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Abstract

Gmxapi provides an integrated, native Python API for both standard and advanced
molecular dynamics simulations in GROMACS. The Python interface permits multiple
levels of integration with the core GROMACS libraries, and legacy support is provided via
an interface that mimics the command-line syntax, so that all GROMACS commands are
fully available. Gmxapi has been officially supported since the GROMACS 2019 release
and is enabled by default in current versions of the software. Here we describe gmxapi
0.3 and later. Beyond simply wrapping GROMACS library operations, the API permits
several advanced operations that are not feasible using the prior command-line interface.
First, the API allows custom user plugin code within the molecular dynamics force
calculations, so users can execute custom algorithms without modifying the GROMACS
source. Second, the Python interface allows tasks to be dynamically defined, so high-
level algorithms for molecular dynamics simulation and analysis can be coordinated with
loop and conditional operations. Gmxapi makes GROMACS more accessible to custom
Python scripting while also providing support for high-level data-flow simulation
algorithms that were previously feasible only in external packages.

Author Summary

The gmxapi software provides a Python interface for molecular dynamics simulations in
GROMACS. In addition to simply wrapping GROMACS commands, it supports custom
user plugin code, ensemble simulation, and data-flow chaining of commands. As such,
gmxapi enables the writing and execution of high-level simulation algorithms. The
software ships with GROMACS and is freely available under an LGPL2 license.

Introduction

As molecular dynamics simulations have become more complex and mature as scientific
tools, typical simulation use is shifting from manual invocation of a few simulations and
analysis tools to pre-defined simulation and analysis protocols, often involving many
simulation trajectories. In addition, custom applications for advanced sampling[1-4] or
molecular structure refinement[5-7] are becoming more common, where the molecular
dynamics engine is used as part of a more complex data integration protocol. In these
more complex use scenarios, toolchain and file-system management as well as execution
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of many simulations can become limiting factors. As a result, many scientists either
develop custom scripts, custom modifications of the simulation source code, or adapt
general-purpose workflow engines[8-10] to molecular simulation tasks. There also exist
some molecular-simulation-specific workflow engines, frequently coupled to the
underlying molecular simulation code via command-line interfaces[11-16]. All of the
above can be brittle, particularly without robust APIs for simulation interfaces to workflow
engines. Integration of parallel analysis into unified jobs can also be challenging whether
this is performed via built-in tool parallelism or user-level coding, such as Python
multiprocessing packages or workflow/execution managers[9,10,12,13,17-19].

We previously reported on gmxapi 0.0.4[20], which allows Python driven molecular
dynamics in GROMACS|[21,22] to be extended at run time with custom researcher code.
Here, we describe features present in gmxapi 0.2 and beyond, which offers both more
advanced ensemble simulation logic and a feature-complete interface for GROMACS
tools and analysis. This framework allows ensemble methods to be implemented with
less code, and without patching an official GROMACS release. Data-flow-oriented
programming logic and general paradigm for integrating new software tools further
enhance the utility of the package. Both the libgmxapi C++ interface and the gmxapi
Python package are now maintained and distributed with GROMACS; gmxapi 0.2 is
integrated with GROMACS 2021, and gmxapi 0.3 is integrated with GROMACS 2022.

Design and Implementation

We outline distinguishing features and key user functionality of gmxapi, followed by a
more technical design discussion. Gmxapi offers a Python scripting interface maintained
as part of the GROMACS software, and thus one basic feature is the ability to reproduce
all GROMACS command-line calls. This is done through a combination of native gmxapi
calls such as gmxapi.mdrun() and a wrapper that permits any operation from the
GROMACS command-line client: gmxapi.commandline_operation(). These are
illustrated in Figure 1a. We also highlight three key additional features not possible with
a simple wrapper script: built-in ensemble parallelism, composability, and plugins.

Ensemble Parallelism

Simulations are increasingly being performed not singly but as a collection of related
tasks, which we will term an ensemble. This collection could consist of a set of replicas
sampling a thermodynamic ensemble, but it could also represent a parameter sweep
across experimental conditions or a set of simulations with different starting
conformations as part of an advanced sampling strategy. Ensembles are treated as first-
class objects in gmxapi, and the python interface is designed to facilitate parallelism
across such ensembles, which is in turn implemented by the gmxapi backend. This is
illustrated in Figure 1b. The ability to flexibly and simply articulate high-level ensemble
logic is thus a key feature of gmxapi.



Composability

Another key design and usability feature of gmxapi is the notion of composability. Similar
to Tinkertoys, different calls to GROMACS commands through the API are designed to
be plugged together. This is illustrated in Figure 1c and has two advantages: a natural
way to conceptualize a sequence of GROMACS calls (or calls to external programs that
can use the gmxapi wrapper facility) and a way to parallelize using the ensemble logic
and data-flow management by gmxapi.

Plugins

Gmxapi includes the ability to add user-defined plugins that can interact with GROMACS
at runtime without modifying the GROMACS source. Plugins are currently used to
implement custom force routines; these run using the native GROMACS parallel
decomposition and thus can benefit from parallelism as well as acceleration. More details
are given in the technical design section below.

Technical Design

We used pybind11[23] to implement Python bindings to a C++ APl for the
GROMACSI21,22] molecular simulation library. The design concept of gmxapi, as with
many modern high-level interfaces, is for the user to construct a computational graph
where execution is then managed by lower layers of the software stack. Similar to
Keras[24], we recognize that explicit data-flow programming is not natural for all users
and thus provide an interface where data-flow can be specified explicitly or implicitly.
Figure 2 illustrates the gmxapi paradigm in which control signals and data are treated in
the same framework. Branching and other control events require that some work is
"dynamic”, such that the complete workflow graph may not be determined until runtime.
However, the workflow can be fully specified in terms of workflow commands and data
primitives (Figure 3).

Data flow formalism

Data-flow formalisms have become increasingly popular in contemporary workflow
engines due to their ability to separate work specification and task execution, permitting
more straightforward resolution of dependencies and optimization of computation and
data movement. For the same reasons, execution in gmxapi is deferred as much as
possible to when and where it is required. The high-level gmxapi Python interface creates
and executes a directed acyclic graph (DAG) specifying the computational work to be
done. Nodes of the work graph represent discrete operations that produce and consume
well defined inputs and outputs. Operation and data references in the work graph are
proxy objects for the computational tasks and data until the graph is run. Execution
management may be optimized by running only as much of the graph as necessary to
satisfy explicit data dependencies. In addition, in order to minimize unnecessary data
movement, most gmxapi operations do not transfer data from the C++ library to the
Python interpreter unless explicitly requested by the user. When a gmxapi command is
used to add work to the work graph, it returns a reference to the graph node representing
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the operation. The operation’s output attributes may be used as inputs to further
commands, and may be used as “Future” results, as discussed below. Calling “result()”
on a Future forces dependency resolution and data localization.

Python interface

The gmxapi Python interface consists of five categories of operations: 1) typing and
logical operations, 2) bound GROMACS API calls, 3) legacy GROMACS command-line
operations, 4) utilities for user creation of new gmxapi operations, and 5) looping and
conditional operations. These are described in sequence below.

The simplest gmxapi operations manipulate signals, data topology, or typing.
‘join_arrays”, “logical_not”, and “make_constant” have strict definitions for inputs and
outputs (Figure 3a). These operations are also composable: “concatenate_lists” is a

helper function that reduces a number of inputs in terms of “join_arrays” (Figure 3b).

The preferred mechanism for interfacing to GROMACS is via bound API calls. Commands
like “read_tpr”, “modify_input”, and “mdrun” use a binary Python extension module written
in C++ using pybind11 to interact with GROMACS operations and data through libgmxapi,

which is a C++ library installed by default with recent versions of GROMACS.

In order to provide legacy support for the full range of GROMACS command-line
operations, “gmxapi.commandline.cli()” is a simple pure-Python gmxapi operation that
wraps command-line tools. It is a thin wrapper of the Python “subprocess” module, so
command inputs and outputs are embedded in the argument list parameter. Instances of
“‘gmxapi.commandline.cli” are not by themselves conducive to DAG representations of
data flow, so a helper function creates additional gmxapi primitives to provide a consistent
set of named inputs and outputs. “gmxapi.commandline_operation()” generates a graph
of gmxapi primitives around “cli” to translate input and output arguments into operation
inputs and outputs, as specified by the user (Figure 3b).

In order to provide extensibility, arbitrary user code can be transformed into a gmxapi
operation by decorating a Python function definition with “@function_wrapper” (Figure
3c). As an example, “commandline_operation” is written in this manner.

Looping and conditional commands are critical to adaptive ensemble simulation[25] and
thus form a key part of the gmxapi repertoire. Conditional iteration takes the form of
conventional gmxapi command syntax but relies on some metaprogramming under the
hood. The “while_loop” command allows a graph to be dynamically extended as a chain
of repeated operations, including fused operations constructed with the “subgraph” tool.
A subgraph allows inputs and outputs to be expressed in terms of other gmxapi
operations. When used with “while_loop”, internal subgraph state can be propagated from
one iteration to the next to provide a consistent environment similar to a standard loop.



The work graph

The work graph permits data flow topology to be represented independently from
execution strategies or run time resource assignment details. An array of input sources
provided to a command generates a corresponding set of tasks, such as for trajectory
ensemble simulations. Because such ensembles may be coupled (and gmxapi currently
does not have a mechanism to specify that an ensemble is uncoupled), arrays of
simulations must currently be co-executed through the gmxapi mpidpy executor.
Operations defined with “@function_wrapper”, including the other built-in operations, are
assumed to be uncoupled, and are launched in a sequence determined by the DAG
topology during recursive resolution of data dependencies, executed sequentially by the
simple built-in gmxapi 0.1 executor.

The work graph enables straightforward dependency resolution: commands are specified
to operate on abstracted “handles” or references to work inputs rather than requiring the
fully instantiated objects, so chains of simulations can be expressed where one command
depends on the outputs of a prior command. Each individual command is then ready to
execute once its inputs have been fully resolved. Because operations and data flow are
represented as a DAG, arbitrarily complex topologies can be expressed unambiguously
without unexpected side-effects. Trajectories can be forked or extended without re-
executing simulation segments or overwriting previous results.

Execution and control flow

The gmxapi interface enables several levels of control logic, described below. Native
Python logic (if/else statements, for loops, etc.) can be used with gmxapi operations.
However, since gmxapi operations construct a work graph that is then executed,
expressing conditionals within this work graph requires special constructs rather than
standard Python operators. Gmxapi therefore provides logic such as “while_loop” as an
efficient way to express adaptivity within a sequence of gmxapi operations. Python-level
logic can be utilized by forcing work graph execution using the result() method, which
causes explicit execution of all code required to produce the requested result. In contrast,
gmxapi-level logic operates on Futures and is thus deferred until graph execution.

Gmxapi also provides low-level logic for simulation control and ensemble operators that
can be used by third party code. For instance, gmxapi registers with the GROMACS
“StopSignal” facility, enabling plugin code to stop a simulation based on external criteria,
such as when a statistical estimator has converged. Additional examples of low-level
operations include a “ReduceAll” to collect data across an in-flight ensemble. This
operation can be used for adaptive updates across an ensemble of simulations, such as
modifying biasing forces in restrained-ensemble simulations[26,27] or to update
estimators and determine when a simulation ensemble should be terminated.

Gmxapi as a means to extend MD code without source modification

Gmxapi establishes a facility[28] for providing MD extension code to GROMACS during
launch. Binary objects are then loaded at runtime via the Python interpreter. This allows
custom code to be executed during the MD integration loop with minimal overhead.
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Python facilitates plugin binding, but once the simulation launches, GROMACS and the
extension code communicate directly via C++ interfaces, so there is no overhead added
by Python. This extension code executes within the existing GROMACS parallelism
framework, so it can take advantage of domain decomposition and MPI parallelism. Since
this only requires a standard GROMACS installation with gmxapi, it permits flexible
extension of the molecular dynamics code without modifying the main codebase or
libraries.

Gmxapi does not prescribe a C/C++ bindings strategy. We used pybind11 for GROMACS
bindings, but Python interaction with compiled code relies only on the Python C API
(PyCapsule) and the public libgmxapi C++ interface.

Results

Typical molecular dynamics workflows use a chain of tools to prepare simulation input,
particularly command-line programs that take file locations as input and output
arguments. Gmxapi is designed to permit connecting the output of any tool to the input
for another tool with consistent Python syntax. Figure 4 illustrates a chain of GROMACS
tools preparing simulation input, culminating with a call to "gmxapi.mdrun" to execute an
array of simulations.

To illustrate the application of gmxapi, we demonstrate refinement of an HIV gp41
conformational ensemble based on DEER spectroscopy data. We use a starting crystal
structure for the BG505 SOSIP of HIV gp41[29] and previously reported DEER
spectroscopy data of 5 different spin labels positions on this SOSIP[30]. The gp41 trimer
was asymmetrically restrained (each of the three monomer-monomer distances was
sampled separately), and the previously reported Bias-resampling ensemble refinement
(BRER) algorithm for refining heterogeneous conformational ensembles[28] was applied.
This involves a custom force plugin for GROMACS, and gmxapi was used to run an array
of 250 refinement simulations, each randomly sampling target distance values from the
experimental distribution for each measured spin-label pair. This array was executed in
parallel on a supercomputing cluster, and accompanying example scripts demonstrate
such a large-scale deployment. Further details are given in the Supplement. Full
convergence of the refinement would require additional simulation sampling of the 15-
dimensional experimental distribution, but even after 24 wall-clock hours of simulation a
reasonable sampling of the experimental distributions was obtained (Figure 5). This
application illustrates the ease of simulation ensemble management and application of
custom biasing algorithms within GROMACS facilitated by gmxapi.

Discussion

Gmxapi provides a high-level Python interface for GROMACS with several key design
features. It permits easy chaining of commands (GROMACS or third-party analysis tools)
to create pipelines. Such pipelines can be parallel in nature, and gmxapi supports arrays
or ensembles of simulations as first-class objects. Finally, gmxapi has a plugin interface
that enables custom user code to be executed as part of molecular dynamics force
calculations without modifying the GROMACS source but still benefitting from GROMACS

6



native parallel decomposition. These features provide distinct advantages over shell-
script-based workflows or simple Python wrappers for the GROMACS command-line
interface.

Gmxapi differs from many molecular dynamics scripting APIs in that it embraces a data-
flow programming paradigm while at the same time aiming for simplicity and ease of
programming. This is analogous to the Keras high-level deep learning library [24]. A
data-flow approach simplifies treatment of dependencies in complex parallel workflows
and has been adopted by a number of high-performance computational tools.

Gmxapi scales well to high-performance clusters using MPI parallel interfaces. Current
versions do not, however, provide advanced scheduler management along the lines of
the prior Copernicus software [11-12] or the Radical Cybertools toolkit [16]. Interfaces
that permit integration of gmxapi with more advanced schedulers is planned for future
work. In comparison with Copernicus, gmxapi is a lighter-weight solution, integrating
more closely with GROMACS and designed to facilitate much greater extensibility and
ease of use but not including the advanced scheduler and client-server communication
capabilities.

Availability and Future Directions

The libgmxapi C++ interface was released as part of GROMACS 2019 release and has
been part of a standard GROMACS installation since 2020. Gmxapi 0.2 shipped with
GROMACS 2021; version 0.3, described here, is part of the GROMACS 2022 release
and contains further enhancements for ease of use and installation. Continued
development of gmxapi will expand the number of bound GROMACS API calls and
reduce the need for legacy command-line support as well as generalize the plugin
interface. Atthe programming level, one key future direction is exactly that—an increased
use of the “Future” paradigm in Python. Python design patterns using Futures are
becoming more widespread and standardized [14,31] as a way to refer to results that
have not yet been calculated. Some additional refinement of the gmxapi Future protocol
is needed to be fully compatible with native and third-party frameworks for concurrent or
asynchronous program flow.

Code and data availability are specified below:

The gmxapi Python package is also maintained as part of the GROMACS repository at
https://gitlab.com/gromacs/gromacs. It can be installed from the GROMACS source
(https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/src) or  from
https://pypi.org/project/gmxapi/ with “pip”, but needs to be told which GROMACS
installation to use. The documentation at https://manual.gromacs.org/current/gmxapi
provides details. During installation, the gmxapi Python package builds a C++ extension
module against the GROMACS installation. Gmxapi tutorials are available from
https://qgithub.com/kassonlab/gmxapi-tutorials.

Custom molecular dynamics extension code is illustrated in a “sample_restraint” package:
https://qitlab.com/gromacs/gromacs/-/tree/master/python packaging/sample restraint.




BRER restraint potentials[28] are forked from this sample code and can be found at
https://qgithub.com/kassonlab/brer_plugin. Scripted BRER workflows are available at
https://github.com/kassonlab/run_brer. The “run_brer” scripts were developed prior to
gmxapi 0.1 and use internal logic to manage some data flow and to maintain workflow
state. Both “run_brer” and “gmxapi” are being updated to illustrate that data flow and
workflow state can be managed by the framework to allow simpler, more robust
application code for applying new methods like BRER. Input data for the BRER example
shown have been deposited at doi:10.5281/zenodo.5122931.

Gmxapi issues are tracked with the label “‘gmxapi” at
https://gitlab.com/gromacs/gromacs/-/issues. Code contributions follow the GROMACS
contribution procedure (https://manual.gromacs.org/current/dev-manual/contribute.html).
However, gmxapi is intended to allow for maximal extensibility without requiring
modification to the sources.

A discussion forum is available at https://gromacs.bioexcel.eu/tag/gmxapi.
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Figures

a. args = [ 'pdb2gmx', '-ff', 'amber99sb-ildn', '-water', 'tip3p']
input_files = {'-f': os.path.join(input_dir, 'start0O.pdb')}
output_files = {
'-p': os.path.join(cmd_dir, 'topol.top'),
'-i': os.path.join(cmd_dir, 'posre.itp'),
'-0': os.path.join(cmd_dir, 'conf.gro')
make_top = gmx.commandline operation('gmx', args, input files, output_files)
b. grompp_input_files = {’-f’: os.path.join(cmd_dir, ‘grompp.mdp’),
‘-c’: make_top.output.file['-0'],
‘-p’: make_top.output.file['-p’]}
# make array of inputs
N = 50
grompp = gmx.commandline_operation('gmx', ['grompp'], grompp_ input_ files * N,
{'-0': os.path.join(cmd_dir, 'run.tpr')})
tpr_input = grompp.output.file['-o'].result()
input_list = gmx.read_tpr([tpr_input])
md = gmx.mdrun(input_list)
md.run()
C.
subgraph = gmx.subgraph(variables = {'found_native': False, 'checkpoint': '', 'min_rms': leé6})
with subgraph:
md = gmx.mdrun(input_list, runtime_args={'-cpi': subgraph.checkpoint, ‘-maxh’: '2'})
subgraph.checkpoint = md.output.checkpoint
rmsd = gmx.commandline operation('gmx', ['rms'],

input_files={'-s': reference_struct,
'-f': md.output.trajectory},
output_files={'-o0': 'rmsd.xvg'}, stdin='Backbone Backbone')
subgraph.min_rms = numeric_min(xvg_to_array(rmsd.output.file['-0']).output.data).output.data
subgraph.found_native = less_than(lhs=subgraph.min rms, rhs=0.3).output.data
folding loop = gmx.while loop(operation=subgraph, condition=logical_ not(subgraph.found native)) ()
folding loop.run()

Figure 1: gmxapi usage examples. Panel (a) shows an example of the
commandline_operation function by which gmxapi can reproduce any GROMACS
functionality. Panel (b) shows gmxapi molecular dynamics calls operating on ensemble
input, providing straightforward high-level parallelism in addition to parallelization within
each command. Panel (c) demonstrates both a while loop and pluggability of gmxapi
components. Together, the examples will execute an ensemble of small protein folding
simulations until at least one ensemble member samples the native state.
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Figure 2: Schematic of data flow and control flow for a segment of a complex simulation
workflow. Ensembles of simulations can be run (denoted by stacked rectangles) by
gmxapi merely by passing an array of inputs instead of a single input. Custom plugins
can interact with running MD simulations. Finally, conditional and looping logic can
create high-level simulation algorithms.
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Figure 3: Schematics for gmxapi operations. As shown in panel (a), gmxapi operations
have well defined inputs and outputs. These can operate on arrays of inputs and also
include support for legacy GROMACS operations by wrapping the command-line
toolset, as shown in panel (b). As shown in panel (c), the decorator @function_wrapper
allows arbitrary user code to be transformed into a gmxapi operation.
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Figure 5: Residue-residue distance distributions in a simulated ensemble of HIV gp41.
DEER spectroscopy was used to measure distance distributions between two
monomers of the gp41 trimer. Thus, each residue designates a monomer-monomer
residue pair. Panels a-e show plots for the 5 restrained residues in the HIV trimer: 106,
173, 202, 306, and 542 respectively. Discretized DEER distance distributions are
plotted in green, and simulation results are plotted in blue bars. The simulation
ensemble shows good convergence to the measured values.
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