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Abstract
The maximum shear stress associated with a 3D stress state is a widely used quantity in
solid mechanics. While the expression of this quantity in terms of principal stresses is given
in most mechanics classes, its derivation is far less common. In this classroom note, an
elementary derivation of the maximum shear stress is given that avoids vector calculus,
Lagrange multipliers, and the full framework necessary for Mohr’s graphical derivation.
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1 Introduction

A central result of continuum mechanics is the existence of a traction vector [1, 2], �t , acting
on a plane defined by its outward normal unit vector, n̂, which can be written in terms of a
symmetric and real valued 2nd rank stress tensor, σ ,

�t = σ n̂. (1)

In many contexts, such as metal plasticity [3–6], it is useful to decompose �t into its orthog-
onal shear and normal components

�t = ts ŝ + tnn̂, (2)

and determine the maximum absolute value of the shear traction, denoted here as maxn̂(|ts |),
over all unit vectors, n̂, for a given σ . The expression for this maximum shear stress is
given in most mechanics textbooks as a function of the maximum and minimum eigenvalues
(principal stresses) of σ ,

max
n̂

(|ts |) = pmax − pmin

2
. (3)
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The above expression is graphically apparent from the 3D version of Mohrs circle [4, 7] and
can be derived with 3D vector calculus by finding the stationary points of |ts | with respect
to n̂ subject to the constraint that |n̂| = 1, as is done in Lai, Ruben, and Krempl [8]. In most
textbooks, the complexities associated with the latter and the time required to introduce the
framework of the former are avoided. In these cases, 3 is often only partially developed,
derived in 2D, or given as an axiom.

This can leave a student with an unsatisfied feeling as other important characteristics
of the stress state are directly derived in 3D without calculus, using basic linear algebra
operations. Examples include the largest signed normal traction, maxn̂(tn) = pmax , and the
least signed normal traction, minn̂(tn) = pmin. Thus, shouldn’t the maximum shear stress (3)
not also follow directly from simple linear algebra?

To address this point, a derivation of maxn̂(|ts |) that avoids calculus and graphical demon-
stration is given below in 3D.

2 Derivation

We start by considering the dot products of �t with n̂ and itself. In relation to the orthogonal
decomposition of (2), these dot products can be expressed as

�t · n̂ = tn (4)

and

�t · �t = t2
n + t2

s . (5)

In an orthonormal basis {ê1, ê2, ê3} that diagonalizes the stress tensor in terms of eign-
values according to pmax ≥ pmid ≥ pmin, we have

σ =
⎡
⎣

pmax 0 0
0 pmid 0
0 0 pmin

⎤
⎦ , (6)

and the dot products can be expressed as

tn = pmaxn
2
1 + pmidn

2
2 + pminn

2
3 (7)

and

t2
s + t2

n = p2
maxn

2
1 + p2

midn
2
2 + p2

minn
2
3, (8)

where n1, n2, and n3 represent the components of the unit vector n̂ in the basis {ê1, ê2, ê3}.
Combining the above two equations with the constraint

1 = n2
1 + n2

2 + n2
3, (9)

we arrive at three independent linear equations with respect to n2
1, n2

2, and n2
3. Eliminating

n2
1 and n2

3 from (7), (8), and (9) we find

t2
s + t2

n − tn(pmin + pmax) + pminpmax = (pmin − pmid)(pmax − pmid)n
2
2. (10)
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The development and utilization of (10) is viewed as the key step in this derivation. If in-
stead, n2

2 had been eliminated from (7), (8), and (9), the subsequent upper bound on t2
s does

not follow.
Combining the two tn terms via completion of the square and isolating the t2

s term in
(10), we obtain equivalently

t2
s = 1

4
(pmax − pmin)

2 −
(

tn − 1

2
(pmax + pmin)

)2

+ (pmin − pmid)(pmax − pmid)n
2
2, (11)

which is valid for all unit vectors n̂. Now observe that the second and third terms on the rhs
of (11) are each less than or equal to zero. Thus, we see that

t2
s ≤ 1

4
(pmax − pmin)

2 ∀ n̂, (12)

and we may conclude that equality holds if and only if both the second and third terms on
the rhs of (11) are identically zero.

To complete the proof of (3), we now need only show that there is at least one unit vector
n̂ for which equality holds. To show this, let us suppose that n2 = 0 in (11) and use (7) to
conclude that the second term on the rhs of (11) will vanish if and only if

pmaxn
2
1 + pminn

2
3 = 1

2
(pmax + pmin), (13)

which, according to (9), is to hold for n2
1 + n2

3 = 1. Eliminating n2
3 from (13), we then find

that n2
1(pmax − pmin) = (pmax − pmin)/2, and there are two cases to consider.

Case (i) pmax �= pmin: Here, n2
1 = n2

3 = 1/2 and, with n2 = 0, we find that n̂ = (ê1 +
n̂3)/

√
2. Thus, (11) shows that equality holds in (12) for this n̂, and (3) is proved.

Case (ii) pmax = pmin: Here, we have the case where all principal stresses are equal and
(13) is identically satisfied because we have taken n2 = 0 and (9) requires that n2

1 + n2
3 = 1.

Thus, (11) shows that equality holds in (12), with the rhs identically zero, for any n̂ of the
form n̂ = n1ê1 + n3ê3 with n2

1 + n2
3 = 1, and (3) is proved for any such n̂.

The interested student may gain further insight by examining (11) more fully to de-
termine the complete sets of unit vectors n̂ that lead to equality in (12) for each of the
four cases of principal stresses: (i) pmax �= pmid �= pmin; (ii) pmax = pmid �= pmin; (iii)
pmax �= pmid = pmin; and (iv) pmax = pmid = pmin.
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