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Dimension reduction techniques for dynamical systems on networks are considered to pro-

mote our understanding of the original high-dimensional dynamics. One strategy of dimen-

sion reduction is to derive a low-dimensional dynamical system whose behavior approximates

the observables of the original dynamical system that are weighted linear summations of the

state variables at the different nodes. Recently proposed methods use the leading eigenvector

of the adjacency matrix of the network as the mixture weights to obtain such observables.

In the present study, we explore performances of this type of one-dimensional reductions of

dynamical systems on networks when we use non-leading eigenvectors of the adjacency ma-

trix as the mixture weights. Our theory predicts that non-leading eigenvectors can be more

efficient than the leading eigenvector and enables us to select the eigenvector minimizing

the error. We numerically verify that the optimal non-leading eigenvector outperforms the

leading eigenvector for some dynamical systems and networks. We also argue that, despite

our theory, it is practically better to use the leading eigenvector as the mixture weights to

avoid misplacing the bifurcation point too distantly and to be resistant against dynamical

noise.

I. INTRODUCTION

A variety of complex systems in the real world can be described by dynamical systems on

networks [1–4]. This seems to be the case in particular when systems of question are composed

of dynamical elements that are similar to each other except for the connectivity and some easily

parameterizable heterogeneity across the individual elements. Examples include coupled oscillators

on networks [5] including models of functioning of power grids [6], predator-prey, mutualistic,

and other dynamics impacting community stability in ecological networks [7, 8], gene regulatory

networks [9], and epidemic processes and ecological population dynamics considered on networks
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of habitat patches (called metapopulation models) [10, 11]. Analyses of dynamical systems on

networks have clarified various collective phenomena on networks such as phase transitions and

synchronous oscillations.

Dynamical systems on networks are necessarily high-dimensional because each node is assigned

with one or more dynamical variables and those variables interact via edges of the given network.

Even if the dynamics at each node is one-dimensional, the entire dynamical system on the network

is N -dimensional, where N is the number of nodes in the network. Therefore, similar to various

dimension reduction techniques for high-dimensional data [12–14], one may be tempted to map a

dynamical system on networks into one in a low-dimensional space without losing much informa-

tion. Then, by deploying analytical and numerical techniques suited to low-dimensional dynamical

systems, we may be better able to understand the original high-dimensional network dynamics.

Gao, Barzel, and Barabási developed a heterogeneous mean-field theory, assuming uncorrelated

networks with general degree (i.e., number of edges that a node in the given network has) distribu-

tions, to reduce a class of dynamical systems on networks to one-dimensional dynamical systems

[15]. Their method approximates a one-dimensional projection of the original high-dimensional

dynamics on networks with a reasonably good accuracy in various cases. See Refs. [16, 17] for

validation studies of this approach and Ref. [18] for an extension. Furthermore, to deal with gen-

eral network structure, Laurence et al. developed a systematic method, which we call the spectral

method, to use the eigenvalues and eigenvectors of the adjacency matrix of the network to reduce

the same class of dynamics on networks into dynamics of small dimensions, such as one or two [19].

See Ref. [20] for a further advancement of the spectral method. In the case of one-dimensional

reduction, which we focus on in the present study, the spectral method uses an observable that

is a particular linear combination of the state variables on all nodes, denoted by R =
∑N

i=1 aixi,

where xi is the dynamical state of the ith node, and ai is the mixing weight. Then, one writes

down a closed dynamical equation in terms of R. On a theoretical basis, they proposed to use the

ith element of the leading eigenvector (i.e., the eigenvector associated with the largest eigenvalue)

of the adjacency matrix as ai [19].

The leading eigenvector of the adjacency matrix is a key descriptor of contagious processes on

networks because the adjacency matrix tells us who can directly infect whom. In fact, the ith

element of the leading eigenvector gives the likelihood that the ith node is infectious when the

infection rate of an epidemic process model such as the susceptible-infectious-susceptible (SIS)

model is poised near the epidemic threshold [21]. For example, scale-free networks (i.e., networks

with power-law degree distributions) show eigenvector localization such that the leading eigenvector
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has only a small fraction of considerably positive elements, which are at the largest-degree nodes

and correspond to the presence of infection at these nodes [21–24]. In contrast, the other elements

of the eigenvector are close to 0, corresponding to the scarcity of infection at small-degree nodes.

These and other results lend support for the spectral method [19] and its extension called the

dynamics approximate reduction technique (DART) [20], which use the leading eigenvectors of the

adjacency matrix as mixing weights.

In the present study, we develop a theory to argue that it is often better to use a non-leading

eigenvector of the adjacency matrix for the spectral method to realize a better accuracy at reducing

the original N -dimensional dynamics into a one-dimensional dynamics. We derive optimization

criteria under the assumption that {x1, . . . , xN} is not too heterogeneous, which numerically holds

true for various dynamical systems on networks [17]. Our theoretical derivation suggests that the

leading eigenvector does not necessarily yield the smallest error of the dimension reduction by the

spectral method. For various networks, a non-leading eigenvector, which implies that we linearly

combine xi into one observable with some negative weights ai, realizes a smaller error than the

spectral method with the leading eigenvector. We verify our theory by numerical simulations of

three dynamical systems on different networks. Finally, we argue that, despite our theory, the

spectral method using the leading eigenvector as the mixing weights is better than with the non-

leading eigenvector because of two factors that our theory does not address: precision in locating

the bifurcation point and the robustness against dynamical noise. Our code for computing the

optimal eigenvectors and reproducing the results in this article is available at https://github.

com/naokimas/nonleading-spectral.

II. SPECTRAL METHOD

Throughout the present study, we consider the following class of dynamical systems on networks

[15, 19, 25]:

dxi
dt

= F (xi) +

N∑
j=1

wijG(xi, xj), (1)

where t is the time, xi is the one-dimensional dynamical state of the ith node (with i ∈ {1, . . . , N}),

F (x) represents the intrinsic dynamics of the node, G(xi, xj) represents the influence of xj on xi,

and wij is the strength of the influence of node j on node i, corresponding to the weighted adjacency

matrix of the given network. We assume that the network is connected. We also assume that the

network does not have self-loops, i.e., wii = 0 for i ∈ {1, . . . , N}. However, if all nodes have a self-
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loop of the same edge weight (i.e., w11 = · · · = wNN ), one can include the effect of such self-loops

into F (xi) by replacing the original F (xi) by F (xi) + wiiG(xi, xi).

We describe the spectral method [19] in this section. With this method, one reduces the N -

dimensional dynamical system given by Eq. (1) to an n-dimensional system, where n ≪ N , by

deriving an approximate n-dimensional dynamical system in terms of observables each of which is

a linear combination of {x1, . . . , xN}. We focus on the case of n = 1 in this paper. We consider an

observable, which we denote by R, given by

R =
N∑
i=1

aixi, (2)

where {a1, . . . , aN} is normalized such that
∑N

i=1 ai = 1.

By combining Eqs. (1) and (2), one obtains

dR

dt
=

N∑
i=1

ai

F (xi) +
N∑
j=1

wijG(xi, xj)

 . (3)

By Taylor expanding F (xi) around xi = R to the first order, we obtain

F (xi) = F (R) + (xi −R)F ′(R) +O
(
(xi −R)2

)
. (4)

Similarly, we expand G(xi, xj) around xi = βR and xj = γR, where β and γ are constants to be

determined, to obtain

G(xi, xj) = G(βR, γR)+(xi−βR)G1(βR, γR)+(xj−γR)G2(βR, γR)+O
(
(xi − βR)2

)
+O

(
(xj − γR)2

)
,

(5)

where G1 and G2 are the partial derivatives of G with respect to the first and second argument,

respectively. By substituting Eqs. (4) and (5) into Eq. (3), one obtains

dR

dt
=F (R) + αG(βR, γR) +G1(βR, γR)

N∑
i,j=1

aiwij(xi − βR) +G2(βR, γR)

N∑
i,j=1

aiwij(xj − γR)

+O
(
(x−R)2

)
+O

(
(x− βR)2

)
+O

(
(x− γR)2

)
, (6)

where

α =

N∑
i,j=1

aiwij , (7)

and O
(
(x−R)2

)
is a short-hand notation for

∑N
i=1O

(
(xi −R)2

)
and similar for O

(
(x− βR)2

)
and O

(
(x− γR)2

)
. By requiring that the first-order terms in Eq. (6), i.e., those containing G1
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and G2, disappear for any {x1, . . . , xN}, one obtains

αβR =
N∑

i,j=1

aiwijxi = x⊤Ka, (8)

αγR =
N∑

i,j=1

aiwijxj = x⊤W⊤a, (9)

where x = (x1, . . . , xN )⊤, a = (a1, . . . , aN )⊤, K is the N ×N diagonal matrix whose ith diagonal

entry is equal to the weighted in-degree of the ith node, i.e., kini ≡
∑N

j=1wij , W = (wij) is the

N ×N adjacency matrix, and ⊤ represents the transposition. By substituting Eq. (2) in Eqs. (8)

and (9), one obtains

x⊤(αβa−Ka) =0, (10)

x⊤(αγa−W⊤a) =0. (11)

Because Eqs. (10) and (11) ideally hold true for any x, one obtains

Ka =αβa, (12)

W⊤a =αγa. (13)

Equations (12) and (13) indicate that a is a right eigenvector of both K and W⊤. However, K and

W⊤ do not share the eigenspace in general. In particular, the eigenvectors of K are the standard

unit vectors because K is a diagonal matrix. The standard unit vector a = (1, 0, . . . , 0)⊤, for

example, satisfies Eq. (12), but it implies that R = x1 so that we only observe the first node.

Note that a = (1, 0, . . . , 0)⊤ satisfies Eq. (13) if and only if kin1 = 0 such that the first node is not

influenced by any other node.

Laurence et al. proposed to set a to be a right eigenvector of W⊤. Because a is normalized such

that 1⊤a = 1, where 1 = (1, . . . , 1)⊤, we left-multiply 1⊤ by Eq. (13) and use 1⊤W⊤ = kin, where

kin = (kin1 , . . . , kinN )⊤, and α = a⊤kin, which originates from Eq. (7), to obtain α = αγ, i.e., γ = 1.

Substitution of γ = 1 in Eq. (13) implies that α is the eigenvalue of W⊤ associated with eigenvector

a. One can normalize a as 1⊤a = 1 unless the associated eigenvalue is 0. Finally, because Eq. (12)

no longer holds true in general, one uses the β value that minimizes the approximation error, i.e.,

β∗ = argminβ ∥Ka− αβa∥2 = b⊤kin

a⊤kin
, (14)

where b = (b1, . . . , bN )⊤, and bi = a2i /
∑N

ℓ=1 a
2
ℓ with i ∈ {1, . . . , N}.

By neglecting the second and higher order terms in Eq. (6), one obtains the spectral reduction

given by

dR

dt
= F (R) + αG(β∗R,R). (15)
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III. MODIFIED SPECTRAL METHOD

A. Eigenvector minimizing the approximation error

With the optimal β value given by Eq. (14), we obtain

e1 ≡ ∥Ka− αβ∗a∥2 =
∑N

i=1

∑i−1
j=1 a

2
i a

2
j (k

in
i − kinj )2∑N

ℓ=1 a
2
ℓ

. (16)

We have two remarks on Eq. (16). First, although the use of the leading eigenvector as a has been

recommended for the spectral method [19] and the DART [20], e1 may be smaller for other right

eigenvectors of W⊤. Second, Eq. (16) implies that e1 = 0 if all the nodes have the same in-degree,

regardless of which right eigenvector of W⊤ we use as a. However, numerical simulations indicate

that the spectral method is not exact even for random regular graphs [17]. The approximation

error may be due to the higher-order terms in the Taylor expansion in Eq. (6) or the fact that we

have expanded Eq. (3) around both xi = R and xi = β∗R. (Although we also expanded xi around

γR, we found that γ = 1.) In fact, our numerical test suggests that β∗ is often far from 1 both

for the leading eigenvector and the eigenvector minimizing ϵ1, as we show for scale-free networks

in Fig. 1(a) and Fig. 1(b), respectively.

For these reasons, we propose to expand Eq. (3) only around xi = R as follows. Let us set

xi = R+∆xi (with i ∈ {1, . . . , N}), where |∆xi| ≪ 1. Then, we obtain

N∑
i,j=1

aiwijG(xi, xj)

=
N∑

i,j=1

aiwijG (R+∆xi, R+∆xj)

=
N∑

i,j=1

aiwij [G(R,R) +G1(R,R)∆xi +G2(R,R)∆xj ] +O
(
(∆x)2

)
=αG(R,R) +G1(R,R)

N∑
i,j=1

aiwij(xi −R) +G2(R,R)

N∑
i,j=1

aiwij(xj −R) +O
(
(∆x)2

)

=αG(R,R) +G1(R,R)

 N∑
i,j=1

aiwijxi − αR

+G2(R,R)

 N∑
i,j=1

aiwijxj − αR

+O
(
(∆x)2

)
.

(17)

By imposing that the first-order terms on the right-hand side of Eq. (17) disappear, we obtain

αR =x⊤Ka, (18)

αR =x⊤W⊤a. (19)
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FIG. 1. The β∗ value for 200 scale-free networks (i.e., networks with power-law degree distributions) with

N = 1000 nodes. Each circle represents a network. The horizontal axis represents the ϵ1 value for the

minimizer of ϵ1 divided by the ϵ1 value for the leading eigenvector. A small value on the horizontal axis

implies that the minimizer of ϵ1 is efficient at reducing ϵ1 relative to the leading eigenvector. The value

on the horizontal axis being equal to 1 implies that the leading eigenvector minimizes ϵ1. (a) β∗ for the

leading eigenvector. (b) β∗ for the eigenvector minimizing ϵ1. We use the configuration model to generate

the 200 scale-free networks with the power-law exponent of the degree distribution equal to γ̃ = 3.5. See

Section IVA for details of the degree distribution used. Note that one can rewrite Eq. (14) as β∗ = b⊤kin/α.

Therefore, if the minimizer of ϵ1 is associated with a small eigenvalue, α, then β∗ tends to be large. This

explains why the β∗ value tends to be much larger in (b) than (a).

By substituting R = x⊤a in Eqs. (18) and (19) and imposing that Eqs. (18) and (19) hold true

for any x, we obtain

Ka =αa, (20)

W⊤a =αa. (21)

For the same reason as that for the original spectral method, Eqs. (20) and (21) do not simultane-

ously hold true in general. Therefore, by following the recommendation for DART [20], we require

Eq. (21) to hold exactly and let Eq. (20) be satisfied only approximately. The opposite case, i.e.,

to impose Eq. (20) strictly and Eq. (21) only approximately, implies that we only observe a single

node as a representative of the entire system (see Appendix A for the derivation). Equation (21)

implies that, as in the case of the original spectral method, a must be a right eigenvector of W⊤

and that α is the associated eigenvalue. Therefore, we select the eigenvalue α and the associated
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eigenvector a that minimize the the approximation error for Eq. (20) defined by

ϵ2 ≡ ∥Ka− αa∥2 =
N∑
i=1

(kini − α)2a2i . (22)

We remind that a is normalized such that
∑N

i=1 ai = 1. The modified one-dimension reduction

reads

dR

dt
= F (R) + αG(R,R). (23)

A few remarks are in order. First, as in the case of the original spectral method, the leading

eigenvector of W⊤ may not minimize e2. Second, ϵ2 ≥ ϵ1 holds true because our one-dimensional

reduction scheme corresponds to β = 1, whereas the original spectral method also optimizes the

β value. Nevertheless, which reduction method is more accurate than the other is a nontrivial

question because the original spectral method uses the Taylor expansion of each xi around two

reference values (i.e., R and β∗R). Third, the Perron-Frobenius theorem guarantees that ai > 0,

∀i ∈ {1, . . . , N} when a is the right leading eigenvector of W⊤. Therefore, the observable, R,

when the spectral method uses the leading eigenvector, is a weighted average of all the dynamical

variables, xi, with positive weights. The Perron-Frobenius theorem also guarantees that all the

entries of the left leading eigenvector of W⊤, which we denote by v ∈ R1×N , are also positive. If

W⊤ is diagonalizable and the leading eigenvalue is not repeated, we obtain va = 0 for any right

eigenvector a of W⊤ other than the leading one. Therefore, the sign of at least one ai must be

opposite to the sign of some other ai. This fact implies that R = a⊤x is a weighted average of

{x1, . . . , xN} including negative weights.

B. Case of regular graphs

In the case of the complete graph, K is the diagonal matrix whose all diagonal entries are

equal to N − 1. Matrix W is given by W = (wij), where wij = 1 − δij , and δij is the Kronecker

delta. In this case, W has the leading eigenvalue α = N − 1 with the associated eigenvector

a = (1, . . . , 1)⊤ and the (N − 1)-fold eigenvalue α = −1 whose associated eigenvectors can be

chosen as a = (1,−1, 0, . . . , 0)⊤, (1, 0,−1, 0, . . . , 0)⊤, (1, 0, 0,−1, 0, . . . , 0)⊤, . . ., (1, 0, . . . , 0,−1)⊤.

We find that the combination of α = N − 1 and a = (1, . . . , 1)⊤ satisfies Eq. (20), whereas the

combination of α = −1 and any of its eigenvector does not. Therefore, only the leading eigenvalue

and eigenvector realize ϵ2 = 0. Furthermore, due to the symmetry, all the xi values are same, such

that the O
(
(∆x)2

)
in Eq. (17) disappears. Therefore, the spectral method is exact. Because the
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complete graph is a regular graph (i.e., a network in which all the nodes have the same degree),

we also obtain ϵ1 = 0 for any eigenvector.

Similar results hold true for regular graphs in general. Specifically, for any undirected regular

graphs with degree k, the leading eigenvalue of W is equal to k, and the associated eigenvector

is a = (1, . . . , 1)⊤. We find that this pair of eigenvalue and eigenvector, which is known to be of

multiplicity 1 [26], satisfies Eq. (20). No other pair of eigenvalue and the associated eigenvector

of W does not satisfy Eq. (20) because Eq. (20) implies that the eigenvalue needs to be equal

to k. With the leading eigenvalue and eigenvector of W⊤, if the network is vertex-transitive [26]

(e.g., square lattice with periodic boundary conditions), O
(
(∆x)2

)
in Eq. (17) disappears due

to the symmetry (i.e., xi = xj for all i, j ∈ {1, . . . , N}) such that the spectral method is exact.

Otherwise, the O
(
(∆x)2

)
term may cause the discrepancy between the spectral method and the

numerical results, as is the case for random regular graphs [17].

C. Case of degree-heterogeneous random graphs

Consider undirected configuration models, i.e., uniformly random undirected networks with a

given degree sequence. In the limit of N → ∞, the normalized leading eigenvector of the adjacency

matrix is approximated by ai = ki/
∑N

ℓ=1 kℓ [23], and the leading eigenvalue is approximated by

α = ⟨k2⟩/⟨k⟩, where ⟨·⟩ represents the average over the N nodes [27]. By substituting these

relationships in Eq. (22), we obtain

ϵ2 ≈
N∑
i=1

(
ki −

⟨k2⟩
⟨k⟩

)2
(

ki∑N
ℓ=1 kℓ

)2

=
⟨k⟩2⟨k4⟩ − 2⟨k⟩⟨k2⟩⟨k3⟩+ ⟨k2⟩3

N⟨k⟩4
, (24)

where ≈ represents “approximately equal to”. If we instead use a non-leading eigenvector whose

associated eigenvalue is of O(1) and assume that ai and ki are uncorrelated and that ai = O(N−1),

we obtain

ϵ2 =

N∑
i=1

(ki − α)2 ·O(N−2) = O
(
⟨k2⟩N−1

)
. (25)

In degree-heterogeneous networks, the leading term in Eq. (24) is ⟨k4⟩⟨k⟩−2N−1, which is expected

to be much larger than O(⟨k2⟩N−1) in Eq. (25). Therefore, if ai = O(N−1) for various non-

leading eigenvectors, we expect that the spectral method is likely to be optimized by a non-leading

eigenvector in degree-heterogeneous networks.
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IV. NUMERICAL RESULTS

In this section, we numerically compare the spectral method with the leading eigenvector and

that with the error-minimizing eigenvectors.

A. Estimated performance of non-leading eigenvectors for various networks

We first examine the performance of the optimal non-leading eigenvectors in reducing ϵ1 and ϵ2

in comparison with the leading eigenvector for several networks.

First, we consider networks with N nodes by the Erdős-Rényi (ER) random graph in which

each node pair is adjacent with probability ⟨k⟩/(N − 1); we remind that ⟨k⟩ is the mean degree.

We generate 200 networks from the ER random graph and use the largest connected component

of each network for each pair of N ∈ {100, 1000} and ⟨k⟩ ∈ {4, 10}. For the other network models

that we consider in the following text, we also generate 200 networks and use the largest connected

component. The largest connected component of the networks generated by the ER random graph

model contains at least 90% of the nodes. We then compute the minimizer of ϵ1 and that of ϵ2 for

each network. We find that the leading eigenvector is the minimizer of ϵ1 and ϵ2 in all networks.

Therefore, we should use the spectral method with the leading eigenvector [19, 20] for the ER

random graph.

The results are similar for the Watts-Strogatz model of small-world networks [28], whereas the

leading eigenvector does not minimize ϵ1 or ϵ2 for a small fraction of network instances. Specifically,

we set the rewiring probability to 0.1 and generate networks for each pair of N ∈ {100, 1000} and

⟨k⟩ ∈ {4, 10}. We have confirmed that the largest connected component of the network always

contains all nodes. With ⟨k⟩ = 10, the leading eigenvector minimizes both ϵ1 and ϵ2 for all networks.

With ⟨k⟩ = 4, the minimizer of each type of error (i.e., ϵ1 or ϵ2) is not the leading eigenvector only

for 1.5% and 6% of the networks with N = 100 and N = 1000 nodes, respectively.

Next, we generate networks with power-law degree distributions, which we refer to as scale-

free networks, using the configuration model. To this end, we draw the degree of each node,

denoted by k, by independently sampling k from a power-law distribution given by p(k) = κ(γ̃ −

1)/ [1 + κ(k − 1)]γ̃ , where k ≥ 1, κ > 0, and γ̃ > 1. Because p(k) is a probability density function,

we round the sampled k to the nearest integer. The mean of the probability density p(k) is

1 + [κ(γ̃ − 2)]−1, we equate it to the mean degree, ⟨k⟩. With the given values of ⟨k⟩ and γ̃ values,

we uniquely determine the κ value. We examine combinations of N ∈ {100, 1000}, ⟨k⟩ ∈ {4, 10},
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and γ̃ ∈ {2.5, 3.5}. The largest connected component contains at least 91.5% of the nodes except

when N = 100, ⟨k⟩ = 4, and γ̃ ∈ {2.5, 3.5}, in which case it contains at least 79% of the nodes

(i.e., 79 nodes). We calculate the ratio of the ϵ1 value for its minimizer to the ϵ1 value for the

leading eigenvector. By definition, this ratio ranges between 0 and 1. If the ratio is small, the

minimizer of ϵ1 is expected to be better at approximating a one-dimensional projection of the

original N -dimensional dynamics. In contrast, the ratio value equal to 1 implies that the leading

eigenvector minimizes ϵ1. We similarly measured the ratio of ϵ2 for its minimizer to ϵ2 for the

leading eigenvector. For scale-free networks with γ̃ = 2.5, we show the cumulative distribution of

the ratio for ϵ1 and ϵ2 in in Figs. 2(a) and 2(b), respectively. The cumulative distribution shows

the fraction of the networks for which the ratio is larger than the value shown on the horizontal

axis. Therefore, if the cumulative distribution is small for a range of the ratio value smaller than 1,

then the minimizer of ϵ1 or ϵ2 is efficient relative to the leading eigenvector for a large proportion

of network instances. Figures 2(a) and 2(b) indicate that there are many instances of networks

for which the leading eigenvector does not minimize ϵ1 or ϵ2 and that the minimization of ϵ1 or

ϵ2 reduces the error by a large fraction relative to the case of the leading eigenvector in many

cases. The results are similar for γ̃ = 3.5 (see Figs. 2(c) and 2(d)). These figures indicate that the

minimizer of the error tends to be different from the leading eigenvector and tends to reduce the

error by a large amount when the network is large, sparse, or more heterogeneous in terms of the

node’s degree (i.e., γ̃ = 2.5 as opposed to γ̃ = 3.5).

Lastly, we investigate the scale-free network model proposed by Holme and Kim, which produces

a high clustering coefficient (i.e., many triangles) [29]. We set the number of edges that each new

node has, denoted by m, to m = 2 and m = 5 to produce networks whose average degree is

approximately equal to ⟨k⟩ = 4 and ⟨k⟩ = 10, respectively. We initialize the network by a star

graph having m+1 nodes. We set the probability of making a triangle for each added edge to 0.5.

We show the ratio of the minimized error to the error for the leading eigenvector in Figs. 2(e) and

2(f) for ϵ1 and ϵ2, respectively. The results are qualitatively the same as those for the scale-free

networks generated by the configuration model. We also find that the leading eigenvector tends to

minimize the error for more network instances (i.e., the cumulative distribution is equal to 1 for

a wider range of the ratio value on the horizontal axis) in the case of the Holme-Kim model than

the configuration model, except for (N, ⟨k⟩) = (1000, 4).
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(e) Holme-Kim, ǫ1
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FIG. 2. Reduction in ϵ1 and ϵ2 by their minimizers relative to the case of the leading eigenvector of the

adjacency matrix. We calculate the error (i.e., either ϵ1 or ϵ2) for its minimizer divided by the error for the

leading eigenvector. The horizontal axis represents this ratio. The vertical axis represents the the cumulative

distribution function of this ratio, i.e., the probability that the ratio is larger than the value specified on the

horizontal axis. If the cumulative distribution is small across a wide range on the horizontal axis, then the

minimizer of ϵ1 or ϵ2 tends to be more efficient than the leading eigenvector. (a) Error ϵ1 for the scale-free

networks with γ̃ = 2.5. (b) Error ϵ2 for the scale-free networks with γ̃ = 2.5. (c) Error ϵ1 for the scale-free

networks with γ̃ = 3.5. (d) Error ϵ2 for the scale-free networks with γ̃ = 3.5. (e) Error ϵ1 for the Holme-Kim

model. (f) Error ϵ2 for the Holme-Kim model.



13

B. Networks used in dynamical numerical simulations

In the following numerical simulations, we focus on 200 scale-free networks with N = 1000,

⟨k⟩ ∈ {4, 10}, and γ̃ = 3.5. We also focus on the minimizer of ϵ2, not that of ϵ1, because we

advocate the minimization of ϵ2 in the present study (see Section IIIA). To identify the minimizer

of ϵ2 for each network, we discarded the eigenvectors associated with an eigenvalue smaller than

10−6 including the case of a negative eigenvalue. This exclusion is because, for negative eigenvalues,

Eq. (23) behaves qualitatively differently from the case of a positive eigenvalue, and, for positive

but tiny eigenvalues, Eq. (23) shows a bifurcation of interest at an extremely large value of the

bifurcation parameter. See Section VA for more discussion of this problem. We have found that

162 out of the 200 generated networks with ⟨k⟩ = 4 result in the minimal e2 values that are

smaller than 70% of the error attained by the leading eigenvector and satisfy the condition that

the eigenvalue is at least 10−6. We have found that 123 networks meet the same criterion when

⟨k⟩ = 10. We only use these networks to calculate the statistics in the following analyses because,

in those cases, we expect that the spectral method with a non-leading eigenvector may notably be

better than that with the leading eigenvector.

In addition to the scale-free networks with γ̃ = 3.5, we also use a coauthorship network among

researchers that published articles on network science by 2006 [30]. The original data set contains

1589 nodes. We only use its largest connected component, which contains N = 379 nodes and 914

edges. We regard this network as an unweighted network.

C. SIS model

First, we consider the deterministic version of the SIS model, which is also called its individual-

based approximation [31, 32], given by

dxi
dt

= −µxi + λ
N∑
j=1

wij(1− xi)xj , (26)

where xi represents the probability that the ith node is infectious at time t, λ is the infection rate,

and µ is the recovery rate. Note that wij ∈ {0, 1}. By definition, each infectious node infects

its susceptible neighbor independently at rate λ. An infectious node independently recovers at

rate µ. Because multiplying a common constant to λ and µ only changes the timescale of the

dynamics, we set µ = 1 without loss of generality. For each value of λ, we run a simulation with

the initial condition xi = 0.01, ∀i ∈ {1, . . . , N} until the equilibrium, denoted by x∗ = (x∗1, . . . , x
∗
N ),

is sufficiently closely reached.
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We show the bifurcation diagram for observable R = a⊤x∗, where a is the leading eigenvector of

the adjacency matrix, as a function of the infection rate, λ, for a scale-free network with N = 1000

nodes, ⟨k⟩ = 10, and γ̃ = 3.5 in Fig. 3(a). Note that R is a weighted fraction of infectious nodes in

the equilibrium. The solid line represents the results obtained from direct numerical simulations

of the model. The dashed line represents the bifurcation diagram for the original spectral method,

i.e., with the leading eigenvector as the weight vector a and β = β∗ (see Eq. (15)). We observe that

the spectral method is accurate at locating the bifurcation point. However, the spectral method

considerably underestimates R in the endemic phase (i.e., for λ values larger than the epidemic

threshold). The dotted line in Fig. 3(a) shows the approximation of the same observable, R, by the

spectral method in which we force β = 1, corresponding to Eq. (23), and continue to use the leading

eigenvector as a. The use of β = 1 is discussed in Ref. [19]. We find that this one-dimensional

reduction also locates the bifurcation point of the original dynamical system accurately and that

it is better at approximating the R value in the endemic phase than with β = β∗. We compare

the numerical results and the spectral method in which a is the minimizer of ϵ2 in Fig. 3(b). Note

that the observable R is now different from that used in Fig. 3(a) because we have changed a.

Figure 3(b) indicates that the spectral method with the minimizer of ϵ2 is worse than that with

the leading eigenvector at accurately locating the bifurcation point. The minimizer of ϵ2 is better

at approximating R than the leading eigenvector combined with β = β∗ but worse than the leading

eigenvector combined with β = 1. The reason why the spectral method with the combination of the

leading eigenvector as a and β = 1 does not minimize ϵ2 but works better than the minimizer of ϵ2

is unclear. It may be because higher-order terms in terms of ∆xi in our theory are nonnegligible or

because the range of D values we have explored is not sufficiently far from the epidemic threshold

estimated by the spectral method using the minimizer of ϵ2.

We compare the error among the three methods in Fig. 3(c). At each λ value, we defined

the error as the absolute value of the difference between the R obtained by the direct numerical

simulation and that obtained from the one-dimensional reduction, which we divided by the R

value at the largest λ value, i.e., λ = 4. We normalized the error in this manner because the

true value of the observable R depends on a. We use the absolute error instead of the relative

error because R is close to or equal to 0 when λ is small. The error bars represent the mean and

standard deviation. The figure confirms that the approximation error is the smallest in the case

of the spectral method with the combination of the leading eigenvector and β = 1, the second

smallest in the case of the minimizer of ϵ2, and the largest in the case of the combination of the

leading eigenvector and β = β∗, when λ is sufficiently larger than the epidemic threshold for the
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FIG. 3. Results for the SIS model. (a) Bifurcation diagram in terms of the observable, R, using the spectral

method with the leading eigenvector as a for a scale-free network with N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5.

The inset is a magnification near λ = 0 to show the behavior near the epidemic threshold. (b) Bifurcation

diagram for the same network when a is the minimizer of ϵ2. (c) Error for the spectral method with the

different a and β values for scale-free networks with N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5. We have calculated

the error bars, which represent the standard deviations, on the basis of the 123 networks of which the

minimized error ϵ2 is less than 70% of the error obtained with the leading eigenvector. (d) Error for scale-

free networks with N = 1000, ⟨k⟩ = 4, and γ̃ = 3.5. We have calculated the error bars on the basis of

the 162 networks of which the minimized error ϵ2 is less than 70% of the error obtained with the leading

eigenvector. (e) Error for the coauthorship network.

one-dimensional reduction with the minimizer of ϵ2 (i.e., λ ≈ 0.80). The results are qualitatively

the same for scale-free networks with ⟨k⟩ = 4, as we show in Fig. 3(d). We show the approximation

error for the coauthorship network in Fig. 3(e). For this network, the minimizer of ϵ2 realizes a

smaller error than the leading eigenvector combined with β = β∗ or β = 1 for all values of λ.

It should also be noted that the spectral method with the minimizer of ϵ2 accurately locates the

epidemic threshold for the coauthorship network.
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D. Double-well system

In this section, we consider the coupled double-well system given by

dxi
dt

= − (xi − r1) (xi − r2) (xi − r3) +D
N∑
j=1

wijxj , (27)

where xi is the state of the node i; D is the coupling strength, which we assume to be common

for all edges; r1, r2, and r3 are constants satisfying r1 < r2 < r3 [33–38]. We set r1 = 1, r2 = 2,

and r3 = 5. When the coupling is absent, the dynamics is bistable, with xi = r1 and xi = r3 being

stable equilibria and xi = r2 being the unique unstable equilibrium. We use the initial condition

xi = 0.01, ∀i ∈ {1, . . . , N} for each value of D. With this initial condition, xi will converge to the

lower equilibrium, i.e., r1, if there is no coupling.

We plot in Fig. 4(a) R = a⊤x∗, where a is the leading eigenvector, against D for the coupled

double-well system on the same scale-free network with N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5 as the one

used in Figs. 3(a) and 3(b). The theoretical estimate of R shown in Fig. 4(a) does not depend on

the β value because function G(xi, xj) does not depend on xi for the double-well system such that

Eq. (15) does not depend on β. We show in Fig. 4(b) the same relationships when a is the minimizer

of ϵ2. Similar to the case of the SIS model, the spectral method with the leading eigenvector is

substantially better at locating the bifurcation point than the minimizer of ϵ2 is. The accuracy at

approximating R is slightly better for the minimizer of ϵ2 than the leading eigenvector except near

the bifurcation point, which we confirm by the statistical analysis of the absolute error shown in

Fig. 4(c). The results are similar for ⟨k⟩ = 4 except that the minimizer of ϵ2 yields significantly

smaller errors than the leading eigenvector when D is large (see Fig. 4(d)). The results are similar

for the coauthorship network (see Fig. 4(e)). We will discuss the relatively low accuracy near the

bifurcation point in Section VA.

E. Generalized Lotka-Volterra dynamics

Third, we consider the generalized Lotka-Volterra (GLV) dynamics is given by

dxi
dt

= λxi +D
N∑
j=1

wijxixj , (28)

where xi represents the abundance of the ith species, λ is the intrinsic growth rate of the species,

and D is the coupling strength as in the case of the double-well system [16, 18]. The nontrivial

equilibrium of this dynamical system is given by x∗ = −λW−11, where we remind that W = (wij)
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FIG. 4. Results for the double-well system. (a) Bifurcation diagram in terms of R = a⊤x∗, where a is the

leading eigenvector, for the same scale-free network with N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5 as the one used

in Fig. 3. (b) Bifurcation diagram for the same network when a is the minimizer of ϵ2. (c) Error compared

between the leading eigenvector and the minimizer of ϵ2 as a for scale-free networks with N = 1000, ⟨k⟩ = 10,

and γ̃ = 3.5. (d) Error for scale-free networks with N = 1000, ⟨k⟩ = 4, and γ̃ = 3.5. (e) Error for the

coauthorship network.

is the adjacency matrix. This equilibrium is globally asymptotically stable if and only if W is

negative definite [39]. Therefore, only for the GLV dynamics, we change the definition of the

adjacency matrix to set wii = −(αmax+1)/D, ∀i ∈ {1, . . . , N}, where αmax is the largest eigenvalue

of W , which makes W negative definite [17]. With this wii, we rewrite Eq. (28) as

dxi
dt

= λxi − cx2i +D

N∑
j=1;j ̸=i

wijxixj , (29)

where c = αmax + 1. Therefore, we set F (xi) = λxi − cx2i and G(xi, xj) = Dxixj [17].

The equilibrium of Eq. (29) is given by x∗ = −λ(DW − cI)−11, where W is the weighted

adjacency matrix of the original network with the diagonal entries being equal to 0, and I is the
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N ×N identity matrix. Therefore, we obtain

R =a⊤x∗

=− λa⊤(DW − cI)−11

=− λa⊤(Dα− c)−11

=
λ

αmax + 1−Dα
. (30)

On the other hand, the R value in the equilibrium for the one-dimensional reduction, Eq. (15),

including the case of our modified spectral method (i.e., Eq. (23)) with the replacement of β∗ by

1, is given by

R =
λ

αmax + 1− β∗Dα
. (31)

Therefore, the spectral method is exact if and only if β∗ = 1 and regardless of which eigenvector

of W⊤ we use as a.

With λ = 0.5, we show in Fig. 5 the R values and the error as a function of D for the GLV

model on the different networks. For Figs. 5(a) and 5(b), we use the same scale-free network with

N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5 as the one used in Figs. 3(a) and 3(b). With the leading

eigenvector as a and β = β∗, the spectral method is not accurate at approximating R (see the

dashed line in Fig. 5(a)). In contrast, as the theory predicts, the theoretically obtained R perfectly

matches the numerically obtained R when one combines the leading eigenvector and β = 1 (see

the dotted line in Fig. 5(a), which completely overlaps the solid line) or uses the minimizer of

ϵ2 (see Fig. 5(b), in which the dashed line completely overlaps the solid line). Note that R as a

function of D looks qualitatively different between Figs. 5(a) and 5(b). This is because Eq. (30)

diverges to infinity at D = Dc ≡ (αmax + 1)/α as one increases D from a small value, and D ≈ 1,

which is the largest value of D in these figures, is much closer to Dc when α = αmax than when

α is the eigenvalue associated with the minimizer of ϵ2. We statistically confirm the results shown

in Figs. 5(a) and 5(b) for various scale-free networks in Figs. 5(c) and 5(d) and the coauthorship

network in Fig. 5(e).

V. ADVANTAGES OF THE LEADING EIGENVECTOR TO THE MINIMIZER OF ϵ2

The theoretical and numerical results shown in the previous sections suggest that the spectral

method using the minimizer of ϵ2 as a outperforms that using the leading eigenvector as a in many
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FIG. 5. Results for the GLV model. (a) Relationship between R and D for the spectral method with the

leading eigenvector as a for the same scale-free network with N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5 as the

one used in Fig. 3. The theoretical estimate for β = 1 shown by the dotted line completely overlaps the

numerical results shown by the solid line. (b) Same when we use the minimizer of ϵ2 as a. The theoretical

estimate by the dashed line completely overlaps the numerical results shown by the solid line. (c) Error

compared among the three cases for scale-free networks with N = 1000, ⟨k⟩ = 10, and γ̃ = 3.5. (d) Error

for scale-free networks with N = 1000, ⟨k⟩ = 4, and γ̃ = 3.5. (e) Error for the coauthorship network. In (c),

(d), and (e), the error in the case of the leading eigenvector combined with β = 1 and the minimizer of ϵ2

is equal to 0 regardless of the D value.

cases. However, in this section, we discuss two reasons why we still prefer the leading eigenvector

as a, but combined with β = 1, in the spectral method.

A. The spectral method with the leading eigenvector better predicts the bifurcation point

For the SIS model and double-well system, we have found that the spectral method using the

minimizer of ϵ2 as a is much less accurate at locating the bifurcation point than the spectral

method using the leading eigenvector as a, as shown in Figs. 3(a), 3(b), 4(a), and 4(b). The reason

for this phenomenon is as follows.

The modified spectral method (i.e., Eq. (23)) as well as the original spectral method (i.e.,

Eq. (15)) with β∗ being replaced by 1 (see Figs. 3, 4, and 5) uses the eigenvalue of the adjacency
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matrix, α, as the effective coupling strength. We can interpret the earlier one-dimensional reduction

developed by Gao et al. [15] as a mean-field theory to approximate the leading eigenvalue α by

a function of the nodes’ degrees. Suppose that G(xi, xj) = DG̃(xi, xj), where D is the coupling

strength, which we regard as the bifurcation parameter. Note that, in the SIS model, the infection

rate, λ, plays the role of D. Assume that the one-dimensional dynamical system given by Eq. (23)

and G(xi, xj) = DG̃(xi, xj) with α being the leading eigenvalue (i.e., αmax) undergoes a bifurcation

at D = Dc,max. We denote by Dc,org the value of D at which the bifurcation occurs in the original

N -dimensional dynamical system. Empirically, the spectral method using the leading eigenvector

as a is not necessarily accurate at anticipating the bifurcation point, and one tends to obtain

∆Dc,max ≡ Dc,max −Dc,org > 0 (32)

such that the spectral method tends to overestimate the bifurcation point for some models of

population dynamics [17].

If we use a non-leading eigenvector as a, we only replace α in Eq. (23) by the eigenvalue

associated with a. Therefore, the bifurcation in the one-dimensional reduced dynamical system

occurs at D = Dc,NL, where

αNLDc,NL = αmaxDc,max, (33)

and αNL is the non-leading eigenvalue associated with the eigenvector a under consideration. Using

Eqs. (32) and (33), we evaluate the error in locating the bifurcation point by the spectral method

with a non-leading eigenvector as follows:

∆Dc,NL ≡ Dc,NL −Dc,org =
αmax

αNL
Dc,max −Dc,org. (34)

We find that ∆Dc,NL > ∆Dc,max > 0 and that the difference between ∆Dc,NL and ∆Dc,max is large

if the eigenvalue ratio, αmax/αNL, is large. Therefore, if the minimizer of ϵ2 is associated with a

small eigenvalue of the adjacency matrix, the bifurcation point for the one-dimensional dynamical

system, D = Dc,NL, tends to be much larger than Dc,org. Then, for D ∈ (Dc,org, Dc,NL), the one-

dimensional reduction is qualitatively wrong at describing the original N -dimensional dynamical

system such that our method is not expected to be accurate at approximating R for the original

dynamical system. This is why we excluded in the beginning of Section IVC the eigenvectors a

that are associated with positive eigenvalues with tiny magnitudes and negative eigenvalues from

the candidates of the minimizer of the error.

To further demonstrate the relevance of this reasoning, we show in Fig. 6 the largest eigenvalue

and the eigenvalue whose associated eigenvector minimizes ϵ2. We use scale-free networks with
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FIG. 6. Eigenvalues of the adjacency matrix of scale-free networks with N = 1000 nodes and γ̃ = 3.5. We

show the leading eigenvalue and the eigenvalue associated with the minimizer of ϵ2. For each ⟨k⟩ value, the

error bar represents the average and standard deviation calculated on the basis of the subset of 200 networks

for which the eigenvalue associated with the eigenvector minimizing ϵ2 is at least 10−6.

N = 1000 and γ̃ = 3.5, and vary ⟨k⟩. As we have done in the numerical simulations whose results

are shown in Figs. 3, 4, and 5, we exclude the eigenvalues smaller than 10−6. Figure 6 indicates that

the leading eigenvalue increases as ⟨k⟩ increases, as theory predicts [27], and that the eigenvalue

associated with the minimizer of ϵ2 decreases as ⟨k⟩ increases. Therefore, Eq. (34) implies that

Dc,NL tends to be much larger than Dc,org as ⟨k⟩ increases.

B. The spectral method with the leading eigenvector is more robust against noise

We expect that the spectral method using the leading eigenvector as a is more robust against

noise than that using the minimizer of ϵ2 for the following reason. Consider dynamical noise added

to our dynamical system on networks, i.e., Eq. (1). Assume that each xi fluctuates around the

equilibrium in the case without noise, x∗i , with mean 0 and standard deviation σi. For simplicity,

we also assume that xi and xj , where i ̸= j, are uncorrelated in the equilibrium; note that this

assumption is just for the sake of discussion here and does not hold in general due to the interaction
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between different nodes via edges [40, 41]. Then, the expectation of R in the equilibrium is given

by R =
∑N

i=1 aix
∗
i . The standard deviation of R, denoted by σR, is given by σR =

√∑N
i=1 |ai|σ2

i .

We remind that a is normalized such that
∑N

i=1 ai = 1. We combine the following two observations

to argue that R using the leading eigenvector as a is more robust against noise than R using the

minimizer of ϵ2. First, the expectation of R depends on a unless x1 = · · · = xN . In our numerical

results shown in Figs. 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b), R tends to be smaller when a is

the minimizer of ϵ2 than when a is the leading eigenvector. Second, and more importantly, σR

would be larger with the minimizer of ϵ2 than with the leading eigenvector. When a is the leading

eigenvector, the Perron-Frobenius theorem guarantees that ai > 0, ∀i ∈ {1, . . . , N}. In contrast,

when a is a nonleading eigenvector, including the case of the minimizer of ϵ2, the orthogonality

of the eigenvectors associated with the different eigenvalues implies that some of ai are positive

and others are negative. Then, because
∑N

i=1 ai = 1, the |ai| value tends to be larger for a

nonleading eigenvector than the leading eigenvector. For example, suppose that N = 3, that the

normalized leading eigenvector is a = (1/2, 1/4, 1/4)⊤, and a normalized nonleading eigenvector is

a = (−1, 1, 1)⊤. Then, if σ1 = σ2 = σ3 = σ, one obtains σR =
√∑N

i=1 |ai|σ = σ for the leading

eigenvector and σR =
√
3σ for the nonleading eigenvector. Therefore, the signal-to-noise ratio for

R in the case of the leading eigenvector, quantified by the expectation divided by the standard

deviation of R, should be smaller than the same ratio in the case of a non-leading eigenvector.

To examine the relevance of this argument, we run numerical simulations of the three dynamical

systems with noise. We add an independent white noise with the intensity
√
D to the right-hand

side of each of the N differential equations constituting the dynamical system on the network. In

other words, we add a value sampled from the Gaussian distribution with mean 0 and standard

deviation
√
Ddt to the right-hand side of the differential equation in each integration time step of

size dt. We set
√
D = 0.2 for the SIS and GLV models and

√
D = 10 for the double-well system.

For the SIS and GLV models, once xi becomes negative due to the added noise, it tends to diverge

to −∞. To prevent this phenomenon, once any xi becomes negative in any simulation time step,

we reset xi to 10−6.

We show in Figs. 7(a) and 7(b) the numerical results for the SIS model run on the same scale-

free network as the one used in Figs. 3(a) and 3(b). We verify that the fluctuation in R using

the leading eigenvector as a, shown by the solid line in Fig. 7(a), carries less noise than R using

the minimizer of ϵ2 as a, shown by the solid line in Fig. 7(b). We stress that we have obtained

Figs. 3(a) and 3(b) from the same simulation; we have only changed the observable, R. The results

are qualitatively similar for the coauthorship network, while the difference between the two cases is
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now smaller (see Figs. 7(c) and 7(d)). The results for the double-well system, shown in Figs. 7(e)–

(h), and those for the GLV model, shown in Figs. 7(i)–(l), reinforce our claim that R is more robust

against noise when one uses the leading eigenvector rather than the minimizer of ϵ2 as a.

The theoretical estimate based on the spectral method does not depend on the noise (see the

dashed and dotted lines in Fig. 7). However, the target observable to be approximated, R, is noisier

when a is a non-leading eigenvector than the leading eigenvector. Therefore, we conclude that the

one-dimensional reduction using the leading eigenvector as a better describes the one-dimensional

projection of the original network dynamics in the presence of noise unless the magnitude of the

noise is small.

VI. DISCUSSION

In the present study, we have explored two ideas to try to improve the spectral method to reduce

dynamical systems on networks into a one-dimensional dynamics. The first idea is to constrain the

use of the Taylor expansion of the dynamical variables, {x1, . . . , xN}, around one reference point,

R. The original spectral method uses the Taylor expansion around R and β∗R, where β∗ ̸= 1 in

general. Our Taylor expansion has led to a one-dimensional reduction that does not contain β∗

(i.e., Eq. (23)). Our second idea is to use the non-leading eigenvector of the adjacency matrix

that minimizes the error. We have obtained explicit expressions of the errors, with which one can

systematically search the minimizer of the error, especially that of ϵ2 (see Eq. (22)). Note that our

method requires the calculations of all the eigenvalues and eigenvectors, which costs O(N3) time.

This is an important limitation of the present method when we apply the method to large networks.

In contrast, the previous studies used the leading eigenvector [19, 20]. We have found that, for

networks that are relatively homogeneous in the degree, such as the Erdős-Rényi random graph and

the Watts-Strogatz small-world network model, the leading eigenvector almost always minimizes

the errors. In contrast, when the degree is heterogeneously distributed, the optimal eigenvector

tended to be a non-leading one, which is particularly the case for larger and sparser networks. For

these networks, our modified spectral method is expected to enjoy reduced approximation errors.

We have assessed the performance of approximating the one-dimensional observable, R, for three

dynamical systems on scale-free networks for which the leading eigenvector and the minimizer of

ϵ2 do not tend to coincide. We have shown that the spectral method using the minimizer of ϵ2 as a

tends to surpass the original spectral method across the different dynamical systems and networks

(see Figs. 3, 4, and 5). However, we have also found that our spectral method using the minimizer
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FIG. 7. R in the presence of noise. (a) SIS model on the scale-free network; a is the leading eigenvector. (b)

SIS model on the scale-free network; a is the minimizer of ϵ2. (c) SIS model on the coauthorship network;

a is the leading eigenvector. (d) SIS model on the coauthorship network; a is the minimizer of ϵ2. (e)

Double-well system on the scale-free network; a is the leading eigenvector. (f) Double-well system on the

scale-free network; a is the minimizer of ϵ2. (g) Double-well system on the coauthorship network; a is the

leading eigenvector. (h) Double-well system on the coauthorship network; a is the minimizer of ϵ2. (i) GLV

model on the scale-free network; a is the leading eigenvector. (j) GLV model on the scale-free network; a

is the minimizer of ϵ2. (g) GLV model on the coauthorship network; a is the leading eigenvector. (l) GLV

model on the coauthorship network; a is the minimizer of ϵ2. The scale-free network used in (a), (b), (e),

(f), (i), and (j) is the same as the one used in Figs. 3(a) and 3(b). The theoretical estimates, i.e., the dashed

and dotted lines, for the scale-free network shown in (a), (b), (e), (f), (i), and (j) are the same as those

shown in Figs. 3(a), 3(b), 4(a), 4(b), 5(a), and 5(b), respectively.

of ϵ2 as a has two essential limitations. First, it is not good at estimating the bifurcation point.

In particular, our method locates the bifurcation point extremely far from the correct value if the

minimizer of ϵ2 is associated with an eigenvalue that is much smaller than the largest eigenvalue

(see Section VA). In this case, our one-dimensional reduction is qualitatively wrong over a wide

range of the bifurcation parameter. Therefore, one cannot accurately approximate R of the original
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high-dimensional dynamical system in a range of the bifurcation parameter of interest. Second, the

spectral method using the minimizer of ϵ2 as a is not robust against noise. This is because, in the

presence of dynamical noise, if one uses a non-leading eigenvector as a, the variance of R is larger

than in the case of the leading eigenvector used as a. We have also examined the modified spectral

method (i.e., β = 1) with a being replaced by the leading eigenvector. Up to our numerical efforts,

this combination is the best performer in that (i) it performs better than the original spectral

method (i.e., β = β∗ and the leading eigenvector as a) and comparably with our method using the

minimizer of ϵ2 as a in the absence of noise and that (ii) the target R fluctuates less than when a

is the minimizer of ϵ2. The spectral method using β = 1 and the leading eigenvector is also better

at locating the bifurcation point than that using the minimizer of ϵ2. Therefore, we recommend

the combination of β = 1 and the leading eigenvector, i.e., Eq. (22) provided with the leading

eigenvector and eigenvalue. We may be able to find pairs of eigenvalue and eigenvector, (α,a),

that suppress ϵ2 much better than the leading eigenvector and the associate eigenvalue is not much

smaller than the leading eigenvalue. Using such a pair (α,a) may improve overall performances of

the spectral method. Systematically investigating this issue warrants future work.

Both the original and modified spectral methods are based on the Taylor expansion of the differ-

ential equations in terms of x1, . . ., xN around one or multiple common values (e.g., R). Therefore,

the methods are expected to work better when {x1, . . . , xN} is relatively homogeneous. We in fact

reached the same conclusion for the GBB reduction in our previous work [17]. Our previous numer-

ical simulations suggested that {x1, . . . , xN} was not wildly heterogeneous for various dynamical

systems including those used in this paper, except near the bifurcation points [17]. However, we do

not have a systematic understanding when {x1, . . . , xN} is more homogeneous than in other cases.

Such an understanding is expected to help us to assess the applicability of the GBB reduction and

spectral methods.

The DART is a systematic method to map high-dimensional dynamics on networks into a low-

dimensional dynamical system, extending the spectral method [20]. The DART is applicable to a

diversity of dynamics including synchronization dynamics on networks. Like the original spectral

method [19], the DART is based on the Taylor expansion at multiple reference points and the

leading eigenvectors of the adjacency matrix. It is interesting to apply the present approach to

the DART, in particular to the cases where the reduced dynamics have the dimension larger than

one. When the dimension of the reduced dynamics is larger than one, at least one eigenvector

with which to take the weighted average of {x1, . . . , xN} (e.g., the eigenvector associated with

the second largest eigenvalue of the adjacency matrix) will necessarily contain both positive and
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negative elements due to the Perron-Frobenius theorem and the orthogonality of different eigen-

vectors. Then, the signal-to-noise ratio for the corresponding observable may be compromised in

the presence of dynamical noise (see Section VB). With this possibility being included, it is worth

further examining dimension reduction and resilience of noisy dynamical systems on networks.
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Appendix A: Minimizing the error when the weight vector is an eigenvector of K

Let us require Eq. (12) to hold exactly instead of Eq. (13) in the spectral method. Then, the

weight vector a needs to be an eigenvector of K. Because K is a diagonal matrix, a is a standard

unit vector, i.e., a = ei ≡ (0, . . . , 0, 1︸︷︷︸
i th entry

, 0, . . . , 0) and α = kini , where i ∈ {1, . . . , N}. This

implies that we use a single variable xi to represent the entire system. Then, it is straightforward

to derive β = 1 and minimize the error for Eq. (13) in terms of γ as follows:

ϵ3 ≡ min
γ

∥∥∥W⊤ei − kini γei

∥∥∥2 = min
γ

[
N∑
ℓ=1

(wiℓ)
2 + (kini )2γ2

]
=

N∑
ℓ=1

(wiℓ)
2, (A1)

which is realized by γ = 0. We find that ϵ3 is minimized with respect to i when the ith is node has

the smallest in-degree in the network. The corresponding one-dimensional reduction is given by

dxi
dt

= F (xi) + kin
i
G(R, 0), (A2)

where i is the index of the node with the smallest in-degree.

In the case of our modified spectral method, we require that Eq. (20) exactly holds instead of

Eq. (21). Then, we again obtain a = ei and α = kini , where i ∈ {1, . . . , N}. Then, the error for

Eq. (21) is given by

ϵ4 =
∥∥∥W⊤a− αa

∥∥∥2 = N∑
ℓ=1

(wiℓ)
2 + (kini )2. (A3)

If the network is unweighted, we use (wiℓ)
2 = wiℓ ∈ {0, 1} to obtain ϵ4 = kini + (kini )2, which is

minimized when we select i with the smallest in-degree. In this case, the one-dimensional reduction
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is given by

dxi
dt

= F (xi) + kin
i
G(R,R). (A4)
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