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Many complex dynamical systems in the real world,
including ecological, climate, financial, and power-
grid systems, often show critical transitions, or
tipping points, in which the system’s dynamics
suddenly transit into a qualitatively different state.
In mathematical models, tipping points happen
as a control parameter gradually changes and
crosses a certain threshold. Tipping elements in
such systems may interact with each other as
a network, and understanding the behavior of
interacting tipping elements is a challenge because of
the high dimensionality originating from the network.
Here we develop a degree-based mean-field theory
for a prototypical double-well system coupled on
a network with the aim of understanding coupled
tipping dynamics with a low-dimensional description.
The method approximates both the onset of the
tipping point and the position of equilibria with a
reasonable accuracy. Based on the developed theory
and numerical simulations, we also provide evidence
for multistage tipping point transitions in networks of
double-well systems.
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1. Introduction

Many empirical complex systems show nonlinear dynamics. Nonlinear behavior sometimes leads
to a situation in which the system suddenly shifts from one stable state to a qualitatively, or
drastically, different stable state. Reversing such shifts may be difficult due to hysteresis or other
reasons. This behavior is widely known as a critical transition or tipping point [1]. Tipping points
are observed in a variety of complex dynamical systems including ecological, biological, social,
and economical systems. Examples include nutrient-driven shifts in shallow lakes between clear
and turbid water [2], abrupt climate changes [3], epileptic seizures [4], and extensive crashes in
financial markets [5].

Many tipping point phenomena in nature can be modeled by complex systems that are a
collection of tipping elements interacting through a network. Examples include extinction of
species in ecosystems in which different species are connected by foodweb, mutualistic, and other
ecological networks [6,7], blackouts in power grids [8,9], psychiatric disorders [10,11] and the
Greenland ice sheet [12,13]. Obviously, the behavior of the tipping elements is not independent
of each other when they are connected as a network [14-16]. For instance, suppose that a tipping
element, denoted by v, passes the tipping point, i.e., the value of a control parameter of the system
at which a tipping point occurs. Then, it is more likely that a second tipping element directly
connected with v will tip as well, resulting in a domino effect [17,18].

Accurately describing the tipping points in dynamics on networks is desirable because we may
want to anticipate and prevent them as well as to know the magnitude of a tipping cascade in the
network. However, high dimensionality of dynamical systems on a network and the complex
structure of the network at hand generally make this task difficult. One strategy towards this goal
is to reduce the dimension of the original system without loss of too much information about
the original dynamics. For example, Gao, Barzel, and Barabdsi proposed a theory to reduce a
class of dynamical system on networks, including networks of dynamical tipping elements, into
one-dimensional dynamics [19]. This method, which we refer to as GBB reduction, is applicable
to directed and weighted networks and uses each node’s weighted in-degree (i.e., the number of
incoming edges) and out-degree (i.e., the number of outgoing edges). The GBB reduction has been
generalized to the methods which use the eigenvalues and eigenvectors of the adjacency matrices
or related matrices of the network [20-22]. A related but different two-dimensional reduction
locates the tipping point with a high accuracy for ecological dynamics occurring on bipartite
networks representing mutualistic interactions [23].

The GBB reduction is a degree-based mean-field (DBMF) theory, also called heterogeneous
mean-field theory, in the sense that the theory only uses the information about the degree of each
node. In general, a DBMF theory for network dynamics assumes that nodes with the same degree
are statistically the same and obey the same dynamical rule. It is expected to be accurate for
large uncorrelated random networks with general degree distributions. In fact, the most common
family of DBMF theory is different from the GBB reduction in that the former aims at deriving
a dynamical equation that any node with a given degree obeys, one equation per degree value.
In contrast, the goal of the GBB reduction and its extensions is to derive a one-dimensional or
low-dimensional reduction of the entire dynamics on the network. To avoid confusion, we save
the term DBMEF theory only to refer to the conventional type of the DBMF theory and do not
refer to the GBB reduction as a DBMF theory below. The DBMF theory (in the conventional
sense) has been successful in describing percolation [24-28], dynamic epidemic processes [29-36],
synchronization [37-40], random walks [41,42], voter models [43,44], and rock-scissors-paper
games [45], to name a few, on degree-heterogeneous uncorrelated networks. A similar DBMF
theory for networks of tipping elements, if accurate, will be a useful tool for anticipating tipping
points as a system parameter gradually changes and for understanding the impact of the degree
distribution on the tipping behavior. Thus motivated, in the present study, we develop a DBMF
theory for prototypical dynamical systems showing tipping behavior, i.e., the double-well system,
connected as networks.
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2. Model

We consider networks in which each node is a tipping element that obeys deterministic dynamics
of a double-well system. When there is no interaction between nodes, the state of each node
evolves according to

t=—(x—r1)(x —r2)(x —r3) +u, (2.1)

where 71, r2, and r3 are constants (with 71 <72 < r3) and u represents an external input applied
to the node. This system has a unique stable equilibrium, z*, with z* < r; when u < Uc,¢, Where
U ¢ is schematically shown in Fig. 1. We call this equilibrium the lower equilibrium and denote it
by z¢. The system has a unique stable equilibrium satisfying z* > r3, when u > uc,u, where uc,u
is shown in Fig. 1. We call this equilibrium the upper equilibrium and denote it by z". Both z*
and z" are stable when u € (uc ¢, Uc,u)-

If we initialize the system at the lower equilibrium and gradually increase u, then the
system undergoes a saddle-node bifurcation at u=wuc,u such that z* jumps from the lower
equilibrium to the upper equilibrium. If we initialize the system with the upper equilibrium and
gradually decrease u, then the system jumps to the lower equilibrium at u =, ¢, implying a
hysteresis. Similar models have been used for representing alternative stable states and hysteresis
in ecosystems [46—49], thermohaline circulation [50], and ice sheets [51].

We consider tipping elements that obey the coupled double-well system dynamics given by

N
di=—(w; —r1)(@i —r2)(w; —r3) + DY Agaj +u (i€{l,...,N}), 22)
j=1

where N is the number of nodes, D is the coupling strength, and A= (A;;) is the N x N
adjacency matrix of the network. Equation (2.2) has been used for modeling ecological systems
such as lake chains in which a node represents a lake [13], global interactions among climate
tipping elements such as the Greenland ice sheet, the Atlantic Meridional Overturning Circulation
(AMOC), and the Amazon rainforest [49], and Amazon as a network of tipping elements in
which each node represents forests within a specific area [47] (also see Refs. [48,52,53] for
analyses of the same model). For simplicity, we consider undirected and unweighted networks
such that A;; = A;; € {0,1} for any 4,5 € {1,..., N}. We exclude self-loops, i.e., we set A;; =0
Vie{l,...,N}. We denote by k; = Z;V=1 A= Z;v=1 Aj; the degree of the ith node and by p(k)
the degree distribution. This model allows us to investigate tipping cascades on networks.

3. Degree-based mean-field theory

To describe the dynamics given by Eq. (2.2), we develop a DBMF theory, which assumes that
the nodes with degree k are statistically equivalent to each other and that the states of different
nodes are statistically independent of each other except their dependence on k. This assumption
corresponds to a configuration model of networks, i.e., a random network with a given degree
sequence or distribution. In this theory, we replace the elements of the adjacency matrix, A;;,
by its ensemble average, denoted by (A;;), which represents the probability that the ith and jth
nodes are adjacent to each other, assuming (A;;) < 1. For uncorrelated networks, we obtain

kik;
(Aij) = N(kj)'

3.1)

Equation (3.1) implies that the probability that the jth node is a neighbor of an arbitrary node is
equal to k;/ (N(k)). The DBMF theory based on Eq. (3.1) was first pioneered for percolation and
the susceptible-infectious-susceptible model (see Section 1 for references).

By substituting Eq. (3.1) in Eq. (2.2), we obtain

i =—(zi —r1)(wi —r2)(wi —r3) + Dki© + u, (3.2)
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Figure 1. Graphical representation of the equilibria of the single and the coupled double-well systems. Under the DBMF
theory, the intersection of y = (z; — r1)(z; — r2)(z; — r3) and y = Dk;© + u gives x; at equilibrium.

where
1 N
j=1

is the degree-weighted average of ., and (k) is the average degree.

For a given © value, the equilibria of Eq. (3.2) is given by the intersection of the cubic
polynomial y = (z; — r1)(x; — r2)(x; — r3) and the horizontal line y = Dk;© + u in the z-y plane
(see Fig. 1). Denote by &, gj(l)) the unique local maximum of y = (z — r1)(x — r2)(z — r3) and
by (Z 2) 52 the unique local minimum.

For the nodes with the smallest degrees satisfying Dk;© + u < 7, the curve y= (x5 —
r1)(z; — r2)(z; — r3) and the line y = DEk;© + u have just one intersection at z; < # such
that there is a unique stable equilibrium, which we call the lower state (see the magenta line
in Fig. 1). For the nodes with the largest degrees satisfying Dk;© + u > 7, there is a unique
stable equilibrium satisfying x; > 2(?), which we call the upper state (see the red line in Fig. 1).
Finally, for the nodes whose degree satisfies jj(z) < Dk;®+u< gj(l), Eq. (3.2) allows both lower
and upper states (see the blue line in Fig. 1).

We assume that all nodes are initially in their respective lower states and that we gradually
increase u. A larger value of Dk;© + u induces the upper state for the ith node under the DBMF
theory. Therefore, at a given value of u, the N¢ nodes with the smallest degree, i.e., the nodes
whose k; is smaller than a threshold value k, are in the lower state, where q is the fraction of
nodes in the lower state. The other N(1 — ¢) nodes, which have k; > k, are in the upper state. The
value of k; that satisfies Dk;© + u = 5! is equal to k. In other words, we obtain

g~y

- e (34)
where © is the © value in the equilibrium.
Similar to the analysis of epidemic process models [29-36], we need to self-consistently

determine ©*. Using Eq. (3.3), we obtain

Z k' (k) + > ka" (k)| (3.5)

k<k k>k
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where z*(k) and z" (k) are the lower and upper states, respectively, which are functions of k and
o*.

We obtain ©* and k from Egs. (3.4) and (3.5) as follows. First, the right-hand side of Eq. (3.5),
which we write 3 (k), is a continuous and monotonically decreasing function of &, given the
©* value with which to calculate the 2 (k) or 2 (k) value for each k. We obtain lim;_, O5(k) =
O3 (kmin) = (kz" (k))/ (k) and lim;_, O3 (k) =lim; ,  O5(k)= (kz' (k))/(k), where (-) is the
average over the N nodes. Second, we rewrite Eq. (3.4) as 7 (k) = (gj(l) — u)/(Dk). It holds true

that ©7F (k) is also a continuous and monotonically decreasing function of £, limg 07 (k) = oo,

[61(k) - 63()] <0,
there is at least one positive value of k that solves @7 (k) — ©3 (k) = 0, which one can obtain by,
for example, the bisection method. Although there may be multiple roots of @7 (k) — O3 (k) =0
depending on the degree distribution, with a practical degree distribution, O} (k) — ©3 (k) =0
usually has only one root. We regard that all the nodes are in the upper or lower states if the
obtained solution satisfies k < kmin OF k& > kmax, respectively.

and lim;_, __ ©7 (k) = 0. Because limg |, [Qf(fc) - @S(l%)} >0 and lim;

k—o0

4. Numerical resulis

In this section, we mainly investigate the accuracy of the DBMF theory developed in
Section 3 against direct numerical simulations in locating the tipping point and approximating
{z1,..., 2N} atequilibrium.

(@) Numerical methods and networks

We set r1 =1, ro =2, and r3 =5. We either fix D and vary u (Section 4(b)) or fix u and vary
D (Section 4(c)). For the given u and D values, we set the initial conditions to z; = 0.01 (with
t=1,...,N) and run simulations for 30000 time units to ensure that the equilibrium has been
reached. At a relatively small value of u or D, all the nodes are in their lower state at equilibrium.
Then, we gradually increase u or D.

We use the following networks. First, we use networks generated by the Barabasi-Albert (BA)
model [54] that produces scale-free networks with p(k) o k~3, where o represents “proportional
to”. We refer to these networks as BA networks. To generate a BA network, we start with a
network with two nodes connected by an edge and connect each of the two edges emanating
from each new node to an existing node according to the linear preferential attachment rule. We
obtain (k) ~ 4, where ~ represents “approximately equal to”.

Second, we use the Holme-Kim network model [55], which is a modification of the BA model
for high clustering (i.e., a large number of triangles). We construct networks with average degree
(k) ~ 10 by setting the number of edges that each new node brings in to five. We set the probability
of constructing a triangle for the each new edge to 0.5. Third, we use the largest connected
component (LCC) of a coauthorship network of researchers in network science, which has
N =379 nodes and 914 undirected edges [56]. Each node in this network represents a researcher
publishing a paper in network science up to year 2006. An edge exists between two nodes if the
two researchers coauthored at least one paper. Finally, we use the LCC of the hamsterster social
network, which has N = 1788 nodes and 12476 undirected edges [57]. A node in this network
represents a user of hamsterster.com. Two users are adjacent if they have a friendship relation on
the website.

We compare the performance of the DBMF theory with that of the GBB reduction. The GBB
reduction for the coupled double-well system (see Eq. (2.2)) is given by

t=—(x—r1)(x—r2)(x —7r3) + DBx + u, (4.1)

where ﬂ:Zf\il k? / zlj\il k; [19]. When the GBB reduction is accurate, the dynamics and
equilibria of x obtained from Eq. (4.1) closely approximate those of the observable z.g, called
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Figure 2. Performance of the DBMF theory and GBB reduction on approximating the effective state, x.g, in different
networks when we set D = 0.001 and vary u. (a) BA network with NV = 102 nodes. (b) BA network with N = 102 nodes.
(c) Coauthorship network. (d) Hamsterster network. (e) Approximation error for the DBMF theory and GBB reduction in
locating the tipping point, 1.5, for BA networks with different numbers of nodes. (f) Approximation error in locating 2.5
for BA networks. (g) Approximation error in locating @1.5 for Holme-Kim networks. (h) Approximation error in locating
u2.5 for Holme-Kim networks. In (a)—(d), the dashed and dotted lines represent z.g = 1.5 and z.g = 2.5, respectively.
In (e)—(h), the error bars represent the average + standard deviation calculated on the basis of 100 simulations, each of
which uses a different network instance with the given number of nodes.

the effective state, given by

Yty ki
ZZN:I ki

where we obtain {z1,...,2 N} from direct numerical simulations of the original N-dimensional

dynamical system, Eq. (2.2). To compare the accuracy of the DBMF theory with the GBB, we
measure the effective state calculated from the DBMF theory given by

Teff = ) (4.2)

k
m (k)

TDBMF = 7%:;: e (4.3)
k=k

min

where z(k) is either z¢ (k) or z" (k).

(b) Tipping under gradual increases in u

We set D =0.001 and vary u in this section. We show the dependence of z.g on u for a BA
network with N = 102 nodes, a BA network with N = 103 nodes, the coauthorship network, and
the hamsterster network in Figs. 2(a), 2(b), 2(c), and 2(d), respectively. We find that, in numerical
simulations, the tipping point does not occur at the same value of u for the different nodes,
resulting in gradual transitions from the lower state to the upper state as one increases u; we
will examine this phenomenon in Section 4(d) . Therefore, we need to define which tipping points
we want to anticipate by theory. Because we are usually interested in critical points at which a
macroscopic number of nodes (i.e., O(N)) starts to experience a major transition, we operationally
define the tipping point as the value of v at which z g exceeds 1.5, denoted by @1 5 (see the dashed
lines in Fig. 2) for the first time as we gradually increase u. Roughly speaking, 5-10% of the nodes
have switched from the lower state to the upper state at u = @1 5. Figures 2(a)-(d) suggest that the
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DBMF theory better approximates @1.5 than the GBB reduction does. We quantitatively confirm
this claim in Table 1, which compares the error in the tipping point defined by |ugpp — 1.5/ for
GBB reduction and |uppmp — 15| for our DBMEF theory, where ugpp and uppyr are the tipping
point estimated by the GBB reduction and the DBMF theory, respectively. We note that we do not
add a generalization of the GBB reduction [20,21] to the present comparison because the DBMF
theory and the GBB reduction only use the degree of each node, whereas the generalizations of
the GBB reduction use the full adjacency matrix of the network [22].

The accuracy of the different approximations depends on the definition of the tipping point.
To show this, consider a tipping point defined as the value of u at which z.g exceeds 2.5 for the
first time as one increases u, denoted by 2 5 (see the dotted lines in Fig. 2). With this definition,
the DBMF theory is better at locating the tipping point than the GBB reduction for two networks
and vice versa for the other two networks (see Table 1).

We also confirmed that, for BA networks of different sizes, the error in locating the tipping
point is systematically smaller for the DBMF theory than the GBB reduction when we use 41 5
as the tipping point (see Fig. 2(e)), whereas the opposite is the case with @z 5 (see Fig. 2(f)). With
both @1 5 and 19 5, the error increases as IV increases.

We show the approximation error for the GBB reduction and the DBMF theory for Holme-Kim
networks in Figs. 2(g) and 2(h) for @ 5 and a2 5, respectively. The results are similar to the case
of BA networks (see Figs. 2(e) and 2(f)) despite the presence of high clustering in the Holme-Kim
networks. Specifically, the DBMF theory is better approximating the tipping point than the GBB
reduction for the tipping point @ 5 (see Fig. 2(g)), whereas the opposite holds true except for
small networks in the case of 3 5 (see Fig. 2(h)).

Table 1. Approximation error for the DBMF theory and GBB reduction. We set D = 0.001 and gradually increase u to
determine tipping points @1 .5 and 2. 5. We set w = 0 and gradually increase D to determine tipping points D1_5 and
Das.

1.5 2.5 Dis Dy
Network DBMF GBB DBMF GBB DBMF GBB DBMF GBB
BA, N = 10> 0.004 0.014 0.002 0.007 0.007 0.048 0.001 0.031
BA, N =10° 0.002 0.053 0.026 0.002 0.012 0.034 0.023 0.007
Coauthorship 0.008 0.027 0.012 0.008 0.009 0.043 0.012 0.029
Hamsterter 0.092 0.109 0.025 0.063 0.001 0.007 0.001 0.005

We next compared the performance of the DBMF theory and the GBB reduction in
approximating the the effective state, z.g, off the tipping point, which has been a main
goal of recent papers on dimension reduction techniques for dynamical systems on networks
[19-21,58-60]. To quantify the accuracy at approximating z.g, we measure the relative error
between the results obtained from direct numerical simulations and the theoretical estimate,
which we denote by e. For the DBMF theory, we obtain € = |(zeg — ZDBMF)/Teft|, Where Zeg
refers to the value obtained from direct numerical simulations. For the GBB reduction, we set € =
[(zer — z(B))/zegr|, where we obtain () as the equilibrium of the one-dimensional dynamics
given by Eq. (4.1). At each u value, we calculate the average and standard deviation of the relative
error on the basis of 100 BA networks. We show the relative error for BA networks with N = 10?
and N = 102 nodes in Figs. 3(a) and 3(b), respectively, for a range of u above the tipping point.
The relative error for the DBMF theory is similar to that for the GBB reduction when N = 102.
The GBB reduction yields smaller errors when N = 103, However, the relative error for the DBMF
theory when N = 102 is also fairly small (i.e., < 0.5 x 1073). We show in Fig. 3(c) the mean and
standard deviation of the relative error at w = 1.5 as a function of N. Although the error for the
DBMF theory increases as N increases, it remains reasonably small up to N = 104,

H
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Figure 3. Relative error in approximating the effective state by the DBMF theory and GBB reduction. We use BA networks
with NV nodes. (a) N = 100. (b) N = 1000. (c) Dependence on N at u = 1.5. In (a) and (b), we omitted the part of the
error bar below € = 0.

(c) Tipping under gradual increases in 1D

Next, we examine the accuracy of the DBMF theory and GBB reduction when we set u =0 and
vary D. In Fig. 4(a), (b), (c), and (d), we show the relationship between z.s and D for a BA
network with N = 102 nodes, a BA network with N = 10° nodes, the coauthorship network, and
the hamsterster network, respectively. For approximating the location of the tipping point, we
find that our DBMF theory is more accurate than the GBB reduction when we define the tipping
point by D1 5, i.e, the value of D at which z.g exceeds 1.5 for the first time when we increase
the value of D (see the dashed lines in Fig. 4). If we define the tipping point by Do 5 (see the
dotted lines in Fig. 4), the DBMF theory is more accurate on the BA network with N = 102 nodes
(Fig. 4(a)) and the hamsterster network (Fig. 4(d)) and vice versa on the BA network with N = 103
nodes (Fig. 4(b)) and the coauthourship network (Fig. 4(c)); also see Table 1.

With BA networks with different numbers of nodes, the DBMF theory locates D1,5 more
accurately than the GBB reduction (see Fig. 4(e)). The opposite is the case when we define the
tipping point by Dy 5 (see Fig. 4(f)) except for small networks.

We also show the error in approximating the tipping point for Holme-Kim networks with
different numbers of nodes in Figs. 4(g) and 4(h). The DBMF theory locates the tipping point
with a higher accuracy than the GBB reduction with the tipping point being defined by D1 5
(Fig. 4(g)), whereas the opposite is the case for the combination of D5 5 and large N (Fig. 4(h)).
All these results are similar to those when we varied u instead of D (see Section 4(b)).

(d) Multistage transitions

For the given D value, the DBMF theory predicts a range of parameter value u € (uc ¢, uc,u) over
which the different nodes tip from the lower to the upper state. Using Eq. (3.2) and Fig. 1, we
obtain

te = — Dhmax©* (4.4)

and
Uc,u = ?j(l) - kainQ*- 4.5)

Therefore, except for regular networks (i.e., those in which all nodes have the same degree),
one obtains u. ¢ < ucu such that there is a nonvanishing range of « in which some nodes are
in the lower state and the other nodes are in the upper state. Therefore, the entire /N-dimensional
dynamical system on the network does not show a single tipping point but undergoes multiple
tipping points in uncorrelated degree-heterogeneous networks even when N — co. We refer
to this phenomenon as multistage transition. Equations (4.4) and (4.5) indicate that the range
of u through which a multistage transition occurs is wider for a more heterogeneous degree
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Figure 4. Performance of the DBMF theory and GBB reduction on approximating the effective state, x.g, in different
networks when we set u =0 and vary D. (a) BA network with N = 102 nodes. (b) BA network with N = 103 nodes.
(c) Coauthorship network. (d) Hamsterster network. (e) Approximation error for the DBMF theory and GBB reduction
in locating the tipping point, D1_5, for BA networks. (f) Approximation error in locating D2‘5 for BA networks. (g)
Approximation error in locating D15 for Holme-Kim networks. (h) Approximation error in locating Do 5 for Holme-Kim
networks. In (a)—(d), the dashed and dotted lines represent z.g¢ = 1.5 and z.g = 2.5, respectively. See the caption of
Fig. 2 for the definition of the error bar.
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Figure 5. The relationship between the degree heterogeneity and the range of a bifurcation parameter over which multiple
transitions occur. In (a), we fix D = 0.001 and gradually increase u. In (b), we fix u = 0 and gradually increase D. A
circle represents a network. We gathered networks from [61] which originated in published research [62-78].

distribution. Similarly, when one fixes u and varies D, a multistage transition occurs over D €
(=) ko, (u = 50) R )

To verify this prediction, we numerically simulated double-well dynamics on several
networks. We selected 17 networks from the archive of empirical networks in the “networkdata”
R package [61] that were a mix of human and animal social networks with between 34 and
379 nodes (and mean = 116.2). We simplified the networks by making them undirected and
unweighted, retaining only the largest connected component, and allowing no self-loops. When
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several networks drawn from a published work were available, we used a network with close to
100 nodes. We kept increasing the bifurcation parameter (i.e., v or D) until at least 90% of nodes
were in the upper state at equilibrium. Then, we calculated the range of the bifurcation parameter
over which node transitions occurred as the difference between the first value when at least 10%
of nodes were in the upper state and the first value when at least 90% of nodes were in the upper
state.

In Fig. 5(a), we show the relationship between the observed range of v and the range of
node degrees (i.e., kmax — kmin) for each network when we fix D = 0.001 and vary u. Each circle
represents a network. Equations (4.4) and (4.5) imply that the size of the range of u is proportional
to kmax — kmin, Which the results shown in Fig. 5(a) supports. The Pearson correlation coefficient
between the size of the range of u and kmax — Kkmin is 0.87. In Fig. 5(b), we show the relationship
between the range of D over which multiple transitions occur and 3}(2) /Kmin — 3}(1) /kmax when

we fix © =0 and vary D. Note that D € ((u — gj@))/kmax, (u— g(l))/kmin) implies that the size

of the range of D is proportional to g /kmin — g /kmax. Figure 5(b) is also supportive of the
DBMEF theory; the Pearson correlation coefficient between the two quantities is 0.59. In both cases,
the heterogeneity in the degree distribution in terms of ky,j, and kmax predicts the presence of
multistage transitions fairly well.

5. Discussion

We have developed a DBMF theory for a standard double-well system on networks. The DBMF
theory has turned out to be more accurate than the GBB reduction in locating the tipping point if
we define it as the bifurcation parameter value at which a small fraction of nodes has tipped. We
have also shown that the DBMF theory is less accurate than the GBB reduction at approximating
the effective state substantially above the tipping point.

The original spectral method is a generalization of the GBB reduction and uses the leading
eigenvector of the adjacency matrix to linearly combine {z1,...,zx} and realize a low-
dimensional reduction of a family of dynamical systems on networks [20,21]. Similar to the GBB
reduction, the original spectral method is accurate at approximating the effective state, whereas
it is not accurate at locating the tipping point [60]. We recently extended this spectral method
to the case of the nonleading eigenvector that minimizes a mathematically derived error [22].
By design, this spectral method, which we call the modified spectral method, is more accurate
than the original spectral method, and presumably than the GBB reduction and DBMF theory, at
approximating the effective state except near the tipping point. However, the modified spectral
method is far less accurate at locating the tipping point than the original spectral method, and also
apparently than the GBB reduction and DBMEF theory [22]. Therefore, it seems that the accuracy
at locating the tipping point and that at approximating the effective state sufficiently far from the
tipping point are in a trade-off relationship. Specifically, among the methods discussed here, the
DBMF theory is the most accurate at the former task, the modified spectral method is the most
accurate at the latter task, and the GBB and the original spectral method are in between. Looking
more closely into this trade-off, including searching a theory that more accurately locates the
tipping point than the present DBMF theory, warrants future work.

There exists a critical value of the parameter at which the lower and upper equilibrium states
have the same potential energy and thus have the same resilience [79,80]. In this case, there exists
the tipping point at which half nodes belong to the lower equilibrium and the other half to the
upper equilibrium. With this definition of the tipping point, i.e., u=wu25 or D = Dg 5 in our
case, we have shown that our DBMF theory is not accurate. In the present study, our primary
definition of the tipping point is the value of the parameter at which a small fraction of nodes
(5-10%) has transitioned from the lower to upper state (i.e., u =1 5 or D = D1 5). We chose such
a small fraction because, in practice, we are often interested in the situation in which a small
but noticeable fraction of nodes, rather than half the nodes, has tipped to enter an undesirable
state. For example, the tipping point for the flip to non-forest ecosystems in eastern, southern and
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central Amazonia is estimated to be at 20-25% deforestation [81]. We have shown that our DBMF
theory is more accurate than the GBB reduction with this latter definition of tipping.

In the present study, we have assumed that the influence of the jth node on the ith node is
proportional to A;;x;, where A;; is the (i, j) element of the adjacency matrix. In contrast, double-
well systems on networks in which the nodes are diffusively coupled have also been studied.
Such a model represents, for example, chemical reaction diffusion [82-84]. A DBMF theory was
previously developed for the case of diffusive coupling [82]. However, adapting their theory
to be able to self-consistently determine the mean field (i.e.,, ©* in our formulation) and the
threshold degree (i.e., k), and thus further pursuing how nodes with different degrees behave
and comparing the results with the case of coupling by the adjacency matrix warrants future
work.

We have provided theoretical and numerical evidence of multistage transitions in the present
double-well system on networks. In particular, our DBMF theory suggests that the multistage
transition is not a finite-size effect because the DBMF theory is more accurate in large uncorrelated
networks in general. In fact, our DBMF theory depends on the number of nodes, N, through
Eq. (3.5). However, an increase in /N does not mitigate the validity of Egs. (4.4) and (4.5), which
suggests that multistage transitions are likely to occur in networks of different sizes. Investigating
multistage transitions for a wider variety of networks and dynamical systems, as well as their
practical implications, also warrants future work.
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