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This article presents a code generator for sparse tensor contraction computations. It leverages a mathematical
representation of loop nest computations in the sparse polyhedral framework (SPF), which extends the poly-
hedral model to support non-affine computations, such as those that arise in sparse tensors. SPF is extended
to perform layout specification, optimization, and code generation of sparse tensor code: (1) We develop a
polyhedral layout specification that decouples iteration spaces for layout and computation; and (2) we de-
velop efficient co-iteration of sparse tensors by combining polyhedra scanning over the layout of one sparse
tensor with the synthesis of code to find corresponding elements in other tensors through an SMT solver.

We compare the generated code with that produced by a state-of-the-art tensor compiler, TACO. We
achieve on average 1.63X faster parallel performance than TACO on sparse-sparse co-iteration and describe
how to improve that to 2.72x average speedup by switching the find algorithms. We also demonstrate that de-
coupling iteration spaces of layout and computation enables additional layout and computation combinations
to be supported.
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1 INTRODUCTION

Tensor contractions are found in a wide variety of computations in data science, machine learning,
and finite element methods [1, 8, 19, 26, 74]. Sparse tensors are tensors that contain a large number
of zero values that have been compressed out to save memory and avoid unnecessary computation.
A layout is used to represent a sparse tensor, which includes the nonzero values and a set of
auxiliary data structures that relate nonzero values to their indices in the computation. Many
sparse tensor layouts have been introduced to improve performance under different algorithmic
contexts, sparsity patterns, and for different target architectures (for examples, see the survey
by Langr and Tvrdik [46]).

A sparse tensor layout can be thought of as a physical description of the sparse tensor—how
it is ordered in memory and the requisite auxiliary data structures that define its meaning. The
logical view of the sparse tensor is its dense form, which is usually prohibitively large to represent
in memory; the logical abstraction of the nonzeros must be preserved by the physical layout.

To optimize both computation and layout of sparse tensors, several sparse tensor compilers have
been developed that generate optimized code from a dense description of the computation, using
a sparse physical layout of the tensor [11, 41, 45]. Most recently, the Tensor Algebra Compiler
(TACO) [41] uses level formats [20] to describe the physical storage of different index dimensions
of a tensor, with each level also associated with an index dimension in the tensor computation.
This layout description and the formulation using merge lattices allows dimensions from multiple
sparse tensors to be co-iterated, which refers to matching coordinates of nonzeros in one sparse
tensor to those in another sparse tensor. For example, in sparse dot product, if coordinate p is
nonzero for one of the vectors, then the element-wise product is nonzero if and only if p is also
nonzero in the other vector. TACO’s support of co-iteration extends the applicability of tensor
compilers.

We observe that the use of level formats and merge lattices couples the logical (computation’s
coordinate space) and physical (layout’s position space) dimensions and their associated iteration
ranges; consequently, this approach requires that each level in the layout must refer to a distinct
index in the computation. Level formats are unable to directly support blocked layouts such as
block compressed sparse row (BCSR), which have additional physical dimensions not present
in the computation. Additionally, generalizations of contraction that use the same loop index for
multiple levels, e.g., computations along a matrix diagonal, cannot be directly supported due to
conflicts in iteration ranges.

In this article, we separate the physical layout of the sparse tensor (layout’s position space)
from logical indices (computation’s coordinate space) by preserving indices from both spaces
and describing a mathematical relation between them. For this purpose, our representation
extends the polyhedral model [13, 28-32, 56, 62], an abstraction used to represent integer
sets and compose optimizations on loop nest computations, and compose computation with
storage mappings [48, 55, 69, 72]. A rich set of affine code transformations can be described
using the polyhedral framework and related mathematical representations including locality
optimization [37, 57, 81, 82], automatic and semi-automatic parallelization [13, 18, 30, 37, 40],
and auto-distribution [9, 39]. To support sparse computation involving non-affine loop bounds
and indirect accesses in subscript expressions (e.g., A[B[i]]), our approach employs techniques
from the Sparse Polyhedral Framework (SPF) [70, 71], which uses uninterpreted functions to
represent values of auxiliary index arrays that are only known at runtime.

Prior work using SPF has not presented a solution to co-iteration of multiple sparse tensors [52,
68, 70, 77]. In this article, we extend SPF to support co-iteration by generating code that iterates
over the layout of one sparse tensor’s nonzeros and looks up corresponding nonzeros in other
tensors with find operations.
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This article makes the following contributions: (1) We describe a sparse tensor layout as a rela-
tion between the logical and physical space, which supports layouts that cannot be described when
coordinate and position spaces are coupled; (2) We extend SPF to generate efficient co-iteration
code through a combination of polyhedra scanning and code synthesis using a satisfiability mod-
ulo theories (SMT) solver. (3) We show how the use of SPF facilitates parallelization and compo-
sition of transformations, demonstrated by deriving data dependence relations and tiling the code;
(4) We compare the proposed method with a state-of-the-art tensor algebra compiler, TACO. On
sparse-sparse co-iteration in the sparse-matrix times sparse-vector experiments, we achieve on
average 1.63X speedup against TACO using a find algorithm comparable to TACO’s co-iteration
implementation and improve that to 2.72x average speedup when we switch between find algo-
rithms. We can even express cases when the input and output share sparsity structure such as in
the mode-1 tensor-times-matrix computation, where we are able to achieve 4.27X average speedup
on real-world 3D tensors.

2 BACKGROUND AND OVERVIEW

This section formulates tensor contraction code generation in the polyhedral framework for dense
tensors and demonstrates how the sparse polyhedral framework represents the index arrays aris-
ing from sparse tensors. The end of the section gives an overview for the remainder of the
article.

2.1 Tensor Contraction

Tensor contractions can be expressed using the tensor index notation described by Ricci and Levi-
Civita [58], where dimensionality of input tensors is contracted along one or more dimensions.
Examples from linear algebra include dot product, y = A(i) * B(i), matrix-vector multiplication,
y(i) = A(i,j)*B(j), and matrix-matrix multiplication, y(i, j) = A(i, k) * B(k, j). Higher-dimensional
tensor contractions are common occurrences in machine learning and the finite element method.
This notation expresses the accesses of the input and output tensors in the computation. Indices
only appearing on the right-hand side, such as k in matrix-matrix multiplication, are commonly
referred to as summation or contraction indices and introduce a data dependence; indices appear-
ing on both sides, such as i and j, are commonly called the external or free indices. Because the
contraction index k iterates over the second dimension of A and the first dimension of B at the
same time, this behavior is referred to as co-iteration.

2.2 Polyhedral Framework

Polyhedral frameworks describe the instances of a statement’s execution in a loop nest as a
set of lattice points of polyhedra. Polyhedral compilers were designed to support computations
that are in the affine domain, where loop bounds and subscript expressions are integer linear
functions of loop indices and constants. Polyhedra are specified by a Presburger formula on index
variables through affine constraints, logical operators, and existential operators. When specified
this way, this set of lattice points are also called a Presburger set. Presburger sets and relations
(Definition 2.2) are denoted using capital letters such as A, R, P, T, Q and for iteration space, IS. Pres-
burger set Ry, x, ... x,» With set variables (x1, x2,...,x4) and Presburger formula, P, is written as
follows:

Ryixs,xg = X1, ..., xq]|P}.

Consider the dot product over two dense tensors in Figure 1, expressed in tensor notation
in Figure 1(a) with corresponding C code in Figure 1(b). We describe the iteration space for the

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 16. Publication date: December 2022.



16:4 T. Zhao et al.

1 for (int i = @; i < N; ++i)

v() = A(i) = B(i) 2 v+=A[i]*B[i]; IS={[i]lo <i< N}

(a) Dot product (b) Dot product between two dense vectors (c) lteration space
T ={[i] - [Ti,ti] | ti=i A0 <=8Ti < N A8Ti <=ti < 8Ti+8}
(d) Tiling transformation
IS={[Ti,ti] |0 <=8Ti < NAO0 <=ti < NA8Ti<=1ti<8Ti+38}

(e) Tiled iteration space
1 for (int Ti=0; 8*Ti<N; ++Ti)
2 for (int ti=8xTi; ti<min(8*Ti+8,N); ++ti)
3 v+=A[ti]*B[til];

(f) Tiled code

Fig. 1. Dot product between dense vectors.

statement on line 2 by the polyhedron of Figure 1(c).! A statement macro is used to represent the
statement at line 2 as a function of loop index i.

An important capability of polyhedral frameworks is the ability to represent transformations
on loop nests as affine mappings on the iteration spaces. For example, tiling the i loop iteration
by 8 can be represented by Figure 1(d). When T is applied to the iteration space of Figure 1(c), the
resulting iteration space is Figure 1(e). A sequence of transformations are applied by composing
the mappings. Polyhedral compilers generate code by performing polyhedral scanning [5, 17, 56].
Scanning produces constraints on each loop index from the iteration space description. These
constraints are directly translated to for loops and if conditions in the generated code. Loop indices
in the transformed statement of Line 2 are substituted using the inverse mapping resulting in code
shown in Figure 1(f).

Some of the common operations on Presburger sets and relations are used in this article.

Definition 2.1. Intersection between Presburger sets, R = R; N R,:
SER & seR As€ER,.
Definition 2.2. A Presburger relation denotes a binary relation between the input set of indices,
i, and output set of indices, o, described as Ri_,, = {i = 0|Pi—0}.
Definition 2.3. Compositions are between two Presburger relations, Ry, = Rij—o © Rxi:

X > 0€Ry,, & dist.i—>o0€eR 0ANX—1€Ry,.

2.3 Sparse Polyhedral Framework

Polyhedral frameworks cannot directly represent sparse tensor computations, which exhibit non-
affine subscript expressions and loop bounds. Figure 2 illustrates the dot product using two sparse
vectors. Figure 3 shows the difference between a dense version, which computes the sum of pair-
wise products of all elements of two vectors, and the version that uses sparse vectors, where prod-
ucts are only computed when the corresponding element of both vectors is nonzero. Figure 2(a)

! Auxiliary indices may be introduced to differentiate different statements in the same loop level for imperfectly nested
loop nests.
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1 // Data structure definition

2 struct SpVec { int len; int =*idx; double =xval; };

3 // Kernel signature

4 void SparseDotProduct(double &v, SpVec &A, SpVec &B);

(a) Data input of sparse dot product as arguments to kernel function.
IS = {[pA, pB, i]|A.idx(pA) = i = B.idx(pB) A0 < pA < A.len A0 < pB < B.len}

(b) Iteration space.
1 for (int pA = @; pA < A.len; ++pA)
2 1 = A.idx[pAl; // i-loop degenerates into assignment
3 for (int pB = @; pB < B.len; ++pB)
4 if (i == B.idx[pBIl)
5 v += A.val[pA] * B.val[pBI;

(c) Dot product between two sparse vectors resulting from polyhedral scanning in SPF.
1 pB = 0;
2 for (int pA = 0; pA < A.len; ++pA) {
3 1 = A.idx[pA];
+ while (pB < B.len && i > B.idx[pB]) ++pB;
5 if (pB < B.len && i == B.idx[pB1l)
6 { v += A.val[pA]l * B.val[pB]l; ++pB; 3}
73

(d) Example optimized code generated by our framework.

Fig. 2. Dot product between sparse vectors.

A A

Ap = A.ldx A.ldx(Ap) =
2 i= > i=

Bp B.Jdx B.ldx(Bp)
BLITTTT] B

Fig. 3. Iteration space comparison between dense and sparse dot product. Coordinate index i is introduced
to illustrate how nonzeros of the same coordinates are matched to produce result.

represents the layout of the input sparse vectors using the struct SpVec. The nonzero values
are stored in A.Val and their coordinates are in A.idx. Because A.1idx is used to encode coordi-
nates of the nonzero values, it is commonly referred to as an index array. Accesses through A. idx
introduce indirection and unknown bounds and conditions and are not in the affine domain.

To represent this computation, the Sparse Polyhedral Framework (SPF) introduces uninter-
preted functions (UFs) in Presburger formulae to represent runtime values of index array refer-
ences and other non-affine indices and loop bounds [70]. In SPF, uninterpreted functions A.idx
and B.idx are used to describe the combined iteration space in Figure 2(b). In Figure 2(c), we can
scan the points in this iteration space and use the condition at line 3 to ensure that both vector
elements are nonzero before adding their product to the sum. The resulting code co-iterates over
the common nonzero elements in the vectors. It requires a full sweep over B for every element of
A so the time complexity of this code is O(A.len = B.len).

Definition 2.4. (Uninterpreted function (UF)) An uninterpreted function f with arity of m, rep-
resents a mapping of Z™ — Z.
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Specification : Initialization : Transformation : Generation
: v
Computation lteration ' ' Polyhedral [[] Userinput
space : :—b Scanning +
************* ' Permute : Synth. Find Semi-automatic
Layout ¢ : 1 ¢ (customization
Initial loop H with recipes)
Relation order Tile : Apply
parallelization
' ¢ ¢ [] Automatic
Index array | : i > Dependence
properties —— testing : 1 Print Code
| _:_l I , T . [] Output

Fig. 4. Overview of the code generation process for sparse tensor contraction in our polyhedral framework.

In this work, UFs are used in Presburger formulae as another term type in the affine constraints,
along with index variables. We allow arguments to the UFs to be an affine combination of inte-
ger set variables, integer constants, and other UFs. This ability enables polyhedral analysis to be
performed on the UFs’ arguments that can deduce (in-)equality relations on the arguments.

2.4 Overview of Approach

In this article, we optimize co-iteration using extensions to the Sparse Polyhedral Framework, thus
producing the optimized code in Figure 2(d) with time complexity O(A.len + B.len). There are two
central ideas in this approach: (1) we compose the logical iteration space of the computation with
the iteration space over the layout of the sparse tensors; and (2) the conditions of the co-iteration
are derived using polyhedral scanning to iterate over the elements of one sparse tensor and look
up corresponding elements in the other sparse tensors using a find algorithm. In Figure 2(d), find
is implemented using the while loop and conditional, which represents a sequential iteration over
ordered tensors that store their nonzeros in increasing coordinate order. Whether a find algorithm
can be used is determined during code generation using an SMT solver, with the set of constraints
arising from the layout specification.

Figure 4 illustrates the four stages of this approach. We begin with a specification of both the
computation and layout, as described in Section 3. The second stage derives the iteration space of
the computation, described in Section 4. In the third stage, we apply polyhedral transformations,
as described in Section 5. The last stage generates the code using the polyhedral scanning of trans-
formed iteration space combined with code synthesis of find using an SMT solver, as described
in Section 6. The resulting code is then parallelized using OpenMP pragmas.

3 LAYOUT AS PHYSICAL-TO-LOGICAL RELATION

In this section, we describe how sparse layouts can be represented in a sparse polyhedral frame-
work. The key focus of this article is to show that such a description can be incorporated into
automated code generation of sparse tensor contraction. In practice, layouts can be described by
compiler developers, library writers, or expert programmers, where end-users need not be directly
exposed to these descriptions.

A layout is a physical ordering of the data in memory. Typically, a layout represents the nonzero
tensor values and a collection of auxiliary index arrays that record coordinate information for the
nonzeros to preserve the underlying logical view of the data. We define a relation R, that maps
nonzero elements in the sparse tensor representing the physical space p to their corresponding log-
ical coordinates g. In R, 4, index arrays are represented by uninterpreted functions by definition,
because they contain read-only runtime values accessed through integer indices (arguments).
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Table 1. Properties of Uninterpreted Function f Representing an Index Array that
Has One Dimension a

Array property \ Table 2 Layout \ Definition

Range BCSR MIN <= f A f <= MAX
Injectivity Unsorted-COO ata — f#f
(Strict) Monotonicity SV/DCSR/Sorted-COO avaa’ — foeaf’
Periodic Monotonicity CSR/DCSR/BCSR period(i) Aavaa’ — fea f’
Co-vary (w.g) Monotonicity Sorted-COO g(i) =g(’) Nava’ — fea f’

>< represents any order comparison conditional. Examples of these properties are present in the layouts
described by Table 2, used in the experiments. Note that universal quantification, V, is assumed for i, ', a, a’.

Rp—g ={ [pi»pjl = [9i.9;110 < p;i < numRowsA
rowPtr(p;) < p; < rowPtr(p; + 1)A
1 struct CSR { gi=piNgj= COlIdx(Pj)}

2 int numRows; I —d
3 int *rowPtr, xcolldx; ¢ vaiue = ata[pj]

4 double *data; . . .
-y (b) Physical-to-logical relation

pi=p;i Aa<a — colldx < colldx’
(a) CSR data structure definition (c) Index array property: periodic monotonicity.

Fig. 5. Compressed Sparse Row (CSR) layout specification.

While values of index arrays cannot be determined until runtime, properties associated with
their values are sometimes statically known and are useful to static optimization. Table 1 lists
simplified versions of the index array properties we use, demonstrated with a single argument
a. These properties are expressed using logical formulae with guard conditions on array indices
and constraints on array values as in Bradley et al. [14], Mohammadi et al. [52]. The arguments
to the uninterpreted functions can be affine combinations of constants, indices, and uninterpreted
functions. Additionally, if there are non-affine expressions in the relation, then they too can be
modeled as uninterpreted functions. Compared to the goal-oriented uses of index array properties
in prior works, such as for disproving dependences [52], index array properties in this work are
a component of the layout’s description that targets the general question of code generation for
sparse computation.

Figure 5(b) presents Rp_, for the common Compressed Sparse Row (CSR) layout declared as
in Figure 5(a). Index array rowPtr refers to the first nonzero element of each row in the val vector
of nonzeros. Index array colIdx refers to the column associated with each nonzero element. Note
that R, ,, describes both the layout indices p;, p; for iterating over the sparse layout, and the logical
indices g;, g; for iterating over a 2-D tensor A. As nonzero elements in CSR layout are sorted by
row, a periodic monotonicity property exists for colIdx array, which is expressed by the logical
formula in Figure 5(c). This logical formula denotes when two iteration instances containing colldx
are induced from the same physical index p; = p;. If the first instance’s argument, a, is smaller than
that of the second, a’, then the first value, colldx, will also be smaller than the second, colldx’.
Applying polyhedra scanning to this description, our compiler can generate the code in Figure 6,
which iterates over all nonzeros in the layout.

Index arrays aid in providing coordinates corresponding to nonzeros in a sparse tensor, so the
layout description can be specified as a mathematical relation from the data structure scalar and

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 16. Publication date: December 2022.



16:8 T. Zhao et al.

1 for (int p_i = @; p_i < csr.numRows; ++p_i)

2 for (int p_j = csr.rowPtr[p_il; p_j < csr.rowPtr[p_i+1]; ++p_j) {
3 g_i = p_i; g_j = csr.colldx[p_jl; value = csr.datalp_j];

4 y[g_il = value * x[g_j1; 3}

Fig. 6. Generated code that iterates over nonzeros in CSR and uses them to compute sparse matrix vector
multiplication, y(i) = A(i, j) * x(j). Indices g; and g; represent the logical indices associated with the value.
The computation on Line 4 demonstrates how these logical indices can be used.

array fields to the tensor. By expressing layouts as polyhedral relations, tensor contraction op-
erations with sparse tensors can be composed using polyhedral set and relation operations, as
discussed in the following section.

4 DERIVING ITERATION SPACE FROM COMPUTATION AND LAYOUT

A sparse tensor contraction computation may involve two or more sparse tensors, potentially
using different layouts. This section describes how such layouts, specified using sparse polyhedral
relations, can be combined with the access pattern in the computation to derive an iteration space.
This enables subsequent transformations to the iteration space.

As an illustrative example, consider the tensor contraction matrix multiplication. In tensor index
notation, this contraction is written as C(i,j) = A(i,k) * B(k,j). The following iteration space
results for loop indices I = [i, k, j]:

ISy = {[i,k,j]: 0<i<NAO<Lj<NAO<k<N}

We represent an access expression for tensors C, A, and B as a mapping from the computation’s
iteration space i to the tensor’s data space:

Aii’g ={li.k,j] = [9:.9llgi =i ngj = jh

AP =l k] = [96.9;1lg: = i A gj = k),

AL =l k) = [9i:9)lgs = k A gj = b

To determine the part of logical iteration space I that accesses nonzeros in the sparse tensor
representation, we derive Q,_1: the composition of the layout description R,_,; with the access
mapping Ar,¢. Using CSR layout for A as described in Figure 5(c), we have the relation as follows:

(A1) o R, =

QI@I ={ [pi,pj] = [i,k,j]l0 < p; < numRowsA
rowPtr(p;) < pj < rowPtr(p; + 1)A
i =p; Ak =colldx(p;)}.
Definition 4.1. Range of a Presburger relation, R, = Range(Ri—):
0€ER, & dis.t.i—> 0€R_,.

Range(QI(iZI) corresponds to all positions in the iteration space of i that have a nonzero or explicit
zero stored in the sparse format of A.

The new iteration space accessing multiple sparse tensor layouts will be the intersection or
union of the parts of the original iteration space that accesses sparse tensors based on whether the
computation is a multiplication (intersection) or an addition (union). This is as a sparse polyhedral
definition of merge lattices proposed by TACO [34, 41]. When multiple tensors are multiplied, such
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as A(i, k) = B(k, j) in the example, the value may be nonzero if and only if both sparse tensors store
the value for the iteration (i, k, j). Thus, intersection is used to combine layouts relations under
the logical access of the computation in multiplication, P for product:

P = Range(Ql(iZI) N Range(Ql()?I).

The iteration space for transformation and code generation also includes the layout for the out-
put tensor and the dense iteration space. In our implementation, we support dense output tensors
as well as sparse tensors with known sparsity. Under such cases, the output of the tensor con-
traction can be treated as another product term and intersected with P. Known output sparsity is
common in core computations of data analytics [16] and graph neural network (GNN) [80] such
as Sampled Dense-Dense Matrix Multiplication (SDDMM) and Sparse Matrix Times Dense
Vector (SpMM), and can be generated for other sparse computations using inspectors. The dense
iteration space represents optional bounds that can bound the computation to a sub-region of the
valid iterations specified by the layouts, such as when a computation only operates on the lower
triangular region of a layout. Further bound by the dense iteration space, we have the iteration
space for polyhedral transformation and code generation:

IS = P 1 Range(Q)) N ISy,

Note that the existential operation on the input indices in the definition for the range operations
(Definition 4.1) does not guarantee the input indices can be eliminated through simplification. In

fact, with Q[(;i)l, the input indices hold special meaning in the iteration space and may reference

index arrays. Some of these indices not only have to be “rematerialized” during the code generation
but can also be involved in transformations like positional tiling [61].

Instead of relying on the code generator to make decisions when to rematerialize existential
variables, we pull these indices out of the existential operations and make them part of the set
variables of the iteration space. Thus, the iteration space will consist of all layout indices and the
indices of the computation:

IS = P 1 Range(Q\7)) N ISy
_ (4) (B) ©)
= Range(Qp_)I) N Range(QP_)I) N Range(QP_ﬂ) N ISy
(@Y. )A@P . )A@O . )AL
= {M@EPY@EPP @O . A AL AL
= {[p(A),p(B),p(C),I]I AN LA

For additions, union can be used, such as, for v() = A(i) + B(i), S for sum, S = Range(Q}(izI) U

Range(Q[()]iZI). However, union will cause implicit zeros of one of the tensors being accessed when
some other tensors are not zero. Alternatively, the polyhedral framework can use statement split-
ting to give each addition term its own iteration space to guard their execution. For example,
v() = A(i) + B(i) can be split into v() = A(i) and v() = B(i). Either approach benefits from
additional optimizations to save space or fuse separate loops, outside the scope of this article.

5 POLYHEDRAL ANALYSIS & TRANSFORMATIONS

In the previous section, we demonstrated how to combine relations defined by the layouts and the
iteration space of the computation to form the iteration space of the generated code. In this section,
we show how using a sparse polyhedral representation permits reasoning about parallelism and
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Rp—g ={ [pi-pjl — [9:, 9110 < p; < numRowsA

| struct DCSR { rowPtr(p;) < pj < rowPtr(p; +1)A

2 int numRows; gi = rowldx(p;) ANgj= COlIdx(Pj)}
3 int *xrowIdx, *rowPtr; . value = data[pj]

4 int *colldx;

5 double xdata; a<a — rowldx < rowldx’
6 };

pi=p; Aa<a’ — colldx < colldx’

(a) Data structure definition. (b) Layout definition.
1 void spmv(double xy, DCSC A, double *x) {
2 for (int p_i = @;p_i < A.numRows; ++p_i)
3 for (int p_j = A.rowPtr[p_il; j < A.rowPtr[p_i+1]; ++p_j)
4 y[A.rowIdx[p_il]l += A.datalp_j] * x[A.colIdx[p_jl1]1;}

(c) Sparse matrix vector multiplication, y(i) = A(i, j) * x(j).

Fig. 7. Doubly compressed sparse row (DCSR).

composing code transformations. These concepts are exemplified with discussions on dependence
testing and tiling.

5.1 Dependence Testing

In general, dependence testing determines if it is safe to parallelize a loop or apply a transfor-
mation, realized with a dependence polyhedron [27, 76] in polyhedral frameworks. Tensor con-
traction expressions exhibit specific data dependence patterns. In matrix vector multiplication,
y(i) = A(i,j) = x(j), j is a contraction index that carries reduction dependences, since y(i) is the
sum over A(i, j) * x(j) products; i is a free index without loop-carried dependences. Since the gen-
erated code also iterates over the layout indices, the compiler must translate dependence relations
to refer to layout indices, which can be described in the sparse polyhedral framework.

We derive the dependence polyhedron for two accesses to the same tensor, where one of them
is a write, using the combined iteration space of Section 4, and the lexicographical loop order. Be-
cause the sparse layout will not change the inherent dependences of the computation, we observe
dependences from the logical access, allowing us to circumvent complexities arises from perform-
ing dependence analysis on the value arrays through indirect accesses with index arrays in the
sparse layout. This dependence polyhedron can be also combined with the dense dependences to
determine whether the original order of the computation is preserved.

Index array properties added to the dependence polyhedron allow dependence testing to be
more precise, as shown with the Doubly Compressed Sparse Row (DCSR) layout in Figure 7.
Consider the p_i loop in Figure 7(c); the information that A.rowldx is monotonically increasing
proves that loop p_i does not carry a dependence.

5.2 Tiling

We can express transformations such as tiling as relations on the iteration space, such as in the
example of Figure 8. The combined iteration space of Section 4 guards execution in Figure 8(a)
based on the value of a UF f representing an index array. Tiling transforms the loop into loops
on Line 1 and 3 of Figure 8(c). However, the compiler introduces the condition on Line 2 due to
the monotonicity of f as an optimization after tiling is applied. This introduced condition will
significantly reduce the number of tiles executed and improves the performance.
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1 for (i = 0; i < n; ++i)
2 if (fLi] == k) S0Q); a<a - f<f
a) Original program where k is a loop invariant
(a) ginal prog v I pinvari (b) Monotonicity of f.
value in i-loop.
1 for (ti = @; 8xti < n; ++ti)
2 if (f[8xtil<=k && f[min(n, 8xti + 8) - 1]1>=k)
3 for (i = 8*ti; i < min(n, 8%ti + 8); ++i)
4 if (f[il == k) se(Q);

(c) Tiled computation with induction loop ti. Line 2 demonstrates
the constraints introduced by monotonicity of f.

Fig. 8. Tiling a sparse computation with UF properties.

To achieve sparse tiling, these constraints are generated from matching the UF property expres-
sion with bounds produced from the polyhedral scanning.

6 CODE GENERATION

With the combined iteration space in Section 4, we can generate code that iterates over the parts
described by the layout indices—subsections, rows, columns, or nonzeros—of one or more sparse
tensors and look up corresponding parts in the next sparse tensor in its layout indices using find
algorithms, as described in this section.

6.1 Co-iteration Using Polyhedral Scanning

Polyhedral scanning can generate loops that handle co-iteration with if conditions from the itera-
tion space constraints, such as IS in Figure 2(b) for the sparse-sparse vector dot product. Such code
is generated through classic polyhedral scanning algorithms [18], where conditions involving each
loop index are produced through set operations. Loops are generated from these conditions by ex-
tracting the lower bounds and upper bounds from the index conditions. Conditions other than
bounds are turned into stride when they specify modulo equality and if conditions if otherwise.
For example, the polyhedral scanning produces the following constraint for the pB loop:

0 < pBApB < B.len Ai = B.idx(pB). (1)

Note that in this relation, the first two terms specify the loop bound, and the third term specifies
the if condition.

The resulting code is shown in Figure 2(c) with two loops, one for each layout—pA and pB—and
a condition in the pB loop that relates locations in these two sparse layouts. This code will work
regardless of whether the elements of either vector are sorted. However, more efficient code can
be generated when it is known that the vectors are sorted—discussed next.

6.2 Optimized Co-iteration Using Synthesis of Find

The conditions specified in 1 that produce the pB loop at line 3 and if condition at line 4 in
Figure 2(c) can be alternatively described as a find: looking for index pB within the loop bound such
that B.idx(pB) = i. When it is treated as a find (B, pB), different find algorithms can be used to re-
place this loop. We illustrate two examples of find algorithms that replace the pB loop in Figure 9,
SeqIter, which refers to sequential iteration, and HashMap. SeqIter find matches by scanning
through the loop range of pB using an inequality version of the find condition until a match is
found or no matches are possible. While the scanning is linear, the initialization of pB affects if
scanning resumes from the last saved position. Through amortization, SeqIter is of complexity
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i (=05 1 for (int pB=0;pB<pB.len;++pB)

2 hashB[B.idx[pBl] = pB;
5 for (int pA=0;pA<A.len;++pA) {

5 while(pB<B.len&8i>B.idx[pB1) ++pB; ¢ 1= AdddxlpAl;
5 pB = hashB.find(i)

6 if(pB<B.len&&i==B.idx[pBI)
6 if (pB!=hashB.notfound)

7 { v+t=A.val[pAl*B.val[pB]; ++pB; 3}}
P P P 7 v+=A.val[pAlxB.val[pB1;?}

3 for (int pA=0;pA<A.len;++pA) {
1+ 1 = A.idx[pAl;

(a) Sequential iteration, SeqIter. (b) HashMap.

Fig. 9. Find algorithms and sparse vector dot product. Code belonging to the templates is highlighted.

ALGORITHM 1: Augmented polyhedral scanning.

Input: IS: Extended Iteration Space. Idx: Loop indices in combined iteration space IS from outermost to

innermost.
1 for Index i € Idx do
2 L; = scan iteration ranges of i in IS ; /% Polyhedral */
3 UF = uninterpreted functions applied with i as the last unbound index;

4 Ci = map(UF, bounds);
5 for uf € UF do

6 if Scan equality/range R of uf in IS then /* Polyhedral x/
7 L ‘ Insert (uf,R) in Cj;

8 if Find algorithm A can be applied on L;, C; then /% SMT */
9 ‘ Generate A;

10 else

11 ‘ Generate for loop with bound L; and if condition Cj;

O(A.len+ B.len). HashMap uses a hashmap to perform the find. It can only handle equality find con-
ditions and has a complexity of O(A.len + B.len), including the initialization cost of the hashmap.

Each find algorithm has a basic skeleton of code associated with it. This skeleton is captured
in the code generator with a template for each algorithm. During code generation, the find al-
gorithm’s template will be filled in with constraints arising from the computation, index array
properties, and loop permutation order: They can be integer values or algebraic expressions. As-
sumptions of each algorithm determine which templates are valid and how to generate the tem-
plate arguments. For example, the Seqlter code in Figure 9 is only valid when the elements of
each vector are sorted. For a given find algorithm, its assumptions are encoded using logical for-
mulae. The generation of the find algorithm will try to match the assumptions with conditions
from iteration spaces, index array properties, and generated template arguments.

We use a satisfiability modulo theory (SMT) solver to prove if these assumptions are met.
Template arguments are first generated through enumeration or construction, and then the as-
sumptions are checked with the generated arguments. This method of generating code segments
by proving generated code with an MT solver or high-order logic (HOL) provers is commonly
referred to as code synthesis [3, 66]. The details of this synthesis process are presented as supple-
mental material.

6.3 Code Generation Algorithm

We present the tensor contraction code generation algorithm in Algorithm 1, which augments
polyhedral scanning to leverage an SMT solver to synthesize find algorithms. Each loop index in
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the combined iteration space IS from Section 4 is processed from outermost to innermost. Line 3
identifies all uninterpreted functions that are fully bound at this loop level. Lines 5-7 extract find
conditions produced by the combined iteration space. Lines 8—9 use the SMT solver to detect and
generate find algorithm A as an alternative to the loop and if conditions.

Applying Algorithm 1 on the iteration space of sparse dot product in Figure 2(b), polyhedral
scanning is used to identify the range for loop pA. There are no uninterpreted functions at this
loop level, and a for-loop is generated. For the next loop pB, A.idx(pA) is loop-invariant. When
A.idx and B.idx are monotonically increasing, SMT solver can prove that find algorithms such
as sequential iteration and hashmap can be applied to implement the find in pB. When sequential
iteration is applied, the code in Figure 2(d) is generated. Loop i will be generated as an assignment
from scanning, i = A.idx(pA) and subsequently removed by dead code elimination due to no usage
related to i.

7 DEMONSTRATIONS AND COMPARISONS

In this section, we demonstrate our proposed framework in two aspects: the versatility of our
sparse layout specification and the adaptability of our code generation strategy.

7.1 Sparse Tensor Layouts

Table 2 presents sparse tensor layouts as described in our framework using the approach in
Section 3. All but the last layout are used in the experimental evaluation. The first column
describes the layout using common terms or citations. Without loss of generality, higher-order
sparse tensor layouts such as Compressed Sparse Fiber (CSF) can be similarly specified with
relations including uninterpreted functions representing index arrays and logical formulae
describing index array properties.

In the table, the last column compares how these layouts are supported by the TACO com-
piler [41]. TACO uses level format and mode ordering to specify how and in what order dimen-
sions are stored. Four level formats are defined: dense, compressed, sparse, and singleton. Mode
ordering specifies the order in which levels are organized. Each level format can be further cus-
tomized with properties such as uniqueness and sortedness. Two points of difference with TACO
are (1) its coupling of logical dimensions to the physical dimensions, thus disallowing a logical
dimension to be derived from multiple physical dimensions?; and (2) TACO views each dimension
separately, thus disallowing relations such as col < row in the lower-triangular matrix.

Looking to the future of coarse-grained functional units such as the NVIDIA A100 sparse tensor
core, we show how our approach describes the Warp Sparse Matrix Storage [2, 51]. Our code gener-
ation can produce computation kernels on the host CPU for computations not natively supported
by the tensor core without requiring layout changes or writing complex architecture-specific code.

7.2 Comparison with Conjunctive Merge

This subsection compares the code generated by our approach as compared with that of the TACO
compiler [41], using sparse dot product as an example. Specifically, Figure 10(a) revisits the code
generated by our sequential iteration algorithm template, where the i loop at line 2 iterates over
the nonzero elements in the layout of A, and the loop at line 4 along with the condition at line 6
looks for that element in B. It only examines each element of A once and then searches adjacent
elements in B for the index in A, only visiting an element in B twice if it matches an element
in A. Our approach can alternatively generate code with loop permutation, which iterates over

2BCSR, defined in Table 2, is not possible with TACO due to the relation on gj. TACO can describe a more restricted version
of BCSR with aligned g; = 8 * colldx(pj) + p;: D,C(unique),D,D.
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Table 2. Different Layout Definitions

Data structure definition | Layout definition
Sparse Vector (SV) [C(unique)]

1 struct SpVec { .

2 int len; Rp:g ={ [pi] = [9:10 < p;i < len A g; = idx(p;)}
3 int xidx; : value =val[p;]

4 double =xval; a < a —idx <idx’

5 )

Compressed Sparse Row (CSR) [60] [D,C(unique)]: Figure 5
Doubly Compressed Sparse Row (DCSR) [15] [C(unique),C(unique)]: Figure 7
Coordinate (COO) [60] [C(not-unique),Q]

i struct C00 { Ry ={ [pi] = [9i,9;110 < p; < numNNZA

2 int numNNZ; gi = rowldx(p;) A g; = colldx(p;)}

’ ?nt Frowldx; : value =datalp;]

i QZZbIzoifj:)t(; a < a —rowldx < rowldx’
o 3 a < a’ Arowldx(a) = rowldx(a’) —colldx < colldx’

Block Compressed Sparse Row (BCSR) [35]
Rp—g =1 [pi» pjs Pr> 1] = 191, 9110 < pi < numRowsA
rowPtr(p;) < pj < rowPtr(p; + 1)A

struct BCSR {

1
2 int numRows;
3 int *rowPtr; 0<pr <8AO0<p <3N
4 int xcolldx; gi = pi ¥ 8+ pr. A gj = colldx(p;) + p1}
5 double xdatal[81[81; - value =data[pj][Pk][pl]
L pi=pi Na<a — colldx + 8 < colldx’
Lower triangular
1 struct LowerTri { Rp—g ={ [pi,pj] - [gi,gj]|0 < pi < numRowsA
2 int numRows; OSijpi/\gi=pi/\gj=pj}
3 double =xdata;
3 : value =data[p; * (p; +1)/2 + p;]

Warp Sparse Matrix Storage [2, 51]
Rp—>g ={ [pi’pj_l - [gi,ngIO <i<16AN0<L pj < 8A

1 struct CUDAmmal6x16 {

2 float datal161[81; 9i = pi Ngj = pj* 2+ offset(p; # 32+ pj x4 + 1)}
3 Bits<512> offset; . value =data[p;][p;]
4} 0 < offset < 2

TACO’s layout description is shown in square bracket when possible using the level formats, dense (D), compressed
(C), and singleton (Q), with properties in the parentheses per level.

B and performs a lookup of A. The code in Figure 10(a) will perform better when A contains
fewer nonzeros, since each element of A is only examined once, and vice versa for the permuted
code. By comparison, TACO’s conjunctive merge algorithm (Figure 10(b)) iterates over both sparse
tensors in the while loop at line 2 and must examine an element of A and an element of B in
each iteration, even if it was examined in the previous iteration. Note that all implementations
have linear complexity O(A.len + B.len), but the code generated by TACO exhibits more data
movement.

The second difference relates to how we can handle a much greater set of index array properties
than TACO. This is related to both the expressiveness of the layout description and the adaptivity
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1 pA = 0; pB = 0;

1 pB = 0; 2 while (pA < A.len && pB < B.len) {
2 for (int pA=0;pA<A.len;++pA) { 3 AQ = A.idx[pAl; B0 = B.idx[pB1;

3 i=A.idx[pAl; 4 1 = min(AQ,B0);

1+ while (pB<B.len&&i>B.idx[pBl) 5 if (A@ == 1 && BO == i)

5 ++pB; 6 v+=A.val[pAJxB.val[pB];

6 if (pB<B.len&&i==B.idx[pB]) 7 pA += (int)(AQ == 1i);

7 { v+=A.val[pAl*B.val[pB]l; ++pB; }} g8 pB += (int)(BO == 1i);}

(a) Sequential iteration. (b) Conjunctive merge from TACO.

Fig. 10. Sparse vector dot products.

1 hashmap hashC;

2 for (pC = 0@; pC < C.len; ++pC) hashC[C.idx[pCIl] = pC;

3 pB = B.len - 1;

4 for (int pA = @; pA < A.len; ++pA) { // pA

5 1 = A.idx[pAl;

6 while (pB < B.len && i > B.idx[pB]) --pB; // pB sequential iteration
7 if (pB < B.len && i == B.idx[pB]) {

8 pC = hashC.find(i); // pC hashmap

9 if (pC != hashC.notfound) v += A.val[pA] x B.val[pB] * C.val[pC];
10 --pB;

13}

Fig. 11. Three-way co-iteration, computing v = A(i) * B(i) * C(i), where A has uniqueness and increasing
monotonicity, B has uniqueness and decreasing monotonicity, and C has uniqueness but no monotonicity.

of the code generation. Figure 11 demonstrates a three-way co-iteration where each sparse vector
involved has a different ordering on the nonzeros. TACO uses flags to specify index array proper-
ties. TACO thus can not express slight variations of the properties, such as decreasingly sorted used
by B. When specific properties such as sortedness are not provided and the locate® level-function
is not defined on a level format, TACO will also fail to generate code as in the case of C, which
can be described as a compressed level format without sortedness. In our framework, synthesis
allows more adaptability regarding variations of index array properties. Different find algorithms,
including the fallback loop implementation, allows us always to generate valid and efficient code
under the constraints provided.

8 EXPERIMENTS

We have implemented a polyhedral compiler with the layout specification, dependence testing,
and sparse polyhedral code generation extensions presented in this article. In our implementation,
we used functionalities provided by the CHIiLL compiler [18], the Omega+ Library [17] for integer
set manipulation and scanning, and Z3 [25] for theory proving.

8.1 Experiment Setup

The layouts in Table 2 can be used in any contraction computation expressed in tensor index
notation. Because this work focuses on combining layouts and computation, we demonstrate these
layouts in the context of the computations in Table 3. Sparse matrix vector multiply (SpMV)
demonstrates sparse-dense co-iteration and provides the baseline performance of the generated

3Finding position from coordinate.
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Table 3. Computations Used in Comparison

Name \ Notation \ Matrix size
SpMV y(i) = A(i,j) = x(j) SuiteSparse
SpMSpV y(i) = A(i, ) = x(j) SuiteSparse
SpMSpM C(i,j) = A(i, k) = B(k, j) Random 5k-5k
TTM (mode 1) | C(i,j,1) = A(i, j, k) = B(k,r) | Various Real-world Tensors
T T T TTTTIT] T LA T T T TTTIT]
z\- 2’000 [ N —— TACO = 0.97%
§ —— Figen ~ 1.40X%
8“ 1,000 | N —— MKL =~ 1.03%
i —— MKL-IE »~ 0.71X
0L Ll | Ll
0.1 1 10
Speedup

Fig. 12. Distribution of relative multi-threaded SpMV execution time on SuiteSparse matrices: We are able
to generate code of similar quality when sparse-sparse co-iteration is not concerned. MKL-IE is the inspector
executor version of MKL. Each bucket is of size 1.2: bucket x is [1.2X70->,1.2%¥+9-3); the bucket around 1—no
speedup—is [0.913,1.095).

code. SpMSpV deals with sparse-sparse co-iteration where only a single vector is co-iterated with
each row. SpMSpM showcases the composability of our polyhedral-framework-based methods
when multiple sparse layouts are involved, which results in complex loop conditions. We also
added tensor-times-matrix (TTM) where the tensor is stored in compressed sparse fiber
layout (CSF) [65].

These sets of experiments were run on a single-socket AMD EPYC 7702P CPUs at 2.0 GHz.
This CPU exposes 4 NUMA domains corresponding to the 4 quadrants, each containing 16 cores,
and has its own DRAM controller. Experiments measure multi-threaded code bound to one of the
NUMA domains using the numactl utilities to prevent adverse NUMA effects from suboptimal
thread placement.

The generated code is automatically parallelized by inserting the OpenMP pragma, #pragma
omp parallel for schedule (dynamic,32), atthe outermost parallel loop based on static depen-
dence testing. All code is compiled with GCC 10.2.0, with flags -03 -ffast-math -march=native.

We compared the generated code with corresponding kernels from a state-of-the-art tensor
algebra compiler—TACO [41], an optimized binary library—the Intel Math Kernel Libraries [36]
2021.1.1, a template library—FEigen [33] 3.3.7, and a state-of-the-art sparse linear algebra library—
SuiteSparse:GraphBLAS (SS:GB) 5.10.1 [23]. Parallel implementations from the libraries are used
when available. TACO is parallelized using the same OpenMP pragma to eliminate any difference
arising from parallelization.

8.2 Performance without Co-iteration: SpMV

Figure 12 provides the performance comparison on 2,893 of the the real and pattern matrices in the
SuiteSparse matrix collection [24] in CSR layout for all libraries. Each experiment is run at least
two times or until 30 seconds have elapsed. The average speedup is reported by geometric mean
over the speedup from all random sets.

Considering SpMV, we see comparable performance to TACO and the library implementations
other than MKL-IE, demonstrating that code generation using polyhedral scanning and synthesis
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Table 4. We Achieved Significant Speedup

(Geometric Mean) on SpMSpV where

Sparse-sparse Co-iteration Is Involved

| TACO | Eigen | SS:GB

Seqlter

1.63

2.43

1.50

HashMap

1.63

2.44

1.50

Auto

2.72

4.06

2.50

We present results for sequential iteration
(SeqIter) or hashmap (HashMap) as find
algorithms. Auto selects the best performance
using these two algorithms.

—— TACO —— Eigen —— SS:GB - - - Speedup = 1
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Fig. 13. Distribution of relative speedup of generated code to different libraries: Auto is consistently faster
than other libraries. The right side of 1 indicates the implementation is able to obtain a speedup greater than
1X. Frequency denotes the number of matrices from SuiteSparse that have relative speedup in the bucket.
Each bucket is of size 1.2: bucket x is [1.2%70-3,1.2%%0-3); the bucket around 1—no speedup—is [0.913, 1.095).

achieves efficient code. MKL-IE achieves higher performance using a runtime inspector that can
fine-tune the loop schedules and parallelization strategy of the executor; inspection time is not
included in the execution time measurement.

8.3 Performance of Co-iteration: SpMSpV

SpMSpV demonstrates the performance of generated code on sparse-sparse co-iteration. We ex-
clude 17 of the matrices due to either out-of-memory issues caused by SS:GB when performing
inspections or time-out (longer than four hours) caused by TACO that also affects the sequential
iteration to a lesser degree. The geometric mean speedup achieved is shown in Table 4 with the
distribution of speedup shown in Figure 13.

For the individual find algorithms, we are able to achieve consistent performance improvement
over the libraries. SeqIter is consistently faster than the comparable conjunctive merge algorithm
from TACO, where both have an algorithm complexity of O(rows=x.nnz+A.nnz). nnz stands for the
number of nonzeros in the respective tensor. This improvement is from reduced data movement,
as discussed in Section 7.2. Meanwhile, HashMap has an algorithm complexity of O(A.nnz + x.nnz),
which is much more efficient when the vector is denser than the matrix. The density is defined as
the ratio of nonzeros over the size of the tensor in the logical space. Due to different complexity,
HashMap achieves the largest speedup of 5,214x compared to TACO on the DIMACS10/europe_osm
matrix, but its speedup is also less consistent. Eigen and SuiteSparse:GraphBlas (SS:GB) libraries
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Fig. 14. Speedup against TACO under different matrix density. Due to less data movement, SeqIter is almost
consistently more efficient than TACO’s conjunctive merge. HashMap is of different algorithmic complexity
compared to both TACO and SeqIter. By offering the flexibility of generating either algorithms, Auto, our
code generation algorithm achieves non-constant speedup against TACO.

use computation methods that have a more stable algorithmic complexity related to the number
of nonzeros in the sparse matrix, which is comparable to our generated code with HashMap. Fur-
thermore, due to the flexibility of generating different find algorithms, we are able to achieve even
higher speedup by selecting the best-performing algorithm at runtime.

As discussed, density is an important metric that affects the relative performance of different
find algorithms. Figure 14 demonstrate its effects on different algorithms when compared to TACO.
Seqlter is able to achieve a bounded speedup when the density of the matrix is low, up to 3.05x.
Meanwhile, HashMap is less affected by the density of the sparse vector. It can achieve unbounded
speedup proportional to the differences in density of the sparse matrix and the sparse vector’s den-
sity of 0.1. By selecting the best-performing algorithm, we are able to achieve consistent speedup
by avoiding the slowdowns from HashMap when the matrix density is high and improving the
speedup potential when the matrix density is low.

8.4 Composing Programs with Multiple Layouts: SpMSpM

We next consider SpMSpM and analyze performance of co-iteration when the two sparse matrices
have different layouts. As we want to look at layouts beyond CSR, and neither Eigen nor SS:GB
support other layouts, this comparison is only with TACO. We used randomly generated matrices
from TACO?® with a fillrate 0.1 in each dimension. We report a geometric mean over 100 sets of
random tensors in each experiment, where each set is run twice to avoid a cold start and run at
least eight times and at least 5 seconds.

Table 5 demonstrates that our approach is able to compose complex layouts with computation
while achieving comparable performance to TACO on computations that TACO supports. Our
approach improves upon TACO’s performance on COO by avoiding multiple sweeps over the
sparse tensors. By decoupling the iteration over logical and sparse indices, our approach is able to
support triangular layout and computations and blocked layouts such as BCSR. To support BCSR
in TACO, due to the requirement of matching dimensions to iterators, the BCSR layout must be
expressed as a fourth-order tensor that is incompatible with the other layouts besides BCSR [41].

8.5 Performance of Higher-order Tensors and Sharing of Sparsity Structure

TTM is commonly used in popular tensor decompositions, such as the Tucker decomposition, for a
variety of applications, including (social network, electrical grid) data analytics, numerical simula-
tion, machine learning, recommendation systems, personalized web search, and so on [4, 21, 42, 63].

3TACO retrieved from https://github.com/tensor-compiler/taco, master@c9bd10d6. Tensors generated with
taco::util::fillTensor(tensor, taco::util::FillMethod::Sparse, 0.1).
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Table 5. SpMSpM Involving Two Sparse Matrices

Layout A\Layout B | COO | CSR | DCSR | BCSR*

COO 1.21 | 1.00 | 0.98 X
CSR 0.99 | 0.99 | 1.00 X

DCSR 0.97 | 1.00 | 1.00 X

BCSR X X X 1.01

We show speedup over geometric means as compared to TACO. 3
indicates representations not supported by TACO, including lower
triangular and warp sparse matrix storage. For the blocked
representation, BCSR, we show TACO results only against BCSR,
since TACO must represent BCSR as a fourth-order tensor, requiring
changes to the other tensor to express as a fourth-order tensor as
well. X indicates computations that are not supported by TACO,
while we support all layout combinations.

Table 6. TTM (Mode-1, R = 16) Performance Comparison with TACO

Tensor ‘ Collection ‘ NNZ ‘ TACO ‘ Generated ‘ Generated Parallel
Social Network Analysis

delicious-3d FROSTT | 140M | 2.07s 2.14s 0.44s

flickr-3d FROSTT | 113M | 1.12s 1.20s 0.27s

freebase-music | HaTen2 100M | 1.26s 1.30s 0.74s
Pattern Recognition

vast-2015-mc1 | FROSTT | 26M | 0.31s | 0325 | 0.19s

Natural Language Processing

NELL1 FROSTT 144M | 8.38s 9.28s 0.91s

NELL2 FROSTT 77TM | 0.49s 0.49s 0.04
Anomaly Detection

1998darpa | HaTen2 | 28M | 0.77s |  0.87s 0.20s

NNZ is the number of nonzeros. TACO is unable to generate parallel code due to it sequentially advancing
in the positions of the sparse output.

In this experiment, we use the mode-1 variant of the computation, where the third dimension of
the tensor input is contracted, C(i, j,I) = A(i, j, k) * B(k,r). Note that r is typically much smaller
than k in low-rank decompositions, typically r < 100.

TTM represents a case where there is known output sparsity when tensor A and C are stored in
compressed sparse fiber format: A(i, j,:) # 0 — C(i, j,:) # 0. With our layout specification, we can
describe A and C using the same auxiliary index arrays and having the same sparsity structure for
the leading two dimensions.

Table 6 shows the performance of our generated code against TACO. The sparse tensors, in
the compressed sparse fiber (CSF) layout [65], are taken from real-world applications available
in the Formidable Repository of Open Sparse Tensors and Tools (FROSTT) [64] and the
HaTen2 dataset [38]. TACO and our work require pre-generated sparsity using an assemble phase.
The timing of assemble is excluded from the table. The performances of our generated code
and TACO are similar. However, we are a little slower by reading one more index array for the
memory location of the output variable, whereas TACO uses a counter variable for the location.
However, TACO cannot generate a parallel compute code due to sequentially writing to the
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output sparsity structure. In contrast, we can generate efficient parallelizable implementations
from sparsity sharing and are, on a geometric average, 4.27x faster.

9 RELATED WORK

Our work can be considered as an extension to the Sparse Polyhedral Framework. This work
presents a layout specification that can be integrated with the polyhedral framework and a code
generation algorithm that combines polyhedral scanning with code synthesis of find algorithms.

9.1 Layout Specification

There is little work targeted to general layout specification due to it having strong ties to a specific
code generation strategy. Sparse libraries may expect a standard layout for the whole tensor [33,
36, 79]. Compiler-based approaches can vary the sparse implementation of specific dimensions of
the tensor using a set of names to identify known formats. Bik [11], Bik and Wijshoff [12], Pugh
and Shpeisman [54] define the implementation of each index dimension of a tensor using a set of
names. This approach is refined with TACO [41] by Chou et al. [20].

Unlike these prior sparse tensor compilers, our work describes the spaces of the layouts sepa-
rated from the space of the computation. This enables working with blocked layouts that have a 2:1
mapping from layout dimensions to coordinate dimensions and experimenting with loop orders
involving dimensions from layouts and those from the computation.

9.2 Code Generation

Tensor contraction engine [6] is a pioneering work to automatically generate dense tensor contrac-
tion computations in quantum chemistry, used extensively in the NWChem software suite [74]. It
can automatically determine the binary contraction order for multiple tensor contractions with
minimal operation and memory cost and define and reuse intermediate contraction results.

Bik [11], Bik and Wijshoff [12] described a compiler that can transform dense loops over dense
arrays into sparse loops over nonzero elements using a technique called guard encapsulation. It
treats the index set of an input tensor as a whole to define guard conditions that either include or
exclude the inner computation. The Bernoulli project [43-45, 50, 67] generates sparse algebra com-
putations by modeling the iterations as DO-ANY loops and formulates the computation as query
expressions. It introduces external fields to represent dimensions not part of the index coordinates
and index hierarchy for preferred ordering of enumeration within a layout. These previous works
on sparse tensor algebra are refined with TACO [41], which formalizes the dependence between
indices using the iteration graph, defines merge lattices for co-iteration, and uses a set of level
format and level functions to describe the computation. Pugh and Shpeisman [54] used Enumera-
tor/Accessors to guide the choice of layouts and code generation for sparse computation.

Other frameworks leverage the inspector-executor pattern to achieve data and computation op-
timization targeting specific sparsity patterns in the tensor. Sparso [59] enables context-driven
optimizations using input matrix properties and matrix reordering. Comet [73] implements a ten-
sor contraction dialect in Multi-Level IR compiler (MLIR) infrastructure [47]. It uses a similar
layout specification as TACO and implements data reordering [49] to improve spatial and temporal
locality.

9.3 Polyhedral Frameworks and Sparse Polyhedral Frameworks

The polyhedral framework can be employed on sparse arrays that does not employ uninterpreted
functions. Augustine et al. [7] used trace reconstruction to exploit regular patterns in the sparse
matrix. Sublimation [75] turns irregular accesses into regular accesses by exploiting the injectivity
of access functions and expanding the irregular loops to regular loops to cover a larger range of
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Table 7. Comparing this Work with Related Works in Sparse Polyhedral Framework (SPF) and TACO

Related Works Co-iteration Layout Nonzero Index transformations
A | vV | AS* | Description | ordering | Blocking | Subsection
SPF [53, 77, 78] X | x| x I3 v Limited v/
TACO[20,34,41] | V/ | / | X v Limited | Limited X
This work v/ | F 4 4 4 v v

Support of disjunctive co-iteration (V) and other pattern in Hentry et al. [34] is left for future work (F). *Our work
enables implementing a co-iteration with a combination of different algorithms: algorithm selection (AS).

values. Zhao et al. generate code for non-affine loop bounds using conditions and exits [83]. There
is also prior work in the polyhedral framework that deals with while loops [10, 22]. However, these
works are insufficient to express co-iterations, which have not only dynamic loop bounds but also
dynamic conditions with multiple index arrays.

The Sparse Polyhedral Framework uses inspectors to analyze properties of sparse computations
at runtime to create suitable sparse data structures and transform the original computation into
executors that can use the new sparse data structure. Venkat et al. [77] described transformation
recipes in the polyhedral framework with make-dense and compact operations to compose layout
with other loop transformations. Venkat et al. [78] described an approach that leverages runtime
dependence analysis and layout transformation to achieve wavefront execution of sparse computa-
tion. Mohammadi et al. [53] used index array properties to simplify runtime dependence checking
and generate efficient inspectors. The polyhedral framework composes the relations provided to
the SMT solver and simplifies the dependences used to derive the inspector.

None of these prior works systematically presents a specification of sparse layout in the poly-
hedral framework, and none of them supported co-iterations.

9.4 Comparison

Table 7 compares this work with both sparse polyhedral frameworks and TACO [41]. Compared to
prior works of sparse polyhedral frameworks, we are the first to enable sparse layout description
and support co-iteration generally. These advances mean that no comparison with prior works in
SPF is possible. Compared to tensor algebra compilers such as TACO [41], we eliminated many
special cases in the compiler design and extended the capability in both supporting layouts and
implementing co-iteration. However, in this work, the support for disjunctive merge, which can
be represented as sparse loop fusion, is future work.

10  CONCLUSION & FUTURE WORK

The polyhedral framework provides mathematical descriptions of loop nest computations that
enable dependence testing, composing code transformation sequences, and generating code. This
article similarly achieves this result for sparse tensor co-iteration by extending the polyhedral
framework in two key ways: (1) We employ a relation from a sparse tensor layout to its logical
coordinate space and compose this with the logical iteration space to derive the sparse iteration
space; (2) we implement co-iteration by iterating the layout of one sparse tensor and looking up
the indices of the other layout through synthesizing a find algorithm.

This work adds another dimension of interaction in automatic tensor code generation with ar-
chitecture features such as single instruction/multiple data (SIMD) or tensor cores. Prior works
on tensor blocking and reordering [7, 49] can be orthogonally combined to provide computation
speedups using such features. As the find algorithms are synthesized in this work, we can also
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leverage such hardware features for implementing architecture-specific finds. Leveraging vector-
ization for index comparisons in the find algorithm can provide critical speedups when the indices
are sparse.

With hardware architectures’ increased diversity in functional units, computation capability,
and memory bandwidth, adapting data layout and computation to hardware requirements is
crucial to achieving performance portability for sparse tensor computations. By proposing a
flexible framework for layout description and code transformation, we have opened up more
opportunities for the co-optimization of layout and computation. We believe this work is a critical
step in automatically generating architecture-specific variants of data layouts and computation
programs.
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