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Abstract. In this paper, we consider the set of all domino tilings of a cubiculated
region. The primary question we explore is: How can we move from one tiling to
another? Tiling spaces can be viewed as spaces of subgraphs of a fixed graph with a
fixed degree sequence. Moves to connect such spaces have been explored in algebraic
statsitics. Thus, we approach this question from an applied algebra viewpoint, making
new connections between domino tilings, algebraic statistics, and toric algebra. Using
results from toric ideals of graphs, we are able to describe moves that connect the
tiling space of a given cubiculated region of any dimension. This is done by studying
binomials that arise from two distinct domino tilings of the same region. Additionally,
we introduce tiling ideals and flip ideals and use these ideals to restate what it means
for a tiling space to be flip connected. Finally, we show that if R is a 2-dimensional
simply connected cubiculated region, any binomial arising from two distinct tilings
of R can be written in terms of quadratic binomials. As a corollary to our main
result, we obtain an alternative proof to the fact that the set of domino tilings of a
2-dimensional simply connected region is connected by flips.

1. Introduction and Background

A 2 × 1 domino (or a 1 × 2 domino) is two unit squares joined along a single
edge. A domino tiling of a region is a covering of the region with dominos such that
there are no gaps or overlaps. As an area of mathematical research, domino tilings
appeared as early as 1937 in the context of thermodynamics and dimer systems [9].
Several bodies of work in the 2-dimensional setting show that such objects are rich and
nuanced [13] [8], [25], [7], [4], [14], [18]. For example, Kasteleyn and Fisher–Temperley
proved independently [8, 13] that the number of tilings of a 2n× 2m rectangle is

4mn
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)
.

While, there is no closed-form expression for the number of domino tilings of an arbi-
trary 2-dimensional region, there are many papers that study this problem for specific
types of regions, such as Aztec diamonds and pyramids [1, 19, 23]. Higher dimensional
regions, such as 3-dimensional regions, have also been explored. For example, in 1998,
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Ciucu gave an upper bound on the number of 3-dimensional domino tilings of a n×n×n
cube [3].

In lieu of a complete enumeration of the tilings of a region, one can estimate
the number of tilings through Monte Carlo Markov chain sampling methods. Such
methods require a set of moves that connect the space, which lead us to our primary
question of interest: What are sets of moves that connect the space of domino tilings for
a fixed region? We tackle this question from an algebra lens, making a new connection
between domino tilings, algebraic statistics, and combinatorial commutative algebra
through toric ideals of graphs.

For 2-dimensions, it is known that any two domino tilings of a simply connected re-
gion can be obtained through a sequence of flips [25, 22]. Generalizing results to higher
dimensions has been of interest to fields from combinatorics to solid state chemistry
[7, 18]. However, previous results, such as those built on Thurston’s height function
[20] fail to generalize to the 3-dimensional setting. In fact, in 3-dimensions even the
most uncomplicated of regions fail to be flip connected. For instance the domino tilings
of l × m × n box are not connected by flips [10, 13, 15]. Milet and Saldanha intro-
duced another local move called the trit, which operates on three dominoes at a time
(as opposed to the flip that operates on two dominoes at a time) [15]. While some
3-dimensional tiling spaces are connected by flips and trits, not all are; [15] includes
some examples. In [10], Klivans et al. give conditions in terms of topological invariants
for testing whether two different 3-dimensional domino tilings are connected by flips
or by flips and trits.

Our paper explores the connectivity question by noting that the space of tilings of
a region R corresponds to a particular fiber of a design matrix A, where A is prescribed
by the region R (here we are using language from algebraic statistics, which is defined
formally in the Section 3). By appealing to algebraic statistics, and in particular,
the Fundamental Theorem of Algebraic Statistics [6], for any given region, of any
dimension, we can find a set of moves that is guaranteed to connect its tiling space
by finding a set of generators of the toric ideal of A, a binomial ideal. Using the well-
known correspondence between domino tilings of a region R and perfect matchings of
an associated graph GR [27] and results in combinatorial commutative algebra on toric
ideals of graphs [16], in Theorem 3.8, we describe the moves guaranteed to connect
the tiling space in terms of the graph GR. The moves described in Theorem 3.8 are
not always local flips though. While we can show that if the toric ideal of GR is
quadratic, then the space of tilings of R is flip connected, the converse is not always
true. In order to explore flip connected tiling spaces more, we introduce two additional
binomial ideals, the tiling ideal and the flip ideal. These ideals are not always prime,
and thus not always toric, however we can describe exactly when a tiling space is flip
connected using these two ideals (Theorem 3.12). Finally, we showcase this algebraic
perspective by providing an alternative proof to the fact that the tiling space of any
simply connected region of R2 is flip connected.
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This paper is organized as follows. In Section 2, we formally define domino tilings
and discuss tilings from a graph theoretic viewpoint. In Section 3, we discuss the
connection of tiling spaces to algebraic statistics and toric ideals of graphs and describe
a set of moves guaranteed to connect the tiling space of a given region. Additionally,
we introduce the tiling ideal and the flip ideal of a region R and restate what it means
for a tiling space to be connected in terms of these two ideals. Finally, in Section 4, we
show, using algebraic techniques, that the tiling space of any simply connected region
of R2 is flip connected.

2. Domino Tilings

Let R be a n-dimensional cubiculated region of RN , i.e. a homogeneous cubical
complex of dimension n embedded in RN with n ≤ N . A d-dimensional domino is two
adjacent elementary n-dimensional cubes connected along a face of dimension n − 1;
we will denote the set of dominos contained in R as DR. A domino tiling T ⊆ DR of
a cubiculated region R is defined to be a covering of R with dominoes such that every
elementary cube of R is covered exactly once; we will denote the space of all tilings
of R as TR. We are interested in local moves that connect all the tilings in TR. A
move between two tilings T1, T2 ∈ TR is an ordered pair M = (D1, D2) of two sets of
dominoes D1, D2 ⊆ DR such that T2 = (T1 \D1) ∪D2. For simplicity, if M is a move
from T1 to T2, we will write T2 = T1 +M . We say a move has size d if |D1| = |D2| = d.
We begin our discussion with the simplest move, the local flip, or flip.

Definition 2.1. A local flip is performed by replacing a pair of two adjacent parallel
dominoes, i.e. two dominoes that share two n−1 dimensional faces, with two adjacent
parallel dominoes in a perpendicular direction to the first pair. We will refer to the set
of all flip moves for R as MRflip

.

Figure 1. A local flip.

Definition 2.2. Let R be a cubiculated region, and let MR be a set of possible
moves of R. We say MR connects TR if for every two tilings T1, T2 ∈ TR, there exists
M1, . . .Mr ∈ MR such that T2 = T1 + M1 + M2 + . . .Mr and T1 + M1 + . . .Ms ∈ TR
for all 1 ≤ s ≤ r.

Two tilings T1 and T2 are flip connected if there exists a sequence M1, . . . ,Mr ∈
MRflip

such that T2 = T1 +M1 + . . .Mr and T1 +M1 + . . .Ms ∈ TR for all 1 ≤ s ≤ r.
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A cubiculated region R is flip connected if every two tilings of R are flip connected.
It is known that if a 2-dimensional region is simply connected then its corresponding
space of tilings is flip connected.

Theorem 2.3. [25, 22] If R is a simply connected region in 2-dimensions, then TR is
flip connected.

In [25], and more explicitly in [22], Theorem 2.3 is proved via the construction and
analysis of a map from the vertices of a domino tiling to Z called the height function.
In this paper, we give an alternative proof of the theorem using binomial ideals.

2.1. Connections to graph theory. In order to apply tools from combinatorial com-
mutative algebra, it is helpful to think of tilings of a cubiculated region as perfect
matchings of a graph. Here we set up the terminology to construct this correspon-
dence.

Let R be a n-dimensional cubiculated region. Let GR be the undirected simple
graph that has one vertex for each elementary cube in R and an edge between a pair
of vertices if their two corresponding cubes in R share a n− 1 dimensional face. Given
a graph G = (V,E), a matching M is an independent edge set. A perfect matching is
a matching that covers all vertices in G. By the construction of GR from R, we see
that there is a one-to-one correspondence between tilings of R and perfect matchings
on the graph GR. This correspondence is illustrated in Figure 2.

Figure 2. Let R = B2,3, the 2× 3 box. On the left is a tiling on R, on
the right is a perfect matching of G2,3.

Example 2.4. Let the region R be the m× ` box denoted Bm,`. Then GR is denoted
by Gm,` and is the m× ` grid graph whose vertices correspond to the points in [0,m]×
[0, `] ∩ Z2.

Remark 2.5. Since R can always be viewed as a subregion of a n-dimensional box
Bm1,...,mn , the graph GR is a subgraph of the grid graph Gm1,...,mn .

For the rest of this paper, we will refer to tilings and matchings interchangeably.
We will use the underlying graph structure to understand the connectivity of the space
of 2-dimensional domino tilings for a region R. While tilings on a cubiculated region
R can be characterized by perfect matchings on GR, moves between two tilings can be
characterized by even cycles.
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Definition 2.6. A walk on G is a finite sequence of the form

w =
(
(v1, v2), (v2, v3), . . . , (vn−1, vn)

)
with each vi ∈ V (G) and {vi−1, vi} ∈ E(G). In the case where v1 = vn, then w is called
a closed walk. A cycle is a closed walk that traverses each vertex in the walk exactly
once. The length of a cycle or closed walk is the number of edges in the walk. A closed
walk is even if the cycle has even length. An even closed walk is primitive if it does
not contain a proper closed even subwalk.

Proposition 2.7. Let R be a cubiculated region. Every cycle of the graph GR is even.

Proof. As implied by Remark 2.5, for any cubiculated region R, the graph GR is a
subgraph of a grid graph Gm1,...,mn . In particular, GR is bipartite. Thus, every cycle of
GR is even [27]. �

Remark 2.8. Since every cycle of GR is even, the only primitive even closed walks on
GR are cycles [16].

In the following proposition, we see that the union of two tilings of R corresponds
to a collection of cycles on GR.

Proposition 2.9. Let T1 and T2 be tilings and let G = T1 ∪ T2 (considered as a
multigraph). Then G will be a disjoint collection of even cycles, some of which may be
2-cycles.

Proof. Consider the graph G = T1∪T2 with n vertices. We know for each i ∈ V (G) the
degG(i) = 2. By definition G must be a 2-regular graph of size n. A characterization
of 2-regular graphs gives us that G will be formed by a disjoint collection of cycles. �

Since G = T1 ∪ T2 is a disjoint collection of cycles we introduce the following
terminology.

Definition 2.10. Let G be a graph. We say C = {C1, C2, . . . , Cr} is a cycle cover of G
if each Ci is a cycle and every vertex in G is covered by exactly one Ci.

Note that given a region R and two tilings, T1 and T2, the multigraph C = T1 ∪T2
is a cycle cover of GR. Additionally, we can think of the edges in C as two-colorable,
specifically, we can color the edges corresponding to T1 red and the edges corresponding
to T2 as blue. This coloring will be helpful in later sections.

Finally, we end this section with a discussion on chords, which will play a role in
the algebra in the next two sections.

Definition 2.11. Let C be a cycle of a graph G = (V,E). An edge e ∈ E is a chord
of C if e connects two vertices covered by C, but is not in C. A cycle is chordless if it
does not have a chord in G.
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Definition 2.12. Let C =
(
(v1, v2), (v2, v3), . . . , (vn−1, vn)

)
be an even cycle of a graph

G = (V,E). We say e = {vi, vj} ∈ E(G) is a chord of C with i < j. Furthermore, we
call e an even chord if j − i is odd, in other words, if the two new cycles obtained by
adding e to C are both even.

3. Tilings and Toric Ideals of Graphs

In this section, we introduce toric ideals of graphs and their connections to tiling
spaces. Toric ideals of graphs have been well-studied (see, for example, [26, 16, 17, 21,
24, 12, 11]). By making the connection to toric ideals of graphs, we can describe a set
of moves that is guaranteed to connect the tiling space TR for any cubiculated region
R.

3.1. Toric ideals of graphs and Markov bases. Let G = (V,E) be a graph. Con-
sider the following two polynomial rings

K[E] = K[ye | e ∈ E[G]], and

K[V ] = K[xv | v ∈ V (G)].

Let φG be the ring homomorphism defined as follows

φG : K[E]→ K[V ]

y(i,j) 7→ xixj.

The toric ideal of G, denoted IG, is defined to be the kernel of the map φG

IG := ker(φG) = {f ∈ K[E] : φG(f) = 0}.
For our application, we are going to be most interested in the generating set of a

toric ideal of a graph. Such generating sets can be described by primitive closed even
walks. Furthermore, when G is bipartite, a generating set of IG can be given simply in
terms of even cycles.

Definition 3.1. Let w be an even cycle, i.e.

w =
(

(v1, v2), (v2, v3), . . . , (v2n, v1)
)

where ei = {vi, vi+1}. The binomial arising from w is

Bw =
n∏

i=1

ye2i−1
−

n∏
i=1

ye2i .

Proposition 3.2. Given a bipartite graph G, the ideal IG is generated by the set of
binomials arising from even cycles on G [26].

Just as we can define a binomial arising from a cycle, we can define a binomial
associated to two tilings. Regard two tilings T1 and T2 of a cubiculated region R as
perfect matchings in GR.
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Definition 3.3. Define the binomial arising from (T1, T2) to be

BT1,T2 =
∏
ei∈T1

yei −
∏
ej∈T2

yej .

Note that if R is a cubiculated region and T1, T2 ∈ TR, then the binomial BT1,T2 arising
from (T1, T2) is in the toric ideal IGR

since

φGR
(BT1,T2) =

∏
ei∈T1

φGR

(
yei
)
−
∏
ej∈T2

φGR

(
yej
)

=
∏

i∈V (GR)

xi −
∏

i∈V (GR)

xi = 0.

Remark 3.4. For ease of notation, we will use the following monomial shorthand. Let
E0 ⊆ E(G), then we define

yE0 :=
∏
ei∈E0

yei .

Thus, we will write BT1,T2 as

BT1,T2 = yT1 − yT2 .

Similar to a binomial BT1,T2 arising from two tilings, the binomial arising from a
tiling move (D1, D2) is BD1,D2 = yD1 − yD2 and is also in IGR

.

We can describe a way to move between any two tilings in TR by invoking the
Fundamental Theorem of Markov Bases from algebraic statistics [5, 6]. To do this we
now build a connection between toric ideals of graphs and the language of Markov
bases. First, let’s describe IG in an alternate way using design matrices. Indeed, the
most common way to define a toric ideal is through an integer matrix A; this matrix
is referred to as the design matrix in algebraic statistics. Let A be the vertex-edge
incidence matrix of G with N = #E(G) columns. Then

IG = IA := 〈yu − yv | u, v ∈ ZN
≥0, Au = Av〉.

In this setting, we can think about u, v ∈ ZN
≥0 as integer vectors or as multisets of edges

drawn from E(G). The condition Au = Av means that u and v have the same degree
sequence as multigraphs.

Let u ∈ ZN
≥0. The fiber of u with respect to A is

F(u) = {v ∈ ZN
≥0 : Av = Au}.

The fiber of u is precisely the collection of all multigraphs with edges drawn from E(G)
with same degree sequence as u. Since every tiling of R has the same degree sequence
when viewed as a perfect matching of GR, it is the case that TR = F(T ) for any tiling
T of R. This key observation allows us to use Markov bases to find a set of moves to
connect TR.
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Definition 3.5. Let A ∈ ZM×N . Let kerZA = {v ∈ ZN : Av = 0} be the integer kernel
of A. A finite set MB ⊂ kerZA is called a Markov basis for A if for all u ∈ ZN

≥0 and
v ∈ F(u), there is a sequence b1, . . . , br ∈ ±MB := {(−1)ib : b ∈MB, i = 0, 1} such
that

v = u+
r∑

k=1

bk and u+
s∑

k=1

bk ≥ 0 for all s = 1, . . . r.

The elements of a Markov basis are called Markov moves.

When A is the vertex-edge incidence matrix of GR for a cubiculated region R,
every Markov move b with 0, 1, and −1 entries corresponds to a move M = (D1, D2)
on R by letting D1 be the set of edges whose corresponding entries of b have value −1
and D2 be the set of edges whose corresponding entries of b have value 1. Let bD1,D2 be
the vector in {−1, 0, 1}N that corresponds to the move (D1, D2). If MB is a Markov
basis for A, then MBsf :=MB ∩ {−1, 0, 1}N connects TR (due to the fact that every
tiling in TR can be viewed as a 0−1 vector and thus applying a move not in {−1, 0, 1}N
would move us outside of the fiber TR).

The Fundamental Theorem of Markov Bases gives a way to test whether or not a
set MB is indeed a Markov basis.

Theorem 3.6. [5] Let MB = {b1, . . . , bn} ⊂ ZN be a set of vectors; note that every
vector bi can be written uniquely as the difference bi = b+i − b−i of two non-negative
vectors with disjoint support. The set MB = {b1, . . . , bn} is a Markov basis for the

matrix A if and only if the corresponding set of binomials {xb+i − xb−i }i=1,...,n generates
the toric ideal IA .

Recall that a move is size d if |D1| = |D2| = d.

Theorem 3.7. If IGR
is generated by binomials of degree d or less, then the set of

tilings of a cubiculated region R is connected by moves of size d or less.

Proof. Let A be the vertex-edge incidence matrix of GR. Assume IGR
is generated by

binomials of degree d or less. Then by Theorem 3.6, this means that there is a Markov
basis MB for A whose moves all have size d or less. Since a Markov basis connects
every fiber of A, and TR is a fiber of A, the set MB connects TR. �

Theorem 3.8. (Moves that connect tilings spaces) Let R be a cubiculated region with
the associated graph GR. Let Mcycles be the set of moves on TR corresponding to the
set of chordless cycles of GR, i.e.

Mcycles := {bD1,D2 : D1 ∪D2 is a chordless cycle of GR}.

Then Mcycles connects TR.
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Proof. By Lemma 3.1 and 3.2 in [16], since IGR
is bipartite, IGR

is generated by bino-
mials arising from chordless cycles of GR. This means, by Theorem 3.6, Mcycles is a
Markov basis for the vertex-edge incidence matrix of GR, thus, Mcycles ⊂ {−1, 0, 1}N
connects TR. �

Corollary 3.9. Let 2d be the size of the largest chordless cycle in GR. Then the space
of tilings of R is connected by moves of size d or less.

Note that Corollary 3.9 holds for any R in any dimension. However, in many
instances, especially in the 2-dimensional setting, the bound given in Corollary 3.9 is
far from sharp. This is due to the fact that tiling binomials can usually be written
without using the larger degree generators of IG, as we will see in Section 4.

Example 3.10.
(a) The graph GR of the cubiculated region R in row (a) of Figure 3 has a single

chordless cycle of length 10. This means IGR
is a principal ideal generated by a binomial

of degree 5. The region R has exactly two tilings that are connected by the tiling move
of size 5 that corresponds to the generating binomial of IGR

.
(b) The largest cycle of the graph GR of the cubiculated region R in row (b) of

Figure 3 is length 8. However, this length 8 cycle is not chordless. In fact, GR has
no chordless cycles of length > 4. This means IGR

is generated by quadratics and TR
is flip connected. Indeed, by this same reasoning and applying Theorem 3.8, we can
conclude if R is the 2× ` box B2,`, then TR is flip connected.

(c) The graph GR of the cubiculated region R in row (c) of Figure 3 has a chordless
cycle of length 10. The degree 5 binomial in IG corresponding to this cycle is an
indispensable binomial of IG [21], meaning that there exists a nonzero constant multiple
of it in every minimal system of binomial generators of IG. However, unlike the region
in row (a), for this region, the space of tilings TR is flip connected and we do not need
the size 5 move to connect the space of tilings.

(d) The graph GR of the cubiculated region R in row (d) of Figure 3 has a
chordless cycle of length 6, which corresponds to the trit move described in [15]. The
cubic binomial in IG corresponding to this cycle is an indispensable binomial of IG.
However, for this region, the space of tilings TR is flip connected and we do not need
the trit move; in fact, for R, there is no tiling for which we can apply the trit move.

3.2. Tiling and flip ideals. Theorem 3.8 and Corollary 3.9 give a bound on the size
of moves needed to connect the space of tilings of a region R, however, this bound can
be arbitrarily large. For example, let m,n ≥ 3, then Gm,n contains a chordless cycle of
length 2(m+ n).

A local flip (D1, D2) corresponds to a 4-cycle in GR and the corresponding bi-
nomial yD1 − yD2 has degree 2. Conversely, any non-zero quadratic binomial in IGR

must correspond to a 4-cycle, and consequently, a flip move. Thus, to show TR is flip
connected, we need to show that every binomial arising from two tilings is generated
by quadratics.
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Figure 3. Four cubiculated regions and their corresponding graphs with
the largest cycle highlighted.

Definition 3.11. Let R be a cubiculated region with associated graph GR. The flip
ideal of R is defined as follows:

IRflip
:= 〈yD1 − yD2 : (D1, D2) ∈Mflip〉 ⊆ IGR

.

The tiling ideal of R is defined as follows:

IRtiling
:= 〈yT1 − yT2 : T1, T2 ∈ TR 〉 ⊆ IGR

.

Using the flip and tiling ideal, we can use the language of ideals to restate what
it means for a region to be flip connected.

Theorem 3.12. A tiling space Tr of a cubiculated region R is flip connected if and
only if

IRtiling
⊆ IRflip

.

For a region R, both the flip ideal and the tiling ideal ideal are subideals of the
toric ideal of the graph GR:

IRtiling
⊆ IGR

IRflip
⊆ IGR

.

When GR contains no chordless cycles of length > 4, we have IRflip
= IGR

, and thus,
IRtiling

⊆ Iflip and R is flip connected.
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While IRtiling
and IRflip

are binomial ideals, unlike IGR
they are not always prime

ideals and therefore not always toric ideals. However, the primary decomposition of
the flip ideal of a region has interesting combinatorics. Indeed, working from an earlier
version of this manuscript, in [2], Chin explores the flip ideals of 3× ` box regions and
gives a complete description of their primary decompositions.

We now explore the three ideals IGR
, IRtiling

, and IRflip
and their possible relation-

ships through four examples.

Example 3.13. Let R = B2,3, the 2× 3 box. Using the labeling in Figure 4, we have

Figure 4. The graph G2,3 with edges labeled.

(1) IGR
= 〈 y1y7 − y2y6, y4y7 − y3y5 〉,

(2) IRtiling
= 〈 y1y3y5 − y2y4y6, y1y4y7 − y1y3y5, y1y4y7 − y2y4y6 〉,

(3) IRflip
= 〈 y4y7 − y3y5, y1y7 − y2y6 〉.

Figure 5. On top are the three tilings, T1, T2, and T3, of the 2× 3 box.
On bottom are the three cycle covers of G2,3 formed by the possible pairs
of tilings.
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The three tilings of R are depicted in Figure 5. Notice that the last binomial
listed in the generating set of IRtiling

is not needed and we could have written IRtiling
=

〈y1y3y5 − y2y4y6, y1y4y7 − y1y3y5〉. For this region, it is the case that

IRtiling
⊆ IRflip

= IGR
.

and thus TR is flip connected by Theorem 3.12.

Example 3.14. Now let R be the 2× 2× 2 box. The associated grid graph with edge
labels is depicted in Figure 6.

Figure 6. The associated grid graph of the 2× 2× 2 box.

We compute the following

(1) IGR
= 〈 y1y3− y2y4, y3y10− y6y7, y4y9− y5y6, y1y12− y5y8, y2y11− y7y8, y9y11−

y10y12, y2y5y10 − y1y9y7, y4y7y12 − y3y5y11, y2y6y12 − y3y8y9, y1y6y11 − y4y8y10 〉

(2) IRtiling
= 〈 y2y5y6y11−y5y6y7y8, y4y9y7y8−y5y6y7y8, y2y4y9y11−y4y9y7y8, y2y4y9y11−

y2y4y10y12, y1y3y10y12−y2y4y10y12, y1y3y10y12−y1y3y9y11, y1y3y10y12−y1y6y11y12, y1y3y10y12−
y3y5y8y10〉

(3) IRflip
= 〈 y1y3−y2y4, y3y10−y6y7, y4y9−y5y6, y1y12−y5y8, y2y11−y7y8, y9y11−

y10y12 〉.

For this example, while IRflip
6= IGR

, we do have that IRtiling
⊆ IRflip

. This can be
seen by noticing that every generator of IRtiling

is a monomial multiple of an element
in IRflip

. Since IRtiling
⊆ IRflip

, the tiling space TR is flip connected by Theorem 3.12.

Example 3.15. In this example, let R = B3,4, the 3 × 4 box. The associated grid
graph with edge labels is depicted in Figure 7.
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Figure 7. The grid graph associated with the 3 × 4 box with edges
labeled 1 through 17.

We compute the following

(1) IGR
= 〈 y1y12 − y2y11, y12y15 − y3y14, y5y15 − y4y17, y10y13 − y9y11, y13y16 −

y8y14, y6y16 − y7y17, y1y3y9y16 − y2y8y10y15, y4y6y8y12 − y3y5y7y13, y1y3y5y7y9 −
y2y4y6y8y10 〉

(2) IRtiling
= 〈 y1y5y7y9y12y15−y2y4y7y9y11y17, y1y5y7y9y12y15−y2y4y6y8y10y14, y1y5y7y9y12y15−

y1y3y5y7y9y14, y1y5y7y9y12y15−y2y4y6y10y13y16, y2y5y9y7y11y15−y1y3y5y7y9y14, y2y5y9y7y11y15−
y2y4y6y9y11y16, y2y4y6y9y11y16−y1y4y7y9y12y17, y1y4y7y9y12y17−y1y4y6y9y12y16, y1y4y6y9y12y16−
y2y4y7y10y13y17, y2y4y7y10y13y17 − y2y5y7y10y13y15〉

(3) IRflip
= 〈 y1y12 − y2y11, y12y15 − y3y14, y5y15 − y4y17, y10y13 − y9y11, y13y16 −

y8y14, y6y16 − y7y17 〉.

In this example, as with the previous example, IRflip
6= IGR

, but IRtiling
⊆ IRflip

,
hence, the tiling space TR is flip connected by Theorem 3.12.

Example 3.16. Let R be the 3-dimensional region whose associated graph is pictured
in Figure 8.
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Figure 8. The labeled graph GR of a 3-dimensional region R that con-
tains the 2× 2× 2 cube as a subregion.

We compute the following

(1) IGR
= 〈 y1y3− y2y4, y3y10− y6y7, y4y9− y5y6, y1y12− y5y8, y2y11− y7y8, y9y11−

y10y12, y2y5y10 − y1y9y7, y4y7y12 − y3y5y11, y2y6y12 − y3y8y9, y1y6y11 − y4y8y10 〉

(2) IRtiling
= 〈 y2y6y12y13y14 − y3y9y8y13y14 〉

(3) IRflip
= 〈 y1y3−y2y4, y3y10−y6y7, y4y9−y5y6, y1y12−y5y8, y2y11−y7y8, y9y11−

y10y12 〉.

In this example, there are only two tilings of R and thus IRtiling
is a principal ideal.

The tiling ideal is not contained in the flip ideal, and hence, the tiling space is not flip
connected. Indeed, a trit move is needed to connect the space, which can be seen by
noting that the single generator of IRtiling

can be factored into a monomial and cubic
trit binomial

y13y14(y2y6y12 − y3y9y8).

3.3. Tiling binomials in terms of cycle covers. Recall that for two tilings T1 and
T2 of R, their union T1 ∪ T2 is a cycle cover of GR. In this section, we state and prove
a lemma regarding such cycle covers that will be helpful in giving an algebraic proof
of Theorem 2.3.

Let T1 and T2 be two tilings of a cubiculated region R with corresponding cycle
cover T1∪T2 = C = {C1, . . . , Cr} of GR. We define the cycle binomial BCi corresponding
to the cycle Ci as follows. Construct a closed walk wi on each Ci ∈ C by starting with
an edge in T1 and then walking in either direction. Then the cycle binomial BCi is the
binomial arising from the walk wi:
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BCi := Bwi
=

∏
e∈T1∩Ci

ye −
∏

e∈T2∩Ci

ye.

Lemma 3.17. Let T1 and T2 be two tilings of a cubiculated region R with corresponding
cycle cover T1 ∪ T2 = C = {C1, . . . , Cr} of GR. Then BT1,T2 can be written as the sum
of r binomials where the ith binomial can be factored into a monomial and the cycle
binomial BCi.

Proof. We begin by describing the ith monomial that appears in the sum described by
the lemma. Let

m1 = yT1\C1 ,

and for i = 2, . . . , r, let

mi = y(T1\(C1∪···∪Ci))
⋃
(T2∩(C1∪···∪Ci−1)).

Then, we can write BT1,T2 as

BT1,T2 = m1BC1 +m2BC2 + · · ·+mrBCr .

�

Remark 3.18. Note that the binomial arising from a 2-cycle Ci has the following form

yj − yj.
Therefore adding BCi is equivalent to adding zero. Thus, we can obtain a similar
statement to Lemma 3.17 by letting C be all cycles of T1 ∪ T2 of length greater than 2.

Example 3.19. Let R be the 2×5 box and consider the two tilings T1 and T2 pictured
in Figure 9. The cycle cover C = {C1, C2} of GR induced by T1 ∪ T2 is also shown in
Figure 9.

The binomial arising from (T1, T2) is

BT1,T2 = y1y3y5y7y9 − y2y4y6y8y10.
Using Lemma 3.17, we can write BT1,T2 in terms of BC1 = y1y3 − y2y4 and BC2 =
y5y7y9 − y6y8y10 as follows

BT1,T2 = y5y7y9(y1y3 − y2y4) + y2y4(y5y7y9 − y6y8y10).
Notice that the factored monomials in this sum have the form described in the proof
of Lemma 3.17. In particular, working on the labels of the indeterminates appearing
in each monomial, we have

{5, 7, 9} = T1 \ C1 = {1, 3, 5, 7, 9} \ {1, 2, 3, 4},
and

{2, 4} = (T1 \ (C1 ∪ C2)) ∪ (T2 ∩ C1) = ∅ ∪ (T2 ∩ C1) = {2, 4, 6, 8, 10} ∩ {1, 2, 3, 4}.
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Figure 9. The top row shows two tilings, T1 and T2, of the 2× 5 box.
The bottom row shows the two cycles formed when taking the union of
T1 and T2 as edge sets of GR.

4. Connectivity of Tilings of 2-Dimensional Regions

We conclude this paper by showing any binomial arising from two tilings of a
2-dimensional simply connected cubiculated region R is generated by quadratics. This
allows us to prove that the space of tilings of R is flip connected.

Definition 4.1. A region R is said to be simply connected if any simple closed curve
can be shrunk to a point continuously in the set.

Remark 4.2. A 2-dimensional region is simply connected if it has no holes.

Theorem 4.3. Let R be a 2-dimensional simply connected cubiculated region. Any
binomial arising from two distinct tilings of R is generated by quadratics. In particular,
IRtiling

⊆ IRflip
.

Our proof of Theorem 4.3 relies on a couple of lemmas that we will prove first.

Definition 4.4. Let R be a 2-dimensional simply connected cubiculated region with
graph GR. We call a cycle C1 of GR a contractible cycle if, when GR is drawn in the
plane as a grid graph, the interior of C1 contains no vertices.
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Contractible cycles can be regarded as Hamiltonian cycles of a subgraph GR′ of GR

where R′ is a simply connected subregion of R. Indeed, if R is simply connected,
then any Hamiltonian cycle of GR is a contractible cycle. Moreover, when R is a
2-dimensional simply connected region, any 2-cycle of GR is a contractible cycle.

Definition 4.5. Let R be a 2-dimensional simply connected cubiculated region with
graph GR. We call a cycle C0 of GR a perimeter cycle if, when GR is drawn in the
plane as a grid graph, the interior of C0 contains no cycles or only 2-cycles. (The name
perimeter comes from that fact that if T1∪T2 contains a single perimeter cycle and no
other cycles besides 2-cycles, then the tilings T1 and T2 only differ on the perimeter of
a simply connected subregion.)

Note that a contractible cycle is a perimeter cycle, and thus, a 2-cycle is a perimeter
cycle.

Lemma 4.6. Let T1 and T2 be two tilings of a simply connected 2-dimensional cubic-
ulated region R such that T1 ∪ T2 is a collection of perimeter cycles C1, . . . , Cr. There
exists a sequence of flip moves (D11 , D21), . . . , (D1s , D2s) that takes T1 to T ′1 and a se-
quence of flip moves (D′11 , D

′
21

), . . . , (D′1t , D
′
2t) that takes T2 to T ′2 such that T ′1 ∪ T ′2 is

a collection of contractible cycles. In particular,

BT1,T2 = yT1\D11 (yD11 − yD21 ) + . . .+ yT
′
1\D2s (yD1s − yD2s )

+BT ′1,T
′
2

+ yT
′
2\D′2t (yD

′
2t − yD

′
1t ) + . . .+ yT2\D′11 (yD

′
21 − yD

′
11 )

where each binomial of the form yD1i − yD2i or (yD2i − yD1i ) has degree 2.

Proof. Let k be the number of vertices contained in the interiors of C1, . . . , Cr when GR

is drawn in the plane as a grid graph. We will induct on k.
For the base case, assume k = 0. Then C1, . . . , Cr are all contractible cycles.

Therefore, T1 ∪ T2 is a collection of contractible cycles.
Now suppose the statement is true for up to k − 1 internal vertices and assume

the cycles in C have k > 0 internal vertices. Since k > 0, the interior of at least one
of C1, . . . , Cr contains at least one 2-cycle, let’s assume C1 contains at least one 2-cycle.
We will consider three cases based on the positions of the interior 2-cycles.

Case 1: An interior 2-cycle is parallel to C1.
In this case we can perform a local flip the edge parallel to the 2-cycle as shown

in Figure 10. This yields a decrease in the number of internal vertices by 2, and then,
we can apply the induction hypothesis.

Case 2: There exists an interior 2-cycle that is not parallel to C1.

Let us categorize 2-cycles into two types: north-south cycles and east-west cycles (see
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Figure 10. A local flip is performed on with the 2-cycle parallel to C1.

Figure 11. On the left is a north-south 2-cycle. On the right is an
east-west 2-cycle.

Figure 11). In the case where there is no 2-cycle parallel to C1, then (i) there exists
a east-west cycle such that the two vertices in GR directly north of the 2-cycle or the
two vertices in GR directly south of the 2-cycle are both contained in C1 or (ii) there
exists a north-south cycle such that the two vertices in GR directly east of the 2-cycle
or the two vertices in GR directly west of the 2-cycle are both contained in C1. We
note that if either (i) or (ii) does not hold, then starting at any interior 2-cycle, there
is an infinite sequence of 2-cycles that can be constructed by choosing the 2-cycle that
covers at least one vertex to the north or east of the previous cycle, and thus R is not
finite.

Without loss of generality, let’s assume that there is a 2-cycle C2 of the form
described in situation (i) such that the two vertices directly north of the C2 are both
contained in GR. In this situation, C1 must transverse the vertices north of C2 in the
way illustrated in Figure 12. Note that the edges e1 and e2 in Figure 12 must be from
the same tiling since every chord of C1 must be even. After performing a local flip, C1
is split into two cycles, C ′1 that contains C2 and C ′2 that contains no vertices or only
2-cycles and thus is a new perimeter cycle; see Figure 13. We have not reduced the
number of interior vertices, however, we now meet the conditions of Case 1 and can
proceed accordingly.

�

Lemma 4.7. Let R be a simply connected 2-dimensional cubiculated region and let
T1, T2 be two tilings such that T1∪T2 contains a single contractible cycle of GR of length
≥ 4 and no other cycles besides 2-cycles. Then BT1,T2 is generated by quadratics.
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Figure 12. An east-west cycle such that the two vertices in GR directly
north of the 2-cycle are traversed by C1.

Figure 13. Configuration from Figure 12 after performing a local flip.

Figure 14. A single 4-cycle.

Proof. Let C1 be the single contractible cycle of length ≥ 4. We will proceed by
induction on the length of C1, which we will denote by k.

For the base case, let k = 4. Then C1 is a single 4-cycle. Let C1 be labeled as in
Figure 14, then BT1,T2 is the product of a monomial and the quadratic y1y3− y2y4, and
thus is generated by quadratics.

Now assume C1 has length k > 4 and the statement holds whenever the length of
C1 is less than k. Embed GR into a grid graph and let row i be the first row (scanning
from north to south) that contains a vertex covered by C1 and let column j be the first
column in row i that contains a vertex covered by C1; we will call the (i, j)th vertex of
the grid graph, the north-west corner of C1 and refer to it as v.
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Figure 15. The north-west corner of C1.

Figure 16. The three ways the north-west corner can be traversed by C1.

By the way we selected the north-west corner, the vertex v must be traversed by
C1 as illustrated in Figure 15. Furthermore, since R is simply connected, and C1 is a
contractible cycle, the highlighted vertex in Figure 15 must also be covered by C1. The
highlighted vertex can be covered in three ways as shown in Figure 16.

For the first two cases illustrated in Figure 16, we can perform a local flip move
that decomposes C1 into a 2-cycle and a contractible cycle of length less than C1, and
then apply the induction hypothesis.

For the third case illustrated in Figure 16, note that the edge e in GR from u, the
vertex south of v, to the highlighted vertex is an even chord of C1, since GR contains
only even cycles. Using e, we can split C1 into two even contractible cycles, C2 and C3,
that overlap on the edge e. Then, similar to the proof of Lemma 3.17, and assuming
the edges adjacent to e in C2 belong to T1, we can define the following two pairs of
tilings:

S1 = T1 S2 = (T1 \ C2) ∪ (C2 \ T1)
U1 = (T1 \ C2) ∪ (C2 \ T1) = (T2 \ C3) ∪ (C3 \ T2) U2 = T2.

The binomial BT,T2 can be written in terms of binomials arising from S1, S2 and U1, U2:

BT1,T2 = BS1,S2 +BU1,U2 .

Since S1 ∪ S2 and U1 ∪ U2 both contain only 2-cycles and a single contractible cycle
of length ≥ 4 but less than k, the binomials BS1,S2 and BU1,U2 are both generated by
quadratics and thus BT1,T2 is generated by quadratics. �
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We now can begin our proof of Theorem 4.3. We will induct on the binomial
degree of the tiling binomial.

Definition 4.8. Let b be a homogeneous binomial of the form b = m(u − v) where
m,u, v are monomials and gcd(u, v) = 1. We will call the deg u = deg v, the binomial
degree of b.

Proof of Thoerem 4.3. Let BT1,T2 be a non-zero binomial arising from two tilings T1, T2.
We will induct on the binomial degree of BT1,T2 .

In the base case, let’s assume the binomial degree of BT1,T2 is 2. Then

BT1,T2 = yT1\D1(yD1 − yD2)

where the size of the move (D1, D2) is 2 and thus a flip move.
Now, assume that the binomial degree of BT1,T2 is k > 2 and the statement holds

whenever the binomial degree is less than k. Note that the binomial degree of BT1,T2

is equal to 1/2 the sum of the lengths of all cycles with length > 2 in T1 ∪ T2. Thus,
we can proceed by considering two cases based on whether T1 ∪ T2 has more than one
cycle with length > 2 or a single cycle of length > 2.

For the first case, assume T1∪T2 has more than one cycle with length > 2; let’s call
these cycles C1, . . . , Cr. By Lemma 3.17, BT1,T2 can be written as the sum of r binomials
where the ith binomial can be factored into a monomial and the cycle binomial BCi .
This means that the ith binomial in the sum has binomial degree equal to 1/2·(length of
Ci), which is less than k. Thus, by applying the induction hypothesis to each binomial
in the sum, we have that BT1,T2 is generated by quadratics and BT1,T2 ∈ Iflip.

For the second case, assume T1 ∪ T2 has a single cycle C1 with length > 2. In this
case, C1 is a perimeter cycle, Thus, by combining Lemma 4.6 and Lemma 3.17, and
applying Lemma 4.7 to each resulting contractible cycle, we have BT1,T2 ∈ Iflip. �

Corollary 4.9. Let R be a 2-dimensional simply connected cubiculated region. Then
TR is flip connected.
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