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Abstract 
Gmxapi provides an integrated, native Python API for both standard and advanced 
molecular dynamics simulations in GROMACS. The Python interface permits multiple 
levels of integration with the core GROMACS libraries, and legacy support is provided via 
an interface that mimics the command-line syntax, so that all GROMACS commands are 
fully available. Gmxapi has been officially supported since the GROMACS 2019 release 
and is enabled by default in current versions of the software. Here we describe gmxapi 
0.3 and later. Beyond simply wrapping GROMACS library operations, the API permits 
several advanced operations that are not feasible using the prior command-line interface. 
First, the API allows custom user plugin code within the molecular dynamics force 
calculations, so users can execute custom algorithms without modifying the GROMACS 
source. Second, the Python interface allows tasks to be dynamically defined, so high-
level algorithms for molecular dynamics simulation and analysis can be coordinated with 
loop and conditional operations. Gmxapi makes GROMACS more accessible to custom 
Python scripting while also providing support for high-level data-flow simulation 
algorithms that were previously feasible only in external packages. 

Author Summary 
The gmxapi software provides a Python interface for molecular dynamics simulations in 
GROMACS.  In addition to simply wrapping GROMACS commands, it supports custom 
user plugin code, ensemble simulation, and data-flow chaining of commands.  As such, 
gmxapi enables the writing and execution of high-level simulation algorithms.  The 
software ships with GROMACS and is freely available under an LGPL2 license. 
 

Introduction  
As molecular dynamics simulations have become more complex and mature as scientific 
tools, typical simulation use is shifting from manual invocation of a few simulations and 
analysis tools to pre-defined simulation and analysis protocols, often involving many 
simulation trajectories. In addition, custom applications for advanced sampling[1-4] or 
molecular structure refinement[5-7] are becoming more common, where the molecular 
dynamics engine is used as part of a more complex data integration protocol. In these 
more complex use scenarios, toolchain and file-system management as well as execution 
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of many simulations can become limiting factors. As a result, many scientists either 
develop custom scripts, custom modifications of the simulation source code, or adapt 
general-purpose workflow engines[8-10] to molecular simulation tasks. There also exist 
some molecular-simulation-specific workflow engines, frequently coupled to the 
underlying molecular simulation code via command-line interfaces[11-16].  All of the 
above can be brittle, particularly without robust APIs for simulation interfaces to workflow 
engines. Integration of parallel analysis into unified jobs can also be challenging whether 
this is performed via built-in tool parallelism or user-level coding, such as Python 
multiprocessing packages or workflow/execution managers[9,10,12,13,17-19]. 
 
We previously reported on gmxapi 0.0.4[20], which allows Python driven molecular 
dynamics in GROMACS[21,22] to be extended at run time with custom researcher code. 
Here, we describe features present in gmxapi 0.2 and beyond, which offers both more 
advanced ensemble simulation logic and a feature-complete interface for GROMACS 
tools and analysis. This framework allows ensemble methods to be implemented with 
less code, and without patching an official GROMACS release. Data-flow-oriented 
programming logic and general paradigm for integrating new software tools further 
enhance the utility of the package. Both the libgmxapi C++ interface and the gmxapi 
Python package are now maintained and distributed with GROMACS; gmxapi 0.2 is 
integrated with GROMACS 2021, and gmxapi 0.3 is integrated with GROMACS 2022.  

Design and Implementation 
We outline distinguishing features and key user functionality of gmxapi, followed by a 
more technical design discussion.  Gmxapi offers a Python scripting interface maintained 
as part of the GROMACS software, and thus one basic feature is the ability to reproduce 
all GROMACS command-line calls.  This is done through a combination of native gmxapi 
calls such as gmxapi.mdrun() and a wrapper that permits any operation from the 
GROMACS command-line client:  gmxapi.commandline_operation(). These are 
illustrated in Figure 1a.  We also highlight three key additional features not possible with 
a simple wrapper script: built-in ensemble parallelism, composability, and plugins. 

Ensemble Parallelism 
Simulations are increasingly being performed not singly but as a collection of related 
tasks, which we will term an ensemble.  This collection could consist of a set of replicas 
sampling a thermodynamic ensemble, but it could also represent a parameter sweep 
across experimental conditions or a set of simulations with different starting 
conformations as part of an advanced sampling strategy.  Ensembles are treated as first-
class objects in gmxapi, and the python interface is designed to facilitate parallelism 
across such ensembles, which is in turn implemented by the gmxapi backend.  This is 
illustrated in Figure 1b.  The ability to flexibly and simply articulate high-level ensemble 
logic is thus a key feature of gmxapi. 
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Composability 
Another key design and usability feature of gmxapi is the notion of composability.  Similar 
to Tinkertoys, different calls to GROMACS commands through the API are designed to 
be plugged together.  This is illustrated in Figure 1c and has two advantages: a natural 
way to conceptualize a sequence of GROMACS calls (or calls to external programs that 
can use the gmxapi wrapper facility) and a way to parallelize using the ensemble logic 
and data-flow management by gmxapi. 

Plugins 
Gmxapi includes the ability to add user-defined plugins that can interact with GROMACS 
at runtime without modifying the GROMACS source.  Plugins are currently used to 
implement custom force routines; these run using the native GROMACS parallel 
decomposition and thus can benefit from parallelism as well as acceleration.  More details 
are given in the technical design section below. 

Technical Design 
We used pybind11[23] to implement Python bindings to a C++ API for the 
GROMACS[21,22] molecular simulation library. The design concept of gmxapi, as with 
many modern high-level interfaces, is for the user to construct a computational graph 
where execution is then managed by lower layers of the software stack. Similar to 
Keras[24], we recognize that explicit data-flow programming is not natural for all users 
and thus provide an interface where data-flow can be specified explicitly or implicitly. 
Figure 2 illustrates the gmxapi paradigm in which control signals and data are treated in 
the same framework. Branching and other control events require that some work is 
"dynamic", such that the complete workflow graph may not be determined until runtime. 
However, the workflow can be fully specified in terms of workflow commands and data 
primitives (Figure 3). 
 

Data flow formalism 
Data-flow formalisms have become increasingly popular in contemporary workflow 
engines due to their ability to separate work specification and task execution, permitting 
more straightforward resolution of dependencies and optimization of computation and 
data movement. For the same reasons, execution in gmxapi is deferred as much as 
possible to when and where it is required. The high-level gmxapi Python interface creates 
and executes a directed acyclic graph (DAG) specifying the computational work to be 
done. Nodes of the work graph represent discrete operations that produce and consume 
well defined inputs and outputs. Operation and data references in the work graph are 
proxy objects for the computational tasks and data until the graph is run. Execution 
management may be optimized by running only as much of the graph as necessary to 
satisfy explicit data dependencies. In addition, in order to minimize unnecessary data 
movement, most gmxapi operations do not transfer data from the C++ library to the 
Python interpreter unless explicitly requested by the user. When a gmxapi command is 
used to add work to the work graph, it returns a reference to the graph node representing 
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the operation. The operation’s output attributes may be used as inputs to further 
commands, and may be used as “Future” results, as discussed below. Calling “result()” 
on a Future forces dependency resolution and data localization. 

Python interface 
The gmxapi Python interface consists of five categories of operations: 1) typing and 
logical operations, 2) bound GROMACS API calls, 3) legacy GROMACS command-line 
operations, 4) utilities for user creation of new gmxapi operations, and 5) looping and 
conditional operations. These are described in sequence below. 
 
The simplest gmxapi operations manipulate signals, data topology, or typing. 
“join_arrays”, “logical_not”, and “make_constant” have strict definitions for inputs and 
outputs (Figure 3a). These operations are also composable: “concatenate_lists” is a 
helper function that reduces a number of inputs in terms of “join_arrays” (Figure 3b). 
 
The preferred mechanism for interfacing to GROMACS is via bound API calls. Commands 
like “read_tpr”, “modify_input”, and “mdrun” use a binary Python extension module written 
in C++ using pybind11 to interact with GROMACS operations and data through libgmxapi, 
which is a C++ library installed by default with recent versions of GROMACS. 
 
In order to provide legacy support for the full range of GROMACS command-line 
operations, “gmxapi.commandline.cli()” is a simple pure-Python gmxapi operation that 
wraps command-line tools. It is a thin wrapper of the Python “subprocess” module, so 
command inputs and outputs are embedded in the argument list parameter. Instances of 
“gmxapi.commandline.cli” are not by themselves conducive to DAG representations of 
data flow, so a helper function creates additional gmxapi primitives to provide a consistent 
set of named inputs and outputs. “gmxapi.commandline_operation()” generates a graph 
of gmxapi primitives around “cli” to translate input and output arguments into operation 
inputs and outputs, as specified by the user (Figure 3b). 
 
In order to provide extensibility, arbitrary user code can be transformed into a gmxapi 
operation by decorating a Python function definition with “@function_wrapper” (Figure 
3c). As an example, “commandline_operation” is written in this manner.  
 
Looping and conditional commands are critical to adaptive ensemble simulation[25] and 
thus form a key part of the gmxapi repertoire.  Conditional iteration takes the form of 
conventional gmxapi command syntax but relies on some metaprogramming under the 
hood. The “while_loop” command allows a graph to be dynamically extended as a chain 
of repeated operations, including fused operations constructed with the “subgraph” tool. 
A subgraph allows inputs and outputs to be expressed in terms of other gmxapi 
operations. When used with “while_loop”, internal subgraph state can be propagated from 
one iteration to the next to provide a consistent environment similar to a standard loop. 
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The work graph 
The work graph permits data flow topology to be represented independently from 
execution strategies or run time resource assignment details. An array of input sources 
provided to a command generates a corresponding set of tasks, such as for trajectory 
ensemble simulations. Because such ensembles may be coupled (and gmxapi currently 
does not have a mechanism to specify that an ensemble is uncoupled), arrays of 
simulations must currently be co-executed through the gmxapi mpi4py executor. 
Operations defined with “@function_wrapper”, including the other built-in operations, are 
assumed to be uncoupled, and are launched in a sequence determined by the DAG 
topology during recursive resolution of data dependencies, executed sequentially by the 
simple built-in gmxapi 0.1 executor.  
 
The work graph enables straightforward dependency resolution: commands are specified 
to operate on abstracted “handles” or references to work inputs rather than requiring the 
fully instantiated objects, so chains of simulations can be expressed where one command 
depends on the outputs of a prior command. Each individual command is then ready to 
execute once its inputs have been fully resolved. Because operations and data flow are 
represented as a DAG, arbitrarily complex topologies can be expressed unambiguously 
without unexpected side-effects. Trajectories can be forked or extended without re-
executing simulation segments or overwriting previous results. 

Execution and control flow 
The gmxapi interface enables several levels of control logic, described below. Native 
Python logic (if/else statements, for loops, etc.) can be used with gmxapi operations. 
However, since gmxapi operations construct a work graph that is then executed, 
expressing conditionals within this work graph requires special constructs rather than 
standard Python operators. Gmxapi therefore provides logic such as “while_loop” as an 
efficient way to express adaptivity within a sequence of gmxapi operations. Python-level 
logic can be utilized by forcing work graph execution using the result() method, which 
causes explicit execution of all code required to produce the requested result. In contrast, 
gmxapi-level logic operates on Futures and is thus deferred until graph execution. 
 
Gmxapi also provides low-level logic for simulation control and ensemble operators that 
can be used by third party code. For instance, gmxapi registers with the GROMACS 
“StopSignal” facility, enabling plugin code to stop a simulation based on external criteria, 
such as when a statistical estimator has converged. Additional examples of low-level 
operations include a “ReduceAll” to collect data across an in-flight ensemble. This 
operation can be used for adaptive updates across an ensemble of simulations, such as 
modifying biasing forces in restrained-ensemble simulations[26,27] or to update 
estimators and determine when a simulation ensemble should be terminated. 

Gmxapi as a means to extend MD code without source modification 
Gmxapi establishes a facility[28] for providing MD extension code to GROMACS during 
launch. Binary objects are then loaded at runtime via the Python interpreter. This allows 
custom code to be executed during the MD integration loop with minimal overhead. 
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Python facilitates plugin binding, but once the simulation launches, GROMACS and the 
extension code communicate directly via C++ interfaces, so there is no overhead added 
by Python. This extension code executes within the existing GROMACS parallelism 
framework, so it can take advantage of domain decomposition and MPI parallelism. Since 
this only requires a standard GROMACS installation with gmxapi, it permits flexible 
extension of the molecular dynamics code without modifying the main codebase or 
libraries. 
 
Gmxapi does not prescribe a C/C++ bindings strategy. We used pybind11 for GROMACS 
bindings, but Python interaction with compiled code relies only on the Python C API 
(PyCapsule) and the public libgmxapi C++ interface. 

Results 
Typical molecular dynamics workflows use a chain of tools to prepare simulation input, 
particularly command-line programs that take file locations as input and output 
arguments. Gmxapi is designed to permit connecting the output of any tool to the input 
for another tool with consistent Python syntax. Figure 4 illustrates a chain of GROMACS 
tools preparing simulation input, culminating with a call to "gmxapi.mdrun" to execute an 
array of simulations. 
 
To illustrate the application of gmxapi, we demonstrate refinement of an HIV gp41 
conformational ensemble based on DEER spectroscopy data.  We use a starting crystal 
structure for the BG505 SOSIP of HIV gp41[29] and previously reported DEER 
spectroscopy data of 5 different spin labels positions on this SOSIP[30].  The gp41 trimer 
was asymmetrically restrained (each of the three monomer-monomer distances was 
sampled separately), and the previously reported Bias-resampling ensemble refinement 
(BRER) algorithm for refining heterogeneous conformational ensembles[28] was applied.  
This involves a custom force plugin for GROMACS, and gmxapi was used to run an array 
of 250 refinement simulations, each randomly sampling target distance values from the 
experimental distribution for each measured spin-label pair. This array was executed in 
parallel on a supercomputing cluster, and accompanying example scripts demonstrate 
such a large-scale deployment. Further details are given in the Supplement. Full 
convergence of the refinement would require additional simulation sampling of the 15-
dimensional experimental distribution, but even after 24 wall-clock hours of simulation a 
reasonable sampling of the experimental distributions was obtained (Figure 5).  This 
application illustrates the ease of simulation ensemble management and application of 
custom biasing algorithms within GROMACS facilitated by gmxapi. 

Discussion 
Gmxapi provides a high-level Python interface for GROMACS with several key design 
features.  It permits easy chaining of commands (GROMACS or third-party analysis tools) 
to create pipelines.  Such pipelines can be parallel in nature, and gmxapi supports arrays 
or ensembles of simulations as first-class objects.  Finally, gmxapi has a plugin interface 
that enables custom user code to be executed as part of molecular dynamics force 
calculations without modifying the GROMACS source but still benefitting from GROMACS 
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native parallel decomposition.  These features provide distinct advantages over shell-
script-based workflows or simple Python wrappers for the GROMACS command-line 
interface. 
 
Gmxapi differs from many molecular dynamics scripting APIs in that it embraces a data-
flow programming paradigm while at the same time aiming for simplicity and ease of 
programming.  This is analogous to the Keras high-level deep learning library [24].  A 
data-flow approach simplifies treatment of dependencies in complex parallel workflows 
and has been adopted by a number of high-performance computational tools. 
 
Gmxapi scales well to high-performance clusters using MPI parallel interfaces.  Current 
versions do not, however, provide advanced scheduler management along the lines of 
the prior Copernicus software [11-12] or the Radical Cybertools toolkit [16].  Interfaces 
that permit integration of gmxapi with more advanced schedulers is planned for future 
work.  In comparison with Copernicus, gmxapi is a lighter-weight solution, integrating 
more closely with GROMACS and designed to facilitate much greater extensibility and 
ease of use but not including the advanced scheduler and client-server communication 
capabilities. 
 

Availability and Future Directions 
The libgmxapi C++ interface was released as part of GROMACS 2019 release and has 
been part of a standard GROMACS installation since 2020. Gmxapi 0.2 shipped with 
GROMACS 2021; version 0.3, described here, is part of the GROMACS 2022 release 
and contains further enhancements for ease of use and installation. Continued 
development of gmxapi will expand the number of bound GROMACS API calls and 
reduce the need for legacy command-line support as well as generalize the plugin 
interface.  At the programming level, one key future direction is exactly that—an increased 
use of the “Future” paradigm in Python. Python design patterns using Futures are 
becoming more widespread and standardized [14,31] as a way to refer to results that 
have not yet been calculated. Some additional refinement of the gmxapi Future protocol 
is needed to be fully compatible with native and third-party frameworks for concurrent or 
asynchronous program flow.   
 
Code and data availability are specified below: 
The gmxapi Python package is also maintained as part of the GROMACS repository at 
https://gitlab.com/gromacs/gromacs. It can be installed from the GROMACS source 
(https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/src) or from 
https://pypi.org/project/gmxapi/ with “pip”, but needs to be told which GROMACS 
installation to use. The documentation at https://manual.gromacs.org/current/gmxapi 
provides details. During installation, the gmxapi Python package builds a C++ extension 
module against the GROMACS installation.  Gmxapi tutorials are available from 
https://github.com/kassonlab/gmxapi-tutorials.  
 
Custom molecular dynamics extension code is illustrated in a “sample_restraint” package: 
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/sample_restraint. 
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BRER restraint potentials[28] are forked from this sample code and can be found at 
https://github.com/kassonlab/brer_plugin. Scripted BRER workflows are available at 
https://github.com/kassonlab/run_brer. The “run_brer” scripts were developed prior to 
gmxapi 0.1 and use internal logic to manage some data flow and to maintain workflow 
state. Both “run_brer” and “gmxapi” are being updated to illustrate that data flow and 
workflow state can be managed by the framework to allow simpler, more robust 
application code for applying new methods like BRER. Input data for the BRER example 
shown have been deposited at doi:10.5281/zenodo.5122931. 
 
Gmxapi issues are tracked with the label “gmxapi” at 
https://gitlab.com/gromacs/gromacs/-/issues. Code contributions follow the GROMACS 
contribution procedure (https://manual.gromacs.org/current/dev-manual/contribute.html). 
However, gmxapi is intended to allow for maximal extensibility without requiring 
modification to the sources. 
 
A discussion forum is available at https://gromacs.bioexcel.eu/tag/gmxapi.  
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Figures 
 

 
 
Figure 1: gmxapi usage examples.  Panel (a) shows an example of the 
commandline_operation function by which gmxapi can reproduce any GROMACS 
functionality. Panel (b) shows gmxapi molecular dynamics calls operating on ensemble 
input, providing straightforward high-level parallelism in addition to parallelization within 
each command. Panel (c) demonstrates both a while loop and pluggability of gmxapi 
components.  Together, the examples will execute an ensemble of small protein folding 
simulations until at least one ensemble member samples the native state.  

args = ['pdb2gmx', '-ff', 'amber99sb-ildn', '-water', 'tip3p']
input_files = {'-f': os.path.join(input_dir, 'start0.pdb')}
output_files = {
        '-p': os.path.join(cmd_dir, 'topol.top'),
        '-i': os.path.join(cmd_dir, 'posre.itp'),
        '-o': os.path.join(cmd_dir, 'conf.gro')
    }
make_top = gmx.commandline_operation('gmx', args, input_files, output_files)

grompp_input_files = {’-f’: os.path.join(cmd_dir, ‘grompp.mdp’),
                      ‘-c’: make_top.output.file['-o’],
                      ‘-p’: make_top.output.file['-p’]}
# make array of inputs
N = 50
grompp = gmx.commandline_operation('gmx', ['grompp'], grompp_input_files * N,
                                   {'-o': os.path.join(cmd_dir, 'run.tpr')})
tpr_input = grompp.output.file['-o'].result()
input_list = gmx.read_tpr([tpr_input])
md = gmx.mdrun(input_list)
md.run()

subgraph = gmx.subgraph(variables = {'found_native': False, 'checkpoint': '', 'min_rms': 1e6})
with subgraph:
  md = gmx.mdrun(input_list, runtime_args={'-cpi': subgraph.checkpoint, ‘-maxh’: '2'})
  subgraph.checkpoint = md.output.checkpoint
  rmsd = gmx.commandline_operation('gmx', ['rms'],
                                   input_files={'-s': reference_struct,
                                                '-f': md.output.trajectory},
                                   output_files={'-o': 'rmsd.xvg'}, stdin='Backbone Backbone')
  subgraph.min_rms = numeric_min(xvg_to_array(rmsd.output.file['-o']).output.data).output.data
  subgraph.found_native = less_than(lhs=subgraph.min_rms, rhs=0.3).output.data
folding_loop = gmx.while_loop(operation=subgraph, condition=logical_not(subgraph.found_native))()
folding_loop.run()

a.

b.

c.

gmxapi command-line
operation

gmxapi command
on ensemble input

looping and pluggability
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Figure 2: Schematic of data flow and control flow for a segment of a complex simulation 
workflow. Ensembles of simulations can be run (denoted by stacked rectangles) by 
gmxapi merely by passing an array of inputs instead of a single input. Custom plugins 
can interact with running MD simulations. Finally, conditional and looping logic can 
create high-level simulation algorithms. 
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Figure 3: Schematics for gmxapi operations. As shown in panel (a), gmxapi operations 
have well defined inputs and outputs. These can operate on arrays of inputs and also 
include support for legacy GROMACS operations by wrapping the command-line 
toolset, as shown in panel (b). As shown in panel (c), the decorator @function_wrapper 
allows arbitrary user code to be transformed into a gmxapi operation. 
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Figure 4: Detailed diagram of inputs, outputs, and operations in a chain of gmxapi 
operations. Operations are shown in green boxes, the corresponding nodes in the work 
graph in red boxes, inputs in orange boxes, and outputs in blue boxes. The diagram 
depicts a chain of GROMACS tools preparing simulation input, feeding into 
"gmxapi.mdrun" to run a batch of simulations. 
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Figure 5: Residue-residue distance distributions in a simulated ensemble of HIV gp41. 
DEER spectroscopy was used to measure distance distributions between two 
monomers of the gp41 trimer. Thus, each residue designates a monomer-monomer 
residue pair. Panels a-e show plots for the 5 restrained residues in the HIV trimer: 106, 
173, 202, 306, and 542 respectively. Discretized DEER distance distributions are 
plotted in green, and simulation results are plotted in blue bars. The simulation 
ensemble shows good convergence to the measured values. 
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