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Electric field control of phonon angular momentum in perovskite BaTiO3
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We find that in BaTiO3 the phonon angular momentum is dominantly pointing in directions perpendicular to
the electrical polarization. Therefore, the external electric field in ferroelectric BaTiO3 does not control only the
direction of electrical polarization but also the direction of the phonon angular momentum. This finding opens
up the possibility of electric field control of physical phenomena that depend on phonon angular momentum. We
construct an intuitive model, based on our first-principles calculations, that captures the origin of the relationship
between phonon angular momentum and electric polarization.
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I. INTRODUCTION

In a semiclassical picture, phonon modes with angular
momentum consist of ions moving about their equilibrium
positions either along elliptical or circular paths [1–3]. Recent
experiments have probed such phonon angular momentum in
WSe2 with circularly polarized light [4]. Furthermore, these
phonons have been observed to couple to chiral excitons [5,6]
and predicted to couple to topological magnons [7]. Phonon
angular momentum is hypothesized to play a key role in
the Einstein–de Haas effect [2,8], phonon magnetic moment
[9], dynamical multiferroicity [10], phonon (angular momen-
tum) Hall effects [11,12], anomalous thermal expansion [13],
negative thermal Hall conductivity [14], and phonon angular
momentum is predicted to be controllable via temperature
gradients [15,16], phonon rotoelectric effect [17], or by strain-
ing, doping, and applying a magnetic field in graphene [18].
Phonons with angular momentum were discussed not only in
the context of crystalline phases of matter, but also in chiral
metamaterials [19,20] and in plasmas [21].

While some material properties, such as the first-order
Raman process, involve phonon excitations at a single point in
the Brillouin zone, in this work we focus on physical phenom-
ena that involve phonons at an arbitrary point in the Brillouin
zone. For example, we are interested here in processes such as
the ultrafast electron and phonon dynamics following optical
excitation of a material. Since optical excitations can occur
at an arbitrary point in the Brillouin zone, the relevant elec-
tronic and phonon states also occur at arbitrary points in the
Brillouin zone.

Therefore, we need to consider here which group of mate-
rials will allow for phonon angular momentum at an arbitrary
nonsymmetric point of the Brillouin zone. If we restrict our-
selves to the nonmagnetic materials, then following Ref. [22]
we see that any nonmagnetic material with a broken inver-
sion symmetry will generally have a nonzero phonon angular
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momentum at a generic nonsymmetric point in the Brillouin
zone. Therefore, in this work we focus on nonmagnetic mate-
rials with broken inversion symmetry.

Materials with broken inversion symmetry (noncentrosym-
metric materials) are either polar or nonpolar. In the case of a
nonpolar material, such as WSe2, the inversion symmetry is
broken but the material has no dipole moment. Therefore, the
angular momentum of phonons that arises in a material such
as WSe2 will be frozen in the structure, without any way to
control it by application of some external perturbation such as
an electric field. On the other hand, the angular momentum of
phonons in a polar material, such as BaTiO3, arises from the
displacement of atoms relative to the nonpolar parent crystal
structure (in this case cubic). Therefore, depending on the
direction and magnitude of the atomic displacements, which
can be controlled in ferroelectric BaTiO3 with an electric
field, it can be expected that the phonons in the material
acquire different directions and magnitudes of phonon angular
momentum. Consequently, physical phenomena that rely on
phonon angular momentum could then also, in principle, be
controlled with an external electric field.

In this paper, we report on our calculation of the tetragonal
and rhombohedral polar phases of BaTiO3. We find that in the
tetragonal phase of BaTiO3 the average phonon angular mo-
mentum perpendicular to the polar axis is approximately six
times larger than along the polar axis. Due to this anisotropy,
the reorientation of the polar axis in tetragonal BaTiO3 could
be used to control physical phenomena that depend on the an-
gular momentum of phonons. We present a simplified model
and provide symmetry arguments to understand the origin
of the relationship between the direction of the phonon an-
gular momentum and the polar axis. We also computed the
phonon angular momentum anisotropy in the rhombohedral
phase and found that the anisotropy is three times smaller than
in the tetragonal phase. Although we focus here on BaTiO3

we expect similar effects to occur in other polar perovskites
[23–26].

In Sec. II we define some key expressions for phonon an-
gular momentum, then we discuss our first-principles results
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for the tetragonal phase in Sec. III. In Sec. IV, we study the
phonon angular momentum as we smoothly transform the
crystal from polar to nonpolar phase. In Sec. V, we study
the origin of phonon angular momentum anisotropies with
a simple model based on our first-principles calculations. In
Sec. VI, we study the phonon angular momentum in rhombo-
hedral BaTiO3, and then in Sec. VII we conclude and discuss
some possible experiments to observe our predictions.

II. METHODS

We used the density functional theory approach, as imple-
mented in the computer package QUANTUM ESPRESSO [27,28],
to compute relaxed structures and phonons for bulk BaTiO3.
We use the PBEsol exchange-correlation functional [29]. The
ionic potentials are represented with ultrasoft pseudopoten-
tials [30]. We used the kinetic-energy cutoff of 50 Ry for the
electron wave function and 500 Ry cutoff for the charge den-
sity. We sample the electron Brillouin zone on a 6×6×6 mesh.
Our resulting cubic lattice parameter (3.977 Å) and tetragonal
parameters (a = 3.962 Å and c = 4.058 Å) match previously
reported theoretical results [31]. We used the linear response
method [32] to compute dynamical matrices on the 6×6×6
mesh in the phonon Brillouin zone. We later interpolated this
coarse mesh to denser 30×30×30 q meshes using postpro-
cessing tools in QUANTUM ESPRESSO. Crystal visualizations
were created with the VESTA [33] package.

We denote phonon eigenvectors of the dynamical matrix
with ξ iα

qν , where i is the atom index in the crystal basis, α is the
direction of atomic displacement, while q and ν are the linear
momentum vector and branch index. The matrix of reciprocal
space interatomic force constants is denoted as Fαβ

i j (q) using
the same conventions. We obtain the real-space interatomic
force-constant matrix by the following Fourier transform:

Fαβ
i j (R) =

∑
q

e−iq·RFαβ
i j (q). (1)

Therefore, Fαβ
i j (R) measures the force induced on the atom i

in the direction α due to the displacement of the atom j in the
direction β. Atoms i and j are generally in different unit cells,
separated by a lattice vector R.

Given a generic phonon eigenvector ξ iα
qν , one can compute

its angular momentum lqν following Refs. [1,2,34]:

lzqν =
∑
i

2h̄
[
Re

(
ξ ix
qν

)
Im

(
ξ iy
qν

) − Re
(
ξ iy
qν

)
Im

(
ξ ix
qν

)]
. (2)

Similar expressions hold for the x and y components of the
phonon angular momentum. As the expression above is writ-
ten as a sum over atoms in the unit cell, we can also define for
purposes of analysis the contribution of a single atom i to the
phonon angular momentum as

l izqν = 2h̄
[
Re

(
ξ ix
qν

)
Im

(
ξ iy
qν

) − Re
(
ξ iy
qν

)
Im

(
ξ ix
qν

)]
. (3)

III. RESULTS AND DISCUSSION

BaTiO3 is a prototypical perovskite material with a struc-
tural motif consisting of corner-shared Ti-O octahedra. We
show the relevant phases of BaTiO3 and their associated polar
displacement directions in Fig. 1. Above 390 K, BaTiO3 can

(a) (b) (c)

FIG. 1. Unit cells of BaTiO3 in (a) cubic, (b) tetragonal, and
(c) rhombohedral phases. Ba, Ti, and O atoms are colored green,
blue, and red, respectively. In (b), we color apical oxygen atoms in
darker shade of red. In (b) and (c) polarization vectors are shown
with black arrows.

be described as having an average centrosymmetric structure
Pm3̄m with a Ti atom in the center of the octahedron [see
Fig. 1(a)] [35,36]. Since this structure has inversion symmetry,
phonons in such material will have zero angular momentum.

Between 280 and 390 K, BaTiO3 is in a noncentrosymmet-
ric and polar structure with the space group P4mm. Oxygen
atoms that are in the same plane as titanium atoms are labeled
planar oxygens, while those along the tetragonal axis are
labeled apical oxygens. In the tetragonal phase, polarization
develops along one of the pseudocubic axes. In this paper we
choose the polarization P to point along the [001] direction,
as shown in Fig. 1(b). Since inversion symmetry is broken,
a generic (nonsymmetric) phonon in tetragonal BaTiO3 will
now have a nonzero angular momentum lqν . In other words,
generically, a phonon will correspond to the elliptical mo-
tion of atoms about their equilibrium positions, resulting in
a nonzero lqν . Furthermore, since time reversal remains a
symmetry in BaTiO3 the phonon angular momentum for a
given branch at q and −q will be opposite to each other.1

Therefore, the total angular momentum, summed over all q
points, will be zero, as dictated by the time-reversal symmetry.

At even lower temperatures, between 190 and 270 K,
BaTiO3 is in a Amm2 structure with polarization pointing
along the [011] direction. Lastly, below 15 K, BaTiO3 is in
a rhombohedral space group R3m with polarization point-
ing along the pseudocubic [111] direction, as we show in
Fig. 1(c).

A. Tetragonal phase

Now we discuss the calculated phonon angular momentum
in the tetragonal phase of BaTiO3. The distribution of angular
momentum lqν is complicated by the fact that all 15 phonon
branches have nonzero lqν at generic q. An additional compli-
cation is that lqν greatly varies as a function of q, especially
near the regions where different phonon branches are close in
frequency. Therefore, for simplicity, we first analyze the angu-
lar momentum of the phonons averaged over branches ν and
wave vectors q over the entire Brillouin zone. An additional
reason for taking the average phonon angular momentum is

1If system has an inversion symmetry but the time-reversal symme-
try is broken, then the phonon angular momentum at q and −q has
the same sign.
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that in this work we are motivated to explore possible physical
phenomena that involve electron and phonon dynamics across
the Brillouin zone. For example, in Sec. VII we suggest a
possible way to affect ultrafast demagnetization in a magnet
in close proximity to a ferroelectric such as BaTiO3. Optical
excitation of such a magnet will then generally create electron
excitations across the entire Brillouin zone. Details of the
optical excitation will depend on the joint density of states
of the metal at the optical excitation energy. Therefore, to
get a quantitative measure of the phonon angular momentum
in BaTiO3, we decided to simply compute the averages of
the phonon angular momenta taken over all q points in the
Brillouin zone.

Since in the tetragonal phase polarization P is pointing
along the [001] direction we can expect that the averaged
phonon angular momentum vector l will have a different
magnitude along P and perpendicular to P. For this reason,
we define the averages of l perpendicular to P,

〈l tet⊥ 〉 = 1

NqNν

∑
q

∑
ν

√
(lqν · n̂100)2 + (lqν · n̂010)2, (4)

and along P,

〈l tet‖ 〉 = 1

NqNν

∑
q

∑
ν

|lqν · n̂001|. (5)

Here, n̂ is the unit vector along the subscripted crystal direc-
tion. [Note that averaged quantities defined in Eqs. (4) and
(5) are not affected by the phonon angular momentum at
high-symmetry points, lines, or planes, as those parts of the
Brillouin zone have zero volume and thus do not contribute
to the sum when using a dense enough grid of q points.] We
perform averages over positive-definite values, as otherwise
phonon angular momenta at q and at −q would cancel each
other out. The calculated values of the averaged angular mo-
menta are the following:

〈l tet⊥ 〉 = 0.154 h̄, 〈l tet‖ 〉 = 0.024 h̄.

Therefore, the angular momentum is about six times greater
in the plane perpendicular to the polarization P than along
P. We also note that the magnitude of the average angular
momentum is also somewhat large in absolute terms, as the
maximum possible phonon angular momentum is h̄. There-
fore, the angular momentum of phonons in tetragonal BaTiO3

reaches on average about 15% of the largest possible value.
The estimates of phonon angular momentum in the earlier
literature are often reported in systems where the presence
of phonon angular momentum is based on the application
of an external perturbation. Furthermore, the phonon angu-
lar momentum is usually summed over all phonon branches
and q vectors and weighted by the thermal Bose-Einstein
factor. Therefore, a direct comparison with our result is not
straightforward since the quantities of interest for our work
are the sums defined in Eqs. (4) and (5). Nevertheless, we
briefly summarize here the phonon angular momentum found
in earlier work. For example, Ref. [2] reports that in CeF3

at an external magnetic field of 6 T the thermally averaged
phonon angular momentum is around 0.02 h̄ per one unit cell.
Similarly, Ref. [17] reports that the average phonon angular
momentum in Cr2O3 under 10 V/mm electric field is around

FIG. 2. Two-dimensional histograms showing phonon angular
momentum distributions in plane perpendicular to P (top) and in
plane containing P (bottom) for tetragonal phase of BaTiO3. Data are
weighted according to the magnitude of phonon angular momentum.
Blue colors indicate phonon angular momenta with few represen-
tative phonons, while red and yellow regions indicate regions with
many phonons.

10−8 h̄ per unit cell. Other works deal with situations such as
high-symmetry points in the Brillouin zone, where the phonon
eigenvector is fully circularly polarized with the phonon angu-
lar momentum of ±h̄ [9,15,34].

Now, we discuss the distribution of lqν over the phonon
wave vectors q and branches ν in the first Brillouin zone.
Figure 2 contains two-dimensional histograms showing the
fraction of phonons with an angular momentum vector point-
ing in the directions perpendicular to the polarization (top:
x-y plane) and the plane containing the polarization direction
(bottom: x-z plane). From Fig. 2, once again, we see that
the phonon angular momentum has a z component that is
negligible compared to x and y, consistent with our earlier
finding.

While the phonon angular momentum is dominantly within
the x-y plane, we find that there are additional anisotropies
within the plane itself. As can be seen from the top panel of
Fig. 2 the phonon angular momentum tends to point along
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specific crystallographic directions. To analyze the anisotropy
in the plane perpendicular to P in more detail, we divide
phonons into three groups: those with angular momentum
pointing within ±5◦ of either [100] or [010], those with an-
gular momentum pointing dominantly along [110] or [1̄10]
directions, and the remaining phonons. We find that 30% of
the total phonon angular momentum is in the first group,
17% in the second, while the remaining angular momentum
is in the third group. Therefore, nearly half of the phonon
angular momentum is located within ±5◦ of [100], [110], and
symmetry-related directions.

B. Contribution of individual atom types

Next, we analyze the contribution of each atom type to the
phonon angular momentum. We focus on angular momentum
in the x-y plane, perpendicular to P, as the angular momentum
along z is small. Given the contribution of the atom i to the
angular momentum of the phonon at the wave vector q and
branch ν, l iqν , defined in Eq. (3), we compute the following
average for each atom i:

〈l tet⊥ 〉i = 1

NqNν

∑
q

∑
ν

√(
l iqν · n̂100

)2 + (
l iqν · n̂010

)2
. (6)

We find that the average contributions of Ba and Ti to the
angular momentum are 0.03 h̄ and 0.04 h̄. Each of the pla-
nar oxygen atoms contributes 0.07 h̄ to the average angular
momentum. Apical oxygen has a somewhat smaller contri-
bution 0.05 h̄. Therefore, we conclude that about 54% of the
total phonon angular momentum comes from planar oxygen
atoms. [We note that the sum of individual atom contributions
(0.26 h̄) is larger than total 〈l tet⊥ 〉 (0.15 h̄) as contributions
from different atoms partially cancel each other.] To check
whether averages are different if planar O rotates along the
Ti-O bond or perpendicular to it, we separately computed
angular momentum averages along x and y directions:〈

l tetx

〉
i = 1

NqNν

∑
q

∑
ν

∣∣l iqν · n̂100
∣∣, (7)

〈
l tety

〉
i = 1

NqNν

∑
q

∑
ν

∣∣l iqν · n̂010
∣∣, (8)

We find that the contribution of the planar oxygen is only
slightly larger in the direction along the Ti-O bond (0.05 h̄)
than perpendicular to the bond (0.04 h̄).

We also wish to understand the importance of ionic masses
on the phonon angular momentum in BaTiO3. Therefore, we
decided to change the individual ionic masses used in our
calculation by hand. We keep the force-constant matrices
unchanged. We find that the largest increase of the phonon
angular momentum (+30%) occurs when we set all masses
equal, while the largest decrease of the phonon angular mo-
mentum (−12%) corresponds to setting the Ba mass at a value
much smaller than that of Ti and O. This is what one would
expect based on the argument from the perturbation theory.
For example, if all ionic masses are similar, then one would
expect that the atomic vibrations of all ions would have a
similar frequency, there would be more hybridization between
the phonons, and thus there would be a larger overall angular
momentum of the phonon.

TABLE I. Optimal values of coefficients Cα
i obtained by solving

Eq. (11). Large positive value ofCα
i indicates that large displacement

of ith phonon in direction α correlates with large phonon angular
momentum. Polarization P points along the z axis. Data for the planar
oxygen in the table correspond to the planar oxygen for with the Ti-O
bond pointing along the y axis.

Ba Ti O planar O apical

Cx
i 0.04 −0.01 0.05 −0.04

Cy
i 0.04 −0.01 0.01 −0.04

Cz
i 0.05 0.07 0.15 −0.02

C. Relevant displacements of atoms

We have shown in an earlier subsection that planar oxygens
are the main contributors to the phonon angular momentum
in tetragonal BaTiO3. Now we focus on determining which
atomic displacements ξ iα

qν are primarily responsible for the
angular momentum of the phonon.

We start by defining

cqν =
∑
iα

Cα
i

∣∣ξ iα
qν

∣∣A, (9)

dqν =
[∑

α

(
lαqν

)2]B

. (10)

Here A, B, and Cα
i are the fitting parameters that we will

discuss later. Quantity cqν is a descriptor of a single-phonon
mode. This descriptor depends only on the absolute value
of the phonon eigenvector component ξ iα

qν . Therefore, cqν de-
pends only on the magnitude of the atomic displacements, not
on the relative phase between the atomic displacements. The
second quantity dqν is simply the square of the norm of the
phonon angular momentum vector raised to the Bth power. To
establish the relationship, if any, between the two descriptors
cqν and dqν , we seek to find parameters A, B, and Cα

i that
minimize the difference between cqν and dqν . In other words,
we wish to solve the following problem:

min
A,B,Cα

i

∑
qν

(cqν − dqν )
2. (11)

This approach is very similar to the least-squares fitting
method. Clearly, if we find A, B, and Cα

i for which there is
a good correlation between cqν and dqν , then a large value of
coefficientCα

i can be interpreted as follows: phonons that tend
to have a large (in magnitude) displacement of the ith atom in
the direction α also tend to have a large angular momentum
of the phonon. Similarly, a small value of Cα

i means that
displacement of ith atom in direction α does not correlate with
the magnitude of the phonon angular momentum.

Numerically minimizing Eq. (11) gives optimal values
of A and B close to 1

2 . Optimal values of Cα
i are given in

Table I. Figure 3 shows a two-dimensional histogram indi-
cating a strong correlation between quantities cqν (horizontal
axis) and dqν (vertical axis). This two-dimensional histogram
is constructed by binning individual phonons over all q points
in the dense 303 q mesh and all 15 phonon branches ν. We
plot the histogram in Fig. 3 with an optimal choice of A,
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FIG. 3. Histogram showing correlation between phonon angular
momentum magnitude (vertical axis) and character of atomic mo-
tion (horizontal axis) for tetragonal BaTiO3. Quantities on the axes
(cqν and dqν) are explained in the main text. Yellow and red colors
represent large density of phonon states while dark red and black
bins represent low density. Data here are shown for optimal values of
parameters A, B, andCα

i used in Eq. (11).

B, and Cα
i we obtained by numerically minimizing Eq. (11).

Before analyzing numerical values of optimal componentsCα
i ,

first we briefly discuss their norm over Cartesian directions.
We find that the norm is nearly the same for Ba, Ti, and
apical oxygen (0.07), while it is significantly larger (0.16) for
each of the two planar oxygens. This is consistent with the
analysis in the previous subsection showing that most of the
contribution to the phonon angular momentum comes from
planar oxygens.

Now, we focus on individual coefficients Cα
i given in

Table I. For planar oxygens, we find that the coefficient value
is 0.15 for displacement along the z axis, that is, parallel to
P, while the values for displacements in the x-y plane are
significantly smaller, 0.05 and 0.01. The smaller value (0.01)
corresponds to the displacement of planar oxygen along the
Ti-O bond, while 0.05 is for the displacement perpendicular
to the bond.

For the Ti atom, we find that the coefficient Cα
i for

displacement along the P direction is 0.07, while the in-
plane displacements of the titanium atom are effectively
uncorrelated since the corresponding coefficients are −0.01.
Coefficient Cα

i for Ba atom both parallel to P and in plane
is 0.04. The apical oxygen atom has a relatively weak but
negative coefficient of −0.04 for displacements in the x and y
directions.

Therefore, we conclude that phonons that predominantly
involve displacements of planar oxygen and titanium atoms
parallel to P are the ones that are the most correlated
with a large angular momentum. Clearly, modes that have
phonon angular momentum must also involve motion in some
direction perpendicular to P, as otherwise Eq. (3) would give
zero angular momentum.

FIG. 4. Phonon angular momentum vectors in the vicinity of
q= [ 12 0 0] for one of the optical branches in tetragonal BaTiO3 (see
text for more detail). The arrows are proportional to the phonon
angular momentum with the largest arrow corresponding to 0.041 h̄.

D. Example: Modes near inversion-symmetric points

After analyzing the distribution of the phonon angular
momentum over the entire Brillouin zone, we now focus on
one representative region of the Brillouin zone, near the X
point. In the cubic phase of high symmetry, there are three
X points which all map onto themselves under inversion.
At each X point, there are five double-degenerate phonon
branches, whereas the remaining phonons are nondegenerate.
In the tetragonal phase, with the polar axis chosen along the z
axis, the three equivalent face centers are reduced to two. At
points [ 12 , 0, 0] and [0,

1
2 , 0] each of the five previously doubly

degenerate branches is split. We choose to study as an example
one of the branches that dominantly came from previously
doubly degenerate modes.2 The frequency of this particular
mode is 9.4 THz and it mainly involves motions of oxygen
atoms. We parametrize the linear momentum of phonons in
the vicinity of the high-symmetry point as

q = [εx + 1/2, εy, εz]

for a small value of εx, εy, and εz. The calculated correspond-
ing phonon angular momentum is

(lx, ly, lz ) ∼ (5εy, εx, 0)

within the first order in ε’s. The linear dependence of l on ε

is a consequence of the fact that a given phonon branch at q
and −q has opposite phonon angular momentum. Therefore,
at lowest order in the Taylor expansion we expect that l scales
with a first power of ε.

2For purposes of this example calculation, we used here structure
of BaTiO3 that is interpolated between cubic and tetragonal phases.
More precisely, we set λtet parameter (defined in Sec. IV) to 0.2.
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FIG. 5. Phonon angular momentum average in tetragonal BaTiO3 reaches 15% of its maximum possible value. Horizontal axis (λtet)
parametrizes the atomic displacements, along with changes in the lattice constants, as BaTiO3 transitions from cubic (λtet = 0) to polar
tetragonal (λtet = 1). Vertical axis shows calculated average angular momentum per phonon, in a tetragonal phase of BaTiO3, as a function of
λtet in directions perpendicular (left) to P and parallel (right) to P.

Furthermore, we find that the lx Cartesian component is
proportional to εy while ly component is proportional to εx.
Therefore, if one moves away from the high-symmetry point,
the phonon angular momentum winds around it once. The
phonon angular momentum given in the above equation is
indicated by the black arrows in Fig. 4.

IV. SATURATION OF PHONON ANGULAR MOMENTUM

In the previous section, we focused on the dependence
of the phonon angular momentum on the direction of polar
atomic displacements, and thus polarization P. Now we an-
alyze the dependence of the phonon angular momentum on
the magnitude of the polar atomic displacements. To check
the dependence of phonon angular momentum on the polar
displacement magnitude, we linearly transform the crystal
structure from the cubic phase to the tetragonal phase. We
parametrize structures between cubic and tetragonal with the
parameter λtet. By definition, when λtet = 0 atom positions
(free parameters in Wyckoff orbits) and lattice parameters
correspond to the cubic phase. Similarly, λtet = 1 corresponds
to the polar tetragonal phase. When 0 < λtet < 1 the structural
parameters are linearly interpolated between the cubic and
polar tetragonal phases.

For small atomic displacements, and thus small λtet, the
phonon angular momentum in BaTiO3 is by symmetry lin-
early proportional to polar atomic displacement parametrized
by λtet. This is easy to see, as parameter λtet, polarization
P, and phonon angular momentum lqν all change sign under
inversion symmetry present in the bulk. Therefore, in the
lowest order of Taylor expansion lqν is proportional to the first
power of λtet. Since lqν ∼ λtet, one might hope that in some
hypothetical material with even larger polar displacement than
BaTiO3 one might find even larger phonon angular momen-
tum. Nevertheless, our analysis shows that this scenario is
unlikely to happen, at least not in ABO3 perovskites.

Figure 5 shows the averaged phonon angular momentum
as a function of λtet between 0 and 1. The left panel of Fig. 5
shows the average phonon angular momentum in the plane
perpendicular to P, while the right panel shows the average
phonon angular momentum along P. By power-law fitting

for small λtet we find that the average angular momentum is
linearly proportional to small Ti displacement.

For λtet above 0.5 the angular momentum averages saturate
to a constant value and do not change significantly as λtet is
increased from 0.5 to 1.0. As we are about to see in Sec. V,
when λtet is around 0.5 some of the Ti-O bonds break and re-
main broken in the entire range from 0.5 to 1.0. We speculate
that the phonon angular momentum saturation is the result of
these Ti-O bonds breaking at λtet ≈ 0.5.

Therefore, we expect that phonon angular momentum in a
ferroelectric such as BaTiO3 cannot be increased further by
simply increasing the polar displacement. We note that the
ratio between the angular momentum in the plane and parallel
to P is around 5–6, regardless of the value of λtet.

V. ORIGIN OF ANISOTROPIES

In Sec. III A we have shown that the phonon angular mo-
mentum in tetragonal BaTiO3 is asymmetric in two ways.
First, the angular momentum is about six times greater in the
plane perpendicular to polarization P than along P. Second,
the angular momentum in the plane perpendicular to P is sig-
nificantly stronger along certain crystallographic directions.
In this section, we study the origin of these anisotropies by
studying the anisotropy in the calculated interatomic force
constants.

The interatomic force constants Fαβ
i j (R) are composed of

both short-range interactions (FSR) and long-range dipole-
dipole interactions (FDD) [37] However, it is unclear in our
case whether short-range or long-range interactions are more
relevant for the calculated phonon angular momentum. For
this reason, we performed a hybrid calculation, in which we
set the dipole-dipole interaction strength to zero and recal-
culated the angular momentum of all phonons. Technically,
we did this by setting the diagonal components of the elec-
tronic part of the electron permittivity ε∞ to infinity instead
of using the calculated value. With this hybrid approach, we
find that 〈l tet‖ 〉 slightly increases from 0.02 h̄ to 0.04 h̄, while
〈l tet⊥ 〉 decreases from 0.15 h̄ to 0.11 h̄. Therefore, the angular
momentum is still anisotropic, and we are justified in focus-
ing on the short-range part of the interatomic force constant.
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FIG. 6. Magnitude of interatomic forces k jR
i between titanium

and the nearest-neighboring apical oxygen atoms as a function of λtet

(defined in Sec. IV). Solid black line corresponds to the Ti-O bond
which shortens with λtet . Orange color corresponds to the elongated
Ti-O bond. These bonds are also indicated in the inset. For λtet above
roughly 0.5, the elongated bond is effectively broken as calculated
k jR
i tends to zero. Indices i, j, and lattice vector R are selected so
that the value of k jR

i used in the plot corresponds to the pairs of
nearest-neighboring Ti and apical O atoms.

Furthermore, to simplify the analysis, we do not consider here
the entire 3×3 matrix Fαβ

i j (R) but rather the magnitude k jR
i

summed over Cartesian directions
∑

αβ |Fαβ
i j (R)|. We use k jR

i
to measure the strength of interatomic forces between the
atom i in the home cell R = 0 and the atom j translated by
the lattice vector R.

First, we study the interatomic force strengths in the cu-
bic phase and then compare them to those in the polar
tetragonal phase. In the cubic phase, the strongest interaction
strength k jR

i is 0.06 Ry/bohrs2, corresponding to the nearest-
neighboring Ti and O atoms. This observation is consistent
with the fact that there is a strong covalentlike bond between
the nearest-neighboring Ti and O atoms. In the tetragonal
phase, with Ti displaced along P, the strength of interac-
tion between Ti and planar oxygens increases from 0.06
to 0.09 Ry/bohrs2. As shown in Fig. 6, the change in the
interaction with apical oxygen is even more drastic since
the displacement of the Ti atom significantly changes the
length of the bond to apical oxygen. The strength of the
interaction between Ti and the apical O with a short bond
increases to 0.28 Ry/bohrs2 (solid line in Fig. 6) while the
interaction along the elongated bond (in the home cell R = 0)
is reduced to only 0.005 Ry/bohrs2 (dashed line in Fig. 6),
as expected for an effectively broken covalentlike bond. Be-
cause one of the apical oxygens effectively does not interact
with the Ti atom, we conclude that the covalently bonded
three-dimensional network of Ti and O atoms in the cubic
phase has been essentially reduced to a quasi-two-dimensional
network of Ti and O atoms in the tetragonal phase. Next,
we analyze the character of the interatomic forces within the
two-dimensional plane of atoms. As discussed in Sec. III C the
phonon angular momentum dominantly comes from a motion
of Ti and planar O atoms. Therefore, we do not include in the
discussion Ba or apical O atoms.

FIG. 7. Planar oxygen atoms are shown with solid red circles
while titanium atoms are shown with solid blue circles. We find
that the atomic interactions in BaTiO3 are strong along the . . .-Ti-
O-Ti–O-. . . chains. These chains are indicated with gray color. To
characterize the strength of the bonds within the chain we summed
the force constant matrix elements (k jR

i ) for all pair of atoms in the
same chain (pair are indicated with green lines in the top panel). The
resulting sum is 0.92 Ry/bohrs2 per one atom. Interactions between
two chains are indicated with pink lines (bottom panel). These in-
teractions are about three times smaller, as sum of k jR

i adds up to
0.31 Ry/bohrs2 per one atom.

Now, we further decompose the quasi-two-dimensional
network of Ti and planar O atoms. We consider the planar
network of Ti and O atoms as a series of separate subsystems,
each consisting of infinite one-dimensional chains of Ti and
planar O atoms. These chains are indicated in gray in Fig. 7.
With such a decomposition, we can now quantify the inter-
atomic forces within a single chain and between chains. To
quantify interactions along a single . . .-Ti-O-Ti-O-. . . chain
of atoms, we sum k jR

i over all i and jR corresponding to the
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same chain. These interactions are shown by green lines from
atom i to atom jR in the top panel of Fig. 7. The resulting sum
is equal to 0.92 Ry/bohrs2. Next, we consider a perpendicular
pair of chains and sum k jR

iR′ over all pairs where iR′ and jR
correspond to atoms in different chains. These interactions
are shown as pink lines connecting atoms iR′ and jR as in
the bottom panel of Fig. 7. This results in a value about three
times smaller, 0.31Ry/bohrs2.3 Therefore, we conclude that
the interatomic forces are effectively strong within the chain
and weak between the chains. In other words, the interatomic
forces in BaTiO3 effectively have low dimensionality. This
crystal can be seen as consisting of strongly bonded one-
dimensional . . .-Ti-O-Ti-O-. . . chains that are connected to
each other and form a quasi-two-dimensional network.

The quasi-one-dimensionality of the force constant matrix
is consistent with our earlier finding that the angular momen-
tum of the phonon is dominantly pointing along the specific
crystallographic directions perpendicular to P. In the follow-
ing section, we introduce an analytical model to give a simple
physical picture of this finding.

Analytical model

Now, we analytically study the phonon angular momentum
for a model of a chain of repeating O and Ti atoms. We
represent interatomic interactions with springs between the
nearest-neighboring Ti and O atoms. Each spring is charac-
terized by two spring constants: one for stretching (Kr) and
one for bending (Kθ ). The potential energy summed over the
nearest-neighbor interactions 〈i j〉 is [38]

V = 1

2

∑
〈i j〉

[(Kr − Kθ )[si j · r̂i j]2 + Kθ |si j |2]. (12)

Here, r̂i j is the unit vector connecting the atoms i and j. The
displacement of the atom i is si, while si j is defined as s j − si.
We use the potential from Eq. (12) to derive the dynamical
matrices following a standard approach:

Dαβ
i j (q) =

∑
n

e−iqRn
1√
MiMj

∂2V

∂sniα∂s0 jβ
. (13)

Here, Rn is the location of the nth unit cell and q is the wave
vector. We analytically computed the dynamical matrices for
the models shown in Figs. 8 and 9. As an additional test,
we also constructed these models using a general-purpose
computer package given in the Supplemental Material [39].

In our one-dimensional chain with two atoms per unit cell,
the dynamical matrix is a 6×6 matrix, as we allow each
atom to move along all three Cartesian directions. We assign
the indices of this matrix so that the first and second 2×2
subblocks of the dynamical matrix correspond to the atomic
displacements perpendicular to the chain (directions x and y),
while the third subblock corresponds to movements along the

3The remaining interatomic forces, not included in the sums above,
are the onsite terms where both i and jR correspond to the atoms in
the home cell R = 0. These onsite terms for both Ti and O sum to
0.54 Ry/bohrs2.

(a)

(b)

(c)

FIG. 8. Schematics of various one-dimensional models we stud-
ied. Blue circles are titanium atoms and red circles are oxygen
atoms. Atoms are connected by springs shown as black lines. Each
spring includes potential energy term for both stretching (Kr) and
bending (Kθ ), as described in the main text. Displacements of atoms
in (b) and (c) are indicated with green arrow. In (a) and (c) phonons
can be chosen so that l iαqν = 0. Displacement of atoms in direction
perpendicular to the chain (b) generates phonon angular momen-
tum l ixqν on titanium and oxygen atom which points perpendicular
to both chain direction and the atom displacement (in and out of
page). Nevertheless, lxqν = ∑

i l
ix
qν = 0 even in the case of (b), as the

contribution of titanium atom cancels that of the oxygen atom. This
cancellation does not occur in the two-dimensional extension of the
model discussed in Sec. V 4 or when further neighbors are included
in the model [39].

chain (direction z),

D =
⎡
⎣Dxx Dxy Dxz

Dxy† Dyy Dyz

Dxz† Dyz† Dzz

⎤
⎦. (14)

(Here we are using the fact that D is a Hermitian matrix which
implies for the 2×2 subblocks that Dαβ = Dβα†.) Each 2×2

FIG. 9. Two-dimensional model we studied. Conventions in the
figure are the same as in Fig. 8. Titanium and oxygen atoms form a
two-dimensional plane. Titanium atoms are displaced by δa/2 along
the third dimension, perpendicular to the two-dimensional plane of
atoms. Generically, phonons in this model have nonzero phonon
angular momentum. See text for more details.
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subblock Dαβ is arranged so that the indices correspond to the
displacements of the titanium and the oxygen atom as follows:

Dαβ =
[
Dαβ

Ti Ti Dαβ

TiO

Dαβ

OTi Dαβ

OO

]
. (15)

1. Model shown in Fig. 8(a)

We start by analyzing the system shown in Fig. 8(a). This
system consists of an equidistant chain of Ti and O atoms
connected by springs that can stretch (Kr) and bend (Kθ ).
Following Eq. (12) the potential energy of this system is given
by

V = 1

2

∑
〈i j〉

[
Krs

2
i jz + Kθ

(
s2i jx + s2i jy

)]
. (16)

Performing the sum over the nearest neighbors and computing
the dynamical matrix gives

D =
⎡
⎣A1 0 0
0 A1 0
0 0 A2

⎤
⎦. (17)

The 2×2 submatrices A1 and A2 are

A1 = Kθ

[ 2
MTi

−1−e−iqa√
MTiMO

−1−eiqa√
MTiMO

2
MO

]
, (18)

A2 = Kr

Kθ

A1. (19)

MTi and MO are the atomic masses of titanium and oxygen,
a is the lattice constant, and q is the phonon wave vector. As
usual, we compute the phonon eigenvectors ξiα via∑

j,β

Dαβ
i j (q)ξ jβ = ω2ξiα.

Dynamical matrix from Eq. (17) is block diagonal in the
Cartesian indices. In other words,

Dxy = Dxz = Dyz = 0. (20)

Therefore, the eigenvectors of Eq. (17) can be chosen to corre-
spond to atomic motions along only one of the Cartesian axes
(since a block-diagonal matrix can effectively be diagonalized
one block at a time). Therefore, clearly, the corresponding
atomic motions are collinear and the phonon angular momen-
tum is zero.4 This finding is consistent with the fact that our
model is symmetric under inversion.5

2. Model shown in Fig. 8(b)

Next, we break the inversion symmetry in the model by
slightly displacing Ti in the direction perpendicular to the
chain, as in Fig. 8(b). The magnitude of the Ti displacement

4It is clear from Eq. (2) that angular momentum lz = 0 unless both
x and y components of phonon eigenvector ξ are nonzero.

5With Fig. 8(a) in mind, one can select the center of any atom or
spring as the origin, apply the inversion operator (z → −z), and find
the system unchanged.

is δa/2, where a is the lattice constant. There are two di-
rections perpendicular to the chain, and to be precise, we
chose to move the atom along the direction y corresponding
to the second column (row) of the dynamical matrix. For such
a system ±r̂i j = δ√

1+δ2
ŷ + 1√

1+δ2
ẑ. If we again assume that

nearest-neighboring Ti and O atoms are connected by springs
with bond-stretching (Kr) and bond-bending (Kθ ) terms, the
potential energy for Fig. 8(b) is

V =1

2

∑
〈i j〉

Kr − Kθ

(1 + δ2)2
[
s2i jz + δ2s2i jy + 2δ(1 + δ2)si jysi jz

]

+ 1

2

∑
〈i j〉

Kθ

(
s2i jx + s2i jy + s2i jz

)
. (21)

Therefore, compared to Eq. (16), the leading-order correction
to the ion dynamics is linear in δ, and equals

δ
∑
〈i j〉

(Kr − Kθ )si jysi jz + O(δ2). (22)

As can be seen from the functional form of this term, this
interaction will lead to coupling of the atomic motion in the
direction perpendicular to the chain (y) and in the direction
along the chain (z).

Calculating the dynamical matrix for this model, up to all
orders in δ, gives us ⎡

⎣A1 0 0
0 A′

1 B′
0 B′ A′

2

⎤
⎦. (23)

Here A′
1, A

′
2, and B′ are defined as

A′
1 =

[
1 + δ2

1 + δ2

(
Kr

Kθ

− 1

)]
A1,

A′
2 = 1

1 + δ2

(
Kr

Kθ

+ δ2
)
A1,

B′ = δ

1 + δ2
(Kr − Kθ )

⎡
⎢⎣ 0 1−e−iqa√

MTiMO

1−eiqa√
MTiMO

0

⎤
⎥⎦.

As can be seen from Eq. (23) some of the off-diagonal sub-
matrices are zero:

Dxy = Dxz = 0. (24)

However, the off-diagonal submatrix coupling motion in the y
and z directions is nonzero,

Dyz = B′ 
= 0, (25)

as expected from the functional form of Eq. (22). Therefore,
diagonalizing Eq. (23), corresponding to model Fig. 8(b),
generally results in phonon eigenvectors in which atoms are
allowed to move in the entire y-z plane. For a low symmetry
q (that is not an integer multiple of π/a) we find that the
atomic motions of the Ti and O atoms are elliptical, so that
l ixqν is generally nonzero. The other two components are zero,

l iyqν = l izqν = 0. This is to be expected from Eqs. (24) and (25)
since the only nonzero off-diagonal submatrix is Dyz. In other

104410-9



MOSENI, WILSON, AND COH PHYSICAL REVIEW MATERIALS 6, 104410 (2022)

words, the angular momentum of the phonon is perpendicular
both to the chain direction (z) and to the direction of the
displacement of the atom (y). Nevertheless, even though l ixqν
is nonzero, the total angular momentum lxqν = ∑

i l
ix
qν is zero,

as the contribution from the two atoms in the unit cell cancels
out. As we will see in Sec. V 4, this cancellation is not present
in the extension of this model to two dimensions, or when
springs between further neighboring atoms are included in the
model [39].

3. Model shown in Fig. 8(c)

Next, for completeness, we also studied our model when Ti
is displaced along the chain, as shown in Fig. 8(c). The system
is once again one dimensional and r̂i j = ±ẑ. Since the Ti-O
distances are now not the same, we parametrize the stretching
of the short Ti-O bond with K s

r and the long Ti-O bond with
K l
r . Similar for bending constants K s

θ and K l
θ . The resulting

dynamical matrix is ⎡
⎣A′′

1 0 0
0 A′′

1 0
0 0 A′′

2

⎤
⎦, (26)

where the matrices A′′
1 and A′′

2 are defined as

A′′
1 =

⎡
⎢⎣

K s
θ +K l

θ

MTi

−K s
θ −K l

θ e
−iqa

√
MTiMO

−K s
θ −K l

θ e
iqa

√
MTiMO

K s
θ +K l

θ

MO

⎤
⎥⎦,

A′′
2 =

⎡
⎢⎣

K s
r +K l

r
MTi

−K s
r −K l

r e
−iqa

√
MTiMO

−K s
r −K l

r e
iqa

√
MTiMO

K s
r +K l

r
MO

⎤
⎥⎦.

Since the dynamical matrix from Eq. (26) satisfies

Dxy = Dxz = Dyz = 0

we conclude that l iαqν = 0 for the model in Fig. 8(c), as all
phonon modes can again be chosen to consist of collinear
atomic motion.

While the models presented so far consist of effective
interatomic springs only between the first-nearest neighbors,
most features of the model are unchanged even when further
neighbors are included in the model. We provide more details
on these models in the Supplemental Material [39].

4. Two-dimensional model shown in Fig. 9

Now we study the generalization of our model to two
dimensions. This model is shown in Fig. 9 and consists
of a two-dimensional plane of titanium and oxygen atoms.
There are now three atoms in the primitive unit cell (one
titanium atom and two oxygen atoms). The titanium atom
is displaced along the third dimension, perpendicular to the
two-dimensional plane of atoms. The numerical implemen-
tation of the dynamical matrix of this model is given in the
Supplemental Material [39] Following the same procedure as
in the previous models, we diagonalize the dynamical matrix
and compute the angular momentum of the phonon. As ex-
pected, we find that the phonon angular momentum points in
the two-dimensional plane of atoms. The total phonon angular

momentum lαqν is now nonzero, as contributions from three
atoms in the unit cell l iαqν generally do not cancel each other
out, as in the one-dimensional model. Furthermore, we find
that within the plane the phonon angular momentum is dom-
inantly pointing along the crystallographic directions, which
is reminiscent of what we found in BaTiO3 from the first
principles (as shown in Fig. 2). More details are provided in
the Supplemental Material [39].

Therefore, we conclude that the phonon anisotropy in our
qualitative model is consistent with the anisotropy we found
from first principles.

VI. RHOMBOHEDRAL PHASE

Now we analyze the phonon angular momentum in the
rhombohedral phase of BaTiO3. In this phase, P is pointing
along the [111] crystallographic direction. We define the av-
erages of l perpendicular to P,

〈l rhom⊥ 〉 = 1

NqNν

∑
q

∑
ν

√
(lqν · n̂11̄0)2 + (lqν · n̂112̄ )2, (27)

and along P,

〈l rhom‖ 〉 = 1

NqNν

∑
q

∑
ν

|lqν · n̂111|. (28)

Averages are once again performed over positive-definite
values, and the calculated values of the averaged angular
momenta are

〈l rhom⊥ 〉 = 0.191 h̄, 〈l rhom‖ 〉 = 0.089 h̄.

As in the tetragonal phase of BaTiO3, phonon angular momen-
tum is larger perpendicular to the polarization than parallel.
However, 〈l rhom⊥ 〉 is only about two times larger than 〈l rhom‖ 〉,
so the anisotropy is significantly less than the tetragonal phase
where the ratio was 6. The phonon angular momentum dis-
tributions which we show in Fig. 10 further illustrate this
finding. The bottom panel of Fig. 10 shows the distribution
of phonon angular momentum in the plane spanned by [11̄0]
and [111] directions.

The top panel of Fig. 10 shows the distributions of the
angular momentum of the phonons in the plane perpendicular
to P. This plane is spanned by crystallographic directions
[11̄0] and [112̄]. We find that only 32% of the total phonon
angular momentum is within ±5◦ of [11̄0] and [112̄], and
their respective symmetry-related directions. This anisotropy
is somewhat smaller than 47% in-plane anisotropy in the
tetragonal phase (see Fig. 2).

Finally, we again linearly interpolated structures from the
nonpolar to the polar rhombohedral phase. Once again, we
observed phonon angular momentum saturation at λ = 0.5,
as in the tetragonal case. Furthermore, the ratio of angu-
lar momentum perpendicular to parallel to P is consistently
around 2.

VII. CONCLUSION AND SUGGESTED EXPERIMENTS

The main result of this work is the calculated anisotropy of
the angular momentum of the phonon relative to the electrical

104410-10



ELECTRIC FIELD CONTROL OF PHONON ANGULAR … PHYSICAL REVIEW MATERIALS 6, 104410 (2022)

FIG. 10. Same as Fig. 2, but for rhombohedral phase of BaTiO3.
Top panel again shows distribution of phonon angular in plane per-
pendicular to P, while bottom panel shows distribution in plane
containing P.

polarization P in BaTiO3. The phonon angular momentum
anisotropy is twofold. First, the phonon angular momentum
in the plane perpendicular to polarization P in the tetragonal
phase is about six times higher than in the direction parallel to
P. Second, within the plane perpendicular to P, about half of

the phonon angular momentum is concentrated within ±5◦ of
the high-symmetry crystal directions.

As these anisotropies in phonon angular momentum are
tied to P, it naturally follows that the reorientation of P,
induced by an external electric field, will then redistribute
phonon angular momentum as well. Therefore, any physical
phenomenon, such as those listed in Sec. I, that depends on
the angular momentum of phonons in a ferroelectric, such as
BaTiO3, could be controlled by applying an external electric
field.

Here, we focus on only one of the physical phenomena that
rely on phonon angular momentum, the Einstein–de Haas ef-
fect. This effect could be probed via ultrafast demagnetization
experiments as in Ref. [8]. As BaTiO3 itself is not magnetic,
one would need to couple BaTiO3 to a magnetic material,
consider a multiferroic material, or create a heterostructure
between BaTiO3 and a nonpolar magnetic perovskite. In the
stacked geometry, the change in the angular momentum of
the electron generated in the magnet has the opportunity to
transfer into the phonon angular momentum in the adjacent
BaTiO3. Given our results (see Sec. III), we predict that an-
gular momentum transfer will depend on relative alignment
(parallel or perpendicular) between magnetic domains (M)
and the BaTiO3 polarization P.

Finally, our work also resulted in a simple model that
can give a qualitative understanding of the anisotropy in the
angular momentum of phonons in BaTiO3. By studying a
one-dimensional chain of Ti and O atoms, we find that polar
displacements of atoms along the chain lead to no phonon
angular momentum, within the assumptions of our model.
Nevertheless, polar displacements of atoms perpendicular to
the chain lead to the phonon angular momentum that is per-
pendicular to both the chain and to the direction of atom
displacements. Our simple two-dimensional model, discussed
in Sec. V 4, captures all qualitative features of the phonon
angular momentum we found from the first principles in
BaTiO3.
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