

1 The evolution and genetics of sexually dimorphic “dual” mimicry in the butterfly *Elymnias*
2 *hypermnestra*

3

4 Dee M. Ruttenberg^{1,2}, Nicholas W. VanKuren¹, Sumitha Nallu¹, Shen-Horn Yen³, Djunijanti
5 Peggie⁴, David J. Lohman^{5,*}, and Marcus R. Kronforst^{1,*}

6

7 Affiliations:

8 ¹ Department of Ecology & Evolution, The University of Chicago, Chicago IL 60637, USA

9 ² Current Address: Department of Quantitative and Computational Biology; Lewis-Sigler

10 Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA

11 ³ Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424,

12 Taiwan

13 ⁴ Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of
14 Sciences (LIPI), Cibinong-Bogor 16911, Indonesia

15 ⁵ Biology Department, City College of New York, City University of New York, New York, NY,
16 10031, USA; PhD Program in Biology, Graduate Center, City University of New York, New
17 York, NY, 10016, USA; and Entomology Section, National Museum of Natural History, Manila,
18 Philippines, 1000

19

20 *Corresponding authors

21 DJL: dlohman@ccny.cuny.edu

22 MRK: mkronforst@uchicago.edu

23

24 **KEYWORDS:** Batesian mimicry, color pattern, evolution, gene reuse, genomics, Satyrinae

25

26 **ABSTRACT**

27 Sexual dimorphism is a major component of morphological variation across the tree of
28 life, but the mechanisms underlying phenotypic differences between sexes of a single species are
29 poorly understood. We examined the population genomics and biogeography of the common
30 palmfly *Elymnias hypermnestra*, a dual mimic in which female wing color patterns are either
31 dark brown (melanic) or bright orange, mimicking toxic *Euploea* and *Danaus* species,
32 respectively. As males always have a melanic wing color pattern, this makes *E. hypermnestra* a
33 fascinating model organism in which populations vary in sexual dimorphism. Population
34 structure analysis revealed that there were three genetically distinct *E. hypermnestra* populations,
35 which we further validated by creating a phylogenomic species tree and inferring historical
36 barriers to gene flow. This species tree demonstrated that multiple lineages with orange females
37 do not form a monophyletic group, and the same is true of clades with melanic females. We
38 identified two SNPs near the color patterning gene *WntA* that were significantly associated with
39 the female color pattern polymorphism, suggesting that this gene affects sexual dimorphism.
40 Given *WntA*'s role in color patterning across Nymphalidae, *Elymnias hypermnestra* females
41 demonstrate the repeatability of the evolution of sexual dimorphism.

42

43 INTRODUCTION

44 Understanding the relationship between genetic variability and the many levels of
45 biological diversity is a central aim of genomics. Single genes of large effect are often found to
46 be responsible for striking examples of adaptive variation [1, 2]. Thus, much morphological
47 diversity is derived from genetic variation at a relatively small number of genetic loci [3-6].
48 Mimetic butterflies are models for studying the relationship between exceptional phenotypic
49 diversity resulting from limited genetic diversity for a number of reasons, including the manifest
50 adaptive value of mimetic phenotypes, the fecundity and ease of rearing butterflies, and the
51 incredible morphological diversity of butterflies [7, 8]. Unraveling the genomic and
52 developmental basis of butterfly phenotypes has advanced understanding of the evolution of
53 sexual dimorphism [9], mimicry [5], and evolvability [10].

54 The Batesian mimetic butterfly genus *Elymnias* (Lepidoptera: Nymphalidae: Satyrinae)
55 lends itself to the study of mimicry and sexual dimorphism because its 53 recognized species can
56 vary dramatically in the color, pattern, and wing size to mimic a variety of different model
57 species in the families Nymphalidae, Pieridae, Papilionidae, Erebidae (Arctiinae), and
58 Zygaenidae throughout tropical and subtropical Asia [11, 12]. Moreover, only dorsal or both
59 dorsal and ventral wing surfaces may be mimetic, and individual species can mimic multiple
60 models via morphological differences that vary between sexes, locales, or syntopic forms [13,
61 14]. Within the genus *Elymnias* there are several examples of allopatrically distributed species
62 mimicking the same widespread model, thereby resembling each other, and of different
63 populations or forms of a single species mimicking different models [13,14]. The most
64 widespread and locally abundant species in this genus is the common palmfly, *E. hypermnestra*
65 [11]. This species is a “dual mimic” [15]: it is sexually dimorphic and each sex resembles a
66 dramatically different model species. All males of this palm-feeding species resemble melanic,
67 unpalatable models in the genus *Euploea* [13, 16] (figure 2). However, female mimicry is

68 geographically variable: some disjunct populations are sexually dimorphic with orange females
69 that mimic *Danaus*, while other populations are monomorphic, and melanic females mimic
70 *Euploea* models along with the males (figures 1 and 2). Orange and melanic females do not co-
71 occur. Naïve, captive insectivorous birds (*Pycnonotus sinensis formosae*, *Zosterops japonicus*
72 *simplex*, and *Copsychus malabaricus*) with no prior exposure to the model or mimic readily
73 consume adult males, orange females, and melanic females representing four *E. hypermnestra*
74 subspecies, indicating the species is a palatable Batesian mimic (S.-H. Yen, unpublished data).
75 This species provides a unique opportunity to study the genomic basis of dual mimicry to assess
76 whether the trait is controlled by loci known to control sexual dimorphism [2, 17], mimicry [6,
77 18, 19], or both. In addition, the experimental advantages of this variable and widespread species
78 might allow identification of loci that play an important role in the tremendous morphological
79 diversity of its congeners.

80 Here, we examine the evolution and biogeography of sexually dimorphic dual mimicry in
81 *E. hypermnestra*. Orange females of *E. h. tinctoria* (Thailand) and *E. h. baliensis* (Bali) produce
82 orange patterns using different combinations of ommochrome pigments, suggesting independent
83 evolution of orange morphs in these two geographically distant populations [20]. However, the
84 evolutionary history and current population structure of *E. hypermnestra* were unknown, making
85 it impossible to distinguish between single- and multi-origin scenarios. Moreover, while
86 researchers have identified many genes that control the development of mimetic color patterning
87 in butterflies [5], including *doublesex*, responsible for female-limited polymorphic mimicry in
88 *Papilio polytes* [2, 21], the genes controlling sexually dimorphic dual mimicry are not
89 understood. Since *E. hypermnestra* is dimorphic in some regions and monomorphic in others,
90 this species has the potential to elucidate how sex-specific effects emerge and contribute to
91 phenotypic variation. We assembled a high-quality reference genome and then resequenced low-
92 coverage reads from 45 individuals representing 18 subspecies across the species' range. This

93 allowed us to address three questions: 1) What is the population history and current population
94 genetic structure of *E. hypermnestra*? 2) Does the orange female color pattern have a single
95 evolutionary origin? 3) What gene(s) are responsible for whether a population is dimorphic with
96 orange females or monomorphic with melanic females?

97

98 **RESULTS**

99 ***Genetic structure of E. hypermnestra populations***

100 We first assembled a reference genome for *E. hypermnestra baliensis* to facilitate
101 downstream analyses. Using k-mer analysis [22] and SCO content evaluation [23,24], we found
102 that the *E. hypermnestra* reference genome presented here is among the best assembled, most
103 complete, and least redundant nymphalid genomes available (electronic supplementary material,
104 table S1). To better understand natural variation in *Elymnias hypermnestra* across its large
105 distribution spanning *ca.* 55 longitudinal degrees from western India to eastern Indonesia, we
106 resequenced the genomes of 45 samples with at least ~20X coverage representing 18 subspecies
107 across Asia (figure 1a, electronic supplementary material, table S2) . We called SNPs in our
108 resequenced data relative to the reference genome. This genome-wide SNP data indicated
109 substantial genetic structure. The samples formed three distinct clusters in a principal component
110 analysis of these data (figure 1b). We calculated fixation (F_{ST}) indices between each pair of
111 subspecies and found the same three populations (electronic supplementary material, figure S1).
112 The same three groups were also identified by ADMIXTURE [25] (figure 1c). Increasing the
113 number of putative populations increased the likelihood of the admixture model, but the results
114 assuming 2-5 populations all had comparable cross-validation errors (electronic supplementary
115 material, figure S2).

116

117 ***Repeated evolution of the Danaus mimetic color patterns in Elymnias hypermnestra***

118 A 6-locus intraspecific phylogeny of *E. hypermnestra* suggested that neither orange nor
119 melanic females were monophyletic, but support values on this tree were low (electronic
120 supplementary material, appendix S1). We therefore inferred a species tree with ASTRAL using
121 gene trees from 3,000 unlinked, autosomal 10 kb windows. This tree was also inconsistent with
122 either orange or melanic female morphs forming a monophyletic group (figure 2), as there were
123 5 melanic and 4 orange lineages. Trees inferred from Z-linked windows or complete mtDNA
124 genomes (electronic supplementary material, figure S3) were topologically similar to the species
125 tree inferred from autosomal loci (figure 2). The *E. h. hainana* subspecies/genetic population was
126 distinctive in the PCA (figure 1b) and in the species tree, where all five samples form a strongly
127 supported branch (figure 2). However, samples of this subspecies were not monophyletic in the
128 6-locus tree (electronic supplementary material, appendix S1), underscoring the potential bias of
129 inferring intraspecific phylogeny using only few protein-coding markers [26].

130 We developed a coalescent model using the phylogeny of *E. hypermnestra* to examine
131 when a given number of gene flow events are likely to have occurred during the evolutionary
132 history of *E. hypermnestra*. Our species tree suggested that most subspecies are monophyletic
133 (figure 2), so, while we recognize that subspecies are not necessarily monophyletic groups [27],
134 we treated each subspecies as a group for computational ease. We found residual covariance
135 between taxa in our model that was best explained by gene flow (electronic supplementary
136 material, figure S4a). Some gene flow events were between melanic clades in different regions,
137 but others were between melanic and orange clades, suggesting that gene flow was not only
138 between subspecies with the same female morphs, consistent with results from *Papilio polytes*
139 [28].

140 Finally, we used EEMS [29] to visualize estimated relative migration rates across
141 geographic space (electronic supplementary material, figure S4b). Our results were consistent
142 with biogeographic patterns evident in the species tree (figure 2). EEMS predicted several strong
143 barriers to gene flow. The strongest barrier coincides with Wallace's Line, a well-known

144 biogeographic demarcation that separates Bali (orange females) from Lombok (melanic females)
145 and extends northward between Borneo and Sulawesi [30]. A second barrier separates Sumatra
146 (melanic females) from Java (orange females), and the third barrier separates melanic *E. h.*
147 *hainana* from all other populations. Intraspecific genetic diversity was highest on the Asian
148 mainland and decreased from west to east along the Indo-Australian Archipelago (electronic
149 supplementary material, figure S5).

150

151 ***A genome-wide association study of the orange Danaus-like color pattern suggests reuse of***
152 ***WntA***

153 To identify the genetic locus or loci associated with orange and melanic female color
154 patterns in *E. hypermnestra*, we performed genome wide association mapping of female color
155 patterns using the full SNP call set from the 45 re-sequenced samples. If male butterflies were
156 sequenced, their collection locality was used to infer the female color pattern from that area. We
157 performed the GWAS using GEMMA [31] because it incorporates population structure and
158 relatedness among samples. We saw no peaks in the unaligned genome without an equivalent in
159 the aligned genome (electronic supplementary material, figure S5).

160 While many sites fell above the 1% false discovery rate (FDR), correcting for multiple
161 testing, these sites had relatively little linkage disequilibrium. Importantly, the most strongly
162 associated sites had no other neighbors (figure 3). This was consistent with our gene tree of the
163 200 bp region surrounding these SNPs in which neither orange nor melanic color patterns were
164 monophyletic (electronic supplementary material, figure S3c).

165 The two most strongly associated sites were 3 base pairs apart; both exceed 1% FDR
166 (figure 3a). Adding the population structure (as measured by the first principal component from
167 the PCA) as a covariate removed neither of these sites (electronic supplementary material, figure
168 S7). Looking at the genotype of the two sites on the scaffold (figure 3b, electronic supplementary
169 material, figure S7), we observed that they predicted wing pattern almost perfectly (electronic

170 supplementary material, table S6). These sites were 150 kb away from *WntA*, a patterning gene
171 that has repeatedly been shown to be involved in melanization across the family Nymphalidae
172 [32].

173

174 **DISCUSSION**

175 ***Repeated evolution of a mimetic color pattern***

176 Females of the dual mimic *E. hypermnestra* either resemble *Euploea* with a melanic color
177 pattern similar to males, or have an orange color pattern mimicking *Danaus*. Our analyses shed
178 light on the evolutionary and genetic mechanisms responsible for the geographic mosaic of
179 female color pattern in this facultatively sexually dimorphic species.

180 Our analysis of population structure suggested the presence of three genetic populations
181 in *E. hypermnestra*. The first group represented the described subspecies *Elymnias hypermnestra*
182 *hainana* found in Taiwan, southern China including Hainan, northern Vietnam, and central Laos
183 (figure 1). The second genetic population comprised *E. hypermnestra* found on Java, the Lesser
184 Sunda Islands, and Seram. The third included individuals from South Asia including Sri Lanka,
185 Indochina south of *hainana*, and Sumatra (figure 1). The geographic border between *E. h.*
186 *hainana* and the rest of *E. hypermnestra*'s range coincides with the Hoang Lien Son Range and
187 surrounding high elevation areas in the “Tail of the Himalayas.” The other border between
188 genetic populations lies between Java and Sumatra. While these are currently separate land
189 masses, the two islands were conjoined during Pleistocene low sea stands together with Borneo
190 and the Thai-Malay peninsula to form a single land mass along the edge of the continental shelf,
191 Sundaland [30]. Thus, the border of these populations lacks an obvious barrier to dispersal,
192 though this area is frequently associated with genetic discontinuities within and between other
193 butterfly species [Lohman, unpublished data]. While all *E. h. hainana* females are melanic, the
194 other two populations include areas with orange females and areas with melanic females, which
195 could be explained by the convergent evolution of color patterns in disjunct locales.

196 We were able to trace the evolutionary history of the orange/melanic transition using
197 phylogenetic analysis. As suggested by our species tree, the orange and melanic morphs of
198 *Elymnias hypermnestra* did not form monophyletic groups. This is not uncommon in butterflies –
199 for instance, a single morph of *Heliconius* may prevail in a given region, but actually comprise
200 distinct *Heliconius* species that are only monophyletic at color pattern loci [33]. It is still unclear
201 why variability between melanic and orange morphs of *E. hypermnestra* evolved and how it is
202 maintained. The lack of monophyletic female color patterns in *E. hypermnestra* may result from
203 a geographic mosaic of selection to mimic the most common unpalatable model in a region.
204 While differences in *Danaus* and *Euploea* local abundance have not been demonstrated [Yen,
205 unpublished data], they tend to live in different habitats [11]. Characterization of the host plants,
206 predators, and butterfly communities where different female forms live may shed light on this
207 issue, including assessment of model species abundance. Moreover, studying geographic
208 variability in the chemical ecology of the mimicry ring may provide insight on the relationship
209 between mimetic morphs and their models [34].

210

211 **WntA and the orange/melanic shift**

212 To identify genetic factors underlying the shift between orange and melanic color
213 patterns in *E. hypermnestra*, we performed a genome-wide association study (GWAS) of female
214 color pattern. In GWAS analyses of similar systems, there are usually large peaks of many linked
215 sites [2]. This raises the question of why there is apparently little linkage disequilibrium (LD) in
216 this system. One possibility is that LD is lost because of filtering. On average, we identified one
217 polymorphic site every 100 bp. Another possible explanation is that, unlike most previous
218 functional genomics studies on Lepidoptera, this study sampled butterflies across a wide
219 geographic range with strong population structure. Most other work was done within a narrower
220 geographic range. For instance, all butterflies sampled in Kunte et. al. [2] were from a single F3
221 generation. When we compared our GWAS (figure 4) to results of other studies with

222 geographically extensive sampling (such as those on *Arabidopsis*), we found similarly rapid
223 linkage decay resulting in narrow peaks [35, 36].

224 Many previous studies demonstrate that *WntA* is associated with color patterning in other
225 nymphalid butterflies. In *Heliconius*, *WntA* is related to a color pattern transitions among
226 different species, and is typically expressed in regions of the butterfly wing that are melanic in
227 mature adults [37]. Moreover, linkage mapping has shown that *WntA* is associated with a similar
228 transition in *Limenitis arthemis*; in this case, an ancient *cis*-regulatory element mediates a
229 transition from a mimetic white banded to a non-mimetic, unbanded form [38, 39]. These data on
230 these two SNPs in *E. hypermnestra* were consistent with them being *cis*-regulatory elements
231 regulating *WntA* 150 kb downstream. While this is an unusually long distance between a
232 regulatory element and its target, it is not unprecedented. Regulatory elements have even been
233 found megabases away from the genes they regulate [40], and *optix* enhancers have been shown
234 to be up to 220 kb away in *Heliconius* [41, 42]. We found pronounced similarities between
235 *WntA*'s known effects on wing patterning in butterflies and the phenotype observed in *Elymnias*
236 *hypermnestra*. For instance, Mazo-Vargas *et al.* [32] created CRISPR *WntA* knockouts for a
237 variety of nymphalids and found two conserved characteristics of *WntA*. First, *WntA* typically
238 acts on the Basalis (B), the Central Symmetry System (CSS), and the Marginal Band System
239 (MBS), three regions of butterfly wings which are conserved across nymphalids. Moreover,
240 *WntA* is typically expressed in melanic regions, likely because it is associated with upregulation
241 of melanin. Both traits were found in the orange/melanic switch in *Elymnias hypermnestra*
242 (figure 2), further suggesting that *WntA* is involved in this transition of female color pattern.

243 The potential involvement of *WntA* in *E. hypermnestra* mimicry polymorphism suggests
244 that the gene functions somewhat differently than in *Heliconius* or *Limenitis*. Mimicry in *E.*
245 *hypermnestra* is sexually dimorphic: while females may be orange, males are always melanic
246 [13]. This implies that polymorphism affects females differently than males. Several mechanisms
247 are plausible: by upregulating *WntA* in melanic females; downregulating *WntA* in orange

248 females; or changing the spatial pattern of *WntA* expression. This is an unusual example of a
249 single gene involved in both sexually dimorphic and non-sexually dimorphic mimicry. This
250 suggests a slightly different role for *WntA* in this system than in others, where *WntA* affects both
251 sexes. Future functional genomics work can elucidate the specific nature of *WntA* on this
252 variation. Two other peaks in our GWAS stood out, one on chromosome 20 and one on
253 chromosome 6. Many of the genes have unknown functions, suggesting an angle for further
254 research (electronic supplementary material, table S6).

255 ***Predictability of evolution***

256 Studies on wing patterns in Nymphalidae have revealed that a common toolkit of genes,
257 including *optix*, *cortex*, and *WntA*, underlie wing patterning and support the hypothesis that
258 evolutionary outcomes can be predictable [2, 10, 37, 38]. This study complements work on the
259 predictability of evolution in two critical ways. For one, *Elymnias* diverged from the clade with
260 *Limenitis* and *Heliconius* over 80 million years ago [43], making this one of the oldest cases of
261 gene re-use in Nymphalidae that has been studied. Moreover, this demonstrates how sexual
262 dimorphism can create variation with a single component of the toolkit: the same gene, *WntA*,
263 seems to underlie sexually monomorphic variation and sexually dimorphic variation. This
264 variation, in turn, allows for a greater phenotypic diversity than single genes of large effect
265 would establish alone. The seemingly adaptive variability between sexes and among populations
266 of *Elymnias hypermnestra* has provided a fascinating natural experiment to study the genomic
267 basis and evolution of a novel sexually dimorphic trait.

268

269 **METHODS**

270 ***Reference genome assembly and quality***

271 The *E. hypermnestra* reference genome was generated from two *E. hypermnestra*
272 *baliensis* females from Bali. We isolated DNA from thorax tissue using a phenol–chloroform
273 extraction method and constructed Illumina paired-end (PE) libraries with insert sizes 250 and

274 500 bp using the KAPA Hyper Prep Kit (KR0961 – v1.14) from 2 μ g genomic DNA [44]. We
275 constructed mate pair (MP) libraries with insert sizes of 2 kb, 6 kb, and 15 kb using the Nextera
276 Mate Pair Library Prep kit (FC-132-1001) and 4 μ g genomic DNA (electronic supplementary
277 material, table S3). The five, unique barcoded libraries were pooled in a ratio of 59:30:6:3:2 and
278 sequenced 2x100 bp on a single lane of Illumina HiSeq 4000 (electronic supplementary material,
279 table S2). We trimmed low-quality regions and adapters from raw PE reads using Trimmomatic
280 v0.36 [45] where bases in the reads that were below a quality score of 15 were trimmed using a
281 sliding window of 4 bp and all reads less than 36 bp in length were discarded. We used Platanus
282 v1.2.4 [44] to trim adapter sequences and low quality regions from mate pair reads. Trimmed
283 libraries were assembled using the default settings of Platanus v1.2.4 and the assembly was
284 polished using Redundans v0.13a (default settings; 46). We removed scaffolds <5 kb from this
285 assembly, generated a species-specific repeat library, and masked repeats using RepeatScout
286 1.0.5 and RepeatMasker 4.0.8 [47, 48], respectively, to produce the final assembly. We
287 estimated genome size and heterozygosity using 21-mer frequencies in the raw 250 bp PE library
288 using GenomeScope [22].

289 We assessed the quality of our assemblies and other well-assembled nymphalid genomes
290 using BUSCO v3 and the endopterygota gene set (2,440 single-copy orthologs) from OrthoDB
291 v9 [23, 24]. The accessions of the assemblies tested are in the supplementary table. We assigned
292 *E. hypermnestra* scaffolds to *Melitaea cinxia* chromosomes using RaGOO [49, 50]. This pipeline
293 assigned 206/947 scaffolds (542 Mb/566 Mb) to chromosomes.

294 Finally, we generated a preliminary gene annotation set for the *E. hypermnestra* genome
295 using MAKER v3.01.02 [51, 52]. We used *de novo* transcripts from *Bicyclus anynana* (NCBI
296 BioProject) as evidence for transcription, as no transcriptome data exist for *Elymnias*. We
297 downloaded raw reads from BioProject PRJEB10924 using the SRA toolkit, trimmed remaining
298 adapters using Trimmomatic, and assembled transcripts using Trinity v2.8.0 [53] with default
299 settings. Furthermore, we used protein sequences from the UniProt/SwissProt protein database

300 [54], and RefSeq protein models for *Danaus plexippus*, *Papilio xuthus*, *Bombyx mori*, *Vanessa*
301 *tameamea*, *Pieris rapae*, and *Drosophila melanogaster* as evidence for protein-coding regions.
302 We trained SNAP using this evidence, then used SNAP, Augustus v3.2 with *Heliconius*
303 *melpomene* parameters, and GeneMark-ES 4 with MAKER to generate the final gene models
304 (55). We functionally annotated predicted proteins using BLASTp against the Uniprot/SwissProt
305 database and combined that information using scripts included in MAKER.

306

307 ***Whole genome resequencing and quality control***

308 Adult *E. hypermnestra* were collected in the wild and preserved in ethanol and/or by
309 freezing at -80° C (Table S1) before genomic DNA was extracted from thorax tissue using a
310 phenol–chloroform DNA extraction protocol. We constructed ~250 bp paired-end libraries using
311 the KAPA Hyper Prep Kit (KAPA Biosystems) and sequenced them to ~20X coverage using 2 x
312 80 bp Illumina NextSeq 500 (Table S1). We trimmed adapters and low-quality regions from raw
313 resequencing reads using TrimGalore 0.6.1 and cutadapt v1.18 [56], then removed reads
314 containing overrepresented sequences (identified using FastQC). We mapped reads to the *E.*
315 *hypermnestra* reference genome using Bowtie2 v2.3.0-beta7 with parameter “--very-sensitive-
316 local” [57]. We marked duplicate reads using PicardTools v2.8.1 and realigned around indels
317 using the Genome Analysis ToolKit’s (GATK, v3.8) RealignerTargetCreator and IndelRealigner.
318 Finally, we called SNPs using the GATK UnifiedGenotyper with default settings except for the
319 following values: heterozygosity prior = 0.02; minimum allowable base quality score = 30; and
320 minimum mapping quality = 20 [58]. We removed genotypes with phred-scaled quality < 10. We
321 then produced FASTA formatted genome sequences for each individual using the GATK
322 FastaAlternateReferenceMaker [59]. Our data reached ~20X coverage on average and had
323 average mapping rates of 94.76% (electronic supplementary material, table S3).

324

325 ***Population structure analyses***

326 We inferred *E. hypermnestra* population structure with ADMIXTURE 1.3.0 [25]. We
327 first performed linkage-disequilibrium-based pruning on our SNP dataset using plink v1.90,
328 including only SNPs with $r^2 < 0.10$ in 50-bp sliding windows with 10-bp steps according to
329 plink's --indep-pairwise utility. This yielded 108,189 SNPs. We ran ADMIXTURE with 10-fold
330 cross-validation for parameters $k = 2$ through 10. We looked at the cross-validation error and the
331 value of k that minimized the residuals (electronic supplementary material, figure S2, 60). We
332 performed principal component analysis on the same filtered data set using plink [61].

333

334

335 ***Phylogenetic analyses***

336 Since linkage disequilibrium returns to background levels over ~50 kb in *Heliconius* [62],
337 we split the *E. hypermnestra* genome into non-overlapping 10 kb windows, kept every fifth
338 window, then extracted alignments of sequences for each window from individual fastas with
339 GATK. We tested for recombination within each alignment using PhiPack [63], then filtered out
340 windows with recombination p values $> 1e-10$ and at least 100 informative sites. PhiPack uses
341 patterns of polymorphism to infer the probability of past recombination events; as p -values
342 decrease, the probability of recombination in the tested window increases. We randomly selected
343 3,000 autosomal alignments that passed these filters and inferred an unpartitioned gene tree from
344 each using IQ-TREE, which selected the best model with ModelFinder and estimated branch
345 support using 1000 ultrafast bootstraps [64-66]. Finally, we inferred a species tree using the
346 default settings of ASTRAL-III [67], which computed a consensus topology with support
347 values derived from the fraction of gene trees that support a particular four-taxon topology
348 (quartet scores).

349

350 ***Genome-wide association for color***

351 We filtered out SNPs with 10 or more missing alleles or minor allele frequency < 0.10
352 from the unpruned data set for a total of 5.4 million SNPs. We assigned phenotypes to each
353 sample based on that population's female wing color pattern (electronic supplementary material,
354 table S2), then computed site-wise Wald χ^2 test *p*-values using GEMMA v0.98, including
355 GEMMA's centered kinship matrix as a covariate [31]. We calculated genome-wide cutoff
356 scores using the false discovery rate method [68]. GWA results were plotted by ordering *E.*
357 *hypermnestra* scaffolds to the *Melitaea cinxia* chromosome-level assembly [49].

358

359 **Acknowledgements**

360 Specimen collection in Thailand was authorized by permits from the National Research Council
361 of Thailand and the Department of National Parks, Wildlife and Plant Conservation; fieldwork in
362 Indonesia was conducted under an MoU between CCNY and RCB—LIPI with permits from
363 RISTEK and other pertinent authorities; specimen collection in Vietnam was conducted under an
364 MoU between CCNY and Cat Tien National Park. Additional specimens from the Museum of
365 Comparative Zoology were sequenced for this study. Fieldwork was funded by grants 9285-13
366 and WW-227R-17 from the Committee for Exploration and Research of the National Geographic
367 Society to DJL. This work was funded by NSF grants DEB-1120380 and DEB-1541557 to DJL,
368 MOST grant 108-2621-B-110-004-MY3 to SHY, and NIH grant GM131828 to MRK.

369

370 **Author's Contributions**

371 D.J.L. and M.R.K. conceived and designed the study; D.M.R., N.W.V., and S.N. performed
372 analyses and collected data; S.H.Y., D.P., D.J.L. collected specimens; N.W.V., D.J.L. and
373 M.R.K. directed the project; D.M.R., N.W.V., and D.J.L. wrote the manuscript with input from
374 all co-authors.

375

376 **Data Accessibility Statement**

377 The reference genome and sequence data generated for this study are publicly available at NCBI
378 under BioProject accessions PRJNA660054 and PRJNA660057.

379

380 **Competing Interests**

381 The authors declare they have no competing interests.

382

383 **REFERENCES**

- 384 1. Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. 2006 A single amino acid
385 mutation contributes to adaptive beach mouse color pattern. *Science* **313**, 101-104.
386 (doi:10.1126/science.1126121)
- 387 2. Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP,
388 Kronforst MR. 2014 *doublesex* is a mimicry supergene. *Nature* **507**, 229-232.
389 (doi:10.1038/nature13112)
- 390 3. Gilbert LE. 2004 Adaptive novelty through introgression in *Heliconius* wing patterns:
391 evidence for a shared genetic “tool box” from synthetic hybrid zones and a theory of
392 diversification. *Ecology and Evolution Taking Flight: Butterflies as Model Systems*, 281–
393 318. University of Chicago Press, Chicago
- 394 4. Carroll SB. 2008 Evo-devo and an expanding evolutionary synthesis: a genetic theory of
395 morphological evolution. *Cell* **134**, 25-36. (doi:10.1016/j.cell.2008.06.030)
- 396 5. Kronforst MR, Papa R. 2015 The functional basis of wing patterning in *Heliconius*
397 butterflies: the molecules behind mimicry. *Genetics* **200**, 1-19.
398 (doi:10.1534/genetics.114.172387)
- 399 6. Deshmukh R, Baral S, Gandhimathi A, Kuwalekar M, Kunte K. 2018 Mimicry in
400 butterflies: co-option and a bag of magnificent developmental genetic tricks. *Wires Dev.
401 Biol.* **7**, 1-21. (doi:UNSP e29110.1002/wdev.291)

- 402 7. Timmermans MJ, Baxter SW, Clark R, Heckel DG, Vogel H, Collins S, Papanicolaou A,
403 Fukova I, Joron M, Thompson MJ, *et al.* 2014 Comparative genomics of the mimicry
404 switch in *Papilio dardanus*. *Proc. Biol. Sci.* **281**, 20140465.
405 (doi:10.1098/rspb.2014.0465)
- 406 8. Jiggins CD, Wallbank RW, Hanly JJ. 2017 Waiting in the wings: what can we learn about
407 gene co-option from the diversification of butterfly wing patterns? *Philos. Trans. R. Soc.
408 Lond. B Biol. Sci.* **372**, 20150485. (doi:10.1098/rstb.2015.0485)
- 409 9. Kunte K. 2009 The diversity and evolution of Batesian mimicry in *Papilio* swallowtail
410 butterflies. *Evolution* **63**, 2707-2716. (doi:10.1111/j.1558-5646.2009.00752.x)
- 411 10. VanKuren NW, Massardo D, Nallu S, Kronforst MR. 2019 Butterfly mimicry
412 polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse
413 adaptations. *Mol. Biol. Evol.* **36**, 2842-2853. (doi:10.1093/molbev/msz194)
- 414 11. Wallace AR. 1869 XXI. Notes on eastern butterflies; (continued). *Transactions of the
415 Royal Entomological Society of London* **17**, 321-349.
- 416 12. Punnett RC. 1911 "Mimicry" in Ceylon butterflies, with a suggestion as to the nature of
417 polymorphism. *Spoila Zeylanica* **7**, 1-24 + 22 pl.
- 418 13. Wei CH, Lohman DJ, Peggie D, Yen SH. 2017 An illustrated checklist of the genus
419 *Elymnias* Hübner, 1818 (Nymphalidae, Satyrinae). *Zookeys* **676**, 47-152.
420 (doi:10.3897/zookeys.676.12579)
- 421 14. Lohman DJ, Sarino, Peggie D. 2020 Syntopic *Elymnias agondas aruana* female forms
422 mimic different *Taenaris* model species (Papilioidea: Nymphalidae: Satyrinae) on Aru,
423 Indonesia. *Treubia* **47**, 1-12. (doi: 10.14203/treubia.v47i1.3821)
- 424 15. Vane-Wright RI. 1976 A unified classification of mimetic resemblances, *Biol. J. Linn. Soc.*
425 **8**, 25-56. (<https://doi.org/10.1111/j.1095-8312.1976.tb00240.x>)
- 426 16. Butler, AG. 1871 A monograph of the Lepidoptera hitherto included in the genus *Elymnias*.
427 *Proc. Zool. Soc. Lond.* **1871**, 518-525.

- 428 17. Allen CE, Zwaan BJ, Brakefield PM. 2011 Evolution of sexual dimorphism in the
429 Lepidoptera. *Annu. Rev. Entomol.* **56**, 445-464. (doi:10.1146/annurev-ento-120709-
430 144828)
- 431 18. Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. 2019
432 The genetic architecture of adaptation: convergence and pleiotropy in *Heliconius* wing
433 pattern evolution. *Heredity (Edinb)* **123**, 138-152. (doi:10.1038/s41437-018-0180-0)
- 434 19. Timmermans M, Srivathsan A, Collins S, Meier R, Vogler AP. 2020 Mimicry
435 diversification in *Papilio dardanus* via a genomic inversion in the regulatory region of
436 engrailed-invected. *Proc. Biol. Sci.* **287**, 20200443. (doi:10.1098/rspb.2020.0443).
- 437 20. Panettieri S, Gjinaj E, John G, Lohman DJ. 2018 Different ommochrome pigment mixtures
438 enable sexually dimorphic Batesian mimicry in disjunct populations of the common
439 palmfly butterfly, *Elymnias hypermnestra*. *PLoS One* **13**, e0202465.
440 (doi:10.1371/journal.pone.0202465)
- 441 21. Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, Sugano S, Fujiyama A,
442 Kosugi S, Hirakawa H, *et al.* 2015 A genetic mechanism for female-limited Batesian
443 mimicry in *Papilio* butterfly. *Nat. Genet.* **47**, 405-409. (doi:10.1038/ng.3241)
- 444
- 445 22. Vulture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC.
446 2017 GenomeScope: fast reference-free genome profiling from short reads.
447 *Bioinformatics* **33**, 2202-2204. (doi:10.1093/bioinformatics/btx153)
- 448 23. Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, Ioannidis P,
449 Seppey M, Loetscher A, Kriventseva EV. 2017 OrthoDB v9.1: cataloging evolutionary
450 and functional annotations for animal, fungal, plant, archaeal, bacterial and viral
451 orthologs. *Nucleic Acids Res.* **45**, D744-D749. (doi:10.1093/nar/gkw1119)
- 452 24. Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G,
453 Kriventseva EV, Zdobnov EM. 2018 BUSCO applications from quality assessments to

- 454 gene prediction and phylogenomics. *Mol. Biol. Evol.* **35**, 543-548.
- 455 (doi:10.1093/molbev/msx319)
- 456 25. Alexander DH, Novembre J, Lange K. 2009 Fast model-based estimation of ancestry in
- 457 unrelated individuals. *Genome Res.* **19**, 1655-1664. (doi:10.1101/gr.094052.109)
- 458 26. Brito PH, Edwards SV. 2009 Multilocus phylogeography and phylogenetics using
- 459 sequence-based markers. *Genetica* **135**, 439-455. (doi:10.1007/s10709-008-9293-3)
- 460 27. Braby MF, Eastwood R, Murray N. 2012 The subspecies concept in butterflies: has its
- 461 application in taxonomy and conservation biology outlived its usefulness? *Biol. J. Linn.*
- 462 *Soc.* **106**, 699-716. (doi:10.1111/j.1095-8312.2012.01909.x)
- 463 28. Zhang W, Westerman E, Nitzany E, Palmer S, Kronforst MR. 2017 Tracing the origin and
- 464 evolution of supergene mimicry in butterflies. *Nat. Commun.* **8**, 1269.
- 465 (doi:10.1038/s41467-017-01370-1)
- 466 29. Petkova D, Novembre J, Stephens M. 2016 Visualizing spatial population structure with
- 467 estimated effective migration surfaces. *Nat. Genet.* **48**, 94-100. (doi:10.1038/ng.3464)
- 468 30. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, Shih H-T, Carvalho
- 469 GR, von Rintelen T. 2011 Biogeography of the Indo-Australian Archipelago. *Annu. Rev.*
- 470 *Ecol. Evol. Syst.* **42**, 205-226. (10.1146/annurev-ecolsys-102710-145001)
- 471 31. Zhou X, Stephens M. 2012 Genome-wide efficient mixed-model analysis for association
- 472 studies. *Nat. Genet.* **44**, 821-824. (doi:10.1038/ng.2310)
- 473 32. Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallbank RWR, Zhang L, Papador
- 474 JD, Martinez-Najera D, Jiggins CD, Kronforst MR, *et al.* 2017 Macroevolutionary shifts
- 475 of *WntA* function potentiate butterfly wing-pattern diversity. *Proc. Natl. Acad. Sci. U S A*
- 476 **114**, 10701-10706. (doi:10.1073/pnas.1708149114)
- 477 33. Hines HM, Counterman BA, Papa R, Albuquerque de Moura P, Cardoso MZ, Linares M,
- 478 Mallet J, Reed RD, Jiggins CD, Kronforst MR, *et al.* 2011 Wing patterning gene

- 479 redefines the mimetic history of *Heliconius* butterflies. *Proc. Natl. Acad. Sci. U S A* **108**,
480 19666-19671. (doi:10.1073/pnas.1110096108)
- 481 34. Nishida R. 2017 Chemical ecology of poisonous butterflies: model or mimic? A paradox of
482 sexual dimorphisms in Müllerian mimicry. *Diversity and Evolution of Butterfly Wing*
483 *Patterns*. Springer, Singapore. (doi:10.1007/978-981-10-4956-9_11)
- 484 35. Nallu S, Hill JA, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL,
485 Morehouse NI, Bergelson J, *et al.* 2018 The molecular genetic basis of herbivory between
486 butterflies and their host plants. *Nat Ecol Evol* **2**, 1418-1427. (doi:10.1038/s41559-018-
487 0629-9)
- 488 36. Yuan J, Kessler SA. 2019 A genome-wide association study reveals a novel regulator of
489 ovule number and fertility in *Arabidopsis thaliana*. *PLoS Genet.* **15**, e1007934.
490 (doi:10.1371/journal.pgen.1007934)
- 491 37. Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst
492 MR, Long AD, McMillan WO, *et al.* 2012 Diversification of complex butterfly wing
493 patterns by repeated regulatory evolution of a *Wnt* ligand. *Proc. Natl. Acad. Sci. U S A*
494 **109**, 12632-12637. (doi:10.1073/pnas.1204800109)
- 495 38. Gallant JR, Imhoff VE, Martin A, Savage WK, Chamberlain NL, Pote BL, Peterson C,
496 Smith GE, Evans B, Reed RD, *et al.* 2014 Ancient homology underlies adaptive mimetic
497 diversity across butterflies. *Nat. Commun.* **5**, 4817. (doi:10.1038/ncomms5817)
- 498 39. Mullen SP, VanKuren NW, Zhang W, Nallu S, Kristiansen EB, Wuyun Q, Liu K, Hill RI,
499 Briscoe AD, Kronforst MR. 2020 Disentangling population history and character
500 evolution among hybridizing lineages. *Mol. Biol. Evol.* **37**, 1295-1305.
501 (doi:10.1093/molbev/msaa004)
- 502 40. Chepelev I, Wei G, Wangsa D, Tang Q, Zhao K. 2012 Characterization of genome-wide
503 enhancer-promoter interactions reveals co-expression of interacting genes and modes of
504 higher order chromatin organization. *Cell Res.* **22**, 490-503. (doi:10.1038/cr.2012.15)

- 505 41. Rondem KE. 2018 Characterizing the *optix* network in *Heliconius* butterfly wing color
506 patterning (Unpublished master's thesis). Cornell University, Ithaca, NY.
- 507 42. Lewis JJ, Geltman RC, Pollak PC, Rondem KE, Van Belleghem SM, Hubisz MJ, Munn PR,
508 Zhang L, Benson C, Mazo-Vargas A, *et al.* 2019 Parallel evolution of ancient, pleiotropic
509 enhancers underlies butterfly wing pattern mimicry. *Proc. Natl. Acad. Sci. U S A* **116**,
510 24174-24183. (doi:10.1073/pnas.1907068116)
- 511 43. Espeland M, Breinholt JW, Barbosa EP, Casagrande MM, Huertas B, Lamas G, Marin MA,
512 Mielke OHH, Miller JY, Nakahara S, *et al.* 2019 Four hundred shades of brown: higher
513 level phylogeny of the problematic Euptychiina (Lepidoptera, Nymphalidae, Satyrinae)
514 based on hybrid enrichment data. *Mol. Phylogenet. Evol.* **131**, 116-124.
515 (doi:10.1016/j.ympev.2018.10.039)
- 516 44. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada
517 M, Nagayasu E, Maruyama H, *et al.* 2014 Efficient de novo assembly of highly
518 heterozygous genomes from whole-genome shotgun short reads. *Genome Res.* **24**, 1384-
519 1395. (doi:10.1101/gr.170720.113)
- 520 45. Bolger AM, Lohse M, Usadel B. 2014 Trimmomatic: a flexible trimmer for Illumina
521 sequence data. *Bioinformatics* **30**, 2114-2120. (doi:10.1093/bioinformatics/btu170)
- 522 46. Pryszzc LP, Gabaldon T. 2016 Redundans: an assembly pipeline for highly heterozygous
523 genomes. *Nucleic Acids Res.* **44**, e113. (doi:10.1093/nar/gkw294)
- 524 47. Price AL, Jones NC, Pevzner PA. 2005 De novo identification of repeat families in large
525 genomes. *Bioinformatics* **21 Suppl 1**, i351-358. (doi:10.1093/bioinformatics/bti1018)
- 526 48. Smith DA, Gordon IJ, Traut W, Herren J, Collins S, Martins DJ, Saitoti K, Ireri P, Ffrench-
527 Constant R. 2016 A neo-W chromosome in a tropical butterfly links colour pattern, male-
528 killing, and speciation. *Proc. Biol. Sci.* **283**, 20160821. (doi:10.1098/rspb.2016.0821)
- 529 49. Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, Valimaki N, Paulin
530 L, Kvist J, Wahlberg N, *et al.* 2014 The Glanville fritillary genome retains an ancient

- 531 karyotype and reveals selective chromosomal fusions in Lepidoptera. *Nat. Commun.* **5**,
532 4737. (doi:10.1038/ncomms5737)
- 533 50. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, Lippman ZB,
534 Schatz MC. 2019 RaGOO: fast and accurate reference-guided scaffolding of draft
535 genomes. *Genome Biol* **20**, 224. (doi:10.1186/s13059-019-1829-6)
- 536 51. Holt C, Yandell M. 2011 MAKER2: an annotation pipeline and genome-database
537 management tool for second-generation genome projects. *BMC Bioinformatics* **12**, 491.
538 (doi:10.1186/1471-2105-12-491)
- 539 52. Campbell MS, Holt C, Moore B, Yandell M. 2014 Genome annotation and curation using
540 MAKER and MAKER-P. *Curr. Protoc. Bioinformatics* **48**, 11-39.
541 (doi:10.1002/0471250953.bi0411s48)
- 542 53. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan
543 L, Raychowdhury R, Zeng Q, *et al.* 2011 Full-length transcriptome assembly from RNA-
544 Seq data without a reference genome. *Nat. Biotechnol.* **29**, 644-652.
545 (doi:10.1038/nbt.1883)
- 546 54. The UniProt Consortium. 2018 UniProt: the universal protein knowledgebase. *Nucleic
547 Acids Res.* **46**, 2699. (doi:10.1093/nar/gky092)
- 548 55. Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. 2008 Gene prediction in
549 novel fungal genomes using an ab initio algorithm with unsupervised training. *Genome
550 Res.* **18**, 1979-1990. (doi:10.1101/gr.081612.108)
- 551 56. Martin, M. 2011 Cutadapt removes adapter sequences from high-throughput sequencing
552 reads. *EMBnet Journal* **17**, 10-12. (<https://doi.org/10.14806/ej.17.1.200>)
- 553 57. Langmead B, Salzberg SL. 2012 Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
554 **9**, 357-359. (doi:10.1038/nmeth.1923)
- 555 58. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
556 Altshuler D, Gabriel S, Daly M, *et al.* 2010 The Genome Analysis Toolkit: a MapReduce

- 557 framework for analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297-
558 1303. (doi:10.1101/gr.107524.110)
- 559 59. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA,
560 del Angel G, Rivas MA, Hanna M, *et al.* 2011 A framework for variation discovery and
561 genotyping using next-generation DNA sequencing data. *Nat. Genet.* **43**, 491-498.
562 (doi:10.1038/ng.806)
- 563 60. Pritchard JK, Stephens M, Donnelly P. 2000 Inference of population structure using
564 multilocus genotype data. *Genetics* **155**, 945-959.
- 565 61. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P,
566 de Bakker PI, Daly MJ, *et al.* 2007 PLINK: a tool set for whole-genome association and
567 population-based linkage analyses. *Am. J. Hum. Genet.* **81**, 559-575.
568 (doi:10.1086/519795)
- 569 62. Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman BA, Dawson A, Beltran M,
570 Perez-Espona S, Chamberlain N, Ferguson L, *et al.* 2010 Genomic hotspots for
571 adaptation: the population genetics of Müllerian mimicry in the *Heliconius melpomene*
572 clade. *PLoS Genet.* **6**, e1000794. (doi:10.1371/journal.pgen.1000794)
- 573 63. Bruen TC, Philippe H, Bryant D. 2006 A simple and robust statistical test for detecting the
574 presence of recombination. *Genetics* **172**, 2665-2681. (doi:10.1534/genetics.105.048975)
- 575 64. Nguyen CD, Lee KJ, Carlin JB. 2015 Posterior predictive checking of multiple imputation
576 models. *Biom. J.* **57**, 676-694. (doi:10.1002/bimj.201400034)
- 577 65. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017
578 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* **14**,
579 587-589. (doi:10.1038/nmeth.4285)
- 580 66. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018 UFBoot2: Improving
581 the ultrafast bootstrap approximation. *Mol. Biol. Evol.* **35**, 518-522.
582 (doi:10.1093/molbev/msx281)

- 583 67. Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018 ASTRAL-III: polynomial time species tree
584 reconstruction from partially resolved gene trees. *BMC Bioinformatics* **19**, 153.
585 (doi:10.1186/s12859-018-2129-y)
- 586 68. Benjamini Y, Hochberg Y. 1995 Controlling the false discovery rate: a practical and
587 powerful approach to multiple testing. *J. R. Statist. Soc. B* **57**, 289-300.
588
589

FIGURES

Figure 1.

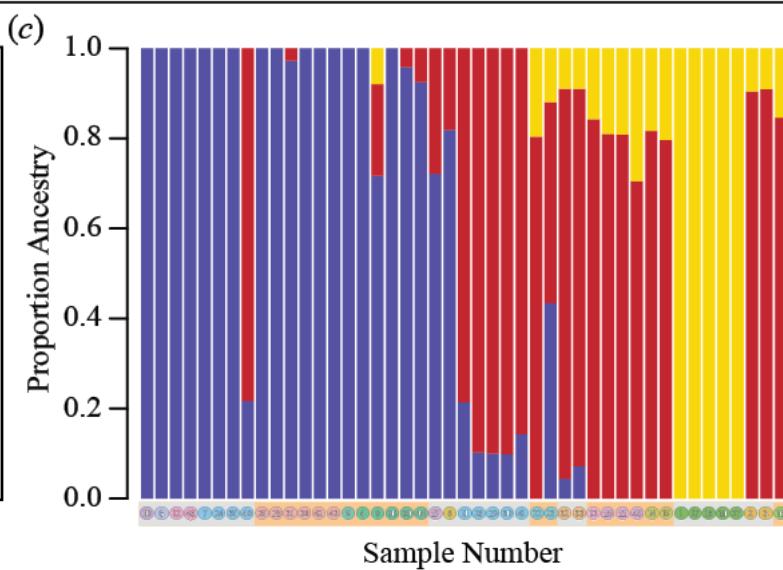
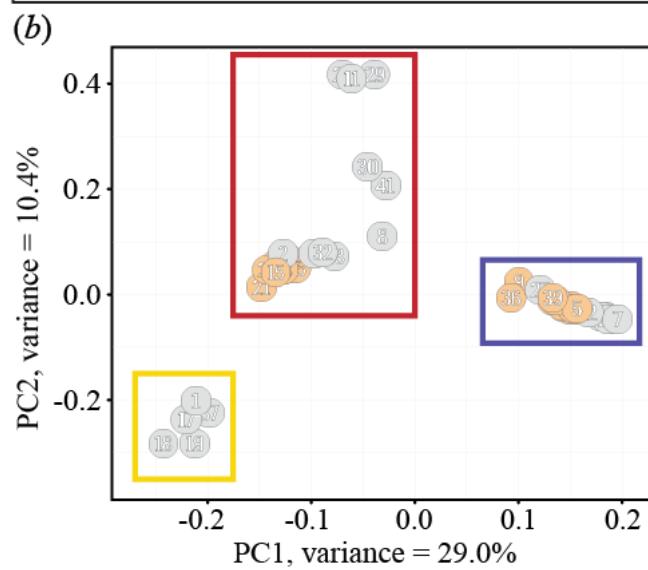
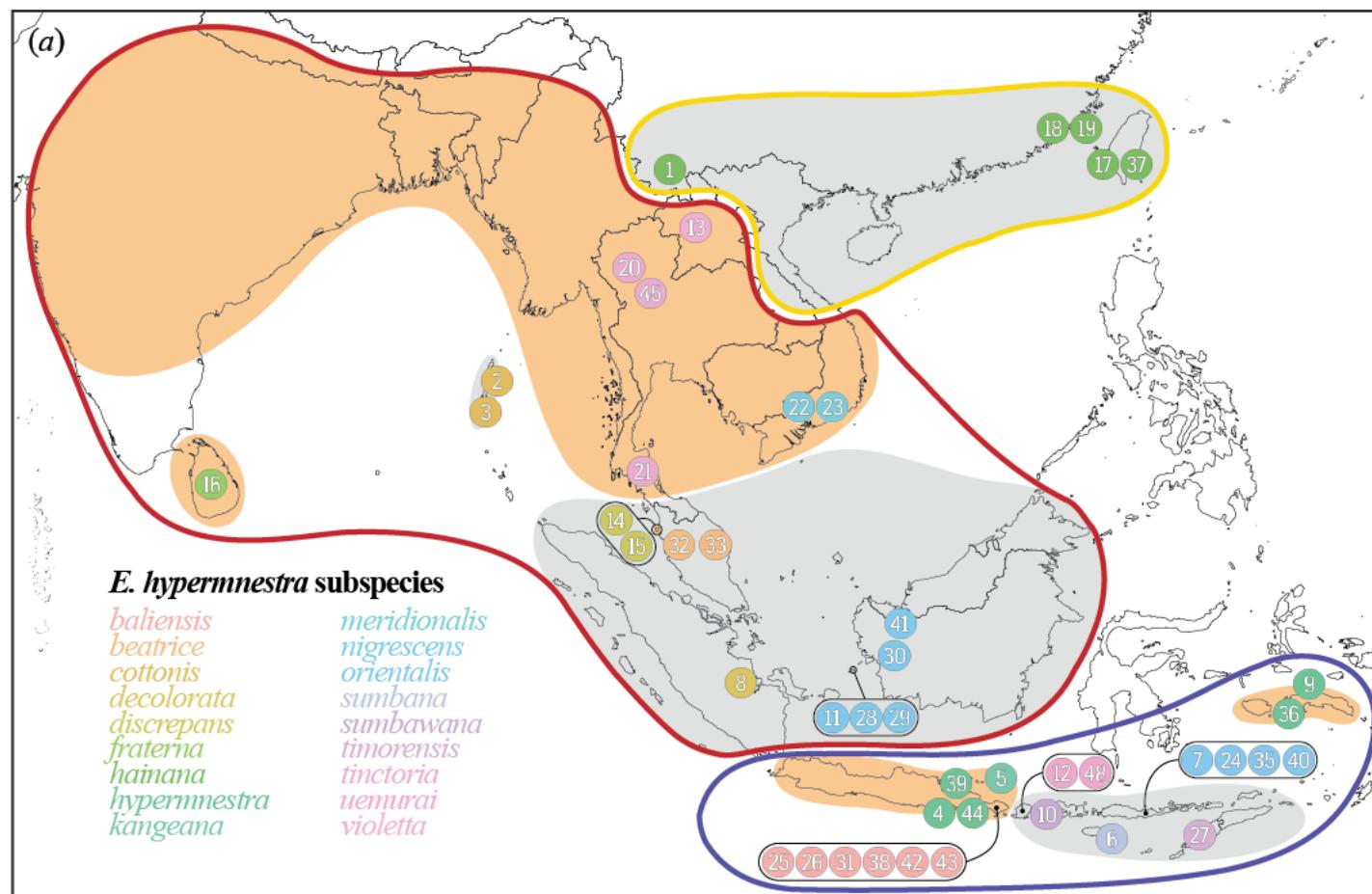
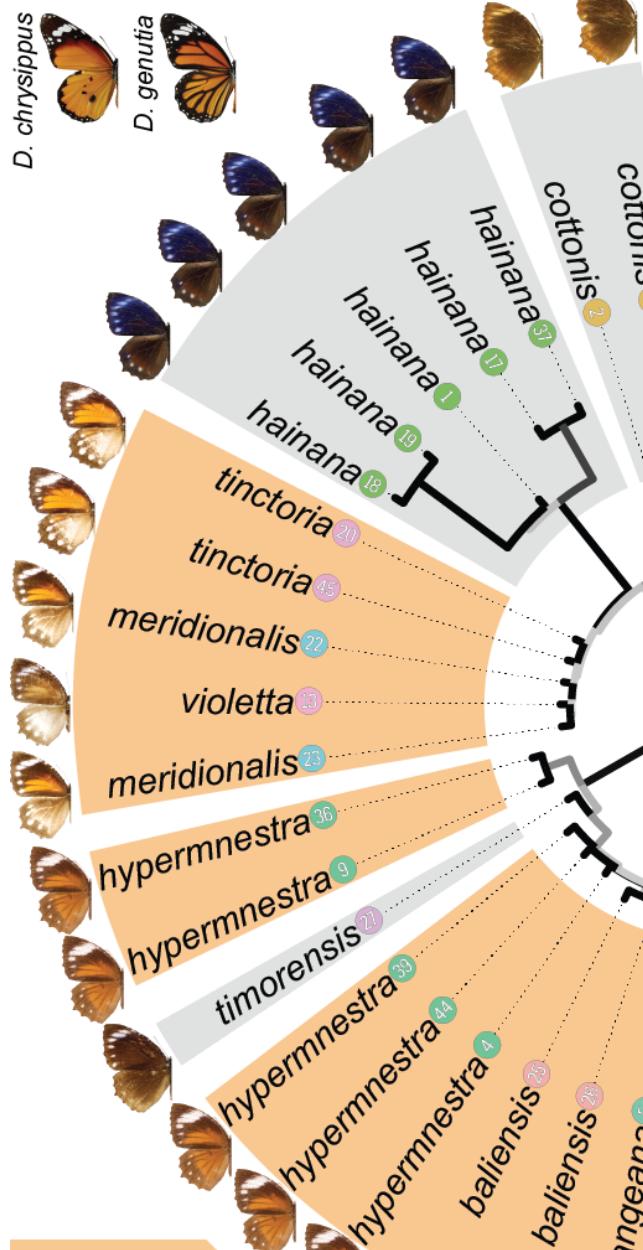
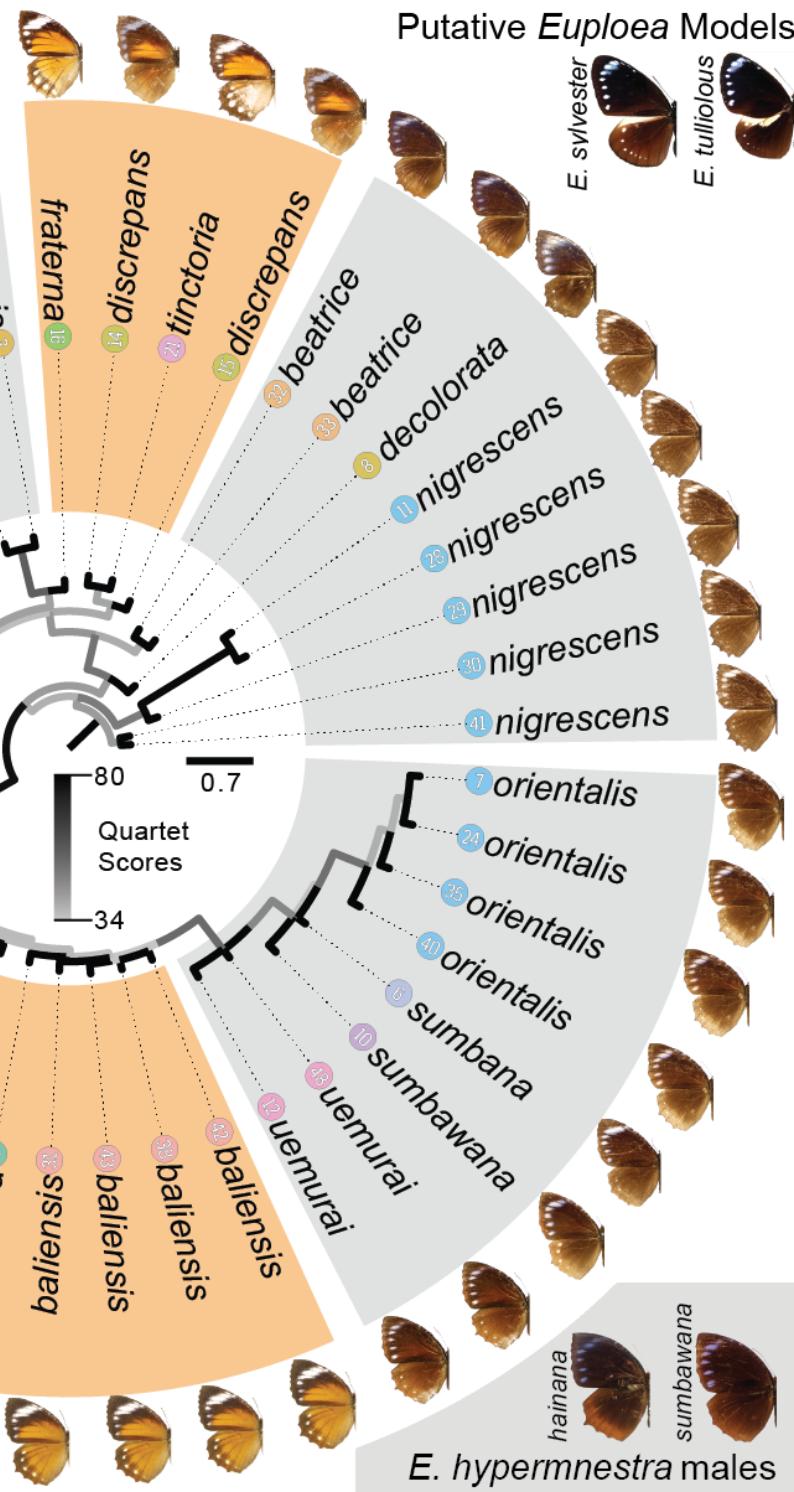
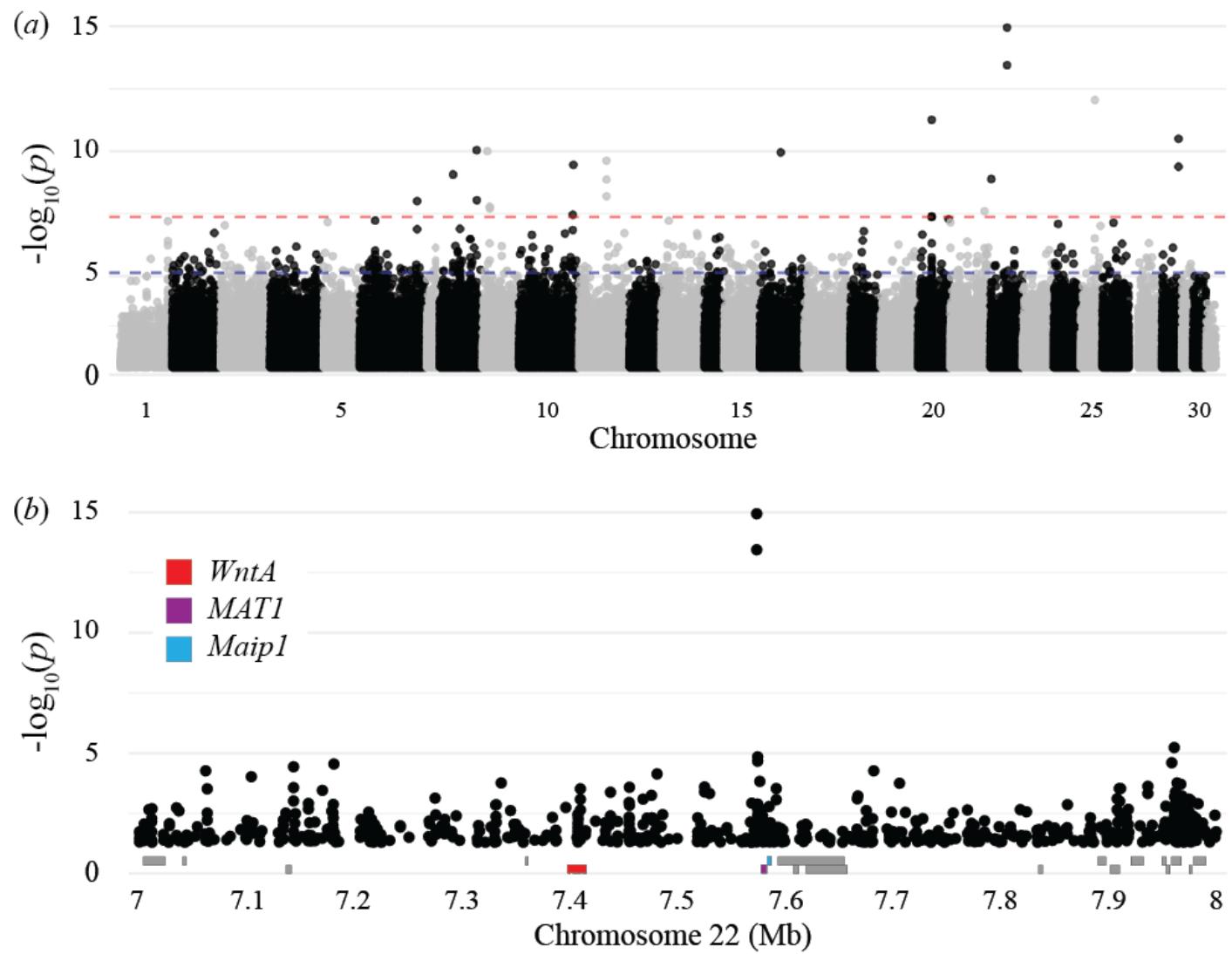






Figure 2.

Putative *Danaus* Models



Putative *Euploea* Models

E. hypermnestra males

Figure 3

FIGURE LEGENDS

Figure 1. *Elymnias hypermnestra* comprises three genetically and geographically distinct populations. (a) The geographic distribution of 48 *E. hypermnestra* populations representing 15 subspecies. Orange females and melanic females are indicated with background colors, demonstrating disjunct distributions of each color pattern. Collection locations of each specimen used in this study are indicated with its sample ID (electronic supplementary material, table S1), which is colored to indicate its subspecies. The dark outlines on the map indicate genetically distinct populations, as inferred by (b) principal component analysis. The points in this plot indicate sample ID and color pattern. The same three populations are indicated by an (c) ADMIXTURE plot. The sample ID and color pattern are indicated below each bar.

Figure 2. An ASTRAL species tree of *Elymnias hypermnestra* based on 3000 random autosomal 10 kb windows infers multiple clades of melanic and orange female forms. Branch color indicates quartet score branch support. The sample IDs correspond to the same numbers in Fig. 1, and their color indicates subspecies affiliation. Orange or dark backgrounds indicate the female color pattern of the lineage, and representative images of females of the same subspecies as each sample are shown around the periphery. Images of the putative model species mimicked by orange and melanic females are provided at the top. Representative males of four subspecies are shown at the bottom.

Figure 3. (a) Association between *Elymnias hypermnestra* female color pattern and genetic variation. *p*-values are from SNP-wise Wald tests. Blue and red dashed lines represent the 10% and 1% false discovery rates (FDR), respectively. The full GWA results (with unplaced scaffolds) are shown in electronic supplementary material, figure S6. (b) An enlargement of chromosome 22 in Figure 4a; depicting the region of the two SNPs most significantly associated with female color pattern. The locations of 3 nearby genes in the *Melitaea cinxia* reference genome are shown below the plot.

