pℓ.

Other notation. Notation Õ(·) hides polylog(n) factors,
while O∗(·) hides a factor of no(1).

III. TECHNICAL OVERVIEW

Our starting point is the algorithm of [42] which achieves
O(1/λ3) approximation in time Õ(

√
n/λ7). Let OPT be

(the coordinates of) an optimum solution (LIS) with length
|OPT| ≥ λn. Their algorithm consists of 2 main steps:

1) Partition [n] into
√
n disjoint contiguous x-intervals

X1, X2, . . . , X√
n of length

√
n each. For i ∈ [

√
n],

let y(Xi) be the restriction of the input sequence y
to x-interval Xi. The goal is to approximate the y-
interval Yi ≜ [si, ℓi], where si and ℓi are, respectively,
the minimum and maximum values in y(Xi ∩ OPT).
To do this, one samples O(1/λ) elements in Xi, and
generates O(1/λ2) candidate y-intervals (using pairs
of sampled element values).

2) Generate a set of mutually disjoint pseudo-solutions,
each of which is a sequence of Ω(λ

√
n) candidate

y-intervals that are monotone, i.e., all values in a
candidate interval in x-interval Xi are less than all
values in a candidate interval in x-interval Xj for all
i < j. Estimate the quality of each pseudo-solution (the
sum of LIS of the candidate intervals in it) by simply

sampling O(logO(1) n/λ4) x-intervals and computing
the LIS within relevant candidate intervals. Output the
largest quality.

Their analysis proceeds as follows. For each x-interval
Xi, some candidate y-interval is a good approximation
of the interval Yi w.h.p., so the union of the LIS in all
pseudo-solutions covers a large fraction of OPT. Since there
are O(1/λ3) pseudo-solutions, the output is a O(1/λ3)-
approximation of OPT. The runtime of Õ(

√
n/λ7) is domi-

nated by the time required to evaluate the quality of pseudo-
solutions to sufficient accuracy. One can also apply this
technique recursively to improve the runtime, at the cost
of worse approximation.

In [34], this result is improved by giving an algorithm
for LIS with approximation factor O(1/λϵ) and runtime
O(n1−Ω(ϵ) · (log n/λ)1/ϵ) for any constant ϵ > 0. The
polynomial dependence on 1/λ seems essential since the
algorithm in [42] is used as a sub-routine. In [37], a non-
adaptive algorithm is presented with sample complexity
Õ(
√
r/λ2) and approximation O(1/λ), where r is the num-

ber of distinct values. Again, the polynomial dependence of
the sample complexity on r and 1/λ seems intrinsic.

There are several fundamental obstacles in improving
these bounds, and in particular, getting the runtime down
all the way to 1/λ while improving the approximation. One
such obstacle is that the straight-forward approach (as in
prior work) of independent recursions cannot obtain better
than 1/λ2 run-time in the worst-case. The issue is that
even if one is able to isolate all possible y-interval ranges
efficiently, there must still be at least 1/λ such ranges
(optimally), and recusing of each such y-interval without
knowing a priori which coordinates contain the relevant
y-values would require 1/λ samples just to find a single
sample of relevance in each (sub-)instance (i.e. for each y-
interval). We will return to this obstacle later and show how
we improve the amortized complexity for it.

A. Our approach
Similarly to [42], we generate candidate y-intervals based

on random samples, and generally look for increasing se-
quences of intervals, each with a large local LIS. Beyond
this general similarity, our algorithm develops a few new
ideas, in particular in how we work with these candidate
intervals, and especially how we find LIS’s among these
candidate intervals. In particular, our contribution can be
seen through three main components.

First, we introduce a new problem, termed Genuine-
LIS, which captures the problem of estimating the longest
(sub-)sequence of increasing intervals, each with a large
“local LIS”. This problem is a new model for sublinear-
time algorithms, which has not appeared in prior literature
to the best of our knowledge.

Definition III.1 (Genuine-LIS). Given a sequence g ∈
(N × {0, 1})n where each element g(i)1 ∈ N is associated

with an additional flag g(i)2 ∈ {0, 1} signifying whether
it is genuine or not, Genuine-LIS(g) is the length of
the longest increasing subsequence of g(∗)1 restricted to
genuine elements, i.e., of g((g(∗)2)−1(1))1.

The Genuine-LIS problem can be described as follows.
Given an input sequence g ∈ (N × {0, 1})n, one receives
unrestricted access to the elements (i.e., the first coordinates)
g(∗)1 ∈ Nn. However, one must “pay” to test whether
an element is genuine; this is determined by the second
coordinates g(∗)2 ∈ {0, 1}n, referred to as genuineness
flags. The goal is to compute Genuine-LIS(g) using as few
tests for genuineness as possible.

Second, we show how to efficiently reduce the LIS prob-
lem to a (smaller) instance of the Genuine-LIS problem,
where the “genuineness” flag of an element corresponds
to LIS of an x-interval being large enough. In particular,
this is where we generate the aforementioned candidate y-
invervals. The algorithm reduces the problem to finding a
(global) LIS amongst a set of candidate intervals, each with
a large (local) LIS. We solve this via a composition of 2
sub-problems: the Genuine-LIS problem takes care of the
“global LIS” of candidate-intervals, while the standard LIS
problem recursively estimates the “local LIS” (these ideas
and terms will be made precise later). The main challenge
here is to generate candidate intervals in a succinct manner:
we manage to reduce the number of sampled anchor needed
to ≈ 1/λ, as well as limiting the number of candidate
intervals to be near-linear in the number of sampled points.

Third, to optimize the sampling of the string, we use
a novel sampling scheme endowed with a data struc-
ture, termed Precision-Tree. At preprocessing, the structure
samples a number of positions in the input string (non-
adaptively), which are not uniform but rather correspond
to a tree with non-uniform leaf levels (hence the name). We
then build a global data structure on these samples for effi-
cient access. In particular, we develop a tree decomposition
procedure (to be discussed later), and repeatedly use sub-
trees across different sub-instances we generate, improving
the overall sample complexity. We highlight the fact that
we reuse both the samples (and hence randomness) across
different (sub-)instances for both of the LIS and Genuine-
LIS problems. In addition, the Precision-Tree data structure
provides a quick way to narrow down on all samples in
some x-interval whose value is in given y-interval Y .

Before continuing this overview, we formally define a
slightly generalized version of the LIS problem, termed
Block-LIS, as well as the aforementioned Genuine-LIS
problem. Following that, we provide an overview of the
algorithms to solve these two problems. The high-level flow
of our algorithm is described in Figure 1.

The Block-LIS problem. This problem extends the stan-
dard LIS problem in two ways. First, the main input is a

sequence of n blocks, each containing (at most) k elements,
and at most one element in each block may participate in a
subsequence. Second, we are also given a range of values
Y ∈ I, such that each element of a subsequence must be in
Y .

Definition III.2 (Block-LIS). Given a sequence y ∈ Nn×k

and a range of values Y ∈ I, Block-LIS(y, Y) is the
length of a maximal sub-sequence OPT ⊆ [n] × [k], such
that {(w1, yw)}w∈OPT is monotone and {yw}w∈OPT ⊆ Y .
Sometimes, we also restrict the set of blocks to an interval
X ⊆ [n], and define the quantity Block-LIS(y,X, Y) as
the longest increasing subsequence of y ∈ NX×[k] using
elements in Y .

The standard LIS problem can be seen as the Block-
LIS problem with k = 1 and Y = N — which is
how we instantiate the original input sequence y ∈ Nn

in our Block-LIS algorithm. The main advantage of this
generalization appears when the sequence is sparse in Y ,
i.e. most elements cannot participate in any LIS. Then, we
show the multiplicative approximation factor for Block-LIS
is not only a function of the additive error λn, but also of the
total number of elements of y in range Y (i.e., |y(X,Y)|).
In particular, we show that this approximation is a function
of λn

|y(X,Y)| .
While the generalization to blocks is not a core necessity

of the algorithm (in fact, one can consider the values in each
block in descending manner, yielding an equivalent problem
with no blocks required), its main use comes from our need
to instantiate several overlapping instances using the same
Precision-Tree data structure (to be discussed later).

Finally, we note that we similarly generalize the
Genuine-LIS to work over blocks: input g ∈ (N ×
{0, 1})n×k and the LIS is allowed to use only one (genuine)
element per block.

B. Main Algorithm

The main algorithm for estimating the LIS is merely the
following (see Algorithm 1):

1) Preprocess Precision-Tree T = Tδ(y) of the input
sequence with parameter δ ≜ λ/no(1) (the exact o(1)
parameter will be made precise later).

2) Run the Block-LIS algorithm that has access only to
the data structure T . (We note that this algorithm itself
recursively runs the algorithms for Genuine-LIS and
Block-LIS.)

C. Genuine-LIS problem: overview of the algorithm ESTI-
MATEGENUINELIS

Recall that in the Genuine-LIS problem with input
g ∈ (N × {0, 1})n, one receives unrestricted access to
the elements (i.e., the first coordinates), but must “pay”
to test whether an element is genuine (determined by the
second coordinates). The goal is to compute the length of

Fig. 1. High level flow of the main algorithm (Theorem I.1). Each arrow represents one or more calls to the corresponding algorithm. Detailed description
and analysis of algorithms are in the full version of our paper.

the longest increasing subsequence of g(∗)1 restricted to
genuine elements.

We derive two complementary solutions to the Genuine-
LIS problem: one “direct” (without further recursion), and
the other by reducing the problem to standard sublinear-
time LIS estimation. To highlight our novel contribution,
we contrast it with the framework of [42], that implicitly
gives a solution to the Genuine-LIS problem, albeit with
sub-optimal approximation. In particular, the following algo-
rithm for Genuine-LIS is analogous to the algorithm in [42]
based on generating pseudo-solutions (maximal sequences
of candidate intervals).

1) Using the first coordinates only, look for a maximal
increasing subsequence P1 containing ⪆ λn elements
and remove P1 from the sequence.

2) Repeat step (1) until there are no more sequences
of length ⪆ λn. This generates (disjoint) solutions
P1, . . . , Pt for some t ⪅ 1/λ.

3) Sub-sample ≈ 1/λ elements from the union P =
∪i∈tPi and check if each one is genuine. Let κ be
the number of Genuine elements in this sampled set.

4) Output λ2n · κ.

It is easy to see that this algorithm yields, with constant
probability, a (2/λ, λ2n)-approximation with approximately
1/λ tests for genuineness. First, if the Genuine-LIS is at
most 2λn, then the output (being greater than 0) is already

a (2/λ, λ2n)-approximation, as
Genuine-LIS

2/λ − λ2n ≤ 2λn
2/λ − λ2n = 0 ≤ Genuine-LIS.

Otherwise, P contains most of the Genuine-LIS ele-
ments, and since t ⪅ 1/λ, the Genuine-LIS is at least λ/2
times the number of genuine elements in P .

Thus, by the sampling mechanism above, we can estimate
the proportion of genuine elements to sufficient accuracy
with constant probability. Observe that the approximation
is in fact proportional to 1/λκ, and that the worst ap-
proximation happens when P is “sparse”, i.e., when only
approximately λn elements in P are genuine. For such a
sparse case, however, one can instantiate the Genuine-LIS
algorithm as a Block-LIS one, restricted to the genuine
elements. In fact, this “sparse” case is precisely where the
approximation factor is minimal, i.e., λn

|y| = 1 where y
is the genuine-elements-only subsequence. Our improved
approximation stems, in part, from balancing between the
dense and sparse cases as above.

Speeding up LIS extraction using dynamic LIS. The
Genuine-LIS instances we generate are of size ⪅ 1/λ, and
our goal is to obtain overall run-time that is near-linear in
1/λ as well. The standard, dynamic-programming solution
for finding and extracting the optimal LIS each time for step
(1) above can potentially incur an overhead that is quadratic
in the instance size (each LIS extraction would take linear
time, and we need to greedily extract up to a near-linear

number of solutions), leading to a polynomially-worse time.
To ensure near-linear time, we adopt a fast dynamic LIS
data structure from [23], and use it to iteratively extract
near-maximal pseudo-solutions.
Extensions to the Genuine-LIS algorithm. Our complete
algorithm needs two further extensions to the algorithm for
the Genuine-LIS problem, as follows.

• Sparse (unbalanced) instances: some Genuine-LIS
instances we generate are sparse, with many “null”
elements, i.e., some blocks have less than k elements
(note that a “null” element is different from a “non-
genuine” one, in that it does not need to be tested).
When the instance g consists of m ≪ nk non-null
elements, we would like the approximation and runtime
bounds to be a function of m/n (average block size)
instead of k (maximum block size). To obtain the
improved bound, we partition the blocks based on an
exponential discretization of the number of non-null
elements, and output the maximum over all instances,
where each instance consists only of blocks containing
a similar number of non-null elements.

• Genuine-LIS over intervals: the first coordinates of the
Genuine-LIS instances we generate a priori consist of
intervals rather than integers. The challenge is that we
then need to find LIS over the partial order of intervals
I. To exemplify the challenge, the dynamic LIS data-
structures from [23], [31], [33] which are useful in
speeding up our algorithm, cannot immediately handle
partial order sequences. Our ideal solution involves a
map φ : I → N that approximately preserves the
overall LIS over all subsequences, and therefore also
preserves the overall LIS over the genuine elements.
While we are unable to show a single mapping that
works for all intervals, we partition the space of in-
tervals into log(k/λ) sets Iℓ — intervals in I whose
length is in [ℓ, 2ℓ) — based on an exponential dis-
cretization of the interval length ℓ, and provide a map
φℓ : Iℓ → N for each set of intervals Iℓ. We eventually
output the maximal Genuine-LIS result over all such
maps. This costs us merely another log(k/λ)-factor
approximation, and a small additive error.

The formal statement for the algorithm to solve
Genuine-LIS, named ESTIMATEGENUINELIS, is presented
in Section IV. The algorithm description and analysis, as
well as its extensions, are postponed to the full version [8].

D. Block-LIS problem: overview of the algorithm ESTI-
MATEBLOCKLIS

For the problem Block-LIS(y,X, Y), we develop the
algorithm ESTIMATEBLOCKLIS. Fundamentally, we reduce
the instance to a Genuine-LIS instance, where each gen-
uineness flag is set to 1 if and only if the LIS of a certain
(smaller) sequence (which is itself a Block-LIS problem) is
large enough.

Our reduction starts by partitioning X into consecutive
intervals X1, . . . , Xτ of equal length, where τ is a dy-
namic, carefully chosen branching factor, and is usually sub-
polynomial in the instance size (here think τ = nϵ). Next,
we sample approximately τ/λ blocks (wj , ywj

) (termed
anchors), and use all the elements in Y across all the anchors
to generate sets of y-values Si ⊆ Y for each Xi.

Using each set of y-values Si, we construct candidate
intervals Yi. While this part is similar to the construction
from [42], we note that we need a more efficient construction
to obtain the near-optimal sample complexity. In particular,
we require the number of candidate intervals to be near-
linear in |Si|, and hence we construct a small candidate
interval set |Yi| ≈ |Si|, while still ensuring that this set
covers all “relevant options” with only an extra logarithmic
factor loss in approximation. In particular, instead of looking
for all possible pairs of endpoints, we choose the endpoints
in dyadic fashion (in particular, their distance in the set S
must be a power of 2.

Finally, we reduce the Block-LIS problem to a
Genuine-LIS instance over τ blocks, where each block i
contains all the candidates intevals Yi — this Genuine-
LIS instance thus captures “global” LIS (over the candidate
intervals). The first coordinates of the Genuine-LIS instance
are the candidate intervals Yi themselves, while the second
coordinates (i.e., the genuineness flags) indicate whether
the corresponding “local” Block-LIS(y,Xi, Y

′) estimated
values are above a certain threshold κ, for each Y ′ ∈ Yi.

This threshold κ itself depends on a parameter ρ >
1, which characterizes the relation between the “global”
Genuine-LIS instance and the “local” Block-LIS instances.
Intuitively, ρ is such that (roughly) 1/ρ fraction of the Xi

intervals each have a λρ fraction of them participating in
the LIS. Consider two extreme cases, one where the LIS is
uniformly distributed among all Xi (ρ = 1), and one where
the LIS is maximally concentrated among a small subset of
the x-intervals (ρ = 1/λ). Then, it is more difficult to certify
an increasing subsequence in the latter case, when the LIS
is sparse. But in this case testing the genuineness of a local
LIS (inside a block Xi) is much easier, since we only need
to establish that it is Ω(|Xi|). In general, there is a precise
trade-off between the complexity of certifying the global
LIS versus the complexity of certifying the local Block-LIS.
A priori, we do not know ρ, so we simply iterate over all
possible magnitudes (again, by exponential discretization).

Once we formulate the overall Block-LIS problem as
a composition of a “global” Genuine-LIS over multiple
“local” Block-LIS instances, we decompose the problem
through a procedure called Precision-Tree decomposition
which will be described next.

The formal statement for the ESTIMATEBLOCKLIS algo-
rithm is presented in Section IV. The algorithm description
and analysis are postponed to the full version [8].

E. Precision-Tree data structure

We note that a direct instantiation of the above algorithm
yields the right approximation, but will require at least
≈ 1/λ2 queries into the input string y (and hence run-time),
and, moreover, require the algorithm to be adaptive. The
source of this inefficiency is precisely the “small slopes”
obstacle discussed earlier, which would lead to “wasting
samples” in any naı̈ve rejection sampling mechanism. To im-
prove the complexity, and to allow our sampling algorithm
to be non-adaptive, we introduce the Precision-Tree data
structure (Section V). While based on the precision sampling
tool introduced in [5], [6], the main development here is
that we augment the resulting tree for special operations
described henceforth.

Intuitively, the Precision-Tree data structure can be
thought of as a global data structure holding enough in-
formation for simulating random samples for multiple non-
uniform (sub-)instances, specifically ones arising from re-
cursion. In particular, the data structure is an (incomplete)
tree, where (lowest-level) leafs correspond to samples of
some input e ∈ En. The initial tree is defined over the input
string (i.e., E = N), but we also construct Precision-Trees
over other domains En as described later. The initial tree for
the string y ∈ Nn is constructed at random (using precision
sampling), and this is the only time when we access the
string y (in the entire LIS algorithm). Overall, the Precision-
Tree data-structure (the initial one as well as the other trees
we generate) supports several important properties we need:

• Since our algorithm is recursive (composition of
Genuine-LIS and Block-LIS algorithms), we need to
provide samples for potentially very small parts of
y (that depend on what was sampled earlier in the
recursion). In other words, we need to be able to “zoom
into” different location of the input string with the right
precision.
Our precision tree is build such that any sub-tree
under any “sampled” node, is another Precision-Tree
instantiation with a different (random) parameter.

• In contrast to the original precision sampling tool that
was designed for the simple addition function, our
application requires more complicated functions (the
sub-linear Block-LIS and Genuine-LIS algorithms).
We show how we can decompose the tree into a number
of different sub-trees (as mentioned, each sub-tree by
itself is a precision tree), run algorithms on each sub-
tree as well as a final algorithm, recomposing the
results using another algorithm (and another sub-tree,
this time over a new domain resulting from the sub-
trees computation).

• Another crucial challenge to deal with is the following:
as the recursion proceeds, we may be “zooming in”
on the same part of y multiple times, but focusing on
different y-range intervals Y . Naı̈vely, one would use

rejection sampling here (rejecting samples with value
not in Y), which however would yield a polynomially
worse sample complexity. In addition, our recursion
happens not only down the tree (i.e., on sub-trees) but
also on the top portion of the tree (reminiscent of the
van Emde Boas layout).
The precision tree allows us to reuse the randomness
over independent recursive calls into the same x-
intervals, each focusing on a different y-value ranges.
In particular, for such an x-interval we will have
processed the samples to directly report samples with
values in a desired y-interval Y (this is essentially a 2D
range reporting). In addition, the randomness is reused
when computing the global function on the top portion
of the tree as described above.

1) Construction of the Precision-Tree data structure: We
now describe the construction in a bit more detail. Original
precision sampling from [5], [6] is designed to estimate a
summation function a =

∑n
i=1 ai, for unknown ai ∈ [0, 1],

from “coarse” estimates for ai. In our application, we need
to generalize precision sampling from a simple addition
to general functions, allowing one to approximate g ◦ f
where g is a general function over m coordinates and
f = (f1, . . . , fn) consists of n independent functions on
different parts of the input, sharing the same co-domain.

We define Precision-Tree with precision parameter λ < 1,
for a given a vector of elements e = (e1, . . . , en) ∈ En,
denoted Tλ(e), as follows. The tree T is a trimmed version
of the full β-ary tree of ℓ = logβ n + 1 levels, with n =
βℓ leafs, where parameter β > 1 is fixed; in particular,
all nodes of T have fan-out of either β or 0. Each leaf
at level ℓ 2 is associated with an integer representing its
location in the tree. Each internal node v is associated with
an interval representing the unions of its leaf descendants
(in the full tree); for example, the root of T is associated
with the entire interval [1, n], and its children with [1, n/β],
[n/β + 1, 2n/β], etc). For a node v in the tree, we use Ev
or E(v) to denote the set of elements under v.

Given e ∈ En, λ, and β, we construct the trimmed
Precision-Tree Tλ(e) as follows. We assign a (random)
precision score Pv to each node v by the following recursive
procedure. We set Proot(T) = λ. Recursively we define the
precision score of a node v by

Pv = Zv·Pparent(v) where Zv ∼i.i.d. Uniform({1, 2, 3, . . . , β/4}).
(1)

Most importantly, for a node v, we recurse into its
children only if Pv ≤ 1; otherwise we stop the recursion
for v with Pv > 1 (v has 0 children). If v is a leaf (at
level ℓ), v also stores the input element corresponding to the
location of v (i.e., an element of e) — note that this event
corresponds to sampling an element of the input string. So,
we store only a “trimmed” version of a full β-ary tree.

2By convention, the level of the root is 0.

Initially, we generate one such tree T1/c(y) for the input
string y ∈ Nn, for some c = c(n, λ) ≥ 1, which we refer
to as “precision tree complexity”. One can prove that the
sample complexity (into y) is bounded by c · logO(logβ n)(β)
(see Lemma V.1). Overall, our entire sampling mechanism is
merely a simple, one-round non-adaptive precision-sampling
tree over the coordinates of y, which we store in a data
structure T 3 of size O∗(1/λ) with convenient fast access.4

After such preprocessing, the rest of the algorithm has no
access to y, but only to T .

Most importantly, using this single tree T1/c(y), we
will simulate Precision-Tree access for different trees over
different inputs and parameters in our algorithms using a
certain procedure which we call the Trim-Tree algorithm
(see Algorithm TRIMTREE in the full version [8]).

We also preprocess the samples stored in T so that we can
quickly retrieve all samples in some x-interval X ⊆ [n] and
some y-interval Y through an ancillary data-structure which
we call SODS. The SODS is used for a “rejection sampling”-
type operations where we need a number of samples from
a substring of input y (or later on for some intervals of
blocks), but care only about values in a certain range Y .

IV. MAIN ALGORITHM FOR ESTIMATING LIS

Our main algorithm is composed of two algorithms, for
solving Block-LIS and Genuine-LIS. These algorithms re-
cursively call each other, with access to a Precision-Tree data
structure. This data structure queries the input sequence at
the beginning (non-adaptively and non-uniformly), and our
algorithms access the sequence only via this data structure.
We describe the details of Precision-Tree in Section V, and
for now refer to it as a tree Tλ(y) for some parameter λ < 1
and an input string y.

We now state the main guarantees of the two algorithms;
their proof will appear in later sections. The statements
below are built to support mutual recursion and might be
challenging to parse at first read. At high-level, the idea is to
create mutual inductive hypotheses which can be instantiated
with different parameters, in a way that enables concurrent
optimization of the approximation, sample complexity and
run-time complexity. We then show how careful recursive
instantiations of these two algorithms yield our main algo-
rithm for estimating LIS.

Below, for an instance g ∈ (N×{0, 1})n×k, let g restricted
to first/second coordinate be g(∗)1 ∈ Nn×k and g(∗)2 ∈
{0, 1}n×k respectively.

Theorem IV.1 (ESTIMATEGENUINELIS algorithm). Fix
integers n, k and λ ∈ (1/n, 1). Fix an instance g ∈ (N ×
{0, 1})n×k. For some monotone functions as : R3

+ → [1,∞)
and cs : R4

+ → [1,∞). Suppose there exists a randomized

3We abuse notation and use T to denote both the conceptual Precision-
Tree and the data structure implementing it.

4The notation O∗(·) hides a no(1) factor.

algorithm ABL that, given X ⊆ [n], Y ⊆ N, parameter
τs, and a Precision-Tree T

1/cs

(
|X|,τs,λ,

λ·|X|
|y(X,Y)|

)(y) for

some y ∈ Nn×k, can produce an (αs, λ|X|)-approximation
for Block-LIS(y,X, Y) where αs = as

(
|X|, τs, λ·|X|

|y(X,Y)|

)
w.h.p. in time ts.

Fix any parameter γ, τ ≥ 1, and let c ≥ Õ(1/λ) +
cs (n, τ, λ, γλ/k). Then, there exists an algorithm A, that,
given free access to g(∗)1 and Precision-Tree access
to g(∗)2, T1/c(g(∗)2), produces a (αg, λn)-approximation
for Genuine-LIS(g) w.h.p., where αg = log(k/λ) ·
max{γ, as(n, τ, γλ/k)}. The algorithm A runs in time
Õ(nk) +O(ts).

Theorem IV.2 (ESTIMATEBLOCKLIS algorithm). Fix
monotone functions ts, ag : R2

+ → [1,∞), as, cg : R3
+ →

[1,∞) and cs : R4
+ → [1,∞), satisfying, for all r, τ ∈ Eβ ,

m ∈ N, λ < 1, λ1, λ2 ∈ [λ, 1], and k′ ∈ [1, 1/λ] with
λ1λ2 = Ω(λk′):

• as
(
r, τ, λ

m

)
≥ polylog

(
k
λ

)
· ag

(
τ, λ2

k′

)
· as

(
r
τ , τ,

λ1

m

)
;

• cs
(
r, τ, λ, λ

m

)
≥ βO(1) · τ

λ + cg(τ, λ2, k
′) ·

cs
(
r
τ , τ,Θ(λ1/k

′), λ1

m

)
; and,

• ts (r, τ) ≥ logO(logβ(τ))(β) · ts
(
r
τ , τ

)
.

Suppose there exists and algorithm AGL with the
following guarantee: given Genuine-LIS instance
g ∈ (N × {0, 1})ng×kg with β-ary Precision-
Tree T1/cg(ng,λg,kg)(g(∗)2) access, AGL outputs(
ag

(
ng,

λg

kg

)
, λgng

)
-approximation to Genuine-LIS(g)

in time Õ(ng · kg) w.h.p.
Now fix input y ∈ Nn×k, a block interval X ⊆ [n], value

range interval Y ⊆ N, parameters λ ∈ (0, 1), β ∈ N,
τ ∈ Eβ . Then, given a β-ary Precision-Tree T1/c(y), we can
produce a (α, λ|X|)-approximation for Block-LIS(y,X, Y)

w.h.p., as long as α ≥ as

(
|X|, τ, λ|X|

|y(X,Y)|

)
and c ≥

cs

(
|X|, τ, λ, λ|X|

|y(X,Y)|

)
. The algorithm’s expected run-time

is at most c · ts(|X|, τ) · |y(X,Y)|
|X| .

The proofs are deferred to the full version [8]. Combining
the two algorithms above, we obtain the following theorem.

Theorem IV.3. Fix any λ = o(1) and ϵ < 1. There exists
a randomized non-adaptive algorithm that solves the LIS
problem with (α, λn)-approximation, where α = (1/λ)

√
ϵ ·

(log 1/λ)2
O(log2(1/ϵ)/

√
ϵ)

using 1
λ · n

O(
√
ϵ log 1/ϵ) time (and

hence samples from the input).

The algorithm for Theorem IV.3 (see Algorithm 1) follows
the outline in Figure 1. We first build a β-ary precision
tree T1/c for β = Θ(log n), and c = cs(n, n

ϵ, λ, λ) = 1
λ ·

nO(
√
ϵ log 1/ϵ). We then apply the algorithm of Theorem IV.2

by interpreting the string as a Block-LIS instance with
k = 1. The proof follows from recursive implementation of
Theorems IV.1 and IV.2 with carefully chosen parameters.
Most importantly τ and γ are carefully chosen, as a function

of the other parameters, to balance approximation and
complexity. Informally, we pick τ ≈ |X|ϵ in each Block-LIS
instance, and γ ≈ (k/λ)

√
ϵ for a recursion of depth ≈ 1/

√
ϵ,

then we stop and use the dense estimator only by setting γ to
be maximal. The formal proof involves tedious calculations,
and is deferred to the appendix in the full version [8]. We
now complete Theorem I.1, by instantiating the LIS problem
with the parameters above set suitably.

Algorithm 1: ESTIMATELISMAIN

Input: A sequence y ∈ Nn, error parameter
λ ∈ (1/n, 1), and ϵ < 1.

Output: An integer L̂ ∈ [0, LIS(y)].
1 T ← PREPROCESSPRECISIONTREE(y, λ · n−ϵ, β),

where β ← Θ(log n).
2 return L̂← ESTIMATEBLOCKLIS(T, nϵ, λ).

Fig. 2. Description of the algorithm ESTIMATELISMAIN.

Proof of Theorem I.1. Let y ∈ Nn be an input of the LIS
problem. We solve the problem using the algorithm of Theo-
rem IV.3 with inputs y, λ, and ϵ = 1/ log log 1/λ, noting that
α = λo(1) and runtime complexity is 1

λn
O(1/ 3
√

log log 1/λ) =
1
λn

o(1). Finally, we invoke Fact II.3 with q = o(1) to obtain
the claimed approximation (as q = o(1), p = q/(1 − q) =
o(1)).

V. PRECISION-TREE DATA STRUCTURE

In this section we discuss the Precision-Tree data structure
used to improve our bounds, and its properties.

The basic construction of the β-ary tree Tλ(e) was in-
troduced in Section III-E1. Before proceeding, we establish
the sample complexity of the Precision-Tree. In the below,
we use Vℓ to denote the set of nodes at level ℓ.

Lemma V.1 (Sample complexity). The expected number of
coordinates in [n] that are sampled is logO(logβ n)(β)/λ.

Proof. Let sv = 1/Pv . Since we only sample leaves
with sv ≥ 1, then the total sampled leaves is at most∑

v∈Vlogβ(n)
sv .

Now, since Zv are chosen i.i.d. uniformly in
{1, . . . ,Ω(β)}, then we deduce the recursive relation:

E[sv] ≤ E
[

1
Pv

]
= O(log β)

β · E
[

1
Pparent(v)

]
(2)

Let τℓ ≜
∑

v∈Vℓ
sv . Then τ0 = 1/λ, and for level ℓ,

summing and using Equation (2), we obtain

E [τℓ] = E

[∑
v∈Vℓ

sv

]
≤ β · E

 ∑
v∈Vℓ−1

O(log β)
β · sv


≤ O(log β)E

 ∑
v∈Vℓ−1

sv

 = O(log β)τℓ−1.

Then E[τℓ] ≤ O(log β)ℓ/λ, and we conclude
E
[∑

v∈Vlogβ(n)
sv

]
= O(log(β))logβ n/λ as needed.

A. Tree Sampling Data Structure

We equip each Precision-Tree with a Sampling Oracle
Data Structure (denoted SODS) that should be seen as a data
structure wrapper with access to Precision-Tree, allowing
efficient sampling of leaves.

First, we show one can simulate uniform samples of
elements given a Precision-Tree access.

Lemma V.2 (Simulating Random Samples). Fix δ ≤ 1 and
Precision-Tree T = Tδ(e1, . . . , en), as well as arbitrary
δ′ ≥ δ, with 1/δ′ ∈ N. Using access to T only, we can
generate a set of elements S ⊆ {e1, . . . , en} such that the
distribution of S is identical to the distribution where each
ei is included i.i.d. with probability 1/δ′n. The runtime to
generate S is O((log β)logβ n/δ).

We remark that, while two subsequent invocations of the
above lemma may give different sets S, S′, each with the
above distribution, they are dependent between each other.

Proof. The main task here is to show independence, i.e.,
that we can choose a set of i.i.d. samples by reusing the
randomness of the Precision-Tree. We prove by induction on
the tree height, starting with single node trees, that for any
node with Pv ≤ 1, for any δ′ ≥ Pv we can generate a subset
of the leaves where each leaf is included with probability
at least 1/δ′nv , where nv is the number of leaves in the
subtree rooted at v.

For leaves, if Pv ≤ 1, the node is included in the
Precision-Tree, and we can subsample it with any required
probability as needed. Now consider a non-leaf node v; by
induction the statement holds for its children.

If δ′ ≤ 4
β , we are basically done since any child u of

v, has score Pu ≤ Pvβ
4 ≤ δ′β

4 ≤ 1, while the number of
elements nu = nv

β , so we can simply subsample leaves in
u’s tree, each with probability 1

δ′nv
= 1

δ′βnu
≤ 1

Punu
as

needed (note that δ′nv/nu = βδ′ ≥ Pu as required by the
inductive hypothesis).

It remains to show this for δ′ > 4
β . For this case we

claim we would like to use the tree-randomness to generate
the samples.

For distributions P,Q, we say that P stochastically dom-
inates Q (also denoted P ≻ Q) if FP (t) ≤ FQ(t) for all
t, with strict inequality for some t, where FP and FQ are

the cumulative distribution functions (CDFs) of P and Q
respectively. We first claim the following:

Claim V.3. Fix k ∈ N, 0 < p < 1 and F ≥ 1
such that F · pk < 1/4. Let X1, . . . ,Xk ∼i.i.d. Ber(p)
(i.e., i.i.d. Bernoulli random variables with bias p) and let
X =

∑
i Xi. Let Y1, . . . ,Yk ∼i.i.d. Ber(2 pF) and let

Y = Y∗ ·
∑

i Yi where Y∗ ∼ Ber(1/F), independent of
the other variables. Then, Y stochastically dominates X.

The proof is deferred to the full version of our paper [8].
We show that one can simulate sub-sampling of each leaf

of u i.i.d. with probability 1/δ′nv by the following process.
If Pu > 1, then output no elements. Otherwise, we can (by
the inductive hypothesis) sub-sample each leaf of u i.i.d.
with probability 1/nu.

Now, let

F ≜ 1
⌊1/δ′⌋

β
4 ≥

1
⌊1/Pv⌋

β
4

Eq. 1

≥ 1
PrT [Pu≤1] .

This process generates µ i.i.d. leaves of u with distribution

µ ∼ Ber(Pr
T
[Pu ≤ 1]) ·

∑
l leaf of u

Ber(1
nu

)

≻ Ber(1
F) ·

∑
l leaf of u

Ber(1
nu

).

Noting that nu = nv

β ≥ δ′nv

2F and nuF
δ′nv

≤ 1
4 ,

we invoke Claim V.3 to obtain that the distribution µ
stochastically dominates the required sample-size distribu-
tion

∑
l leaf of u Ber(

1
δ′nv

), and hence we can simulate the
distribution we need over leaves of each child, and hence
also for v.

For run-time, we note that this process takes time (at
most) proportional to the size of the tree. For the latter,
by Lemma V.1, the time is O((log β)logβ n/δ).

Next, we show that if each element of the tree is a block
of integers, then one can construct a data structure that sub-
samples with interval range restriction, in time proportional
to the sample size.

Corollary V.4 (Conditional sub-sampling data structure).
Fix Precision-Tree T = Tδ(y) with y ∈ Nn×k. There exists
a data structure, that given any interval Y ∈ I and sub-
sampling probability η ≤ 1/δn with 1/η ∈ E2(n), sub-
sample block-coordinates X ′ ⊆ [n] i.i.d. with probability
η and outputs a set of all coordinates W ⊆ X ′ × [k]
such that yW ∈ Y , i.e. W ≜ ∪i∈X′{(i, j) | yi,j ∈ Y },
in time Õ(|W |). The preprocessing time is, in expectation,
Õ
(

n+∥m∥1

δn

)
, where mi ≤ k is the number of non-null

elements in yi.

Proof. To preprocess, we prepare for each possible η ≤
1/δn with 1/η ∈ E2(n) by sub-sampling each block i.i.d.
with probability η using Lemma V.2. Then we compute a set
of coordinates Zη ⊂ [n] by combining all coordinates from

all sampled blocks. Let Uη ≜ ∪w∈Zη×[k]{yw}. Compute Uη

and store it as a sorted array with a pointer to y−1(j)∩(Zη×
[k]) for each j ∈ Uη . Now, for each (η, Y) query, locate the
range of elements in Uη containing precisely the elements
in Y using binary search of min(Y),max(Y). This will be
our output W .

The correctness follows immediately from the construc-
tion. Preprocessing runtime is as claimed as, in expectation,
we need to sort ∥m∥1/δn elements, and there are O(log n)
different values of η to consider. Runtime is only O(log n)
plus the output size (as it is stored as contiguous block).

We can show that if one can compute some “local” func-
tion over intervals of elements given some local Precision-
Tree parameter access to each interval, then we can redefine
the tree-access as a tree-access to the global problem assum-
ing all local problems were computed successfully. We defer
the discussion on Precision-Tree decomposition to achieve
this goal to the full version [8].

REFERENCES

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, “Estimating the
distance to a monotone function,” Random Structures and Algorithms,
vol. 31, pp. 371–383, 2007, previously in RANDOM’04. I, I-B

[2] D. Aldous and P. Diaconis, “Longest increasing subsequences: from
patience sorting to the baik–deift–johansson theorem,” Bulletin of the
American Mathematical Society, vol. 36, no. 04, pp. 413–432, 1999.
I

[3] A. Andoni, P. Indyk, and R. Krauthgamer, “Overcoming the ℓ1 non-
embeddability barrier: Algorithms for product metrics,” in Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
2009, pp. 865–874. I-B

[4] A. Andoni and R. Krauthgamer, “The smoothed complexity
of edit distance,” ACM Transactions on Algorithms, vol. 8,
no. 4, p. 44, 2012, previously in ICALP’08. [Online]. Available:
http://doi.acm.org/10.1145/2344422.2344434 I-B

[5] A. Andoni, R. Krauthgamer, and K. Onak, “Polylogarithmic approx-
imation for edit distance and the asymmetric query complexity,” in
Proceedings of the Symposium on Foundations of Computer Science
(FOCS), 2010, full version at http://arxiv.org/abs/1005.4033. III-E,
III-E1

[6] ——, “Streaming algorithms from precision sampling,” in Proceed-
ings of the Symposium on Foundations of Computer Science (FOCS),
2011, full version at http://arxiv.org/abs/1011.1263. III-E, III-E1

[7] A. Andoni and H. L. Nguyen, “Near-tight bounds for testing Ulam
distance,” in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2010. I

[8] A. Andoni, N. S. Nosatzki, S. Sinha, and C. Stein, “Estimating
the longest increasing subsequence in nearly optimal time,”
CoRR, vol. abs/2112.05106, 2021. [Online]. Available: https:
//arxiv.org/abs/2112.05106 I-A, I-A, III-C, III-D, III-E1, IV, IV,
V-A, V-A

[9] O. Ben-Eliezer, C. Canonne, S. Letzter, and E. Waingarten, “Finding
monotone patterns in sublinear time,” in 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), 2019, pp.
1469–1494. I

[10] H. Black, D. Chakrabarty, and C. Seshadhri, “Domain reduction
for monotonicity testing: A o(d) tester for boolean functions in d-
dimensions,” in Proceedings of the Thirty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’20. USA: Society
for Industrial and Applied Mathematics, 2020, p. 1975–1994. I

[11] M. Boroujeni and S. Seddighin, “Improved mpc algorithms for
edit distance and ulam distance,” in Proceedings of the 31st ACM
Symposium on Parallelism in Algorithms and Architectures, ser.
SPAA ’19. New York, NY, USA: Association for Computing

http://doi.acm.org/10.1145/2344422.2344434
http://arxiv.org/abs/1005.4033
http://arxiv.org/abs/1011.1263
https://arxiv.org/abs/2112.05106
https://arxiv.org/abs/2112.05106

Machinery, 2019, p. 31–40. [Online]. Available: https://doi.org/10.
1145/3323165.3323205 I

[12] K. Bringmann and D. Das, “A Linear-Time n0.4-Approximation for
Longest Common Subsequence,” in 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), N. Bansal,
E. Merelli, and J. Worrell, Eds., vol. 198. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, pp. 39:1–
39:20. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/
2021/14108 I

[13] A. Chakrabarti, “A note on randomized streaming space bounds
for the longest increasing subsequence problem,” Inf. Process.
Lett., vol. 112, no. 7, p. 261–263, Mar. 2012. [Online]. Available:
https://doi.org/10.1016/j.ipl.2011.12.008 I-B

[14] D. Chakrabarty and C. Seshadhri, “An optimal lower bound
for monotonicity testing over hypergrids,” Theory of Computing,
vol. 10, no. 17, pp. 453–464, 2014. [Online]. Available: http:
//www.theoryofcomputing.org/articles/v010a017 I

[15] D. Das and B. Saha, “Approximating lcs and alignment distance
over multiple sequences,” 2021. [Online]. Available: https://arxiv.
org/abs/2110.12402 I

[16] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and
A. Samorodnitsky, “Improved testing algorithms for monotonicity,”
Electron. Colloquium Comput. Complex., vol. 6, no. 17, 1999. I

[17] F. Ergün and H. Jowhari, “On distance to monotonicity and longest
increasing subsequence of a data stream,” in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2008, pp. 730–
736. I-A, I-B, I-B, I-B

[18] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan,
“Spot-checkers,” J. Comput. Syst. Sci., vol. 60(3), pp. 717–751, 2000.
I

[19] E. Fischer, “The art of uninformed decisions: A primer to property
testing,” Science, vol. 75, pp. 97–126, 2001. I

[20] ——, “On the strength of comparisons in property testing,” Inf.
Comput., vol. 189, no. 1, p. 107–116, Feb. 2004. [Online]. Available:
https://doi.org/10.1016/j.ic.2003.09.003 I

[21] A. Gál and P. Gopalan, “Lower bounds on streaming algorithms for
approximating the length of the longest increasing subsequence,” in
Proceedings of the Symposium on Foundations of Computer Science
(FOCS), 2007, pp. 294–304. I-B

[22] A. Ganesh, T. Kociumaka, A. Lincoln, and B. Saha, “How
compression and approximation affect efficiency in string distance
measures,” 2021. [Online]. Available: https://arxiv.org/abs/2112.
05836 I

[23] P. Gawrychowski and W. Janczewski, “Fully dynamic approximation
of lis in polylogarithmic time,” in Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC 2021.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 654–667. [Online]. Available: https://doi.org/10.1145/3406325.
3451137 I-B, III-C, III-C

[24] ——, “Conditional lower bounds for variants of dynamic lis,” 2021.
I-B

[25] O. Goldreich, Introduction to property testing. Cambridge University
Press, 2017. I

[26] P. Gopalan, T. S. Jayram, R. Krauthgamer, and R. Kumar, “Estimating
the sortedness of a data stream,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2007, pp. 318–327. I-A,
I-B, I-B

[27] D. Gusfield, Algorithms on strings, trees, and sequences. Cambridge:
Cambridge University Press, 1997. I

[28] M. Hajiaghayi, M. Seddighin, S. Seddighin, and X. Sun,
Approximating LCS in Linear Time: Beating the

√
n Barrier, 2019,

pp. 1181–1200. [Online]. Available: https://epubs.siam.org/doi/abs/
10.1137/1.9781611975482.72 I

[29] J. Hammersley, “A few seedlings of research,” Proc. Sixth Berkeley
Symp. Math. Statist. and Probability, pp. 345–394, 1972. I

[30] S. Im, B. Moseley, and X. Sun, “Efficient massively parallel methods
for dynamic programming,” in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, ser. STOC 2017.
New York, NY, USA: Association for Computing Machinery, 2017,

p. 798–811. [Online]. Available: https://doi.org/10.1145/3055399.
3055460 I-B

[31] T. Kociumaka and S. Seddighin, “Improved dynamic algorithms
for longest increasing subsequence,” in Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, ser.
STOC 2021. New York, NY, USA: Association for Computing
Machinery, 2021, p. 640–653. [Online]. Available: https://doi.org/10.
1145/3406325.3451026 I-B, III-C

[32] C. L. Mallows, “Patience sorting,” Bull. Inst. Math. Appl., vol. 9, pp.
216–224, 1973. I

[33] M. Mitzenmacher and S. Seddighin, “Dynamic algorithms for lis
and distance to monotonicity,” in Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC 2020.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 671–684. [Online]. Available: https://doi.org/10.1145/3357713.
3384240 I-B, III-C

[34] ——, “Improved sublinear time algorithm for longest increasing
subsequence,” in Proceedings of the Thirty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ’21. USA:
Society for Industrial and Applied Mathematics, 2021, p. 1934–1947.
I, III

[35] T. Naumovitz and M. Saks, “A polylogarithmic space deterministic
streaming algorithm for approximating distance to monotonicity,” in
Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2015, pp. 1252–1262. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.83 I-B, I-B

[36] T. Naumovitz, M. Saks, and C. Seshadhri, Accurate and Nearly
Optimal Sublinear Approximations to Ulam Distance, 2017, pp.
2012–2031. [Online]. Available: https://epubs.siam.org/doi/abs/10.
1137/1.9781611974782.131 I-B

[37] I. Newman and N. Varma, “New Sublinear Algorithms and Lower
Bounds for LIS Estimation,” in 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), N. Bansal,
E. Merelli, and J. Worrell, Eds., vol. 198. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, pp.
100:1–100:20. [Online]. Available: https://drops.dagstuhl.de/opus/
volltexte/2021/14169 I, III

[38] N. S. Nosatzki, “Approximating the longest common subsequence
problem within a sub-polynomial factor in linear time,” ArXiv, vol.
abs/2112.08454, 2021. I, I-B

[39] “List of open problems in sublinear algorithms: Problem 44,” http:
//sublinear.info/44. I-B

[40] R. K. S. Pallavoor, S. Raskhodnikova, and E. Waingarten,
Approximating the Distance to Monotonicity of Boolean Functions,
2020, pp. 1995–2009. [Online]. Available: https://epubs.siam.org/doi/
abs/10.1137/1.9781611975994.123 I

[41] M. Parnas, D. Ron, and R. Rubinfeld, “Tolerant property testing and
distance approximation,” Journal of Computer and System Sciences,
vol. 72, no. 6, pp. 1012 – 1042, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0022000006000444 I

[42] A. Rubinstein, S. Seddighin, Z. Song, and X. Sun, “Approximation
algorithms for lcs and lis with truly improved running times,” in 2019
IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 2019, pp. 1121–1145. I, III, III, III-A, III-C, III-C,
III-D

[43] M. Saks and C. Seshadhri, “Space efficient streaming algorithms
for the distance to monotonicity and asymmetric edit distance,” in
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’13. USA: Society for Industrial
and Applied Mathematics, 2013, p. 1698–1709. I-B

[44] M. E. Saks and C. Seshadhri, “Estimating the longest increasing
sequence in polylogarithmic time,” SIAM J. Comput., vol. 46, no. 2,
pp. 774–823, 2017. I, I-B

[45] X. Sun and D. P. Woodruff, “The communication and streaming
complexity of computing the longest common and increasing sub-
sequences,” in Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’07. USA: Society
for Industrial and Applied Mathematics, 2007, p. 336–345. I

https://doi.org/10.1145/3323165.3323205
https://doi.org/10.1145/3323165.3323205
https://drops.dagstuhl.de/opus/volltexte/2021/14108
https://drops.dagstuhl.de/opus/volltexte/2021/14108
https://doi.org/10.1016/j.ipl.2011.12.008
http://www.theoryofcomputing.org/articles/v010a017
http://www.theoryofcomputing.org/articles/v010a017
https://arxiv.org/abs/2110.12402
https://arxiv.org/abs/2110.12402
https://doi.org/10.1016/j.ic.2003.09.003
https://arxiv.org/abs/2112.05836
https://arxiv.org/abs/2112.05836
https://doi.org/10.1145/3406325.3451137
https://doi.org/10.1145/3406325.3451137
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.72
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.72
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1145/3406325.3451026
https://doi.org/10.1145/3406325.3451026
https://doi.org/10.1145/3357713.3384240
https://doi.org/10.1145/3357713.3384240
https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.83
https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.131
https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.131
https://drops.dagstuhl.de/opus/volltexte/2021/14169
https://drops.dagstuhl.de/opus/volltexte/2021/14169
http://sublinear.info/44
http://sublinear.info/44
https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.123
https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.123
http://www.sciencedirect.com/science/article/pii/S0022000006000444
http://www.sciencedirect.com/science/article/pii/S0022000006000444

	Introduction
	Our contributions
	Related work

	Preliminaries
	Technical overview
	Our approach
	Main Algorithm
	Genuine-LIS problem: overview of the algorithm EstimateGenuineLIS
	Block-LIS problem: overview of the algorithm EstimateBlockLIS
	Precision-Tree data structure
	Construction of the Precision-Tree data structure

	Main Algorithm for Estimating LIS
	Precision-Tree Data Structure
	Tree Sampling Data Structure

	References

