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BINOMIAL IDEALS OF DOMINO TILINGS
ELIZABETH GROSS AND NICOLE YAMZON

ABSTRACT. In this paper, we consider the set of all domino tilings of a cubiculated
region. The primary question we explore is: How can we move from one tiling to
another? Tiling spaces can be viewed as spaces of subgraphs of a fixed graph with a
fixed degree sequence. Moves to connect such spaces have been explored in algebraic
statsitics. Thus, we approach this question from an applied algebra viewpoint, making
new connections between domino tilings, algebraic statistics, and toric algebra. Using
results from toric ideals of graphs, we are able to describe moves that connect the
tiling space of a given cubiculated region of any dimension. This is done by studying
binomials that arise from two distinct domino tilings of the same region. Additionally,
we introduce tiling ideals and flip ideals and use these ideals to restate what it means
for a tiling space to be flip connected. Finally, we show that if R is a 2-dimensional
simply connected cubiculated region, any binomial arising from two distinct tilings
of R can be written in terms of quadratic binomials. As a corollary to our main
result, we obtain an alternative proof to the fact that the set of domino tilings of a
2-dimensional simply connected region is connected by flips.

1. INTRODUCTION AND BACKGROUND

A 2 x 1 domino (or a 1 x 2 domino) is two unit squares joined along a single
edge. A domino tiling of a region is a covering of the region with dominos such that
there are no gaps or overlaps. As an area of mathematical research, domino tilings
appeared as early as 1937 in the context of thermodynamics and dimer systems [9)].
Several bodies of work in the 2-dimensional setting show that such objects are rich and
nuanced [13] [8], [25], [7], [4], [14], [18]. For example, Kasteleyn and Fisher-Temperley
proved independently [8, 13] that the number of tilings of a 2n x 2m rectangle is
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While, there is no closed-form expression for the number of domino tilings of an arbi-
trary 2-dimensional region, there are many papers that study this problem for specific
types of regions, such as Aztec diamonds and pyramids [1, 19, 23]. Higher dimensional
regions, such as 3-dimensional regions, have also been explored. For example, in 1998,
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Ciucu gave an upper bound on the number of 3-dimensional domino tilings of a n xnxn
cube [3].

In lieu of a complete enumeration of the tilings of a region, one can estimate
the number of tilings through Monte Carlo Markov chain sampling methods. Such
methods require a set of moves that connect the space, which lead us to our primary
question of interest: What are sets of moves that connect the space of domino tilings for
a fized region? We tackle this question from an algebra lens, making a new connection
between domino tilings, algebraic statistics, and combinatorial commutative algebra
through toric ideals of graphs.

For 2-dimensions, it is known that any two domino tilings of a simply connected re-
gion can be obtained through a sequence of flips [25, 22]. Generalizing results to higher
dimensions has been of interest to fields from combinatorics to solid state chemistry
[7, 18]. However, previous results, such as those built on Thurston’s height function
[20] fail to generalize to the 3-dimensional setting. In fact, in 3-dimensions even the
most uncomplicated of regions fail to be flip connected. For instance the domino tilings
of I x m X n box are not connected by flips [10, 13, 15]. Milet and Saldanha intro-
duced another local move called the trit, which operates on three dominoes at a time
(as opposed to the flip that operates on two dominoes at a time) [15]. While some
3-dimensional tiling spaces are connected by flips and trits, not all are; [15] includes
some examples. In [10], Klivans et al. give conditions in terms of topological invariants
for testing whether two different 3-dimensional domino tilings are connected by flips
or by flips and trits.

Our paper explores the connectivity question by noting that the space of tilings of
a region R corresponds to a particular fiber of a design matriz A, where A is prescribed
by the region R (here we are using language from algebraic statistics, which is defined
formally in the Section 3). By appealing to algebraic statistics, and in particular,
the Fundamental Theorem of Algebraic Statistics [6], for any given region, of any
dimension, we can find a set of moves that is guaranteed to connect its tiling space
by finding a set of generators of the toric ideal of A, a binomial ideal. Using the well-
known correspondence between domino tilings of a region R and perfect matchings of
an associated graph G [27] and results in combinatorial commutative algebra on toric
ideals of graphs [16], in Theorem 3.8, we describe the moves guaranteed to connect
the tiling space in terms of the graph Gr. The moves described in Theorem 3.8 are
not always local flips though. While we can show that if the toric ideal of Gp is
quadratic, then the space of tilings of R is flip connected, the converse is not always
true. In order to explore flip connected tiling spaces more, we introduce two additional
binomial ideals, the tiling ideal and the flip ideal. These ideals are not always prime,
and thus not always toric, however we can describe exactly when a tiling space is flip
connected using these two ideals (Theorem 3.12). Finally, we showcase this algebraic
perspective by providing an alternative proof to the fact that the tiling space of any
simply connected region of R? is flip connected.
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This paper is organized as follows. In Section 2, we formally define domino tilings
and discuss tilings from a graph theoretic viewpoint. In Section 3, we discuss the
connection of tiling spaces to algebraic statistics and toric ideals of graphs and describe
a set of moves guaranteed to connect the tiling space of a given region. Additionally,
we introduce the tiling ideal and the flip ideal of a region R and restate what it means
for a tiling space to be connected in terms of these two ideals. Finally, in Section 4, we
show, using algebraic techniques, that the tiling space of any simply connected region
of R? is flip connected.

2. DoMINO TILINGS

Let R be a n-dimensional cubiculated region of R, i.e. a homogeneous cubical
complex of dimension n embedded in RY with n < N. A d-dimensional domino is two
adjacent elementary n-dimensional cubes connected along a face of dimension n — 1;
we will denote the set of dominos contained in R as Dg. A domino tiling T C Dpg of
a cubiculated region R is defined to be a covering of R with dominoes such that every
elementary cube of R is covered exactly once; we will denote the space of all tilings
of R as Tg. We are interested in local moves that connect all the tilings in 7z. A
move between two tilings 77,7y € Tg is an ordered pair M = (Dy, Dy) of two sets of
dominoes Dy, Dy C Dp such that Ty = (77 \ D1) U Dy. For simplicity, if M is a move
from T} to Ty, we will write To = T + M. We say a move has size d if |D;| = |Ds| = d.
We begin our discussion with the simplest move, the local flip, or flip.

Definition 2.1. A local flip is performed by replacing a pair of two adjacent parallel
dominoes, i.e. two dominoes that share two n — 1 dimensional faces, with two adjacent
parallel dominoes in a perpendicular direction to the first pair. We will refer to the set
of all flip moves for R as Mg, .

FIGURE 1. A local flip.

Definition 2.2. Let R be a cubiculated region, and let Mpz be a set of possible
moves of R. We say Mg connects Tg if for every two tilings T, 15 € Tg, there exists
Ml,---MT EMR such that TQ :T1+M1+M2+Mr and T1+M1—|—MS S 7;%
foralll1 <s<r.

Two tilings T} and Ty are flip connected if there exists a sequence M, ..., M, €
Mg, such that Ty =Ty + My + ... M, and T1 + My + ... Mg € T for all 1 < s <.
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A cubiculated region R is flip connected if every two tilings of R are flip connected.
It is known that if a 2-dimensional region is simply connected then its corresponding
space of tilings is flip connected.

Theorem 2.3. [25, 22| If R is a simply connected region in 2-dimensions, then Tg is
flip connected.

In [25], and more explicitly in [22], Theorem 2.3 is proved via the construction and
analysis of a map from the vertices of a domino tiling to Z called the height function.
In this paper, we give an alternative proof of the theorem using binomial ideals.

2.1. Connections to graph theory. In order to apply tools from combinatorial com-
mutative algebra, it is helpful to think of tilings of a cubiculated region as perfect
matchings of a graph. Here we set up the terminology to construct this correspon-
dence.

Let R be a n-dimensional cubiculated region. Let G be the undirected simple
graph that has one vertex for each elementary cube in R and an edge between a pair
of vertices if their two corresponding cubes in R share a n — 1 dimensional face. Given
a graph G = (V, E), a matching M is an independent edge set. A perfect matching is
a matching that covers all vertices in G. By the construction of Gg from R, we see
that there is a one-to-one correspondence between tilings of R and perfect matchings
on the graph G'g. This correspondence is illustrated in Figure 2.

FIGURE 2. Let R = By 3, the 2 x 3 box. On the left is a tiling on R, on
the right is a perfect matching of Gy .

Example 2.4. Let the region R be the m x ¢ box denoted B,,,. Then G is denoted

by Gy..¢ and is the m x £ grid graph whose vertices correspond to the points in [0, m] x
0, 6] NZ2.

Remark 2.5. Since R can always be viewed as a subregion of a n-dimensional box
By, ...m,, the graph G is a subgraph of the grid graph G,,, . m,.

For the rest of this paper, we will refer to tilings and matchings interchangeably.
We will use the underlying graph structure to understand the connectivity of the space
of 2-dimensional domino tilings for a region R. While tilings on a cubiculated region
R can be characterized by perfect matchings on G'g, moves between two tilings can be
characterized by even cycles.
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Definition 2.6. A walk on G is a finite sequence of the form

w = ((v1,03), (2, 03), - -, (Vn_1,00))

with each v; € V(G) and {v;_1,v;} € E(G). In the case where v; = vy, then w is called
a closed walk. A cycle is a closed walk that traverses each vertex in the walk exactly
once. The length of a cycle or closed walk is the number of edges in the walk. A closed
walk is even if the cycle has even length. An even closed walk is primitive if it does
not contain a proper closed even subwalk.

Proposition 2.7. Let R be a cubiculated region. Every cycle of the graph Gg is even.

Proof. As implied by Remark 2.5, for any cubiculated region R, the graph Gpg is a
subgraph of a grid graph G,,, . m,. In particular, Gy is bipartite. Thus, every cycle of
Gr is even [27]. O

Remark 2.8. Since every cycle of G is even, the only primitive even closed walks on
Gr are cycles [16].

In the following proposition, we see that the union of two tilings of R corresponds
to a collection of cycles on Gp.

Proposition 2.9. Let T} and Ty be tilings and let G = T} U Ty (considered as a
multigraph). Then G will be a disjoint collection of even cycles, some of which may be
2-cycles.

Proof. Consider the graph G = T} UT, with n vertices. We know for each i € V(G) the
deg(i) = 2. By definition G must be a 2-regular graph of size n. A characterization
of 2-regular graphs gives us that G' will be formed by a disjoint collection of cycles. [J

Since G = T} U T, is a disjoint collection of cycles we introduce the following
terminology.

Definition 2.10. Let G be a graph. We say C = {C,Cy,...,C,} is a cycle cover of G
if each C; is a cycle and every vertex in GG is covered by exactly one C;.

Note that given a region R and two tilings, 77 and 7%, the multigraph C = T1 UT,
is a cycle cover of Gr. Additionally, we can think of the edges in C as two-colorable,
specifically, we can color the edges corresponding to 7T red and the edges corresponding
to Ty as blue. This coloring will be helpful in later sections.

Finally, we end this section with a discussion on chords, which will play a role in
the algebra in the next two sections.

Definition 2.11. Let C be a cycle of a graph G = (V, E). An edge e € F is a chord
of C if e connects two vertices covered by C, but is not in C. A cycle is chordless if it
does not have a chord in G.
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Definition 2.12. Let C = ((vl, V), (U2, v3), ..., (Up_1, vn)) be an even cycle of a graph
G = (V,E). We say e = {v;,v;} € E(G) is a chord of C with ¢ < j. Furthermore, we
call e an even chord if 7 — ¢ is odd, in other words, if the two new cycles obtained by
adding e to C are both even.

3. TiLINGs AND ToORIC IDEALS OF GRAPHS

In this section, we introduce toric ideals of graphs and their connections to tiling
spaces. Toric ideals of graphs have been well-studied (see, for example, [26, 16, 17, 21,
24,12, 11]). By making the connection to toric ideals of graphs, we can describe a set
of moves that is guaranteed to connect the tiling space Ti for any cubiculated region
R.

3.1. Toric ideals of graphs and Markov bases. Let G = (V, E) be a graph. Con-
sider the following two polynomial rings

K[E] = K[ye | e € E[G]], and

K[V] =Klz, | v € V(G)].
Let ¢ be the ring homomorphism defined as follows

¢c : K[E] = K[V]
The toric ideal of GG, denoted I, is defined to be the kernel of the map ¢g
Ig :==ker(¢g) = {f € K[E] : ¢a(f) =0}
For our application, we are going to be most interested in the generating set of a

toric ideal of a graph. Such generating sets can be described by primitive closed even

walks. Furthermore, when G is bipartite, a generating set of I can be given simply in
terms of even cycles.

Definition 3.1. Let w be an even cycle, i.e.

w = ((vl, vg), (U2,03), ..., (Vop, vl)>

where e; = {v;, v;11}. The binomial arising from w is

Bw - Hyem‘ﬁ - Hy52i'
=1 =1

Proposition 3.2. Given a bipartite graph G, the ideal 1g is generated by the set of
binomials arising from even cycles on G [26].

Just as we can define a binomial arising from a cycle, we can define a binomial
associated to two tilings. Regard two tilings 77 and 75 of a cubiculated region R as
perfect matchings in Gg.
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Definition 3.3. Define the binomial arising from (77, 73) to be

Br 1, = H Ye; — H Ye;-

e, €T ej €Ty

Note that if R is a cubiculated region and 7,75 € Tg, then the binomial By, 1, arising
from (T3, 7T5) is in the toric ideal I, since

¢en(Brim) = ] ¢cn(ve) = [ d0n(ve,) = [] =— ] w=0

e; €T e; €T i€V (GR) 1€V (GRr)

Remark 3.4. For ease of notation, we will use the following monomial shorthand. Let

Ey C E(G), then we define
=11 v

e; €k

Thus, we will write Bp, 1, as
BT1,T2 = yTl - yTZ'

Similar to a binomial By, 7, arising from two tilings, the binomial arising from a
tiling move (D1, Do) is Bp, p, = yP* — yP? and is also in Ig,,.

We can describe a way to move between any two tilings in Tz by invoking the
Fundamental Theorem of Markov Bases from algebraic statistics [5, 6]. To do this we
now build a connection between toric ideals of graphs and the language of Markov
bases. First, let’s describe I; in an alternate way using design matrices. Indeed, the
most common way to define a toric ideal is through an integer matrix A; this matrix
is referred to as the design matriz in algebraic statistics. Let A be the vertex-edge
incidence matrix of G with N = #F(G) columns. Then

I =14:=(y" —y" | u,veZy Au= Av).

In this setting, we can think about u,v € Zzo as integer vectors or as multisets of edges
drawn from E(G). The condition Au = Av means that « and v have the same degree
sequence as multigraphs.

Let u € ZJEVO. The fiber of u with respect to A is
F(u) ={ve ZY;: Av = Au}.

The fiber of u is precisely the collection of all multigraphs with edges drawn from E(G)
with same degree sequence as u. Since every tiling of R has the same degree sequence
when viewed as a perfect matching of G, it is the case that T = F(T') for any tiling
T of R. This key observation allows us to use Markov bases to find a set of moves to
connect Tg.
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Definition 3.5. Let A € ZM*N . Let kerzA = {v € Z" : Av = 0} be the integer kernel
of A. A finite set MB C kerzA is called a Markov basis for A if for all u € Z%; and
v € F(u), there is a sequence by, ..., b, € TMB :={(-1)'b : be MB, i =0,1} such
that

v:u—l—Zbk f:mdujth;.C >0foralls=1,...r
k=1 k=1
The elements of a Markov basis are called Markov mowves.

When A is the vertex-edge incidence matrix of Gi for a cubiculated region R,
every Markov move b with 0,1, and —1 entries corresponds to a move M = (Dy, Dy)
on R by letting D; be the set of edges whose corresponding entries of b have value —1
and D, be the set of edges whose corresponding entries of b have value 1. Let bp, p, be
the vector in {—1,0,1}" that corresponds to the move (Dy, Dy). If MB is a Markov
basis for A, then MBg; := MBN{-1,0,1}" connects Tx (due to the fact that every
tiling in 7x can be viewed as a 0— 1 vector and thus applying a move not in {—1,0, 1}V
would move us outside of the fiber Tg).

The Fundamental Theorem of Markov Bases gives a way to test whether or not a
set MB is indeed a Markov basis.

Theorem 3.6. [5] Let MB = {by,...,b,} C Z" be a set of vectors; note that every
vector b; can be written uniquely as the difference b; = b — b; of two non-negative
vectors with disjoint support. The set MB = {by,...,b,} is a Markov basis for the
matriz A if and only if the corresponding set of binomials {xbj — 2% }io1. . generates
the toric ideal 14 .

Recall that a move is size d if |D;| = |Ds| = d.

Theorem 3.7. If I, is generated by binomials of degree d or less, then the set of
tilings of a cubiculated region R is connected by moves of size d or less.

Proof. Let A be the vertex-edge incidence matrix of Gg. Assume I, is generated by
binomials of degree d or less. Then by Theorem 3.6, this means that there is a Markov

basis MB for A whose moves all have size d or less. Since a Markov basis connects
every fiber of A, and Ty is a fiber of A, the set MB connects Tx. O

Theorem 3.8. (Moves that connect tilings spaces) Let R be a cubiculated region with
the associated graph Gr. Let Myqes be the set of moves on Tr corresponding to the
set of chordless cycles of G, i.e.

Meyeies == {bpy.p, : D1 U Dy is a chordless cycle of Ggr}.
Then M ycies connects Tr.
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Proof. By Lemma 3.1 and 3.2 in [16], since I, is bipartite, I, is generated by bino-
mials arising from chordless cycles of Gr. This means, by Theorem 3.6, M yces is a
Markov basis for the vertex-edge incidence matrix of G, thus, Myees C {—1,0, 1}
connects Tx. O

Corollary 3.9. Let 2d be the size of the largest chordless cycle in Gg. Then the space
of tilings of R 1s connected by moves of size d or less.

Note that Corollary 3.9 holds for any R in any dimension. However, in many
instances, especially in the 2-dimensional setting, the bound given in Corollary 3.9 is
far from sharp. This is due to the fact that tiling binomials can usually be written
without using the larger degree generators of I, as we will see in Section 4.

Example 3.10.

(a) The graph Gg of the cubiculated region R in row (a) of Figure 3 has a single
chordless cycle of length 10. This means I, is a principal ideal generated by a binomial
of degree 5. The region R has exactly two tilings that are connected by the tiling move
of size 5 that corresponds to the generating binomial of I¢,.

(b) The largest cycle of the graph G of the cubiculated region R in row (b) of
Figure 3 is length 8. However, this length 8 cycle is not chordless. In fact, Gx has
no chordless cycles of length > 4. This means I, is generated by quadratics and T
is flip connected. Indeed, by this same reasoning and applying Theorem 3.8, we can
conclude if R is the 2 x ¢ box By, then T is flip connected.

(c) The graph G of the cubiculated region R in row (c) of Figure 3 has a chordless
cycle of length 10. The degree 5 binomial in I; corresponding to this cycle is an
indispensable binomial of I [21], meaning that there exists a nonzero constant multiple
of it in every minimal system of binomial generators of I;. However, unlike the region
in row (a), for this region, the space of tilings Tz is flip connected and we do not need
the size 5 move to connect the space of tilings.

(d) The graph Gg of the cubiculated region R in row (d) of Figure 3 has a
chordless cycle of length 6, which corresponds to the trit move described in [15]. The
cubic binomial in [4 corresponding to this cycle is an indispensable binomial of /.
However, for this region, the space of tilings 7Tg is flip connected and we do not need
the trit move; in fact, for R, there is no tiling for which we can apply the trit move.

3.2. Tiling and flip ideals. Theorem 3.8 and Corollary 3.9 give a bound on the size
of moves needed to connect the space of tilings of a region R, however, this bound can
be arbitrarily large. For example, let m,n > 3, then G,,,, contains a chordless cycle of
length 2(m + n).

A local flip (D;, Dy) corresponds to a 4-cycle in Gg and the corresponding bi-
nomial y”* — y2 has degree 2. Conversely, any non-zero quadratic binomial in I,
must correspond to a 4-cycle, and consequently, a flip move. Thus, to show Ty is flip
connected, we need to show that every binomial arising from two tilings is generated
by quadratics.
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R Gy

(a) 3

(b)

(©)

@) H FI

Fi1GURE 3. Four cubiculated regions and their corresponding graphs with
the largest cycle highlighted.

Definition 3.11. Let R be a cubiculated region with associated graph Gr. The flip
ideal of R is defined as follows:

IRy, == (yPr —y"? (D1, D2) € Myip) C I,
The tiling ideal of R is defined as follows:

IRtiling = <yT1 - yT2 : T].? T2 E 7}% > g IGR

Using the flip and tiling ideal, we can use the language of ideals to restate what
it means for a region to be flip connected.

Theorem 3.12. A tiling space T, of a cubiculated region R is flip connected if and
only if
IRtiling - IRflip'

For a region R, both the flip ideal and the tiling ideal ideal are subideals of the
toric ideal of the graph Gg:

[Rtiling - [GR IRflip C [GR'

When Gr contains no chordless cycles of length > 4, we have Ig,, = Ig,, and thus,
IRyiny © If1ip and R is flip connected.
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While Ig,,,., and g, are binomial ideals, unlike I, they are not always prime
ideals and therefore not always toric ideals. However, the primary decomposition of
the flip ideal of a region has interesting combinatorics. Indeed, working from an earlier
version of this manuscript, in [2], Chin explores the flip ideals of 3 x ¢ box regions and
gives a complete description of their primary decompositions.

We now explore the three ideals I, Ir,,,,,, and Ig,, and their possible relation-
ships through four examples.

Example 3.13. Let R = By 3, the 2 x 3 box. Using the labeling in Figure 4, we have

]
(¥5]

FIGURE 4. The graph G 3 with edges labeled.
(1) Iy = { n1y7 — Y2Ys, Yay7 — Y3Ys ),
(2) IR, = (Y1Y3Ys — Y2Ualss Y1Yayr — Y1Yss, Y1Yayr — YaYale )

(3) Irp, = ( Yayr — Y3Ys, Y1y7 — Yals )-

nur, TuT, T,UT;
O 7 4 1 7 @ I 4

FIGURE 5. On top are the three tilings, T, T, and T3, of the 2 x 3 box.
On bottom are the three cycle covers of G 3 formed by the possible pairs
of tilings.
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The three tilings of R are depicted in Figure 5. Notice that the last binomial
listed in the generating set of I, is not needed and we could have written Ig,,,, =

(Y1Y3Ys — YoYaYs, Y1Yay7 — Y1Ysys). For this region, it is the case that
IRtiling C [Rflip = IGR‘

and thus T is flip connected by Theorem 3.12.

Example 3.14. Now let R be the 2 x 2 x 2 box. The associated grid graph with edge
labels is depicted in Figure 6.

F1GURE 6. The associated grid graph of the 2 x 2 x 2 box.

We compute the following

(1) I, = ( V1Y3 — Y2Ya, Y3Y10 — YeY7, YaYo — YsYe, Y1Y12 — YsYs, YoU11 — YrYs, Yoyi1 —
Y10Y12, Y2YsY10 — Y1YolY7, YaYr¥Yi2 — Y3YsYi1, Ya2YsY12 — Y3YgYo, Y1YsY11 — Y4YsYio >

(2) [Rmmg = <y295y6911_?/5y6y7y87 YaYoYrYs —YsYeYrYs, Y2YaYoyi11—YaYolyrys, Y2YaYoyYi1—
Y2YaY10Y12, Y1YsYioYi2—Y2YaY10Y12, Y1Y3Y1oY12—Y1Y3YolYi11, Y1Y3YioY12—Y1¥YeY11Y12, Y1Y3¥YioYi2—
ysy5ysylo>

(3) IRfl'Lp

= < Y1Y3 —Y2Y4, Y3Y10 —Ye¥Y7, YaYo —YsYe, Y1Y12 —Ys¥Ys, Y2Y11 —Y7Ys, Yo¥Yi11 —
Y10Y12 )

For this example, while I, # Igy, we do have that Iy, C Ig,,, . This can be
seen by noticing that every generator of Ig,,, ~is a monomial multiple of an element
in Ig,,,. Since Ig,,,. C Ig,,,, the tiling space Tg is flip connected by Theorem 3.12.

Example 3.15. In this example, let R = Bs4, the 3 x 4 box. The associated grid
graph with edge labels is depicted in Figure 7.
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F1GURE 7. The grid graph associated with the 3 x 4 box with edges
labeled 1 through 17.

We compute the following

(1) ]GR = < Y1Y12 — Y2Y11, Y12Yis — Y3Y14, YsYis — YalYi7, YioY13 — YoY11, Yi3Yie —
YsYi4, YeY16 — Y7¥Y17, Y1Y3Yo¥Yie — Y2YsYio0Yis, YaYeYsYi2 — Y3YsYrYi3, Y1Y3YsYrYo —
YolaleYsy10 )

(2) memg = <y1y5y7y9y12y15—ygy4y7y9y11y17, Y1YsYrYoYi12Y15 —Y2YaYeYsYi0Y14, Y1YsYrYoYi12Yi5—
YNYsYsYrYoYi4, Y1YsYrYoYi12Yi1s—Y2YaYsY10Y13Y16, Y2YsYoyY7rY11Y15—Y1Y3YsYrYoli4, Y2YsYoYry11Yi15—
YoYaYsYoY11Yie, Y2YalYeYoY11Y16 —Y1YaYrYolyi12Yi7, Y1YayYrYoYi12Y17—Y1YaYeYolY12Y16, Y1YaYeYolYi12Yi6—
Ya2YayrYroY13Yir, Y2YayYryioYisyir — y2y5y7y1oy13y15>

(3) ]Rf“p = ( Y12 — Y2Y11, Yi2¥is — YsYia, YsYis — YaYir, YioY13 — YoUi1, Y13Yi6 —
YsY14, Y6Y16 — Y7yt )-

In this example, as with the previous example, I, # Igg, but I, C Ir,.,
hence, the tiling space T is flip connected by Theorem 3.12.

Example 3.16. Let R be the 3-dimensional region whose associated graph is pictured
in Figure 8.
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FiGURE 8. The labeled graph G of a 3-dimensional region R that con-
tains the 2 x 2 x 2 cube as a subregion.

We compute the following

(1) I, = ( V1y3 — Y2Ya, YsY10 — YeY7, YaYo — YsYe, Y1Y12 — YsYs, Y211 — YrYs, YoYi1 —
Y10Y12, Y2YsY10 — Y1YolU7, YaYr¥Yi2 — Y3YsYi1, Y2YsY12 — Y3YgYo, Y1YeY11 — Y4Ysyio >

(2) IR, = ( Y2Usy12Y13Y14 — Y3YoYsY13Y14 )

(3) [Rflip

= ( Y1Y3 —Y2Ya, Y3Yi10 —YeY7, YaY9s —YsYs, Y1Y12 —YsYs, Y2Y11 —Y7Ys, YolY11 —
Y10Y12 )

In this example, there are only two tilings of R and thus I,,,,,, is a principal ideal.
The tiling ideal is not contained in the flip ideal, and hence, the tiling space is not flip
connected. Indeed, a trit move is needed to connect the space, which can be seen by
noting that the single generator of I, can be factored into a monomial and cubic
trit binomial

?J13?J14(y2y6y12 - ysys)ys)'

3.3. Tiling binomials in terms of cycle covers. Recall that for two tilings 7} and
T, of R, their union 77 U T5 is a cycle cover of Gg. In this section, we state and prove
a lemma regarding such cycle covers that will be helpful in giving an algebraic proof
of Theorem 2.3.

Let T} and T, be two tilings of a cubiculated region R with corresponding cycle
cover TYUTy, =C = {Cy,...,C.} of Gg. We define the cycle binomial B¢, corresponding
to the cycle C; as follows. Construct a closed walk w; on each C; € C by starting with
an edge in 7 and then walking in either direction. Then the cycle binomial B, is the
binomial arising from the walk w;:
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Be, := By, = H Ye — H Ye-

ecTNC; ecT>NC;

Lemma 3.17. Let T1 and Ty be two tilings of a cubiculated region R with corresponding
cycle cover Ty UTy, = C ={Cy,...,C,} of Gg. Then Br, 1, can be written as the sum
of r binomials where the ith binomial can be factored into a monomial and the cycle
binomial Be, .

Proof. We begin by describing the 7th monomial that appears in the sum described by

the lemma. Let
my = yT1\617
and for i =2,...,r, let

m; = y(Tl\(Clu'nUCi))U(Tgr‘l(C1U~~-UCi,1))'
Then, we can write B, 1, as
By, 1, = miBe, +meBe, + - +m,Be,.
O
Remark 3.18. Note that the binomial arising from a 2-cycle C; has the following form

Yi —Yj-
Therefore adding Bg, is equivalent to adding zero. Thus, we can obtain a similar
statement to Lemma 3.17 by letting C be all cycles of T7 UT5 of length greater than 2.

Example 3.19. Let R be the 2 x5 box and consider the two tilings T} and 75 pictured
in Figure 9. The cycle cover C = {C;,Cs} of G induced by T; U Ty is also shown in
Figure 9.

The binomial arising from (77, 75) is

By, = 1193y5Y7Y9 — Y2YaYeYsyio-
Using Lemma 3.17, we can write By, 7, in terms of Be, = y1y3 — y2ys and Be, =
YsyrYs — Yeysyro as follows

Bry 1, = Ysyryo(Y1y3 — Y2ya) + Yoya(Ysyr¥o — Y6¥sy1o)-
Notice that the factored monomials in this sum have the form described in the proof
of Lemma 3.17. In particular, working on the labels of the indeterminates appearing
in each monomial, we have

{5,7,9} =T1\C, ={1,3,5,7,9} \ {1,2,3,4},
and

2,4 = (T\ (G UC))U(TNC) =0U(T:NC) = {2.4,6,8,10} N {1,2,3,4}.
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g1 %2
2 5 6
. . . . .
1 3 10 7
) ) . . .
4 9 8

F1GURE 9. The top row shows two tilings, 77 and T3, of the 2 x 5 box.
The bottom row shows the two cycles formed when taking the union of
T1 and Ty as edge sets of G.

4. CONNECTIVITY OF TILINGS OF 2-DIMENSIONAL REGIONS

We conclude this paper by showing any binomial arising from two tilings of a
2-dimensional simply connected cubiculated region R is generated by quadratics. This
allows us to prove that the space of tilings of R is flip connected.

Definition 4.1. A region R is said to be simply connected if any simple closed curve
can be shrunk to a point continuously in the set.

Remark 4.2. A 2-dimensional region is simply connected if it has no holes.

Theorem 4.3. Let R be a 2-dimensional simply connected cubiculated region. Any
binomial arising from two distinct tilings of R is generated by quadratics. In particular,

[Rtiling g [Rflip'
Our proof of Theorem 4.3 relies on a couple of lemmas that we will prove first.

Definition 4.4. Let R be a 2-dimensional simply connected cubiculated region with
graph G'z. We call a cycle C; of Gi a contractible cycle if, when Gy is drawn in the
plane as a grid graph, the interior of C; contains no vertices.
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Contractible cycles can be regarded as Hamiltonian cycles of a subgraph Gg of Gg
where R’ is a simply connected subregion of R. Indeed, if R is simply connected,
then any Hamiltonian cycle of Gi is a contractible cycle. Moreover, when R is a
2-dimensional simply connected region, any 2-cycle of G is a contractible cycle.

Definition 4.5. Let R be a 2-dimensional simply connected cubiculated region with
graph Gr. We call a cycle Cy of Gg a perimeter cycle if, when Gg is drawn in the
plane as a grid graph, the interior of Cy contains no cycles or only 2-cycles. (The name
perimeter comes from that fact that if 77 U7 contains a single perimeter cycle and no
other cycles besides 2-cycles, then the tilings T} and 75 only differ on the perimeter of
a simply connected subregion.)

Note that a contractible cycle is a perimeter cycle, and thus, a 2-cycle is a perimeter
cycle.

Lemma 4.6. Let T and Ty be two tilings of a simply connected 2-dimensional cubic-
ulated region R such that Ty U Ty is a collection of perimeter cycles Cy,...,C.. There
exists a sequence of flip moves (Dy,, Da,), ..., (D1,, Da,) that takes Ty to T| and a se-
quence of flip moves (D1, D5 ), ..., (D},,Ds,) that takes Ty to Ty such that T{ UT; is
a collection of contractible cycles. In particular,

Br,m, = y™\Pu(yP —yP) TP (P — )
+ BT{,TQ’

+y 5\ ("

w—yPi) Ly (P — P

where each binomial of the form yPt — yP2 or (yP2 — yPu) has degree 2.

Proof. Let k be the number of vertices contained in the interiors of Cq,...,C, when G
is drawn in the plane as a grid graph. We will induct on k.

For the base case, assume & = 0. Then Cy,...,C, are all contractible cycles.
Therefore, T7 U T5 is a collection of contractible cycles.

Now suppose the statement is true for up to k& — 1 internal vertices and assume
the cycles in C have k > 0 internal vertices. Since k > 0, the interior of at least one
of Cy,...,C, contains at least one 2-cycle, let’s assume C; contains at least one 2-cycle.
We will consider three cases based on the positions of the interior 2-cycles.

Case 1: An interior 2-cycle is parallel to Cy.

In this case we can perform a local flip the edge parallel to the 2-cycle as shown
in Figure 10. This yields a decrease in the number of internal vertices by 2, and then,
we can apply the induction hypothesis.

Case 2: There exists an interior 2-cycle that is not parallel to C;.

Let us categorize 2-cycles into two types: north-south cycles and east-west cycles (see
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FiGure 11. On the left is a north-south 2-cycle. On the right is an
east-west 2-cycle.

Figure 11). In the case where there is no 2-cycle parallel to C;, then (i) there exists
a east-west cycle such that the two vertices in G'i directly north of the 2-cycle or the
two vertices in G directly south of the 2-cycle are both contained in C; or (ii) there
exists a north-south cycle such that the two vertices in Gg directly east of the 2-cycle
or the two vertices in G directly west of the 2-cycle are both contained in C;. We
note that if either (i) or (ii) does not hold, then starting at any interior 2-cycle, there
is an infinite sequence of 2-cycles that can be constructed by choosing the 2-cycle that
covers at least one vertex to the north or east of the previous cycle, and thus R is not
finite.

Without loss of generality, let’s assume that there is a 2-cycle Cy of the form
described in situation (i) such that the two vertices directly north of the Cy are both
contained in GGr. In this situation, C; must transverse the vertices north of Cy in the
way illustrated in Figure 12. Note that the edges e; and e; in Figure 12 must be from
the same tiling since every chord of C; must be even. After performing a local flip, C;
is split into two cycles, C| that contains C and C) that contains no vertices or only
2-cycles and thus is a new perimeter cycle; see Figure 13. We have not reduced the
number of interior vertices, however, we now meet the conditions of Case 1 and can

proceed accordingly.
0

Lemma 4.7. Let R be a simply connected 2-dimensional cubiculated region and let
Ty, T5 be two tilings such that Ty UT, contains a single contractible cycle of Ggr of length
> 4 and no other cycles besides 2-cycles. Then Br, 1, is generated by quadratics.
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)
<

FIGURE 12. An east-west cycle such that the two vertices in Gy directly
north of the 2-cycle are traversed by C;.

FiGure 13. Configuration from Figure 12 after performing a local flip.

FIGURE 14. A single 4-cycle.

Proof. Let C; be the single contractible cycle of length > 4. We will proceed by
induction on the length of C;, which we will denote by k.

For the base case, let k = 4. Then C; is a single 4-cycle. Let C; be labeled as in
Figure 14, then By, 7, is the product of a monomial and the quadratic y,y3 — y2y4, and
thus is generated by quadratics.

Now assume C; has length k£ > 4 and the statement holds whenever the length of
C is less than k. Embed Gp into a grid graph and let row i be the first row (scanning
from north to south) that contains a vertex covered by C; and let column j be the first
column in row i that contains a vertex covered by Cy; we will call the (7, j)th vertex of
the grid graph, the north-west corner of C; and refer to it as v.



20 ELIZABETH GROSS AND NICOLE YAMZON

[ .

FIGURE 15. The north-west corner of C;.

I_[ | — v
Pe ° u [ ...........

FIGURE 16. The three ways the north-west corner can be traversed by C;.

By the way we selected the north-west corner, the vertex v must be traversed by
C; as illustrated in Figure 15. Furthermore, since R is simply connected, and C; is a
contractible cycle, the highlighted vertex in Figure 15 must also be covered by C;. The
highlighted vertex can be covered in three ways as shown in Figure 16.

For the first two cases illustrated in Figure 16, we can perform a local flip move
that decomposes (' into a 2-cycle and a contractible cycle of length less than C;, and
then apply the induction hypothesis.

For the third case illustrated in Figure 16, note that the edge e in Gg from u, the
vertex south of v, to the highlighted vertex is an even chord of C;, since G contains
only even cycles. Using e, we can split C; into two even contractible cycles, C, and Cs,
that overlap on the edge e. Then, similar to the proof of Lemma 3.17, and assuming
the edges adjacent to e in Cy belong to T}, we can define the following two pairs of
tilings:

Sl :Tl 52 == (Tl\CQ)U(CQ\Tl)
U1 - (Tl\CQ)U(CQ\Tl) - (TQ\Cg)U(Cg\TQ) UQ :TQ.
The binomial By, can be written in terms of binomials arising from S, S, and Uy, Us:
BTl,Tz = BS1752 + BU1,U2'

Since S; U Sy and U; U U, both contain only 2-cycles and a single contractible cycle
of length > 4 but less than £, the binomials Bg, s, and By, y, are both generated by
quadratics and thus Bp, 1, is generated by quadratics. O
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We now can begin our proof of Theorem 4.3. We will induct on the binomial
degree of the tiling binomial.

Definition 4.8. Let b be a homogeneous binomial of the form b = m(u — v) where
m, u,v are monomials and ged(u,v) = 1. We will call the degu = degwv, the binomial
degree of b.

Proof of Thoerem 4.3. Let B, 1, be a non-zero binomial arising from two tilings 71, 5.
We will induct on the binomial degree of By, 7.
In the base case, let’s assume the binomial degree of By, 1, is 2. Then

T1\D1 (yDl Dz)

BT1,T2 =Y -y
where the size of the move (Dy, Ds) is 2 and thus a flip move.

Now, assume that the binomial degree of B, 1, is kK > 2 and the statement holds
whenever the binomial degree is less than k. Note that the binomial degree of By, r,
is equal to 1/2 the sum of the lengths of all cycles with length > 2 in T} U T5. Thus,
we can proceed by considering two cases based on whether T} U T; has more than one
cycle with length > 2 or a single cycle of length > 2.

For the first case, assume 77 UT5 has more than one cycle with length > 2; let’s call
these cycles Cy, ...,C,. By Lemma 3.17, By, 7, can be written as the sum of 7 binomials
where the 7th binomial can be factored into a monomial and the cycle binomial B, .
This means that the ith binomial in the sum has binomial degree equal to 1/2-(length of
C;), which is less than k. Thus, by applying the induction hypothesis to each binomial
in the sum, we have that Br, r, is generated by quadratics and Br, 1, € .

For the second case, assume 77 U T5 has a single cycle C; with length > 2. In this
case, C; is a perimeter cycle, Thus, by combining Lemma 4.6 and Lemma 3.17, and
applying Lemma 4.7 to each resulting contractible cycle, we have B, 1, € Ifp. U

Corollary 4.9. Let R be a 2-dimensional simply connected cubiculated region. Then
Tr s flip connected.
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